1
|
Sunmonu GT, Adzitey F, Odih EE, Tibile BA, Ekli R, Aduah M, Oaikhena AO, Akinlabi OC, Abia ALK, Amoako DG, Okeke IN. Genomic characterization of foodborne Salmonella enterica and Escherichia coli isolates from Saboba district and Bolgatanga Municipality Ghana. PLoS One 2025; 20:e0315583. [PMID: 39919045 PMCID: PMC11805442 DOI: 10.1371/journal.pone.0315583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/28/2024] [Indexed: 02/09/2025] Open
Abstract
Salmonella enterica and Escherichia coli are well-known bacteria commonly associated with foodborne illnesses in humans and animals. Genomic characterization of these pathogens provides valuable insights into their evolution, virulence factors and resistance determinants. This study aimed to characterized previously isolated Salmonella (n = 14) and E. coli (n = 19) from milk, meat and its associated utensils in Ghana using whole-genome sequencing. Most of the Salmonella serovars (Fresno, Plymouth, Infantis, Give and Orleans) identified in this study are yet to be reported in Ghana. Most Salmonella isolates were pan-sensitive, but genes conferring resistance to fosfomycin (fosA7.2) and tetracycline (tet(A)) were detected in one and three isolates, respectively. Seven of the Salmonella isolates carried the IncI1-I(Gamma) plasmid replicon. Although antimicrobial resistance was not common among Salmonella strains, most (11/19) of the E. coli strains had at least one resistance gene, with nearly half (8/19) being multidrug resistant and carried plasmids. Three of the 19 E. coli strains belonged to serovars commonly associated with enteroaggregative E. coli (EAEC) pathotype. While strains belonging to virulence-associated lineages lacked key plasmid-encoded virulence plasmids, several plasmid replicons were detected in most of the E. coli (14/19) strains. Food contaminated with these pathogens can serve as a vehicle for disease transmission, posing a significant public health risk and necessitating stringent food safety and hygiene practices to prevent outbreaks. Hence, there is need for continuous surveillance and preventive measures to stop the spread of foodborne pathogens and reduce the risk of associated illnesses in Ghana.
Collapse
Affiliation(s)
- Gabriel Temitope Sunmonu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Frederick Adzitey
- Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Erkison Ewomazino Odih
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Boniface Awini Tibile
- Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Rejoice Ekli
- Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Martin Aduah
- Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Anderson O. Oaikhena
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Olabisi C. Akinlabi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel Gyamfi Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Integrative Biology and Bioinformatics, University of Guelph, Guelph, Ontario, Canada
| | - Iruka N. Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
2
|
Hassan M, Ikram M, Haider A, Shahzadi I, Moeen S, Ul-Hamid A, Ali G, Ullah H, Ebaid MS, Graeff CFO. Doping dependency of chitosan and PAA controlled CdSe quantum dots for catalytic and bactericidal behavior by inhibiting DNA gyrase and DHFR through molecular docking. Int J Biol Macromol 2025; 288:138690. [PMID: 39672445 DOI: 10.1016/j.ijbiomac.2024.138690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
The presence of toxic dyes in industrial waste dramatically diminishes the beneficial effects of remediation efforts. To overcome the hazardous impacts of dyes on biodiversity and environment, we integrated polymers into nanoparticles to substantially enhance their functionality and performance. 2 and 4 wt% of chitosan (CS) and 3 wt% of polyacrylic acid (PAA) doped cadmium selenide (CdSe) nanostructures (NSs) were prepared by co-precipitation approach. CdSe quantum dots (QDs) exhibit a narrow band gap energy, high solubility, and tunable properties, which are appropriate for redox reactions but show less adsorption and catalytic behavior. In this work, catalytic and antibacterial activities of CdSe QDs enhanced upon the integration of PAA due to increment in surface area confirmed by BET analysis. Furthermore, the addition of CS escalates the dye degradation and microbes evolve to the interaction of CdSe surface with the functional groups of CS. Highly doped CdSe shows significant inhibitory zones (8.65 to 9.30 mm) against gram-positive bacteria Staphylococcus aureus (S. aureus). In addition, the inhibitory activity of CS/PAA-CdSe nanostructures against DNA gyrase and dihydrofolate reductase (DHFR) in S. aureus was elucidated using molecular docking investigations, providing a rationale for their bactericidal action.
Collapse
Affiliation(s)
- Mudassir Hassan
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan.
| | - Ali Haider
- Department of Clinical Medicine, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture, 66000 Multan, Punjab, Pakistan.
| | - Iram Shahzadi
- School of Pharmacy, University of Management and Technology, Lahore 54770, Pakistan
| | - Sawaira Moeen
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Ghafar Ali
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan
| | - Hameed Ullah
- Department of Physics and Meteorology, School of Sciences, Sao Paulo State University (UNESP), Bauru, Sao Paulo 17033-360, Brazil
| | - Manal S Ebaid
- Department of Chemistry, College of Science, Northern Border university, Arar, Saudi Arabia
| | - Carlos F O Graeff
- Department of Physics and Meteorology, School of Sciences, Sao Paulo State University (UNESP), Bauru, Sao Paulo 17033-360, Brazil
| |
Collapse
|
3
|
Nuraini DM, Andityas M, Sukon P, Phuektes P. Carbapenem-resistant Enterobacteriaceae from dairy cattle milk: A systematic review and meta-analysis. Res Vet Sci 2025; 183:105497. [PMID: 39689448 DOI: 10.1016/j.rvsc.2024.105497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) have been detected in dairy cattle milk, raising concerns about public health risks. This study aimed to assess the global prevalence of CRE in dairy cattle milk through a systematic review and meta-analysis, following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Retrieved articles from four databases were initially screened based on predefined inclusion criteria. The meta-analysis included 49 studies (2011-2024), covering 28,134 milk samples and 3462 Enterobacteriaceae isolates globally. Data from the full text were extracted to a Microsoft Excel spreadsheet and analysed using the 'meta' R package in R v.4.3.0 software for pooled prevalence and subgroup meta-analysis with a random-effects for logit transformation. Heterogeneity was assessed using Cochran's Q statistic (χ2), p-value and I2 statistic. Publication bias and sensitivity were evaluated using Egger's test, funnel plot, trim and fill plot, and leave-one-out test. Globally, the prevalence of CRE in dairy cattle milk was 0.73 % (95 % CI, 0.37-1.41). Subgroup meta-analysis based on continent, sample type, Enterobacteriaceae species, diagnostic method, antibiotic type, and interpretation guideline revealed no significant differences among the criteria within the subgroup. Although the overall pooled prevalence of CRE in dairy cattle milk is relatively low, it raises public health concern regarding raw milk consumption. This emphasizes the need for regular monitoring with in a One Health framework for CRE in the dairy industry to anticipate potential transmission between humans, animals, and the environment.
Collapse
Affiliation(s)
- Dian Meididewi Nuraini
- Veterinary Science Program, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Animal Science, Faculty of Animal Science, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Morsid Andityas
- Veterinary Science Program, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand; Veterinary Technology Study Program, Department of Bioresources Technology and Veterinary, Vocational College, Universitas Gadjah Mada, Indonesia
| | - Peerapol Sukon
- Division of Anatomy, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Patchara Phuektes
- Division of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
4
|
Fatima S, Ikram M, Haider A, Shahzadi A, Moeen S, Ul-Hamid A, Ullah H, Ali G, Salem MA. Dual functionality of chitosan and CTAB doped SnSe nanostructures: RhB decolorization, oxygen evolution reaction and antimicrobial activity against S. aureus by inhibiting DNA gyrase through molecular docking. Int J Biol Macromol 2025; 301:140433. [PMID: 39889992 DOI: 10.1016/j.ijbiomac.2025.140433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/17/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
The current study explores the amalgamation of varying concentrations 2 and 4 wt% of chitosan (CS) and fixed concentration (3 wt%) of cetyltrimethylammonium bromide (CTAB) in tin selenide (SnSe) to form a novel ternary system of CS/CTAB-SnSe via co-precipitation method. The objective of this work is to minimize the minacious environmental concerns regarding organic pollutants and oxygen evolution reaction (OER) activity. This ternary system also used to examine the antibacterial action with familiar antibiotic ciprofloxacin (CIP) against a Gram-positive multiple drug resistant (MDR) bacteria Staphylococcus aureus (MDR S. aureus). The highest (80 %) decolorization efficiency of RhB was observed in an acidic medium at 8 min. For OER, optimized (4 wt% of CS doped into CTAB-SnSe) electrocatalyst revealed lower overpotential, minimal Tafel slope, and lowest Rct value, indicating higher OER activity. The optimized sample showed a maximum inhibitory zone value of 5.45 ± 0.04 mm against S. aureus. The docking investigations were undertaken to investigate the microbicidal prohibitive mechanism of CTAB-SnSe and CS/CTAB-SnSe on DNA gyrase enzymes in S. aureus. The experimental findings elucidated that CS augmented CTAB-SnSe exhibits significant active sites required for chromophore breakdown of RhB and inhibiting the growth of MDR S. aureus.
Collapse
Affiliation(s)
- Summan Fatima
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan.
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture, 66000 Multan, Punjab, Pakistan.
| | - Anum Shahzadi
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Sawaira Moeen
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Hameed Ullah
- Department of Physics and Meteorology, School of Sciences, Sao Paulo State University (UNESP), Bauru, Sao Paulo 17033-360, Brazil
| | - Ghafar Ali
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia
| |
Collapse
|
5
|
Drugea RI, Siteavu MI, Pitoiu E, Delcaru C, Sârbu EM, Postolache C, Bărăităreanu S. Prevalence and Antibiotic Resistance of Escherichia coli Isolated from Raw Cow's Milk. Microorganisms 2025; 13:209. [PMID: 39858977 PMCID: PMC11767543 DOI: 10.3390/microorganisms13010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Escherichia coli (E. coli) is one of the most common pathogens in both humans and livestock. This study aimed to investigate the prevalence of E. coli isolated from raw cow milk and evaluate its antimicrobial resistance rates. A total of 1696 milk samples were collected from Romanian dairy farms from 2018 to 2022. E. coli was isolated on various selective agar media, such as Cled agar and Columbia Agar with 5% Sheep Blood. The identification of E. coli was performed by MALDI-TOF MS. E. coli isolates were tested for their susceptibility against 18 commonly used antibiotics in a disk diffusion method. The overall prevalence of E. coli was 22.45% of all isolated pathogens. Antibiogram analysis revealed that 27.51% of E. coli isolates from milk were multidrug-resistant. Resistance was highest for penicillin-novobiocin (87.78%), followed by streptomycin (53.7%). Resistance to six drugs (amoxicillin, streptomycin, kanamycin-cephalexin, marbofloxacin, ampicillin) showed a significant increasing trend over time, while for two drugs (penicillin G-framycetin, doxycycline), a significant decrease was observed. Our results suggest that milk can be a reservoir of bacteria with the potential for infection in humans via the food chain. Furthermore, there is a need for surveillance and monitoring to control the increase in resistance to currently used antimicrobials in dairy farms because the occurrence of multidrug-resistant E. coli isolated from milk poses a health hazard to consumers.
Collapse
Affiliation(s)
- Roxana Ionela Drugea
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 050097 Bucharest, Romania; (R.I.D.); (M.I.S.)
| | - Mădălina Iulia Siteavu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 050097 Bucharest, Romania; (R.I.D.); (M.I.S.)
- Synevovet Laboratory, Ilfov County, 077040 Chiajna, Romania;
| | - Elena Pitoiu
- Synevovet Laboratory, Ilfov County, 077040 Chiajna, Romania;
| | - Cristina Delcaru
- Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania; (C.D.); (E.M.S.); (C.P.)
| | - Ecaterina Monica Sârbu
- Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania; (C.D.); (E.M.S.); (C.P.)
| | - Carmen Postolache
- Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania; (C.D.); (E.M.S.); (C.P.)
| | - Stelian Bărăităreanu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 050097 Bucharest, Romania; (R.I.D.); (M.I.S.)
| |
Collapse
|
6
|
Nnah EP, Asante J, Amoako DG, Abia ALK, Essack SY. Antibiotic-resistant Escherichia coli (E. coli) at one health interfaces in Africa: A scoping review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177580. [PMID: 39642619 DOI: 10.1016/j.scitotenv.2024.177580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
One Health represents a cohesive strategy designed to sustainably harmonize and enhance the health of humans, animals, and ecosystems. This implies that addressing the global rising antimicrobial resistance problem requires a One Health (OH) approach. Thus, using a Joanna Briggs Institute scoping review design, this review mapped existing literature on antibiotic-resistant (ABR) Escherichia coli in Africa from a OH perspective. The review protocol was developed and registered (https://osf.io/48x2d) before implementation. PubMed, ScienceDirect, Web of Science, Sabinet, and African Journals Online databases were searched systematically using predefined terms for all eligible articles between January 2010 and May 2024.The Preferred Reporting Items for Systematic Reviews and Meta-analysis extension for scoping reviews (PRISMA-ScR) was used. Of 507 search results, 63 were finally analysized using a three-level screening process. The data showed that OH studies on ABR E. coli were highest in the Eastern African region, with studies at the human-animal interface predominating. Reported ABR E. coli prevalence rates ranged from 0.64 % - 98.3 %. The studies reported diverse extended-spectrum beta-lactamase (ESBL) genes (n = 44), mcr genes (n = 3), other resistance genes (n = 82), and mobile genetic elements (plasmids, integrons, insertion sequences, and transposons). Moreso, this review showed that: research on ABR at OH interfaces is in its infancy in Africa, with ABR E. coli data unavailable for 68.5 % (n = 37) of the countries, and the food chain was the most inferred transmission route of ABR E. coli. Notwithstanding the relatively small number of studies at OH interfaces in Africa, these results emphasize antimicrobial stewardship, good hygiene and biosecurity practices, AMR surveillance, and research using the OH approach to ensure good health human, animal, plant and environmental health.
Collapse
Affiliation(s)
- Eberechi Phoebe Nnah
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
| | - Jonathan Asante
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Ghana
| | - Daniel Gyamfi Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; Department of Integrative Biology and Bioinformatics, University of Guelph, Ontario N1G2W1, Canada
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; Environmental Research Foundation, Westville 3630, South Africa.
| | - Sabiha Y Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
7
|
Ikram M, Shabir Y, Haider A, Shahzadi I, Bilal M, Ul-Hamid A, Fouda AM, Ali S. Dye degradation and antimicrobial efficacy of cesium-doped Y 2O 3 nanostructures: in silico docking study. RSC Adv 2024; 14:30732-30742. [PMID: 39328869 PMCID: PMC11425155 DOI: 10.1039/d4ra05620e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Developing multifunctional nanomaterials is crucial to rising global concerns over environmental contamination caused by dye effluents and antibiotic resistance. This work presents cesium (Cs)-doped Y2O3 nanostructures (NSs) as viable options for catalytic dye degradation and antibacterial action. This study prepared yttrium oxide (Y2O3) and various (2, 4, and 6 wt%) concentrations of Cs-doped Y2O3 NSs via co-precipitation technique. The pure and Cs-doped Y2O3 NSs were used to degrade methylene blue (MB) at different pH levels and assess the antibacterial properties against multidrug-resistant (MDR) Escherichia coli (E. coli). The X-ray diffraction spectra of the pure and Cs-doped Y2O3 revealed the presence of cubic and monoclinic structures. The UV-vis absorption spectra displayed distinct peaks at 274 nm and a reduction in band gap energy (from 4.94 eV to 4.41 eV) upon incorporation of Cs. Maximum degradation efficiency of up to 99% attributed to 6% Cs-doped Y2O3. The bactericidal activity against MDR E. coli exhibited 4.15 mm inhibition zones at higher concentrations of Cs-doped Y2O3. The bactericidal mechanism of Cs-Y2O3 NSs was further investigated by molecular docking studies for β-lactamase and DNA gyrase enzymes.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
- Advance Nanomaterials Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - Yasir Shabir
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - Ali Haider
- Department of Clinical Medicine, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture 66000 Multan Punjab Pakistan
| | - Iram Shahzadi
- School of Pharmacy, University of Management and Technology Lahore 54770 Pakistan
| | - Muhammad Bilal
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Ahmed M Fouda
- Chemistry Department, Faculty of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Salamat Ali
- Department of Physics, The University of Lahore 54000 Pakistan
| |
Collapse
|
8
|
Khan K, Ikram M, Haider A, Ul-Hamid A, Ali G, Goumri-Said S, Kanoun MB, Yousaf SA, El-Rayyes A, Jeridi M. Experimental and computational approach of zirconium and chitosan doped NiCo 2O 4 nanorods served as dye degrader and bactericidal action. Int J Biol Macromol 2024; 272:132810. [PMID: 38825288 DOI: 10.1016/j.ijbiomac.2024.132810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Different concentrations of zirconium with a fixed quantity (4 wt%) of chitosan (CS) doped nickel cobaltite (NiCo2O4) nanorods were synthesized using a co-precipitation approach. This cutting-edge research explores the cooperative effect of Zr-doped CS-NiCo2O4 to degrade the Eriochrome black T (EBT) and investigates potent antibacterial activity against Staphylococcus aureus (S. aureus). Advanced characterization techniques were conducted to analyze structural textures, morphological analysis, and optical characteristics of synthesized materials. XRD pattern unveiled the spinal cubic structure of NiCo2O4, incorporating Zr and CS peak shifted to a lower 2θ value. UV-Vis spectroscopy revealed the absorption range increased with CS and the same trend was observed upon Zr, showing a decrease in bandgap energy (Eg) from 2.55 to 2.4 eV. The optimal photocatalytic efficacy of doped NiCo2O4 within the basic medium was around 96.26 %, and bactericidal efficacy was examined against S. aureus, revealing a remarkable inhibition zone (5.95 mm).
Collapse
Affiliation(s)
- Khadija Khan
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan.
| | - Ali Haider
- Department of Clinical Medicine, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture, 66000 Multan, Punjab, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Ghafar Ali
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan
| | - Souraya Goumri-Said
- Physics Department, College of Science and General Studies, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Mohammed Benali Kanoun
- Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia.
| | - S Amber Yousaf
- Department of Physics, University of Central Punjab, Lahore 54000, Punjab, Pakistan
| | - Ali El-Rayyes
- Chemistry Department, College of Science, Northern Border University, Arar 1321, Saudi Arabia
| | - Mouna Jeridi
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| |
Collapse
|
9
|
Alshaikh SA, El-Banna T, Sonbol F, Farghali MH. Correlation between antimicrobial resistance, biofilm formation, and virulence determinants in uropathogenic Escherichia coli from Egyptian hospital. Ann Clin Microbiol Antimicrob 2024; 23:20. [PMID: 38402146 PMCID: PMC10894499 DOI: 10.1186/s12941-024-00679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/11/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Uropathogenic Escherichia coli (UPEC) is the main etiological agent behind community-acquired and hospital-acquired urinary tract infections (UTIs), which are among the most prevalent human infections. The management of UPEC infections is becoming increasingly difficult owing to multi-drug resistance, biofilm formation, and the possession of an extensive virulence arsenal. This study aims to characterize UPEC isolates in Tanta, Egypt, with regard to their antimicrobial resistance, phylogenetic profile, biofilm formation, and virulence, as well as the potential associations among these factors. METHODS One hundred UPEC isolates were obtained from UTI patients in Tanta, Egypt. Antimicrobial susceptibility was assessed using the Kirby-Bauer method. Extended-spectrum β-lactamases (ESBLs) production was screened using the double disk synergy test and confirmed with PCR. Biofilm formation was evaluated using the microtiter-plate assay and microscopy-based techniques. The phylogenetic groups of the isolates were determined. The hemolytic activity, motility, siderophore production, and serum resistance of the isolates were also evaluated. The clonal relatedness of the isolates was assessed using ERIC-PCR. RESULTS Isolates displayed elevated resistance to cephalosporins (90-43%), sulfamethoxazole-trimethoprim (63%), and ciprofloxacin (53%). Ninety percent of the isolates were multidrug-resistant (MDR)/ extensively drug-resistant (XDR) and 67% produced ESBLs. Notably, there was an inverse correlation between biofilm formation and antimicrobial resistance, and 31%, 29%, 32%, and 8% of the isolates were strong, moderate, weak, and non-biofilm producers, respectively. Beta-hemolysis, motility, siderophore production, and serum resistance were detected in 64%, 84%, 65%, and 11% of the isolates, respectively. Siderophore production was correlated to resistance to multiple antibiotics, while hemolysis was more prevalent in susceptible isolates and associated with stronger biofilms. Phylogroups B2 and D predominated, with lower resistance and stronger biofilms in group B2. ERIC-PCR revealed considerable diversity among the isolates. CONCLUSION This research highlights the dissemination of resistance in UPEC in Tanta, Egypt. The evident correlation between biofilm and resistance suggests a resistance cost on bacterial cells; and that isolates with lower resistance may rely on biofilms to enhance their survival. This emphasizes the importance of considering biofilm formation ability during the treatment of UPEC infections to avoid therapeutic failure and/or infection recurrence.
Collapse
Affiliation(s)
- Sara A Alshaikh
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, 31511, Egypt.
| | - Tarek El-Banna
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, 31511, Egypt
| | - Fatma Sonbol
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, 31511, Egypt
| | - Mahmoud H Farghali
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, 31511, Egypt
| |
Collapse
|
10
|
Andretta M, Tavares RDM, Fusieger A, Yamatogi RS, Nero LA. Agreement of methods to assess antimicrobial susceptibility using Escherichia coli isolates as target models. Lett Appl Microbiol 2024; 77:ovae009. [PMID: 38285611 DOI: 10.1093/lambio/ovae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/08/2023] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
Antimicrobial susceptibility tests (AST) conducted in vitro offer a range of methods to assess the antimicrobial resistance (AMR) of microorganisms. Escherichia coli, a widely distributed bacterium, is closely linked to the issue of AMR. In this way, the present study aimed to assess the agreement among different in vitro AST methods, including disk diffusion in agar, broth dilution, and agar dilution method. A total of 100 E. coli isolates were analyzed for their resistance levels against six antibiotics: amoxicillin, ceftiofur, ciprofloxacin, chloramphenicol, tetracycline, and sulfamethoxazole + trimethoprim, using the aforementioned AST methods. Standard breakpoint values were employed to classify isolates as resistant, intermediate, or susceptible, and comparisons among the AST methods were conducted by McNemar's test (P < .05). The obtained data demonstrated equivalence among the AST methods, highlighting the reliability of these standardized classical methodologies. This standardization aids in preventing the inappropriate use of antimicrobials and the dissemination of antimicrobial-resistant microorganisms.
Collapse
Affiliation(s)
- Milimani Andretta
- InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Rafaela de Melo Tavares
- InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Andressa Fusieger
- InovaLeite-Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Ricardo Seiti Yamatogi
- InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Luís Augusto Nero
- InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
11
|
Ikram M, Naz M, Haider A, Shahzadi I, Mehboob HU, Bari MA, Ul-Hamid A, Algaradah MM, Al-Anazy MM. Carbon sphere doped CdS quantum dots served as a dye degrader and their bactericidal behavior analysed with in silico molecular docking analysis. NANOSCALE ADVANCES 2023; 6:233-246. [PMID: 38125601 PMCID: PMC10729918 DOI: 10.1039/d3na00579h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
We have employed a co-precipitation method to synthesize different concentrations of carbon spheres (CSs) doped with cadmium sulfide (CdS) quantum dots (QDs) for catalytic reduction and antibacterial applications. Various morphological and structural characterization techniques were used to comprehensively analyze the CS effect on CdS QDs. The catalytic reduction efficiency of CS-doped CdS QDs was evaluated using rhodamine B dye. The antibacterial efficacy was also assessed against the pathogenic microorganism Escherichia coli (E. coli), and substantial destruction in the inhibitory zone was measured. Finally, the synthesized CS-doped CdS QDs demonstrated favorable results for catalytic reduction and antibacterial applications. Computational studies verified the suppressive impact of these formed QDs on DNA gyrase and β-lactamase of E. coli.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - Misbah Naz
- Department of Chemistry, University of Education Township Lahore 54000 Pakistan
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture 66000 Multan Punjab Pakistan
| | - Iram Shahzadi
- School of Pharmacy, University of Management and Technology Lahore 54770 Pakistan
| | - Hafiz Umar Mehboob
- Department of Chemistry, University of Education Township Lahore 54000 Pakistan
| | - Muhammad Ahsaan Bari
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | | | - Murefah Mana Al-Anazy
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University (PNU) P.O. Box 84428 Riyadh 11671 Saudi Arabia
| |
Collapse
|
12
|
Rani S, Imran M, Haider A, Shahzadi A, Ul‐Hamid A, Somaily HH, Moeen S, Khan M, Nabgan W, Ikram M. Dye Degradation, Antimicrobial Activity, and Molecular Docking Analysis of Samarium-Grafted Carbon Nitride Doped-Bismuth Oxobromide Quantum Dots. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300118. [PMID: 38094862 PMCID: PMC10714022 DOI: 10.1002/gch2.202300118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/21/2023] [Indexed: 10/16/2024]
Abstract
Various concentrations of samarium-grafted-carbon nitride (Sm-g-C3N4) doped-bismuth oxobromide (BiOBr) quantum dots (QDs) are prepared by the co-precipitation method. Elemental evaluation, morphological, optical, and functional group assessment are studied employing characterization techniques. Based on the XRD pattern analysis, it is determined that BiOBr exhibits a tetragonal crystal structure. The electronic spectroscopy revealed an absorption peak for BiOBr at 315 nm and the bandgap energy (E g) decreasing from 3.9 to 3.8 eV with the insertion of Sm-g-C3N4. The presence of vibrational modes related to BiOBr at 550 cm-1 is confirmed through FTIR spectra. TEM revealed that pure BiOBr possessed non-uniform QDS, and agglomeration increased with the addition of Sm-g-C3N4. The catalytic performance of Sm-g-C3N4 into BiOBr (6 mL) in a neutral medium toward rhodamine B exhibited excellent results (99.66%). The bactericidal activity is evaluated against multi-drug resistance (MDR) Escherichia coli once the surface area is increased by dopant and the measured inhibition zone is assessed to be 3.65 mm. Molecular docking results supported the in vitro bactericidal potential of Sm-g-C3N4 and Sm-g-C3N4 doped-BiOBr as DNA gyraseE. coli inhibitors. This study shows that the novel Sm-g-C3N4 doped-BiOBr is a better catalyst that increases specific semiconductor's catalytic activity (CA).
Collapse
Affiliation(s)
- Shams Rani
- Department of ChemistryGovernment College University, FaisalabadPakpattan RoadSahiwal57000Pakistan
| | - Muhammad Imran
- Department of ChemistryGovernment College University, FaisalabadPakpattan RoadSahiwal57000Pakistan
| | - Ali Haider
- Department of Clinical SciencesFaculty of Veterinary and Animal SciencesMuhammad Nawaz ShareefUniversity of AgricultureMultan66000Pakistan
| | - Anum Shahzadi
- Department of PharmacyCOMSATS UniversityIslamabad54000Pakistan
| | - Anwar Ul‐Hamid
- Core research facilitiesKing Fahd University of Petroleum & MineralsDhahran31261Saudi Arabia
| | - H. H. Somaily
- Department of PhysicsFaculty of ScienceKing Khalid UniversityAbha 9004Saudi Arabia
| | - Sawaira Moeen
- Solar Cell Applications Research LabDepartment of PhysicsGovernment College University LahoreLahore54000Pakistan
| | - Mahreen Khan
- Solar Cell Applications Research LabDepartment of PhysicsGovernment College University LahoreLahore54000Pakistan
| | - Walid Nabgan
- Departament d'Enginyeria QuímicaUniversitat Rovira i VirgiliAv Països Catalans 26Tarragona43007Spain
| | - Muhammad Ikram
- Solar Cell Applications Research LabDepartment of PhysicsGovernment College University LahoreLahore54000Pakistan
| |
Collapse
|
13
|
Ikram M, Shujah T, Shahzadi A, Haider A, Rafique A, Ul-Hamid A, Nabgan W, Haider SK, Alshahrani T, Algaradah MM, Yousaf SA, Haider J. Multiple phases of yttrium-doped molybdenum trioxide nanorods as efficient dye degrader and bactericidal agents with molecular docking analysis. CHEMOSPHERE 2023; 340:139855. [PMID: 37611764 DOI: 10.1016/j.chemosphere.2023.139855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/15/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Contaminants removal is usually becoming an exciting subject of research from water considering their environmental and ecological effects. This work provides pathways to remove organic pollutants from water via nanomaterials and is used as an antibiotic against bacteria like Escherichia coli (E. coli). In this study, molybdenum trioxide (MoO3) and yttrium (Y) doped (2 and 4%) MoO3 nanorods were synthesized by co-precipitation method. Advanced characterization techniques have been introduced to study textural structures, morphological developments, and optical characteristics of produced products. X-ray diffraction studied multiple crystalline structures of prepared samples as hexagonal, orthorhombic, and monoclinic of pure MoO3 with decrease in crystallinity and crystallite size upon Y doping. UV-visible spectroscopy unveiled a redshift (bathochromic effect) in absorption pattern attributed to band gap energy (Eg) decreases. Photoluminescence spectra examined the recombination rate of electrons (e-) and holes (h+) as charge carriers. A sufficient catalytic activity (CA) was observed against methylene blue (MB) dye in an acidic medium (99.74%) and efficient bactericidal action was studied against (E. coli) with zone of inhibition (5.20 mm) for 4% Y-doped MoO3. In addition, in silico docking demonstrated potential inhibitory effect of produced nanomaterials on FabH and FabI enzymes of fatty acid biosynthesis.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College, University Lahore, Lahore, 54000, Punjab, Pakistan.
| | - Tahira Shujah
- Department of Physics, University of Central Punjab, Lahore, 54000, Punjab, Pakistan
| | - Anum Shahzadi
- Facutly of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Ali Haider
- Department of Clinical Medicine, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture, 66000, Multan, Punjab, Pakistan
| | - Aqsa Rafique
- Solar Cell Applications Research Lab, Department of Physics, Government College, University Lahore, Lahore, 54000, Punjab, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira I Virgili, 43007, Tarragona, Spain.
| | - Syed Karrar Haider
- Department of Physics, University of Central Punjab, Lahore, 54000, Punjab, Pakistan
| | - Thamraa Alshahrani
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University (PNU), P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | - S Amber Yousaf
- Department of Physics, University of Central Punjab, Lahore, 54000, Punjab, Pakistan
| | - Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
14
|
Ayub A, Ikram M, Haider A, Shahzadi I, Ul-Hamid A, Shahzadi A, Algaradah MM, Fouda AM, Nabgan W, Imran M. Enhanced Industrial Dye Degradation and Antibacterial Activity Supported by the Molecular Docking Study of Yttrium and Carbon Sphere-Doped Lanthanum Oxide Nanostructures. ACS OMEGA 2023; 8:37564-37572. [PMID: 37841132 PMCID: PMC10569003 DOI: 10.1021/acsomega.3c05938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
As the population grows, the scientific community remains focused on researching new materials, methods, and devices to ensure the availability of safe drinking water. The main aim of this research was to decrease the recombination rate of the charge carriers of La2O3 and enhance the catalytic and antimicrobial activity by employing Y/Cs- doped La2O3, respectively. In the current study, different concentrations of yttrium (Y) and a fixed amount of carbon spheres (Cs) doped into lanthanum oxide (La2O3) nanostructures (NSs) were synthesized by the coprecipitation technique. Cs are used as a cocatalyst as they have a high surface area and small size attributed to increased active sites and decreased recombination rate. Moreover, Y was further incorporated as it activates the generation of reactive oxygen species in the inhibition zone, enhancing the antibacterial activity and reducing the emission intensity. Advanced techniques were utilized to determine the structural properties, optical emission and absorption, elemental composition, and d-spacing of the synthesized samples. The reported ternary catalyst works efficiently, improving the catalytic activity and bactericidal potential. Moreover, in silico molecular docking studies, Cs-doped La2O3 and Y/Cs-doped La2O3 nanostructures toward DNA gyrase Escherichia coli showed good efficacy for antibacterial activity.
Collapse
Affiliation(s)
- Atiya Ayub
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Ali Haider
- Department
of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad
Nawaz Shareef, University of Agriculture, 66000 Multan, Punjab, Pakistan
| | - Iram Shahzadi
- Punjab
University College of Pharmacy, University
of the Punjab, Lahore 54000, Pakistan
| | - Anwar Ul-Hamid
- Core
Research Facilities, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Anum Shahzadi
- Department
of Pharmacy, COMSATS University Islamabad,
Lahore Campus, Lahore 54000, Pakistan
| | | | - Ahmed M. Fouda
- Chemistry
Department, Faculty of Science, King Khalid
University, Abha 61413, Saudi Arabia
| | - Walid Nabgan
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, Av
Països Catalans 26, 43007 Tarragona, Spain
| | - Muhammad Imran
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| |
Collapse
|
15
|
Aziz T, Imran M, Haider A, Shahzadi A, Ul Abidin MZ, Ul-Hamid A, Nabgan W, Algaradah MM, Fouda AM, Ikram M. Catalytic performance and antibacterial behaviour with molecular docking analysis of silver and polyacrylic acid doped graphene quantum dots. RSC Adv 2023; 13:28008-28020. [PMID: 37746345 PMCID: PMC10517100 DOI: 10.1039/d3ra04741e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023] Open
Abstract
In this research, a fixed concentration (3 wt%) of Ag/PAA and PAA/Ag doped graphene quantum dots (GQDs) were synthesized using the co-precipitation technique. A variety of characterization techniques were employed to synthesize samples to investigate their optical, morphological, structural, and compositional analyses, antimicrobial efficacy, and dye degradation potential with molecular docking analysis. GQDs have high solubility, narrow band gaps, and are suitable for electron acceptors and donors but show less adsorption and catalytic behavior. Incorporating polyacrylic acid (PAA) into GQDs increases the catalytic and antibacterial activities due to the carboxylic group (-COOH). Furthermore, introducing silver (Ag) increased the degradation of dye and microbes as it had a high surface-to-volume ratio. In addition, molecular docking studies were used to decipher the mechanism underlying the bactericidal action of silver and polyacrylic acid-doped graphene quantum dots and revealed inhibition of β-lactamase and DNA gyrase.
Collapse
Affiliation(s)
- Tahreem Aziz
- Department of Chemistry, Government College University, Faisalabad Pakpattan Road Sahiwal Punjab 57000 Pakistan
| | - Muhammad Imran
- Department of Chemistry, Government College University, Faisalabad Pakpattan Road Sahiwal Punjab 57000 Pakistan
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan 66000 Punjab Pakistan
| | - Anum Shahzadi
- Faculty of Pharmacy, The University of Lahore Lahore 54000 Pakistan
| | - Muhammad Zain Ul Abidin
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili Av Països Catalans 26 43007 Tarragona Spain
| | | | - Ahmed M Fouda
- Chemistry Department, Faculty of Science, King Khalid University Abha 61413 Saudi Arabia
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| |
Collapse
|
16
|
Ikram M, Shazaib M, Haider A, Shahzadi A, Baz S, Algaradah MM, Ul-Hamid A, Nabgan W, Abd-Rabboh HSM, Ali S. Catalytic evaluation and in vitro bacterial inactivation of graphitic carbon nitride/carbon sphere doped bismuth oxide quantum dots with evidential in silico analysis. RSC Adv 2023; 13:25305-25315. [PMID: 37622014 PMCID: PMC10445278 DOI: 10.1039/d3ra04664h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
Herein, Bi2O3 quantum dots (QDs) have been synthesized and doped with various concentrations of graphitic carbon nitride (g-C3N4) and a fixed amount of carbon spheres (CS) using a co-precipitation technique. XRD analysis confirmed the presence of monoclinic structure along the space group P21/c and C2/c. Various functional groups and characteristic peaks of (Bi-O) were identified using FTIR spectra. QDs morphology of Bi2O3 showed agglomeration with higher amounts of g-C3N4 by TEM analysis. HR-TEM determined the variation in the d-spacing which increased with increasing dopants. These doping agents were employed to reduce the exciting recombination rate of Bi2O3 QDs by providing more active sites which enhance antibacterial activity. Notably, (6 wt%) g-C3N4/CS-doped Bi2O3 exhibited considerable antimicrobial potential in opposition to E. coli at higher values of concentrations relative to ciprofloxacin. The (3 wt%) g-C3N4/CS-doped Bi2O3 exhibits the highest catalytic potential (97.67%) against RhB in a neutral medium. The compound g-C3N4/CS-Bi2O3 has been suggested as a potential inhibitor of β-lactamaseE. coli and DNA gyraseE. coli based on the findings of a molecular docking study that was in better agreement with in vitro bactericidal activity.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore 54000 Pakistan
| | - Muhammad Shazaib
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan 66000 Pakistan
| | - Anum Shahzadi
- Faculty of Pharmacy, The University of Lahore Lahore 54000 Pakistan
| | - Shair Baz
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore 54000 Pakistan
| | | | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili Av Països Catalans 26 Tarragona 43007 Spain
| | - Hisham S M Abd-Rabboh
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Salamat Ali
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| |
Collapse
|
17
|
Rasool S, Imran M, Haider A, Shahzadi A, Nabgan W, Shahzadi I, Medina F, Algaradah MM, Fouda AM, Al-Shanini A, Ikram M. Efficient Dye Degradation and Antibacterial Activity of Carbon Dots/Chitosan-Doped La 2O 3 Nanorods: In Silico Molecular Docking Analysis. ACS OMEGA 2023; 8:25401-25409. [PMID: 37483192 PMCID: PMC10357552 DOI: 10.1021/acsomega.3c02812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
This work demonstrates the degradation of toxic RhB (rhodamine B) dye from polluted water in various pH environments. It assesses the antibacterial action of CDs (carbon dots)/CS (chitosan)-doped La2O3 (lanthanum oxide) NRs (nanorods). CS and CDs have been introduced as dopants to modify the characteristics of La2O3 to achieve efficient outcomes. The influence of doping on the structural, morphological, optical, and elemental properties of synthesized La2O3 NRs was investigated through a number of analytical techniques. The structural analysis of XRD revealed a hexagonal phase. The rod-like structure of pure La2O3 and reduction in the size of NRs upon doping were exhibited by TEM micrographs. From UV-vis spectroscopy, increased absorption upon doping and introduction of redshift that led to reduced bandgap energy were observed. The FTIR spectra indicate the presence of functional groups of pure and integrated samples. The catalytic activity of specimens in basic medium toward dye showed excellent results (94.57%). The inhibition zone of diameter 4.15 mm was evaluated by 6 mL of CDs/CS-doped La2O3 NRs against Escherichia coli once the surface area increased by dopants. In silico experiments were performed for enoyl-[acyl-carrier-protein] reductase (FabI) and DNA gyrase enzymes to assess the potency of CS-doped La2O3 and CDs/CS-doped La2O3 as their inhibitors and to justify their possible mechanism of action.
Collapse
Affiliation(s)
- Sumaira Rasool
- Department
of Chemistry, Government College University, Faisalabad, Sahiwal Road, Sahiwal, Punjab 57000, Pakistan
| | - Muhammad Imran
- Department
of Chemistry, Government College University, Faisalabad, Sahiwal Road, Sahiwal, Punjab 57000, Pakistan
| | - Ali Haider
- Department
of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Punjab, Pakistan
| | - Anum Shahzadi
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Walid Nabgan
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, Av Països Catalans 26, 43007 Tarragona, Spain
| | - Iram Shahzadi
- Punjab
University College of Pharmacy, University
of the Punjab, Lahore 54000, Pakistan
| | - Francisco Medina
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, Av Països Catalans 26, 43007 Tarragona, Spain
| | | | - Ahmed M. Fouda
- Chemistry
Department, Faculty of Science, King Khalid
University, Abha 61413, Saudi Arabia
| | - Ali Al-Shanini
- College
of Petroleum and Engineering, Hadhramout
University, Mukalla, Hadhramout, P.O. Box 50511, Yemen
| | - Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| |
Collapse
|
18
|
Baz S, Ikram M, Haider A, Shahzadi A, Ul-Hamid A, Nabgan W, Haider J, Imran M, Alshahrani T, Medina F, Imran M. Facile Synthesis of Vanadium Oxide/Carbon Spheres-Doped Nickel Oxide Functioned as a Nanocatalyst and Bactericidal Behavior with Molecular Docking Analysis. ACS OMEGA 2023; 8:19474-19485. [PMID: 37305260 PMCID: PMC10249084 DOI: 10.1021/acsomega.3c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023]
Abstract
Vanadium oxide (V2O5) and carbon spheres (Cs)-doped NiO2 nanostructures (NSs) were prepared using the co-precipitation approach. Several spectroscopic and microscopic techniques, including X-ray diffraction (XRD), UV-vis, FTIR, TEM, and HR-TEM investigations, were used to describe the as-synthesized NSs. The XRD pattern exhibited the hexagonal structure, and the crystallite size of pristine and doped NSs was calculated as 29.3, 32.8, 25.79, and 45.19 nm, respectively. The control sample (NiO2) showed maximum absorption at 330 nm, and upon doping, a redshift was observed, leading to decreased band gap energy from 3.75 to 3.59 eV. TEM of NiO2 shows agglomerated nonuniform nanorods exhibited with various nanoparticles without a specific orientation; a higher agglomeration was observed upon doping. The (4 wt %) V2O5/Cs-doped NiO2 NSs served as superior catalysts with a 94.21% MB reduction in acidic media. The significant antibacterial efficacy was estimated against Escherichia coli by measuring the zone of inhibition (3.75 mm). Besides their bactericidal analysis, V2O5/Cs-doped NiO2 was shown to have a binding score of 6.37 for dihydrofolate reductase and a binding score of 4.31 for dihydropteroate synthase in an in silico docking study of E. coli.
Collapse
Affiliation(s)
- Shair Baz
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Ali Haider
- Department
of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture, 66000 Multan, Punjab, Pakistan
| | - Anum Shahzadi
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Anwar Ul-Hamid
- Core
Research Facilities, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Walid Nabgan
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, Av Països Catalans 26, 43007 Tarragona, Spain
| | - Junaid Haider
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - M. Imran
- Department
of Chemistry, Government College University
Faisalabad, Pakpattan
Road, Sahiwal, Punjab 57000, Pakistan
| | - Thamraa Alshahrani
- Department
of Physics, College of Sciences, Princess
Nourah bint Abdulrahman University (PNU), P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Francisco Medina
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, Av Països Catalans 26, 43007 Tarragona, Spain
| | - Muhammad Imran
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| |
Collapse
|
19
|
Ikram M, Atiq I, Rafiq Butt A, shahzadi I, Ul-Hamid A, Haider A, Nabgan W, Medina F. Graphene oxide/polyvinylpyrrolidone-doped MoO 3 nanocomposites used for dye degradation and their antibacterial activity: a molecular docking analysis. Front Chem 2023; 11:1191849. [PMID: 37228862 PMCID: PMC10205020 DOI: 10.3389/fchem.2023.1191849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
In this study, MoO3 nanostructures were prepared, doped with various concentrations of graphene oxide (2 and 4% GO) and a fixed amount of polyvinylpyrrolidone (PVP) using the co-precipitation method. The motive of this study was to examine the catalytic and antimicrobial efficacy with evidential molecular docking analyses of GO/PVP-doped MoO3. GO and PVP were utilized as doping agents to reduce the exciton recombination rate of MoO3 by providing more active sites that increase the antibacterial activity of MoO3. The prepared binary dopant (GO and PVP)-dependent MoO3 was used as an effective antibacterial agent against Escherichia coli (E. coli). Notably, 4% GO/PVP-doped MoO3 showed good bactericidal potential against E. coli at higher concentrations in comparison to ciprofloxacin. Furthermore, in silico docking revealed the possible inhibitory impact of the synthesized nanocomposites on folate and fatty acid synthesis enzymes, dihydrofolate reductase and enoyl-[acyl carrier protein] reductase, respectively.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, Punjab, Pakistan
| | - Iram Atiq
- Department of Physics, Lahore Garrison University, Lahore, Punjab, Pakistan
| | - Alvina Rafiq Butt
- Department of Physics, Lahore Garrison University, Lahore, Punjab, Pakistan
| | - Iram shahzadi
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Punjab, Pakistan
| | - Walid Nabgan
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Spain
| | - Francisco Medina
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
20
|
Riaz S, Ikram M, Naz S, Shahzadi A, Nabgan W, Ul-Hamid A, Haider A, Haider J, Al-Shanini A. Bactericidal Action and Industrial Dye Degradation of Graphene Oxide and Polyacrylic Acid-Doped SnO 2 Quantum Dots: In Silico Molecular Docking Study. ACS OMEGA 2023; 8:5808-5819. [PMID: 36816704 PMCID: PMC9933192 DOI: 10.1021/acsomega.2c07460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The present work demonstrates the systematic incorporation of different concentrations of graphene oxide (GO) into a fixed amount of polyacrylic acid (PAA)-doped SnO2 quantum dots (QDs) through a co-precipitation approach. The research aimed to evaluate the catalytic and antibacterial actions of GO/PAA-SnO2 QDs. Moreover, optical properties, surface morphologies, crystal structures, elemental compositions, and d-spacings of prepared QDs were examined. X-ray diffraction patterns revealed the tetragonal configuration of SnO2, and the crystallinity of QDs was suppressed upon dopants verified by the SAED patterns. Electronic spectra identified the blue shift by incorporating GO and PAA led to a reduction in band gap energy. Fourier transform infrared spectra showed the existence of rotational and vibrational modes associated with the functional groups during the synthesis process. A drastic increase in the catalytic efficacy of QDs was observed in the neutral medium by including dopants, indicating that GO/PAA-SnO2 is a promising catalyst. GO/PAA-SnO2 showed strong bactericidal efficacy against Escherichia coli (E. coli) at higher GO concentrations. Molecular docking studies predicted the given nanocomposites, i.e., SnO2, PAA-SnO2, and GO/PAA-SnO2, as potential inhibitors of beta-lactamaseE. coli and DNA gyraseE. coli.
Collapse
Affiliation(s)
- Saira Riaz
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore54000, Punjab, Pakistan
| | - Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore54000, Punjab, Pakistan
| | - Sadia Naz
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin300308, China
| | - Anum Shahzadi
- Faculty
of Pharmacy, The University of Lahore, Lahore54000, Pakistan
| | - Walid Nabgan
- Departamentd’EnginyeriaQuímica, UniversitatRovira i Virgili, Tarragona43007, Spain
| | - Anwar Ul-Hamid
- Core
Research Facilities, King Fahd University
of Petroleum & Minerals, Dhahran31261, Saudi Arabia
| | - Ali Haider
- Department
of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad
Nawaz Shareef, University of Agriculture, Multan66000, Punjab, Pakistan
| | - Junaid Haider
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin300308, China
| | - Ali Al-Shanini
- College
of Petroleum and Engineering, Hadhramout
University, Mukalla P. O. Box 50511, Hadhramout, Yemen
| |
Collapse
|
21
|
Ikram M, Shahzadi A, Bilal M, Haider A, Ul-Hamid A, Nabgan W, Haider J, Ali S, Imran M. Strontium-doped chromium oxide for RhB reduction and antibacterial activity with evidence of molecular docking analysis. Front Chem 2023; 11:1167701. [PMID: 37123878 PMCID: PMC10133565 DOI: 10.3389/fchem.2023.1167701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
The emergence of multi-drug resistance (MDR) in aquatic pathogens and the presence of cationic dyes are the leading causes of water contamination on a global scale. In this context, nanotechnology holds immense promise for utilizing various nanomaterials with catalytic and antibacterial properties. This study aimed to evaluate the catalytic and bactericidal potential of undoped and Sr-doped Cr2O3 nanostructures (NSs) synthesized through the co-precipitation method. In addition, the morphological, optical, and structural properties of the resultant NSs were also examined. The optical bandgap energy of Cr2O3 has been substantially reduced by Sr doping, as confirmed through extracted values from absorption spectra recorded by UV-Vis studies. The field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) micrographs illustrate that the composition of Cr2O3 primarily consisted of agglomerated, irregularly shaped NSs with a morphology resembling nanoflakes. Moreover, the presence of Sr in the lattice of Cr2O3 increased the roughness of the resulting NSs. The catalytic activity of synthesized NSs was analyzed by their reduction ability of Rhodamine B (RhB) dye in the dark under different pH conditions. Their antibacterial activity was evaluated against MDR Escherichia coli (E. coli). Sr doping increased antibacterial efficiency against MDR E. coli, as indicated by inhibition zone measurements of 10.15 and 11.75 mm at low and high doses, respectively. Furthermore, a molecular docking analysis was conducted to determine the binding interaction pattern between NSs and active sites in the target cell protein. The findings corroborated antimicrobial test results indicating that Sr-Cr2O3 is the most effective inhibitor of FabH and DHFR enzymes.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, Pakistan
- *Correspondence: Muhammad Ikram, ; Walid Nabgan,
| | - Anum Shahzadi
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Muhammad Bilal
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, Pakistan
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Walid Nabgan
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Spain
- *Correspondence: Muhammad Ikram, ; Walid Nabgan,
| | - Junaid Haider
- Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, China
| | - Salamat Ali
- Department of Physics, The University of Lahore, Lahore, Pakistan
| | - Muhammad Imran
- Government College University Faisalabad, Sahiwal, Punjab, Pakistan
| |
Collapse
|
22
|
Habib A, Ikram M, Haider A, Ul-Hamid A, Shahzadi I, Haider J, Kanoun MB, Goumri-Said S, Nabgan W. Experimental and theoretical study of catalytic dye degradation and bactericidal potential of multiple phase Bi and MoS 2 doped SnO 2 quantum dots †. RSC Adv 2023; 13:10861-10872. [PMID: 37033429 PMCID: PMC10077344 DOI: 10.1039/d3ra00698k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
In the present study, different concentrations (1 and 3%) of Bi were incorporated into a fixed amount of molybdenum disulfide (MoS2) and SnO2 quantum dots (QDs) by co-precipitation technique. This research aimed to increase the efficacy of dye degradation and bactericidal behavior of SnO2. The high recombination rate of SnO2 can be decreased upon doping with two-dimensional materials (MoS2 nanosheets) and Bi metal. These binary dopants-based SnO2 showed a significant role in methylene blue (MB) dye degradation in various pH media and antimicrobial potential as more active sites are provided by nanostructured MoS2 and Bi3+ is responsible for producing a variety of different oxygen vacancies within SnO2. The prepared QDs were described via morphology, optical characteristics, elemental composition, functional group, phase formation, crystallinity, and d-spacing. In contrast, antimicrobial activity was checked at high and low dosages against Escherichia coli (E. coli) and the inhibition zone was calculated utilizing a Vernier caliper. Furthermore, prepared samples have expressed substantial antimicrobial effects against E. coli. To further explore the interactions between the MB and Bi/MoS2–SnO2 composite, we modeled and calculated the MB adsorption using density functional theory and the Heyd–Scuseria–Ernzerhof hybrid (HSE06) approach. There is a relatively strong interaction between the MB molecule and Bi/MoS2–SnO2 composite. In the present study, different concentrations (1 and 3%) of Bi were incorporated into a fixed amount of molybdenum disulfide and SnO2 quantum dots by co-precipitation technique. This research aimed to increase the efficacy of dye degradation and bactericidal behavior of SnO2.![]()
Collapse
Affiliation(s)
- Ayesha Habib
- Solar Cell Applications Research Lab, Department of Physics, Government College University LahoreLahore54000PunjabPakistan
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University LahoreLahore54000PunjabPakistan
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture (MNSUA) Multan66000Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, Research Institute, King Fahd University of Petroleum & MineralsDhahran31261Saudi Arabia
| | - Iram Shahzadi
- Faculty of Pharmacy, The University of Lahore54000Pakistan
| | - Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjin 300308China
| | - Mohammed Benali Kanoun
- Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan UniversityP.O. Box 66833Riyadh 11586Saudi Arabia
| | - Souraya Goumri-Said
- Physics Department, College of Science and General Studies, Alfaisal UniversityP.O. Box 50927Riyadh 11533Saudi Arabia
| | - Walid Nabgan
- Departament d’Enginyeria Química, Universitat Rovira i VirgiliAv Països Catalans 2643007TarragonaSpain
| |
Collapse
|
23
|
Agatha TM, Wibawati PA, Izulhaq RI, Agustono B, Prastiya RA, Wardhana DK, Abdramanov A, Lokapirnasari WP, Lamid M. Antibiotic resistance of Escherichia coli from the milk of Ettawa crossbred dairy goats in Blitar Regency, East Java, Indonesia. Vet World 2023; 16:168-174. [PMID: 36855371 PMCID: PMC9967718 DOI: 10.14202/vetworld.2023.168-174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/02/2022] [Indexed: 01/29/2023] Open
Abstract
Background and Aim Antimicrobial resistance, especially antibiotic resistance, is one of the most severe public health challenges. Antibiotic resistance occurs when bacteria avoid and fight the mechanism of action of antibiotic drugs. This study aimed to determine the resistance of Escherichia coli from the milk of Ettawa crossbreed dairy goat at Blitar Regency, East Java, Indonesia, with the antibiotics streptomycin, sulfonamides, and trimethoprim. Materials and Methods A total of 34 milk samples of Ettawa crossbreed dairy goats were used in this study. The initial stages of this research included tests of the physical properties, isolation, and identification of E. coli. Then, the E. coli isolates were tested for antibiotic resistance using the Kirby-Bauer method. Results The results showed that all samples were positive for E. coli. The physical properties of milk, namely, color, odor, flavor, and consistency, were normal. The results of the alcohol test showed normal acidity, and the specific gravity of goat milk met the criteria, with an average specific gravity of 1.0295 g/mL. The results of the antibiotic resistance test showed that 4 (12%) samples were resistant to streptomycin, 5 (15%) to sulfonamide, and 3% to trimethoprim. Conclusion The prevalence of E. coli from Ettawa crossbreed dairy goats in Blitar Regency, East Java, Indonesia, was 100%. Furthermore, this E. coli isolate exhibited resistance to antibiotics streptomycin, sulfonamides, and trimethoprim. The use of antibiotics in the dairy goat industry in Indonesia should be controlled to prevent the spread of resistant E. coli from animals to humans through the food chain and prevent the emergence of multidrug-resistant E. coli.
Collapse
Affiliation(s)
- Tweedekharis Marlin Agatha
- Department of Veterinary Medicine, School of Health and Life Sciences (SIKIA), Universitas Airlangga, Surabaya 60115, Indonesia
| | - Prima Ayu Wibawati
- Department of Veterinary Medicine, School of Health and Life Sciences (SIKIA), Universitas Airlangga, Surabaya 60115, Indonesia,Corresponding author: Prima Ayu Wibawati, e-mail: Co-authors: TMA: , RII: , BA: , RAP: , DKW: , AA: , WPL: , ML:
| | - Reza Ikhza Izulhaq
- Department of Veterinary Medicine, School of Health and Life Sciences (SIKIA), Universitas Airlangga, Surabaya 60115, Indonesia
| | - Bodhi Agustono
- Department of Veterinary Medicine, School of Health and Life Sciences (SIKIA), Universitas Airlangga, Surabaya 60115, Indonesia
| | - Ragil Angga Prastiya
- Department of Veterinary Medicine, School of Health and Life Sciences (SIKIA), Universitas Airlangga, Surabaya 60115, Indonesia
| | - Dhandy Koesoemo Wardhana
- Department of Veterinary Science, Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Abzal Abdramanov
- Department of Veterinary Sanitary Expertise and Hygiene, Faculty of Veterinary medicine, Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - Widya Paramita Lokapirnasari
- Department of Veterinary Science, Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Mirni Lamid
- Department of Veterinary Science, Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
24
|
Shujah T, Shahzadi A, Haider A, Mustajab M, Haider AM, Ul-Hamid A, Haider J, Nabgan W, Ikram M. Molybdenum-doped iron oxide nanostructures synthesized via a chemical co-precipitation route for efficient dye degradation and antimicrobial performance: in silico molecular docking studies. RSC Adv 2022; 12:35177-35191. [PMID: 36540207 PMCID: PMC9732929 DOI: 10.1039/d2ra07238f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 07/25/2023] Open
Abstract
In this research, various concentrations of molybdenum (2, 4 and 6 wt%) doped Fe3O4 nanostructures (Mo-Fe3O4 NSs) were prepared via a co-precipitation technique. Various techniques were then used to investigate the optical, morphological and structural properties of the NSs in the presence of the dopant materials. X-ray diffraction (XRD) was used to investigate the crystalline nature of the prepared NSs and confirm the orthorhombic and tetragonal structure of Fe3O4, with a decrease in crystallinity and crystallite sizes of 36.11, 38.45, 25.74 and 24.38 nm with increasing concentration of Mo (2, 4 and 6%). Fourier-transform infrared (FTIR) spectroscopy analysis was carried out to examine the functional groups in the NSs. Structure, surface morphology and topography were examined via field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM), which confirmed the fabrication of nanoparticles and nanorods and a floccule-like morphology with a higher doping concentration and the interlayer d-spacing was calculated using high-resolution (HR)TEM, the results of which were a good match to the XRD data. The presence of Mo, Fe and O in a lattice of Mo (2, 4 and 6%) doped Fe3O4 was confirmed by energy dispersive X-ray spectroscopy (EDS) analysis. The energy band gap (E g) was measured via the optical analysis of pure and doped samples, showing a decrease from 2.76 to 2.64 eV. The photoluminescence (PL) spectra exhibit a higher charge combination rate of electron-hole pairs with a higher concentration of doping. The NSs exhibited excellent catalytic activity (CA) in degrading methylene blue (MB) dye in a basic medium by around 86.25%. Additionally, the antimicrobial activity was tested against Escherichia coli (E. coli) bacteria. Pairs of electrons and holes are the fundamental basis for generating reactive oxygen species that kill bacteria. The significant inhibition zones were calculated against E. coli bacteria at around 3.45 mm compared to ciprofloxacin. In silico docking investigations of the Mo-Fe3O4 NSs for dihydropteroate synthase (DHPS, binding score: 6.16 kcal mol-1), dihydrofolate reductase (DHFR, binding score: 6.01 kcal mol-1), and β-ketoacyl-acyl carrier protein synthase III (FabH, binding score: 5.75 kcal mol-1) of E. coli show the suppression of the aforementioned enzymes as a potential mechanism besides their microbicidal assay.
Collapse
Affiliation(s)
- Tahira Shujah
- Department of Physics, University of Central Punjab Lahore 54000 Punjab Pakistan
| | - Anum Shahzadi
- Faculty of Pharmacy, The University of Lahore Lahore Pakistan
| | - Ali Haider
- Department of Clinical Medicine, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture Multan Punjab 66000 Pakistan
| | - Muhammad Mustajab
- Department of Physics, University of Central Punjab Lahore 54000 Punjab Pakistan
| | - Afsah Mobeen Haider
- Department of Physics, University of Central Punjab Lahore 54000 Punjab Pakistan
| | - Anwar Ul-Hamid
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore Punjab Pakistan
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili 43007 Tarragona Spain
| | - Muhammad Ikram
- Department of Physics, University of Central Punjab Lahore 54000 Punjab Pakistan
| |
Collapse
|
25
|
Gajewska J, Chajęcka-Wierzchowska W, Zadernowska A. Occurrence and Characteristics of Staphylococcus aureus Strains along the Production Chain of Raw Milk Cheeses in Poland. Molecules 2022; 27:molecules27196569. [PMID: 36235105 PMCID: PMC9573400 DOI: 10.3390/molecules27196569] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Cheeses produced from unpasteurized milk by traditional production methods may contain many groups of microorganisms, including Staphylococcus aureus. The aim of this study was to determine the occurrence of S. aureus in the artisanal cheese production chain from unpasteurized milk. We investigated the prevalence of S. aureus strains isolated from various stages of artisanal cheese of unpasteurized milk production from farms in the northeastern and southern parts of Poland and characterized them. Characterization included antimicrobial susceptibility by microbroth dilution and biofilm formation by in vitro assay. Among all strains, the presence of enterotoxigenic genes and genes involved with biofilm formation and antibiotic resistance were screened by PCR-based methods. A total of 180 samples were examined. A high percentage of strains were resistant to penicillin (54/58.1%) and tobramycin (32/34.4%). Some tested isolates also showed resistance to the macrolide class of antibiotics: azithromycin, clarithromycin, and erythromycin at 17/18.3%, 15/16.1%, and 21/22.6%, respectively. Among tested isolates, we also found phenotypic resistance to oxacillin (9/9.7%) and cefoxitin (12/12.9%). The blaZ gene encoding penicillin resistance was the most common gene encoding antibiotic resistance among the tested strains. All isolates showing phenotypic resistance to cefoxitin possessed the mecA gene. The study also evaluated the prevalence of biofilm-associated genes, with eno the most frequently associated gene. Eighty-nine out of 93 S. aureus isolates (95.7%) possessed at least one enterotoxin-encoding gene. The results of this study showed that production of raw milk cheeses may be a source of antibiotic resistance and virulent S. aureus. Our results suggest that artisanal cheese producers should better control production hygiene.
Collapse
|