1
|
Akhtyamova Z, Arkhipova T, Sharipova G, Ivanov R, Nuzhnaya T, Kudoyarova G, Veselov D. The Effect of Plant Growth-Promoting Bacteria Bacillus subtilis IB-22 on the Hydraulic Conductivity and Abundance of PIP2 Aquaporins in the Roots of an Abscisic Acid-Deficient Barley Mutant. Int J Mol Sci 2024; 25:10706. [PMID: 39409034 PMCID: PMC11476997 DOI: 10.3390/ijms251910706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Little information is available on how rhizosphere bacteria affect abscisic acid (ABA) levels in plants and whether these bacterial effects are associated with improved plant water status. In this study, we tested the hypothesis that the stimulation of plant growth may be associated with the ability of ABA to increase the hydraulic conductivity of roots through the up-regulation of aquaporin. To do this, we studied the effect of bacteria capable of producing ABA on a barley mutant deficient in this hormone. Measurements of hydraulic conductivity of the ABA-deficient barley mutant Az34 showed that its tissues exhibited a reduced ability to conduct water, which correlated with lower ABA content in plants. The inoculation of Bacillus subtilis IB-22 stimulated the growth of both the mutant and its parent variety. Also, under the influence of bacteria, the ABA content in plants increased, and the increase was more significant in the mutant. This effect was accompanied by an increase in hydraulic conductivity in the roots of the ABA-deficient mutant, and immunolocalization using antibodies against PIP2;1 and PIP2;2 aquaporins revealed an increase in their abundance. Thus, the results obtained support the hypothesis about the importance of a sufficiently high ABA content in plants to maintain the abundance of aquaporins, hydraulic conductivity and the growth of barley plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dmitry Veselov
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya 69, 450054 Ufa, Russia; (Z.A.); (T.A.); (G.S.); (R.I.); (T.N.); (G.K.)
| |
Collapse
|
2
|
Gal A, Dalal A, Anfang M, Sharma D, Binenbaum J, Muchaki P, Kumar R, Egbaria A, Duarte KE, Kelly G, de Souza WR, Sade N. Plasma membrane aquaporins regulate root hydraulic conductivity in the model plant Setaria viridis. PLANT PHYSIOLOGY 2023; 193:2640-2660. [PMID: 37607257 DOI: 10.1093/plphys/kiad469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023]
Abstract
The high rate of productivity observed in panicoid crops is in part due to their extensive root system. Recently, green foxtail (Setaria viridis) has emerged as a genetic model system for panicoid grasses. Natural accessions of S. viridis originating from different parts of the world, with differential leaf physiological behavior, have been identified. This work focused on understanding the physiological and molecular mechanisms controlling root hydraulic conductivity and root-to-shoot gas exchange signaling in S. viridis. We identified 2 accessions, SHA and ZHA, with contrasting behavior at the leaf, root, and whole-plant levels. Our results indicated a role for root aquaporin (AQP) plasma membrane (PM) intrinsic proteins in the differential behavior of SHA and ZHA. Moreover, a different root hydraulic response to low levels of abscisic acid between SHA and ZHA was observed, which was associated with root AQPs. Using cell imaging, biochemical, and reverse genetic approaches, we identified PM intrinsic protein 1;6 (PIP1;6) as a possible PIP1 candidate that regulates radial root hydraulics and root-to-shoot signaling of gas exchange in S. viridis. In heterologous systems, PIP1;6 localized in the endoplasmic reticulum, and upon interaction with PIP2s, relocalization to the PM was observed. PIP1;6 was predominantly expressed at the root endodermis. Generation of knockout PIP1;6 plants (KO-PIP1;6) in S. viridis showed altered root hydraulic conductivity, altered gas exchange, and alteration of root transcriptional patterns. Our results indicate that PIPs are essential in regulating whole-plant water homeostasis in S. viridis. We conclude that root hydraulic conductivity and gas exchange are positively associated and are regulated by AQPs.
Collapse
Affiliation(s)
- Atara Gal
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ahan Dalal
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moran Anfang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Davinder Sharma
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jenia Binenbaum
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Purity Muchaki
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rakesh Kumar
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Aiman Egbaria
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Karoline Estefani Duarte
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André 09210170, Brazil
| | - Gilor Kelly
- The Volcani Center, Institute of Plant Sciences, Agricultural Research Organization, Rishon Le-Zion 7505101, Israel
| | - Wagner Rodrigo de Souza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André 09210170, Brazil
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
3
|
Vysotskaya L, Martynenko E, Ryabova A, Kuzmina L, Starikov S, Chetverikov S, Gaffarova E, Kudoyarova G. The Growth-Inhibitory Effect of Increased Planting Density Can Be Reduced by Abscisic Acid-Degrading Bacteria. Biomolecules 2023; 13:1668. [PMID: 38002350 PMCID: PMC10669761 DOI: 10.3390/biom13111668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
High-density planting can increase crop productivity per unit area of cultivated land. However, the application of this technology is limited by the inhibition of plant growth in the presence of neighbors, which is not only due to their competition for resources but is also caused by growth regulators. Specifically, the abscisic acid (ABA) accumulated in plants under increased density of planting has been shown to inhibit their growth. The goal of the present study was to test the hypothesis that bacteria capable of degrading ABA can reduce the growth inhibitory effect of competition among plants by reducing concentration of this hormone in plants and their environment. Lettuce plants were grown both individually and three per pot; the rhizosphere was inoculated with a strain of Pseudomonas plecoglossicida 2.4-D capable of degrading ABA. Plant growth was recorded in parallel with immunoassaying ABA concentration in the pots and plants. The presence of neighbors indeed inhibited the growth of non-inoculated lettuce plants. Bacterial inoculation positively affected the growth of grouped plants, reducing the negative effects of competition. The bacteria-induced increase in the mass of competing plants was greater than that in the single ones. ABA concentration was increased by the presence of neighbors both in soil and plant shoots associated with the inhibition of plant growth, but accumulation of this hormone as well as inhibition of the growth of grouped plants was prevented by bacteria. The results confirm the role of ABA in the response of plants to the presence of competitors as well as the possibility of reducing the negative effect of competition on plant productivity with the help of bacteria capable of degrading this hormone.
Collapse
Affiliation(s)
- Lidiya Vysotskaya
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia; (E.M.); (A.R.); (L.K.); (S.S.); (S.C.); (E.G.)
| | | | | | | | | | | | | | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia; (E.M.); (A.R.); (L.K.); (S.S.); (S.C.); (E.G.)
| |
Collapse
|
4
|
Filion M. Editorial for Special Issue "Interactions between Plant Beneficial Pseudomonas spp. and Their Host". Microorganisms 2023; 11:2591. [PMID: 37894249 PMCID: PMC10609276 DOI: 10.3390/microorganisms11102591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Plant-beneficial Pseudomonas spp [...].
Collapse
Affiliation(s)
- Martin Filion
- Science and Technology Branch, Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 430 Gouin Boul., Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| |
Collapse
|
5
|
Akhiyarova G, Vafina G, Veselov D, Kudoyarova G. Immunolocalization of Jasmonates and Auxins in Pea Roots in Connection with Inhibition of Root Growth under Salinity Conditions. Int J Mol Sci 2023; 24:15148. [PMID: 37894828 PMCID: PMC10606536 DOI: 10.3390/ijms242015148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Inhibition of root elongation is an important growth response to salinity, which is thought to be regulated by the accumulation of jasmonates and auxins in roots. Nevertheless, the mechanisms of the interaction of these hormones in the regulation of the growth response to salinity are still not clear enough. Their better understanding depends on the study of the distribution of jasmonates and auxins between root cells. This was achieved with the help of immunolocalization of auxin (indoleacetic acid) and jasmonates on the root sections of pea plants. Salinity inhibited root elongation and decreased the size of the meristem zone and the length of cells in the elongation zone. Immunofluorescence based on the use of appropriate, specific antibodies that recognize auxins and jasmonates revealed an increased abundance of both hormones in the meristem zone. The obtained data suggests the participation of either auxins or jasmonates in the inhibition of cell division, which leads to a decrease in the size of the meristem zone. The level of only auxin and not jasmonate increased in the elongation zone. However, since some literature evidence argues against inhibition of root cell division by auxins, while jasmonates have been shown to inhibit this process, we came to the conclusion that elevated jasmonate is a more likely candidate for inhibiting root meristem activity under salinity conditions. Data suggests that auxins, not jasmonates, reduce cell size in the elongation zone of salt-stressed plants, a suggestion supported by the known ability of auxins to inhibit root cell elongation.
Collapse
Affiliation(s)
| | | | | | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya 69, 450054 Ufa, Russia; (G.A.); (G.V.); (D.V.)
| |
Collapse
|
6
|
Zboralski A, Filion M. Pseudomonas spp. can help plants face climate change. Front Microbiol 2023; 14:1198131. [PMID: 37426009 PMCID: PMC10326438 DOI: 10.3389/fmicb.2023.1198131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Climate change is increasingly affecting agriculture through droughts, high salinity in soils, heatwaves, and floodings, which put intense pressure on crops. This results in yield losses, leading to food insecurity in the most affected regions. Multiple plant-beneficial bacteria belonging to the genus Pseudomonas have been shown to improve plant tolerance to these stresses. Various mechanisms are involved, including alteration of the plant ethylene levels, direct phytohormone production, emission of volatile organic compounds, reinforcement of the root apoplast barriers, and exopolysaccharide biosynthesis. In this review, we summarize the effects of climate change-induced stresses on plants and detail the mechanisms used by plant-beneficial Pseudomonas strains to alleviate them. Recommendations are made to promote targeted research on the stress-alleviating potential of these bacteria.
Collapse
|
7
|
Korobova A, Ivanov R, Timergalina L, Vysotskaya L, Nuzhnaya T, Akhiyarova G, Kusnetsov V, Veselov D, Kudoyarova G. Effect of Low Light Stress on Distribution of Auxin (Indole-3-acetic Acid) between Shoot and Roots and Development of Lateral Roots in Barley Plants. BIOLOGY 2023; 12:787. [PMID: 37372072 DOI: 10.3390/biology12060787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023]
Abstract
Depending on their habitat conditions, plants can greatly change the growth rate of their roots. However, the mechanisms of such responses remain insufficiently clear. The influence of a low level of illumination on the content of endogenous auxins, their localization in leaves and transport from shoots to roots were studied and related to the lateral root branching of barley plants. Following two days' reduction in illumination, a 10-fold reduction in the emergence of lateral roots was found. Auxin (IAA, indole-3-acetic acid) content decreased by 84% in roots and by 30% in shoots, and immunolocalization revealed lowered IAA levels in phloem cells of leaf sections. The reduced content of IAA found in the plants under low light suggests an inhibition of production of this hormone under these conditions. At the same time, two-fold downregulation of the LAX3 gene expression, facilitating IAA influx into the cells, was detected in the roots, as well as a decline in auxin diffusion from shoots through the phloem by about 60%. It was suggested that the reduced emergence of lateral roots in barley under a low level of illumination was due to a disturbance of auxin transport through the phloem and down-regulation of the genes responsible for auxin transport in plant roots. The results confirm the importance of the long distance transport of auxins for the control of the growth of roots under conditions of low light. Further study of the mechanisms that control the transport of auxins from shoots to roots in other plant species is required.
Collapse
Affiliation(s)
- Alla Korobova
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| | - Ruslan Ivanov
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| | - Leila Timergalina
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| | - Lidiya Vysotskaya
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| | - Tatiana Nuzhnaya
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| | - Guzel Akhiyarova
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| | - Victor Kusnetsov
- K.A. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., 127276 Moscow, Russia
| | - Dmitry Veselov
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre RAS, 69 Pr. Octyabrya, 450054 Ufa, Russia
| |
Collapse
|
8
|
Akhtyamova Z, Martynenko E, Arkhipova T, Seldimirova O, Galin I, Belimov A, Vysotskaya L, Kudoyarova G. Influence of Plant Growth-Promoting Rhizobacteria on the Formation of Apoplastic Barriers and Uptake of Water and Potassium by Wheat Plants. Microorganisms 2023; 11:1227. [PMID: 37317202 DOI: 10.3390/microorganisms11051227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
The formation of apoplastic barriers is important for controlling the uptake of water and ions by plants, thereby influencing plant growth. However, the effects of plant growth-promoting bacteria on the formation of apoplastic barriers, and the relationship between these effects and the ability of bacteria to influence the content of hormones in plants, have not been sufficiently studied. The content of cytokinins, auxins and potassium, characteristics of water relations, deposition of lignin and suberin and the formation of Casparian bands in the root endodermis of durum wheat (Triticum durum Desf.) plants were evaluated after the introduction of the cytokinin-producing bacterium Bacillus subtilis IB-22 or the auxin-producing bacterium Pseudomonas mandelii IB-Ki14 into their rhizosphere. The experiments were carried out in laboratory conditions in pots with agrochernozem at an optimal level of illumination and watering. Both strains increased shoot biomass, leaf area and chlorophyll content in leaves. Bacteria enhanced the formation of apoplastic barriers, which were most pronounced when plants were treated with P. mandelii IB-Ki14. At the same time, P. mandelii IB-Ki14 caused no decrease in the hydraulic conductivity, while inoculation with B. subtilis IB-22, increased hydraulic conductivity. Cell wall lignification reduced the potassium content in the roots, but did not affect its content in the shoots of plants inoculated with P. mandelii IB-Ki14. Inoculation with B. subtilis IB-22 did not change the potassium content in the roots, but increased it in the shoots.
Collapse
Affiliation(s)
- Zarina Akhtyamova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Elena Martynenko
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Tatiana Arkhipova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Oksana Seldimirova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Ilshat Galin
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Andrey Belimov
- Group of Culture of Beneficial Microorganisms, All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Lidiya Vysotskaya
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| |
Collapse
|
9
|
Mechanisms and Applications of Bacterial Inoculants in Plant Drought Stress Tolerance. Microorganisms 2023; 11:microorganisms11020502. [PMID: 36838467 PMCID: PMC9958599 DOI: 10.3390/microorganisms11020502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Agricultural systems are highly affected by climatic factors such as temperature, rain, humidity, wind, and solar radiation, so the climate and its changes are major risk factors for agricultural activities. A small portion of the agricultural areas of Brazil is irrigated, while the vast majority directly depends on the natural variations of the rains. The increase in temperatures due to climate change will lead to increased water consumption by farmers and a reduction in water availability, putting production capacity at risk. Drought is a limiting environmental factor for plant growth and one of the natural phenomena that most affects agricultural productivity. The response of plants to water stress is complex and involves coordination between gene expression and its integration with hormones. Studies suggest that bacteria have mechanisms to mitigate the effects of water stress and promote more significant growth in these plant species. The underlined mechanism involves root-to-shoot phenotypic changes in growth rate, architecture, hydraulic conductivity, water conservation, plant cell protection, and damage restoration through integrating phytohormones modulation, stress-induced enzymatic apparatus, and metabolites. Thus, this review aims to demonstrate how plant growth-promoting bacteria could mitigate negative responses in plants exposed to water stress and provide examples of technological conversion applied to agroecosystems.
Collapse
|
10
|
Martynenko E, Arkhipova T, Akhiyarova G, Sharipova G, Galin I, Seldimirova O, Ivanov R, Nuzhnaya T, Finkina E, Ovchinnikova T, Kudoyarova G. Effects of a Pseudomonas Strain on the Lipid Transfer Proteins, Appoplast Barriers and Activity of Aquaporins Associated with Hydraulic Conductance of Pea Plants. MEMBRANES 2023; 13:208. [PMID: 36837711 PMCID: PMC9959925 DOI: 10.3390/membranes13020208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 06/16/2023]
Abstract
Lipid transfer proteins (LTPs) are known to be involved in suberin deposition in the Casparian bands of pea roots, thereby reinforcing apoplast barriers. Moreover, the Pseudomonas mandelii IB-Ki14 strain accelerated formation of the Casparian bands in wheat plants, although involvement of LTPs in the process was not studied. Here, we investigated the effects of P. mandelii IB-Ki14 on LTPs, formation of the Casparian bands, hydraulic conductance and activity of aquaporins (AQPs) in pea plants. RT PCR showed a 1.6-1.9-fold up-regulation of the PsLTP-coding genes and an increase in the abundance of LTP proteins in the phloem of pea roots induced by the treatment with P. mandelii IB-Ki14. The treatment was accompanied with increased deposition of suberin in the Casparian bands. Hydraulic conductance did not decrease in association with the bacterial treatment despite strengthening of the apoplast barriers. At the same time, the Fenton reagent, serving as an AQPs inhibitor, decreased hydraulic conductance to a greater extent in treated plants relative to the control group, indicating an increase in the AQP activity by the bacteria. We hypothesize that P. mandelii IB-Ki14 stimulates deposition of suberin, in the biosynthesis of which LTPs are involved, and increases aquaporin activity, which in turn prevents a decrease in hydraulic conductance due to formation of the apoplast barriers in pea roots.
Collapse
Affiliation(s)
- Elena Martynenko
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Tatiana Arkhipova
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Guzel Akhiyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Guzel Sharipova
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Ilshat Galin
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Oksana Seldimirova
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Ruslan Ivanov
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Tatiana Nuzhnaya
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Ekaterina Finkina
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Tatiana Ovchinnikova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, RAS, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| |
Collapse
|