1
|
López de Egea G, González-Díaz A, Olsen RJ, Guédon G, Berbel D, Grau I, Càmara J, Saiz-Escobedo L, Calvo-Silveria S, Cadenas-Jiménez I, Marimón JM, Cercenado E, Casabella A, Martí S, Domínguez MÁ, Leblond-Bourget N, Musser JM, Ardanuy C. Emergence of invasive Streptococcus dysgalactiae subsp. equisimilis in Spain (2012-2022): genomic insights and clinical correlations. Int J Infect Dis 2025; 153:107778. [PMID: 39800082 DOI: 10.1016/j.ijid.2025.107778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025] Open
Abstract
OBJECTIVES An increase in Streptococcus dysgalactiae subsp. equisimilis (SDSE) infections has been documented worldwide. This study aims to analyze invasive disease caused by SDSE (iSDSE) in adults over an 11-year period in Spain. METHODS We conducted a retrospective, laboratory-based study of iSDSE detected at Hospital Universitari de Bellvitge (HUB) from 2012 to 2022 (n = 89) and isolates collected in three Spanish hospitals in 2018 (n = 22). Clinical data from HUB were collected. Isolates were tested for antimicrobial susceptibility (European Committee on Antimicrobial Susceptibility Testing 2023), subjected to whole genome sequencing and analyzed for mobile genetic elements (MGEs). A mouse model was used to analyze virulence. RESULTS iSDSE episodes at HUB occurred predominantly in older patients with comorbidities (particularly, diabetes, chronic heart disease, and malignancies). Whole genome sequencing revealed a high genetic diversity, with the most common lineages being CC15, CC17, and CC20. Various virulence factors, including the superantigen speG, were identified. Macrolides, lincosamides, and tetracyclines exhibited the highest resistance rates (>27%) and changed over time, linked to multiple MGEs. The mouse model highlighted the virulence of the CC20-stG62647 lineage, but these results were discordant with clinical data. CONCLUSION iSDSE incidence is increasing and associated with older patients with comorbidities. Genetically, SDSE is diverse with a high capacity to integrate MGEs carrying resistance determinants. Mouse model studies showed the enhanced virulence of the CC20-stG62647 lineage. These findings underscore the need for ongoing surveillance of this emerging pathogen.
Collapse
Affiliation(s)
- Guillem López de Egea
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain; Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Aida González-Díaz
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Randall J Olsen
- Laboratory of Molecular and Translational Human Infectious Disease Research, Center for Infectious Diseases, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, USA
| | - Gérard Guédon
- Université de Lorraine, INRAE, DynAMic, Nancy, France
| | - Dàmaris Berbel
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Immaculada Grau
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain; Infectious Diseases Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Spain
| | - Jordi Càmara
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Lucía Saiz-Escobedo
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Spain
| | - Sara Calvo-Silveria
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Irene Cadenas-Jiménez
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - José María Marimón
- Biodonostia, Infectious Diseases Area, Respiratory Infection and Antimicrobial Resistance Group, Osakidetza Basque Health Service, Donostialdea Integrated Health Organization, Microbiology Department, San Sebastián, Spain
| | - Emilia Cercenado
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain; Clinical Microbiology and Infectious Disease Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Antonio Casabella
- Microbiology Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Sara Martí
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - M Ángeles Domínguez
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; Research Network for Infectious Diseases (CIBERINFEC), ISCIII, Madrid, Spain
| | | | - James M Musser
- Laboratory of Molecular and Translational Human Infectious Disease Research, Center for Infectious Diseases, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, USA
| | - Carmen Ardanuy
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L'Hospitalet de Llobregat, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain; Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
2
|
Bassetti M, Giacobbe DR, Larosa B, Lamarina A, Vena A, Brucci G. The reemergence of Streptococcus pyogenes in skin and soft tissue infections: a review of epidemiology, pathogenesis, and management strategies. Curr Opin Infect Dis 2025; 38:114-121. [PMID: 39851242 DOI: 10.1097/qco.0000000000001095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
PURPOSE OF REVIEW To discuss skin and soft tissue infections (SSTIs) caused by group A Streptococcus (GAS) by focusing on their pathogenesis, clinical manifestations, and management strategies. RECENT FINDINGS GAS is responsible for a wide range of infections from mild disease to severe fatal invasive infections with high mortality rates. Invasive GAS (iGAS) infections affect both young and old individuals and account for 1.8 million cases worldwide, with a mortality rate of up to 20%. In addition, conditions resulting by immune responses triggered by GAS also contribute to GAS-associated morbidity, and should not be overlooked. GAS has the ability to produce a wide set of virulence factors which contribute to its pathogenicity and its ability to colonize different body site and subsequently cause invasive infections. Management of SSTIs caused by GAS is challenging due to the risk of rapid progression and the risk of developing complications. SUMMARY During the COVID-19 pandemic, a relevant increase in iGAS infections has been registered. A constantly updated knowledge of the clinical presentation of iGAS infections is thus necessary to reduce their high mortality rates. Proper recognition and treatment of iGAS infections remain crucial.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Barbara Larosa
- Department of Health Sciences (DISSAL), University of Genoa
| | | | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Giorgia Brucci
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| |
Collapse
|
3
|
Desai D, Goh KGK, Ranadeera S, Copeman E, Sullivan MJ, Ulett GC. Multidrug resistance in group B Streptococcus causing urinary tract infection exposes an erythromycin-driven protective effect against oxidative stress. J Med Microbiol 2025; 74. [PMID: 40105446 PMCID: PMC11923109 DOI: 10.1099/jmm.0.001975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Multidrug resistance has been reported in group B Streptococcus (GBS) from various origins, but rates among urinary tract infection (UTI) isolates are largely unknown. Erythromycin, a second-line antibiotic for GBS for which high rates of resistance have been reported, was recently shown to support the resistance of Staphylococcus to oxidative stress. To survey multidrug-resistant (MDR) GBS from UTI and to investigate the effect of erythromycin exposure on the bacteria's ability to resist oxidative stress, we determined the antibacterial activity of 18 antibiotics against 292 GBS UTI isolates by disc diffusion and used in vitro growth assays of MDR GBS exposed to erythromycin to examine relative resistance to oxidative stress in the form of H2O2. A high proportion of all 292 GBS isolates (33.6%) were MDR, reflecting high rates of resistance to four antibiotics: azithromycin (44.5%), clindamycin (26%), erythromycin (36.3%) and tetracycline (81.5%); however, no resistance was detected for any other antibiotics tested. Rates of resistance were not significantly different when analysed according to clinical origins (acute and recurrent UTI, asymptomatic bacteriuria). The growth of MDR GBS was attenuated and severely inhibited by exposure to erythromycin and H2O2, respectively. Surprisingly, exposure of MDR GBS to erythromycin significantly relieved the severe growth inhibitory effect of H2O2, signifying a partial rescue effect of the antibiotic. The GBS isolates in this study exhibit high levels of multidrug resistance without an association between resistance and clinical origin. Exposure of MDR GBS to erythromycin can partially counteract the severe growth inhibitory effect from H2O2.
Collapse
Affiliation(s)
- Devika Desai
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast Campus, Southport 4222, QLD, Australia
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport 4222, QLD, Australia
| | - Kelvin G K Goh
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast Campus, Southport 4222, QLD, Australia
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport 4222, QLD, Australia
| | - Sandon Ranadeera
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast Campus, Southport 4222, QLD, Australia
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport 4222, QLD, Australia
| | - Ellen Copeman
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast Campus, Southport 4222, QLD, Australia
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport 4222, QLD, Australia
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Matthew J Sullivan
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast Campus, Southport 4222, QLD, Australia
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport 4222, QLD, Australia
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Glen C Ulett
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast Campus, Southport 4222, QLD, Australia
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport 4222, QLD, Australia
| |
Collapse
|
4
|
Sanchez GJ, Cuypers L, Laenen L, Májek P, Lagrou K, Desmet S. Prediction of antimicrobial susceptibility of pneumococci based on whole-genome sequencing data: a direct comparison of two genomic tools to conventional antimicrobial susceptibility testing. J Clin Microbiol 2025; 63:e0107924. [PMID: 39745445 PMCID: PMC11837510 DOI: 10.1128/jcm.01079-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/03/2024] [Indexed: 02/20/2025] Open
Abstract
Determination of antimicrobial resistance (AMR) in pneumococcal isolates is important for surveillance purposes and in a clinical context. Antimicrobial susceptibility testing (AST) of pneumococci is complicated by the need for exact minimal inhibitory concentrations (MICs) of beta-lactam antibiotics. Two next-generation sequencing (NGS) analysis tools have implemented the prediction of AMR in their analysis workflow, including the prediction of MICs: Pathogenwatch (https://pathogen.watch/) and AREScloud (OpGen). The performance of these tools in comparison to phenotypic AST following EUCAST guidelines is unknown. A total of 538 Streptococcus pneumoniae isolates were used to compare both tools with phenotypic AST for penicillin, amoxicillin, cefotaxime/ceftriaxone, erythromycin, trimethoprim-sulfamethoxazole, and tetracycline. Disk diffusion was performed for all isolates, and broth microdilution was performed for isolates with reduced beta-lactam susceptibility. Demultiplexed FASTQ files from Illumina sequencing, covering the whole genome of pneumococci, were used as input for the NGS tools. Categorical agreement (CA), major error (ME), and very major error (VME) rates were calculated. For beta-lactam antibiotics, CA was high (>94%) associated with none or only one ME and VME (<1%). For erythromycin and tetracycline, CA was >93% for predictions by AREScloud, while for Pathogenwatch, this ranged around 88%. For trimethoprim-sulfamethoxazole, CA was for both tools <86%. High VME rates were observed for erythromycin and tetracycline, higher for Pathogenwatch (53.6% and 47.0%, respectively) compared to AREScloud (14.3% and 19.1%, respectively). Both tools performed excellently despite the complexity of predicting beta-lactam resistance in pneumococci. Further optimization and validation are needed for non-beta-lactams since high (very) major error rates were observed.
Collapse
Affiliation(s)
- Gerardo J. Sanchez
- Laboratory of Clinical Microbiology, KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Flanders, Belgium
| | - Lize Cuypers
- Laboratory of Clinical Microbiology, KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Flanders, Belgium
- Department of Laboratory Medicine, National Reference Centre for Invasive Pneumococci, University Hospitals Leuven, Leuven, Flanders, Belgium
| | - Lies Laenen
- Laboratory of Clinical Microbiology, KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Flanders, Belgium
- Department of Laboratory Medicine, National Reference Centre for Invasive Pneumococci, University Hospitals Leuven, Leuven, Flanders, Belgium
| | - Peter Májek
- Ares Genetics, OpGen, Vienna, Austria
- Day Zero Diagnostics Inc., Watertown, Massachusetts, USA
| | - Katrien Lagrou
- Laboratory of Clinical Microbiology, KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Flanders, Belgium
- Department of Laboratory Medicine, National Reference Centre for Invasive Pneumococci, University Hospitals Leuven, Leuven, Flanders, Belgium
| | - Stefanie Desmet
- Laboratory of Clinical Microbiology, KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Flanders, Belgium
- Department of Laboratory Medicine, National Reference Centre for Invasive Pneumococci, University Hospitals Leuven, Leuven, Flanders, Belgium
| |
Collapse
|
5
|
Sierra-Hernandez O, Saurith-Coronell O, Rodríguez-Macías J, Márquez E, Mora JR, Paz JL, Flores-Sumoza M, Mendoza-Mendoza A, Flores-Morales V, Marrero-Ponce Y, Barigye SJ, Martinez-Rios F. In Silico Identification of Potential Clovibactin-like Antibiotics Binding to Unique Cell Wall Precursors in Diverse Gram-Positive Bacterial Strains. Int J Mol Sci 2025; 26:1724. [PMID: 40004190 PMCID: PMC11855776 DOI: 10.3390/ijms26041724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
The rise in multidrug-resistant bacteria highlights the critical need for novel antibiotics. This study explores clovibactin-like compounds as potential therapeutic agents targeting lipid II, a crucial component in bacterial cell wall synthesis, using in silico techniques. A total of 2624 clovibactin analogs were sourced from the PubChem database and screened using ProTox 3.0 software based on their ADME-Tox properties, prioritizing candidates with favorable pharmacokinetic profiles and minimal toxicity. Molecular docking protocols were then employed to assess the binding interactions of the selected compounds with lipid II. Our analysis identified Compound 22 as a particularly promising candidate, exhibiting strong binding affinity, stable complex formation, and high selectivity for the target. Binding energy analysis, conducted via molecular dynamics simulations, revealed a highly negative value of -25.50 kcal/mol for Compound 22, surpassing that of clovibactin and underscoring its potential efficacy. In addition, Compound 22 was prioritized due to its exceptional binding affinity to lipid II and its favorable ADME-Tox properties, suggesting a lower likelihood of adverse effects. These characteristics position Compound 22 as a promising candidate for further pharmacological development. While our computational results are encouraging, experimental validation is essential to confirm the efficacy and safety of these compounds. This study not only advances our understanding of clovibactin analogs but also contributes to the ongoing efforts to combat antimicrobial resistance through innovative antibiotic development.
Collapse
Affiliation(s)
- Olimpo Sierra-Hernandez
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, Km 5, Vía Puerto Colombia, Puerto Colombia 081007, Colombia; (O.S.-H.); (O.S.-C.)
- Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Carrera 51B, Km 5, Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Oscar Saurith-Coronell
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, Km 5, Vía Puerto Colombia, Puerto Colombia 081007, Colombia; (O.S.-H.); (O.S.-C.)
- Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Carrera 51B, Km 5, Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Juan Rodríguez-Macías
- Facultad de Ciencias de la Salud, Exactas y Naturales, Universidad Libre, Barranquilla 080001, Colombia;
| | - Edgar Márquez
- Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Carrera 51B, Km 5, Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - José Ramón Mora
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador;
| | - José L. Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru;
| | - Maryury Flores-Sumoza
- Programa de Química y Farmacia, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Carrera 59 N° 59-65, Barranquilla 080002, Colombia;
| | - Adel Mendoza-Mendoza
- Programa de Ingeniería Industrial, Universidad del Atlántico, Barranquilla 080001, Colombia;
| | - Virginia Flores-Morales
- Laboratorio de Síntesis Asimétrica y Bioenergética (LSAyB), Ingeniería Química (UACQ), Universidad Autónoma de Zacatecas, Campus XXI Km 6 Carr. Zac-Gdl, Zacatecas 98160, Mexico;
| | - Yovani Marrero-Ponce
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin No. 498, Insurgentes Mixcoac, Benito Juárez, Ciudad de México 03920, Mexico; (Y.M.-P.); (F.M.-R.)
- Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas, Diego de Robles y Vía Interoceánica, Universidad San Francisco de Quito (USFQ), Quito 170157, Ecuador
| | - Stephen J. Barigye
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain;
| | - Felix Martinez-Rios
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin No. 498, Insurgentes Mixcoac, Benito Juárez, Ciudad de México 03920, Mexico; (Y.M.-P.); (F.M.-R.)
| |
Collapse
|
6
|
Myrenås M, Fasth C, Waller KP, Pedersen K. Genomic analyses of Streptococcus uberis reveal high diversity but few antibiotic resistance genes. Vet Microbiol 2025; 300:110319. [PMID: 39637769 DOI: 10.1016/j.vetmic.2024.110319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/15/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
This study aimed to investigate the diversity of milk isolates of Streptococcus uberis from Swedish dairy cows with mastitis, focusing on antibiotic resistance and virulence genes. We analyzed 115 S. uberis isolates using whole genome sequencing revealing a high level of diversity. Within the same farms, we identified both indistinguishable strains with identical sequence types (ST), and distinct isolates belonging to different ST types. This suggests both clonal and non-clonal spread of the bacterium, although primarily non-clonal. We found small clusters of two to eight closely related isolates both within and between farms. Differences in penicillin susceptibility were observed, probably linked to specific variants of penicillin-binding proteins. Few isolates were resistant to antibiotics, and few resistance genes were detected. In most cases, only one or two resistance genes were present, and only one isolate was multi-drug resistant. Two isolates had resistance genes against tetracyclines, a tet(M) and a tet(O) gene, two had a resistance gene against lincosamides, an lnu(C) and an lnu(D) gene, while a single isolate had an erm(B) gene conferring resistance to both macrolides and lincosamides. A single isolate carried a mef(A) gene, which confers resistance to macrolides via an efflux pump mechanism. However, we found aminoglycoside genes in 10 isolates, all 10 had the ant(6)-Ia gene, and one in addition aph(3')-IIIa, and a spectinomycin resistance gene, spw, in eight isolates. Finally, one isolate carried a streptothricin resistance gene, sat4. The genes sat4 and spw have apparently not previously been reported in S. uberis. Interestingly, isolates with elevated MIC to penicillin also significantly more often carried other resistance factors. Most isolates carried several virulence genes, including genes for capsule formation, adhesion to host cells or extracellular matrix proteins, and acquisition of essential nutritional factors, such as amino acids, iron and manganese.
Collapse
Affiliation(s)
- Mattias Myrenås
- Swedish Veterinary Agency, Ulls väg 2B, Uppsala SE-751 89, Sweden.
| | - Charlotta Fasth
- Swedish Veterinary Agency, Ulls väg 2B, Uppsala SE-751 89, Sweden.
| | | | - Karl Pedersen
- Swedish Veterinary Agency, Ulls väg 2B, Uppsala SE-751 89, Sweden; Aarhus University, Department of Animal and Veterinary Science, Blichers Allé 20, Tjele 8830, Denmark.
| |
Collapse
|
7
|
Li X, Yang N, Fang Y, Mao R, Hao Y, Teng D, Dong N, Shan A, Wang J. Fusion Partner Facilitates Expression of Cell-Penetrating Peptide L2 in Pichia pastoris. Antibiotics (Basel) 2024; 13:1207. [PMID: 39766597 PMCID: PMC11672777 DOI: 10.3390/antibiotics13121207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND L2 is formed by combining the pheromone of Streptococcus agalactiae (S. agalactiae) and a cell-penetrating peptide (CPP) with cell-penetrating selectivity. L2 has more significant penetration and better specificity for killing S. agalactiae. However, the production of AMPs by chemical synthesis is always a challenge because of the production cost. METHODS This study was devoted to the heterologous expression of the cell-penetrating peptide L2 in Pichia pastoris using SUMO and a short acidic fusion tag as fusion partners, and the high-density expression of SUMO-L2 was achieved in a 5 L fermenter. RESULTS The results showed that SUMO-L2 expression in the 5 L fermenter reached 629 mg/L. The antibacterial activity of recombinant L2 was examined; the minimum inhibitory concentration (MICs) and minimum bactericidal concentration (MBCs) of purified L2 were 4-8 μg/mL and 8-16 μg/mL against S. agalactiae after 84 h of lysis with 50% formic acid. CONCLUSIONS The findings suggest that SUMO is a suitable fusion tag to express cell-penetrating peptide L2.
Collapse
Affiliation(s)
- Xuan Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yuxin Fang
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150038, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150038, China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150038, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
8
|
Powell LM, Choi SJ, Grund ME, Demkowicz R, Berisio R, LaSala PR, Lukomski S. Regulation of erm(T) MLS B phenotype expression in the emergent emm92 type group A Streptococcus. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:44. [PMID: 39843607 PMCID: PMC11721399 DOI: 10.1038/s44259-024-00062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/11/2024] [Indexed: 01/24/2025]
Abstract
In the last decade, invasive group A Streptococcus (iGAS) infections have doubled in the US, with equivalent increases in MLSB (macrolide, lincosamide, and streptogramin B)-resistance. The emm92-type isolates carrying the erm(T) gene have been associated with an alarming emergence of iGAS infections in people who inject drugs or experience homelessness. Our goal was to elucidate the mechanisms behind inducible (iMLSB) and constitutive (cMLSB) resistance in emm92 isolates. Sequence analysis identified polymorphisms in the erm(T) regulatory region associated with cMLSB resistance. RT-qPCR and RNAseq revealed increased erm(T) mRNA levels in iMLSB isolates in response to erythromycin exposure, while cMLSB isolates exhibited high erm(T) expression independent from antibiotic exposure. Transcription results were coupled with shifting levels of ribosomal methylation. A homology model of the ErmT enzyme identified structural elements and residues conserved in methyltransferases. Delayed growth of iMLSB isolates cultured with erythromycin and increased clindamycin resistance in cMLSB isolates were observed.
Collapse
Affiliation(s)
- Lillie M Powell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Soo Jeon Choi
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Megan E Grund
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Ryan Demkowicz
- Department of Pathology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Rita Berisio
- Institute of Biostructure and Bioimaging, National Research Council, CNR, Naples, Italy
| | - P Rocco LaSala
- Department of Pathology, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Pathology and Laboratory Medicine, University of Connecticut, Farmington, CT, USA
| | - Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.
| |
Collapse
|
9
|
Chiappini E, Simeone G, Bergamini M, Pellegrino R, Guarino A, Staiano A, Esposito S, Gattinara GC, Lo Vecchio A, Stefani S, Iacono ID, Scotese I, Tezza G, Dinardo G, Riccio S, Pellizzari S, Iavarone S, Lorenzetti G, Venturini E, Donà D, Pierantoni L, Doria M, Garazzino S, Midulla F, Cricelli C, Terracciano L, Capuano A, Bruzzese E, Ghiglioni D, Fusani L, Fusco E, Biasci P, Reggiani L, Matera L, Mancino E, Barbieri E, D'Avino A, Cursi L, Sullo MG, Scotti S, Marseglia GL, Di Mauro G, Principi N, Galli L, Verga MC. Treatment of acute pharyngitis in children: an Italian intersociety consensus (SIPPS-SIP-SITIP-FIMP-SIAIP-SIMRI-FIMMG). Ital J Pediatr 2024; 50:235. [PMID: 39501298 PMCID: PMC11539554 DOI: 10.1186/s13052-024-01789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Sore throat represents one of the main causes of antibiotic overprescription in children. Its management is still a matter of debate, with countries considering streptococcal pharyngotonsillitis a benign and self-limiting condition and others advocating for its antibiotic treatment to prevent suppurative complications and acute rheumatic fever. Italian paediatricians frequently prescribe antibiotics on a clinical basis regardless of microbiological results. Moreover, broad-spectrum antibiotics are inappropriately prescribed for this condition. In this regard, an intersociety consensus conference was issued to promote the judicious use of antibiotic therapy in paediatric outpatient settings. A systematic review of the literature was performed, and updated recommendations were developed according to the GRADE methodology. Antibiotic treatment with amoxicillin (50 mg/kg/day) for 10 days is recommended in all children with proven streptococcal pharyngitis. Benzathine-penicillin could be prescribed in children with impaired intestinal absorption or inability to tolerate enteral intake and in those at high risk of suppurative complications with low compliance to oral therapy. In children with suspected amoxicillin allergy, third-generation cefalosporins for five days are recommended in low-risk patients, and macrolides are recommended in high-risk ones. Candidates for tonsillectomy due to recurrent pharyngitis could be treated with amoxicillin-clavulanic acid, clindamycin, or combined therapy with amoxicillin plus rifampicin for four days, in an attempt to avoid surgery.
Collapse
Affiliation(s)
- Elena Chiappini
- Department of Health Sciences, University of Florence, Florence, Italy.
- Infectious Diseases Unit, Meyer Children's Hospital IRCCS, Florence, Italy.
- Department of Sciences for Health Sciences, Anna Meyer Children's University Hospital, IRCCS, University of Florence, Viale Pieraccini, 24, Florence, 50100, Italy.
| | | | | | | | - Alfredo Guarino
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Annamaria Staiano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Susanna Esposito
- Paediatric Clinic, Department of Medicine and Surgery, University Hospital, University of Parma, Parma, Italy
| | | | - Andrea Lo Vecchio
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Microbiology, University of Catania, Catania, Italy
| | | | | | - Giovanna Tezza
- Department of Pediatrics, Ospedale San Maurizio, Bolzano, Italy
| | - Giulio Dinardo
- Department of Woman, Child and of General and Specialized Surgery, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Simona Riccio
- Department of Woman, Child and of General and Specialized Surgery, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Sofia Pellizzari
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Pediatric Clinic, University of Verona, Verona, Italy
| | - Sonia Iavarone
- Onco-Hematology, Cell and Gene Therapy and Bone Marrow Transplant Clinic Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giulia Lorenzetti
- Department of Pediatrics, University of Rome Tor Vergata, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Daniele Donà
- Division of Paediatric Infectious Diseases, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Luca Pierantoni
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria Di Bologna, Bologna, Italy
| | - Mattia Doria
- Primary Care Pediatrician, Mesagne, Brindisi, Italy
| | - Silvia Garazzino
- Department of Paediatrics, Infectious Diseases Unit, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - Fabio Midulla
- Department of Maternal Child and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Claudio Cricelli
- Italian College of General Practitioners and Primary Care, (SIMG), Florence, Italy
| | - Luigi Terracciano
- Pediatric Primary Care, National Pediatric Health Care System, Caserta, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, Naples, Italy
| | - Eugenia Bruzzese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Daniele Ghiglioni
- Pediatric Primary Care, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, National Pediatric Health Care System, 26, Rome, Italy
| | - Lara Fusani
- Department of Health Sciences, University of Florence, Florence, Italy
- Infectious Diseases Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Eleonora Fusco
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Paolo Biasci
- FIMP (Federazione Italiana Medici Pediatri), Rome, Italy
| | - Lamberto Reggiani
- Primary Care Pediatricians, Azienda Unità Sanitaria Locale (AUSL), Imola, Italy
| | - Luigi Matera
- Department of Maternal Child and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Enrica Mancino
- Department of Maternal Child and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Elisa Barbieri
- Division of Paediatric Infectious Diseases, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Antonio D'Avino
- Pediatric Primary Care, National Pediatric Health Care System, Caserta, Italy
- FIMP (Federazione Italiana Medici Pediatri), Rome, Italy
| | - Laura Cursi
- University Hospital Paediatric Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Giuseppa Sullo
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Silvestro Scotti
- Pediatric Primary Care, National Pediatric Health Care System, Caserta, Italy
| | - Gian Luigi Marseglia
- Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Giuseppe Di Mauro
- Pediatric Primary Care, National Pediatric Health Care System, Caserta, Italy
| | | | - Luisa Galli
- Department of Health Sciences, University of Florence, Florence, Italy
- Infectious Diseases Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | | |
Collapse
|
10
|
Wiesner A, Zagrodzki P, Gawalska A, Paśko P. Clinically important interactions of macrolides and tetracyclines with dietary interventions-a systematic review with meta-analyses. J Antimicrob Chemother 2024; 79:2762-2791. [PMID: 39254058 PMCID: PMC11531826 DOI: 10.1093/jac/dkae315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Effective management of drug-food interactions is crucial for enhancing antibiotics' efficacy/safety. Adhering to PRISMA guidelines, we conducted a systematic review to assess the impact of dietary interventions on the bioavailability of 15 macrolides and 10 tetracyclines. METHODS We included studies examining the influence of food, beverages, antacids, and mineral supplements on the pharmacokinetic parameters of orally administered macrolides and tetracyclines. We searched Medline (via PubMed), Embase and Cochrane Library databases up to December 2022. Risk of bias was assessed using Cochrane and NIH tools. Quantitative analyses were conducted if two or more comparable food-effect studies were available; otherwise, a qualitative summary was provided. RESULTS We included 120 studies from 97 reports. Meta-analyses were conducted for 8 macrolides and 4 tetracyclines, with qualitative synthesis for 10 and 9, respectively. About 64% of the studies were open-label, crossover designs. Our assessment found that 37% of the studies had a high risk of bias, while only 6% had low risk. Food significantly affected 10 of 13 macrolides (77%) and 6 of 7 tetracyclines (86%). High positive effects on bioavailability were seen with extended-release azithromycin and clarithromycin, and erythromycin estolate. High negative impacts were observed with erythromycin propionate and stearate, azithromycin capsules, demeclocycline and omadacycline. Antacids and mineral supplements significantly decreased tetracyclines absorption. Milk and grapefruit juice showed variable impacts on absorption. DISCUSSION Interactions depend on antibiotics' physicochemical characteristics, intervention type, drug formulation and potential patient factors. The quality of evidence was rated low due to outdated studies, methodological diversity and unequal data availability.
Collapse
Affiliation(s)
- Agnieszka Wiesner
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, Krakow, Poland
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Alicja Gawalska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| |
Collapse
|
11
|
Vanhout Z, Abdellati S, Gestels Z, De Baetselier I, de Block T, Vanbaelen T, Manoharan-Basil SS, Kenyon C. Macrolide resistance is pervasive in oral streptococci in the Belgian general population: a cross-sectional survey. J Med Microbiol 2024; 73. [PMID: 39535289 DOI: 10.1099/jmm.0.001932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Background. Commensal streptococci are common inhabitants of the oral microbiome and regulate its structure and function in beneficial ways for human health. They can, however, also be opportunistic pathogens and act as a reservoir of resistance genes that can be passed on to other bacteria, including pathogens. Little is known about the prevalence of these commensals in parents and their children and their antimicrobial susceptibilities in the Belgian general population.Gap Statement. The macrolide susceptibility of commensal oral Streptococci in Belgium is unknown.Methods. We assessed the prevalence and azithromycin susceptibility of commensal streptococcal species in the parents (n=38) and children (n=50) of 35 families in Belgium.Results. The most frequently detected taxonomic grouping was Streptococcus mitis/oralis, which was detected in 78/181 (43.1%) of the children's isolates and 66/128 (51.6%) of the parents' isolates. Of the 311 isolates collected in this study, 282 isolates (90.7%) had an azithromycin MIC value greater than the breakpoint of 0.25 mg l-1 and 146 isolates (46.9%) had azithromycin MICs greater than 2 mg l-1. There was no difference in the azithromycin MIC distribution of all streptococcal isolates between children and parents. All individuals were colonized by streptococci with azithromycin MICs greater than 0.25 mg l-1, and 87.5% of individuals had streptococci with MICs greater than 2 mg l-1.Interpretation. The most prevalent species identified in both age groups was S. mitis/oralis. All individuals harboured streptococci with macrolide resistance. This highlights the need for additional antimicrobial stewardship initiatives to reduce the consumption of macrolides in the general population.
Collapse
Affiliation(s)
- Zoë Vanhout
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Saïd Abdellati
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Zina Gestels
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | | | | | | | | | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Varghese R, Aravind V, Kirubanandan K, Mathur P, Balaji V. Exploring the necessity of molecular detection for Streptococcus dysgalactiae subsp equisimilis: Often misdiagnosed, and emerging pathogen. Indian J Med Microbiol 2024; 52:100744. [PMID: 39414075 DOI: 10.1016/j.ijmmb.2024.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Streptococcus dysgalactiae subsp equisimilis (SDSE) is an emerging pathogen causing pharyngitis and post-streptococcal sequelae like S. pyogenes. SDSE was initially considered a commensal microorganism inhabiting the upper respiratory tract and skin. However, recently it has gained attention due to an increase in the invasive SDSE infections, which were reported in the early 20th century. OBJECTIVES The aim of this review is to bring awareness of SDSE in the medical microbiologists because often its ignorance leads to the under reporting or misdiagnosis of SDSE. This also highlights the clinical spectrum of infections and the molecular epidemiology of SDSE. CONTENT Diagnosis of SDSE in clinical laboratories is challenging, because SDSE can be seen expressing either of the three Lancefield antigen Groups, Group A, C, and G. While MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight) is a discriminatory method for identifying SDSE, its high cost can limit its use in many laboratories. Currently, there is limited data on SDSE, and further studies are required to associate the disease outcome and the emm type/ST of SDSE in India and other developing countries. This review highlights the importance of recognizing SDSE as an emerging pathogen, and to screen for SDSE in infections similar to S.pyogenes, especially in regions such as India with a high incidence of Streptococcal diseases.
Collapse
Affiliation(s)
- Rosemol Varghese
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - V Aravind
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - K Kirubanandan
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Purva Mathur
- Department of Laboratory Medicine, JPNATC, All India Institute of Medical Sciences, New Delhi, India
| | - V Balaji
- Department of Clinical Microbiology, Christian Medical College, Vellore, India.
| |
Collapse
|
13
|
Cinthi M, Coccitto SN, Simoni S, D'Achille G, Zeni G, Mazzariol A, Pocognoli A, Di Lodovico S, Di Giulio M, Morroni G, Mingoia M, Vignaroli C, Brenciani A, Giovanetti E. Molecular Characterization of Enterococcus faecium Clinical Isolates Harbouring erm (T) from an Italian Hospital. Curr Microbiol 2024; 81:431. [PMID: 39472351 DOI: 10.1007/s00284-024-03968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/19/2024] [Indexed: 11/21/2024]
Abstract
The presence of erm(T) gene conferring resistance to macrolides, lincosamides and streptogramin B (MLSB), was screened in 296 enterococci collected from clinical samples in a central Italy hospital and seven Enterococcus faecium isolates resulted positive to erm(T) by PCR. All isolates were resistant to erythromycin, tetracycline, ciprofloxacin and ampicillin but susceptible to vancomycin and chloramphenicol. Whole Genome Sequencing analysis revealed that in five E. faecium isolates, all belonging to the sequence type ST80 included in the clonal complex CC17 responsible of nosocomial infections, erm (T) gene was chromosome-located, in different genetic contexts. In E. faecium 735,236, erm (T) was on a 4,159-bp region flanked by two IS1216 and inserted at the 3' end of the mp gene. In E. faecium 711,448 and 739,437, erm (T) was found in a 4,463-bp region identical to that detected in E. faecium 735,236 except for 319 bp. In E. faecium 713,729 and 757,415, erm (T) was on a 7,038-bp region flanked by IS1251 and ISEfm2 transposases and encompassed between the genes encoding a recombinase and three hypothetical proteins. erm(T)-carrying minicircles were detected in all isolates by inverse PCR assays demonstrating that erm(T) was included in mobile elements. However, in conjugation assays by filter mating, the erm(T) transferability was unsuccessful. Although macrolides are not used to treat enterococcal infections, the resistance is nonetheless widespread. These antibiotics are critically important in human medicine, but only few studies focused on erm (T)-harbouring clinical enterococci. The emergence of erm (T)-mediated erythromycin resistance among enterococci, potentially transferable to other nosocomial pathogens, should be constantly monitored.
Collapse
Affiliation(s)
- Marzia Cinthi
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Sonia N Coccitto
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Via Tronto 10/A, 60126, Ancona, Italy
| | - Serena Simoni
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Gloria D'Achille
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Via Tronto 10/A, 60126, Ancona, Italy
| | - Guido Zeni
- Department of Diagnostics and Public Health, Verona University, Verona, Italy
| | - Annarita Mazzariol
- Department of Diagnostics and Public Health, Verona University, Verona, Italy
| | - Antonella Pocognoli
- Clinical Microbiology Laboratory, Azienda Ospedaliero Universitaria Delle Marche, Ancona, Italy
| | - Silvia Di Lodovico
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via Dei Vestini 31, 66100, Chieti, Italy
| | - Mara Di Giulio
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via Dei Vestini 31, 66100, Chieti, Italy
| | - Gianluca Morroni
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Via Tronto 10/A, 60126, Ancona, Italy
| | - Marina Mingoia
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Via Tronto 10/A, 60126, Ancona, Italy
| | - Carla Vignaroli
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Via Tronto 10/A, 60126, Ancona, Italy.
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
14
|
Khatoon H, Mohd Faudzi SM. Exploring quinoxaline derivatives: An overview of a new approach to combat antimicrobial resistance. Eur J Med Chem 2024; 276:116675. [PMID: 39004020 DOI: 10.1016/j.ejmech.2024.116675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Antimicrobial resistance (AMR) has emerged as a long-standing global issue ever since the introduction of penicillin, the first antibiotic. Scientists are constantly working to develop innovative antibiotics that are more effective and superior. Unfortunately, the misuse of antibiotics has resulted in their declining effectiveness over the years. By 2050, it is projected that approximately 10 million lives could be lost annually due to antibiotic resistance. Gaining insight into the mechanisms behind the development and transmission of AMR in well-known bacteria including Escherichia coli, Bacillus pumilus, Enterobacter aerogenes, Salmonella typhimurium, and the gut microbiota is crucial for researchers. Environmental contamination in third world and developing countries also plays a significant role in the increase of AMR. Despite the availability of numerous recognized antibiotics to combat bacterial infections, their effectiveness is diminishing due to the growing problem of AMR. The overuse of antibiotics has led to an increase in resistance rates and negative impacts on global health. This highlights the importance of implementing strong antimicrobial stewardship and improving global monitoring, as emphasized by the World Health Organization (WHO) and other organizations. In the face of these obstacles, quinoxaline derivatives have emerged as promising candidates. They are characterized by their remarkable efficacy against a broad spectrum of harmful bacteria, including strains that are resistant to multiple drugs. These compounds are known for their strong structural stability and adaptability, making them a promising and creative solution to the AMR crisis. This review aims to assess the effectiveness of quinoxaline derivatives in treating drug-resistant infections, with the goal of making a meaningful contribution to the global fight against AMR.
Collapse
Affiliation(s)
- Hena Khatoon
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Siti Munirah Mohd Faudzi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
15
|
Gebre AB, Fenta DA, Negash AA, Hayile BJ. Prevalence, Antibiotic Susceptibility Pattern and Associated Factors of Streptococcus pyogenes among Pediatric Patients with Acute Pharyngitis in Sidama, Southern Ethiopia. Int J Microbiol 2024; 2024:9282571. [PMID: 39319095 PMCID: PMC11421939 DOI: 10.1155/2024/9282571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
Background Streptococcus pyogenes is the most frequent cause of pharyngitis and skin infections in children and causes immune complications like rheumatic fever and rheumatoid heart disease (RHD), particularly in developing countries like Ethiopia. The aim of this study was to determine the prevalence, antibiotic resistance pattern, and associated factors of Streptococcus pyogenes among pediatric patients suspected of acute pharyngitis in Sidama Region, Southern Ethiopia. Methods A cross-sectional study was conducted on 213 acute pharyngitis suspected pediatric patients from April to September 2022 at Hawassa University Compressive Specialized Hospital and Yirgalem Hospital. Sociodemographic and clinical data were collected using a structured questionnaire. A throat swab was cultured to isolate S. pyogenes, and antimicrobial susceptibility testing was done using standard bacteriological techniques. Data were analyzed using SPSS version 25, and P value of <0.05 was considered as statistically significant. Result Out of 213 throat swabs cultured, 22 (10.3%) with 95% CI (6.6-14.6%) were S. pyogenes positive. All isolates of S. pyogenes were sensitive to penicillin and amoxicillin. In contrast, 8 (36.4%) isolates exhibited resistance to tetracycline, 7 (31.8%) to ceftriaxone, 6 (27.3%) to erythromycin, and 5 (22.7%) isolates showed multidrug resistance. The presence of palatal petechiae (P=0.037) and tonsillar swelling or exudate (P=0.007) were significantly associated with S. pyogenes carriage in children suspected of having acute pharyngitis. Conclusion In this study, the prevalence of S. pyogenes among children suspected with acute pharyngitis was low compared to other studies. The isolates showed a high level of resistance to commonly used antibiotics. Therefore, the treatment of pediatric acute S. pyogenes pharyngitis should depend on an antimicrobial susceptibility test. Furthermore, evaluation of S. pyogenes pediatric acute pharyngitis risk factors and tracking of antibiotic resistance are crucial in the controlling of pediatric acute S. pyogenes pharyngitis.
Collapse
Affiliation(s)
- Alemitu Beyene Gebre
- Hawassa University College of Medicine and Health ScienceSchool of Medical Laboratory Science, Hawassa, Ethiopia
| | - Demissie Assegu Fenta
- Hawassa University College of Medicine and Health ScienceSchool of Medical Laboratory Science, Hawassa, Ethiopia
| | | | - Betelihem Jima Hayile
- Hawassa University College of Medicine and Health ScienceSchool of Medical Laboratory Science, Hawassa, Ethiopia
| |
Collapse
|
16
|
Cho KH. Molecular Targets in Streptococcus pyogenes for the Development of Anti-Virulence Agents. Genes (Basel) 2024; 15:1166. [PMID: 39336757 PMCID: PMC11430994 DOI: 10.3390/genes15091166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Streptococcus pyogenes, commonly known as Group A Streptococcus (GAS), is a significant human pathogen responsible for a wide range of diseases, from mild pharyngitis to severe conditions such as necrotizing fasciitis and toxic shock syndrome. The increasing antibiotic resistance, especially against macrolide antibiotics, poses a challenge to the effective treatment of these infections. This paper reviews the current state and mechanisms of antibiotic resistance in S. pyogenes. Furthermore, molecular targets for developing anti-virulence agents, which aim to attenuate virulence rather than killing it outright, are explored. This review specifically focuses on virulence regulators, proteins that coordinate the expression of multiple virulence factors in response to environmental signals, playing a crucial role in the pathogen's ability to cause disease. Key regulatory systems, such as RopB, Mga, CovRS, and the c-di-AMP signaling system, are discussed for their roles in modulating virulence gene expression. Additionally, potential molecular target sites for the development of anti-virulence agents are suggested. By concentrating on these regulatory pathways, it is proposed that anti-virulence strategies could enhance the effectiveness of existing antibiotics and reduce the selective pressure that drives the development of resistance.
Collapse
Affiliation(s)
- Kyu Hong Cho
- Department of Biology, Indiana State University, 600 Chestnut St. S224, Terre Haute, IN 47809, USA
| |
Collapse
|
17
|
Birhanu A, Amare A, Tigabie M, Getaneh E, Assefa M, Cherkos T, Moges F. Nasopharyngeal carriage, antimicrobial susceptibility patterns, and associated factors of Gram-positive bacteria among children attending the outpatient department at the University of Gondar Comprehensive Specialized Hospital, Northwest Ethiopia. PLoS One 2024; 19:e0308017. [PMID: 39197069 PMCID: PMC11357108 DOI: 10.1371/journal.pone.0308017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/16/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Gram-positive bacteria residing in the nasopharynx can lead to severe illnesses in children, such as otitis media, pneumonia, and meningitis. Despite the potential threat, there is a lack of comprehensive data regarding the carriage rates of these bacteria among children in outpatient departments in the study area. OBJECTIVE This study aimed to assess the nasopharyngeal carriage, antimicrobial resistance patterns, and associated factors of Gram-positive bacteria among children attending the outpatient department at the University of Gondar Comprehensive Specialized Hospital, Northwest Ethiopia. METHODS A hospital-based cross-sectional study was conducted from May 1, 2023, to August 30, 2023. A total of 424 nasopharyngeal swab samples were collected using sterile nasopharyngeal swabs, inoculated on Blood Agar and Mannitol Salt Agar plates, and identified through colony morphology, Gram stain, and biochemical tests. Antimicrobial susceptibility of the identified bacterial isolates was determined employing both the Kirby-Bauer and modified Kirby-Bauer methods. D-tests were conducted using clindamycin and erythromycin discs to detect inducible clindamycin resistance, while cefoxitin disc tests were utilized to ascertain methicillin resistance. Data entry was executed using Epi-Data version 4.6, and subsequent analysis was performed utilizing SPSS version 25. Bivariable and multivariable logistic regression analyses were employed to identify associated factors. An adjusted odds ratio at a 95% confidence interval with a P-value of < 0.05 was considered statistically significant. RESULTS The overall nasopharyngeal carriage rate of Gram-positive bacteria was 296/424 (69.8%, 95% CI: 65.3-74.0). Staphylococcus aureus was the most prevalent 122/424 (28.8%), followed by Streptococcus pneumoniae 92/424 (21.7%). Methicillin resistance was observed in 19/122 (15.6%) of S. aureus and 3/60 (5%) of coagulase-negative staphylococcus (CoNS) species. Inducible clindamycin resistance was 10/122 (8.2%) in S. aureus and 4/53 (7.5%) in coagulase-negative staphylococcus species. Multidrug resistance was found in 146/296 (49.3%, 95% CI: 43.6-55.0) of the isolates. Associated factors with a bacterial carriage were large family size (AOR = 3.061, 95% CI: 1.595-5.874, P = 0.001), having siblings under five years old (AOR = 1.991, 95% CI: 1.196-3.313, P = 0.008), indoor cooking (AOR = 2.195, 95% CI: 1.275-3.778, P = 0.005), an illiterate mother (AOR = 3.639, 95% CI: 1.691-7.829, P = 0.001), and hospital visits (AOR = 2.690, 95% CI: 1.405-5.151, P = 0.003). CONCLUSION The study found a high nasopharyngeal carriage of Gram-positive bacteria in outpatient children, including notable levels of methicillin-resistant S. aureus and multi-drug-resistant isolates. Clindamycin, rifampin, and erythromycin were the most effective antimicrobials for the tested isolates. Factors contributing to bacterial carriage include visits to healthcare facilities, larger family sizes, having younger siblings, maternal illiteracy, and indoor cooking. This emphasizes the need for methicillin-resistant S. aureus surveillance in pediatric outpatient settings and community health education, especially for children's guardians. Additionally, improving household ventilation by separating kitchens from sleeping areas and regular screening of younger siblings in healthcare environments were recommended to reduce bacterial transmission within family members. The study also called for studies with advanced procedures like minimum inhibitory concentration testing and molecular characterization to better comprehend the resistance patterns and genes in circulating bacteria.
Collapse
Affiliation(s)
- Abebe Birhanu
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Azanaw Amare
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mitkie Tigabie
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Eden Getaneh
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Muluneh Assefa
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tena Cherkos
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Feleke Moges
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
18
|
Barros RR, Barros CC, Kegele FCO, Francisca da S N Soares M, de Paula GR. Macrolide resistance among Streptococcus agalactiae during COVID-19 public health emergency in Brazil. Braz J Microbiol 2024; 55:1445-1449. [PMID: 38687418 PMCID: PMC11153377 DOI: 10.1007/s42770-024-01356-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
During COVID-19 public health emergence, azithromycin was excessively used in Brazil, as part of a controversial "early treatment", recommended by former national health authorities. Excessive usage of macrolides may increase resistance rates among beta-hemolytic streptococci. Therefore, this study aimed to investigate the occurrence of resistance to erythromycin and clindamycin among Streptococcus agalactiae recovered from February 2020 to May 2023. Bacterial isolates (n = 116) were obtained from pregnant women and submitted to antimicrobial susceptibility testing, investigation of macrolide resistance phenotypes and genotypes, and identification of capsular type. The overall rate of erythromycin not susceptible (NS) isolates was 25.9%, while resistance to clindamycin was 5.2%. Drug efflux, associated with the M phenotype and mef(A) gene, was the prevalent mechanism of resistance (80%). Capsular type Ia was predominant (39.8%), followed by II, III, and V (17.7% each). A higher diversity of types was observed in the last years of the study. Type IV has had an increasing trend over time, being the fourth most common in 2023. The majority of the isolates that expressed the M phenotype presented capsular type Ia, while those with iMLS phenotype presented capsular type V. Despite no causal relationship can be established, azithromycin excessive usage may be a possible factor associated with this higher rate of erythromycin NS isolates, compared with most previous national studies. On the other hand, resistance to clindamycin has not changed significantly. Therefore, in the studied clinical setting, clindamycin remains a useful alternative to intrapartum prophylaxis among penicillin-allergic pregnant women.
Collapse
Affiliation(s)
- Rosana Rocha Barros
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Rua Hernani de Melo 101 sala 304, 24210-130, Niterói, RJ, Brazil.
| | - Clarissa Campos Barros
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Rua Hernani de Melo 101 sala 304, 24210-130, Niterói, RJ, Brazil
| | - Fabíola C Oliveira Kegele
- Instituto Fernandes Figueira, Fundação Oswaldo Cruz, Av. Rui Barbosa 716, 22250-020, Rio de Janeiro, RJ, Brazil
| | | | - Geraldo Renato de Paula
- Faculdade de Farmácia, Universidade Federal Fluminense, Rua Dr. Mário Viana 523, 24241-000, Niterói, RJ, Brazil
| |
Collapse
|
19
|
Calvo-Silveria S, González-Díaz A, Grau I, Marimón JM, Cercenado E, Quesada MD, Casabella A, Larrosa N, Yuste J, Berbel D, Alonso M, Tubau F, Belman S, Cadenas-Jiménez I, Martín-Galiano AJ, Domínguez MÁ, Martí S, Liñares J, Pallarés R, Càmara J, Ardanuy C. Evolution of invasive pneumococcal disease by serotype 3 in adults: a Spanish three-decade retrospective study. THE LANCET REGIONAL HEALTH. EUROPE 2024; 41:100913. [PMID: 38737571 PMCID: PMC11087702 DOI: 10.1016/j.lanepe.2024.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 05/14/2024]
Abstract
Background Invasive pneumococcal disease due to serotype 3 (S3-IPD) is associated with high mortality rates and long-term adverse effects. The introduction of the 13-valent pneumococcal conjugate vaccine (PCV13) into the Spanish paediatric immunisation programme has not led to a decrease in the adult S3-IPD. We aimed to analyse the incidence, clinical characteristics and genomics of S3-IPD in adults in Spain. Methods Adult IPD episodes hospitalized in a Southern Barcelona hospital were prospectively collected (1994-2020). For genomic comparison, S3-IPD isolates from six Spanish hospitals (2008-2020) and historical isolates (1989-1993) were analysed by WGS (Illumina and/or MinION). Findings From 1994 to 2020, 270 S3-IPD episodes were detected. When comparing pre-PCV (1994-2001) and late-PCV13 (2016-2020) periods, only modest changes in S3-IPD were observed (from 1.58 to 1.28 episodes per 100,000 inhabitants year). In this period, the incidence of the two main lineages shifted from 0.38 to 0.67 (CC180-GPSC12) and from 1.18 to 0.55 (CC260-GPSC83). The overall 30-day mortality remained high (24.1%), though a decrease was observed between the pre-PCV (32.4%; 95.0% CI, 22.0-45.0) and the late-PCV13 period (16.7%; 95.0% CI, 7.5-32.0) (p = 0.06). At the same time, comorbidities increased from 77.3% (95.0% CI, 65.0-86.0) to 85.7% (95.0% CI, 71.0-94.0) (p = 0.69). There were no differences in clinical characteristics or 30-day mortality between the two S3 lineages. Although both lineages were genetically homogeneous, the CC180-GPSC12 lineage presented a higher SNP density, a more open pan-genome, and a major presence of prophages and mobile genetic elements carrying resistance genes. Interpretation Adult S3-IPD remained stable in our area over the study period despite PCV13 introduction in children. However, a clonal shift was observed. The decrease in mortality rates and the increase in comorbidities suggest a change in clinical management and overall population characteristics. The low genetic variability and absence of clinical differences between lineages highlight the role of the S3 capsule in the disease severity. Funding This study has been funded by Instituto de Salud Carlos III (ISCIII) "PI18/00339", "PI21/01000", "INT22/00096", "FI22/00279", CIBER "CIBERES-CB06/06/0037", "CIBERINFEC-CB21/13/00009" and MSD grant "IISP 60168".
Collapse
Affiliation(s)
- Sara Calvo-Silveria
- Microbiology Department, Hospital Universitari de Bellvitge – IDIBELL, L'Hospitalet de Llobregat, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Aida González-Díaz
- Microbiology Department, Hospital Universitari de Bellvitge – IDIBELL, L'Hospitalet de Llobregat, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Inmaculada Grau
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
- Infectious Diseases Department, Hospital Universitari de Bellvitge – IDIBELL, L'Hospitalet de Llobregat, Spain
| | - José María Marimón
- Biogipuzkoa, Infectious Diseases Area, Respiratory Infection and Antimicrobial Resistance Group, Microbiology Department, Hospital Donostia, Osakidetza Basque Health Service, Donostia - San Sebastian, Spain
| | - Emilia Cercenado
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
- Clinical Microbiology and Infectious Disease Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - M Dolores Quesada
- Microbiology Department, Clinical Laboratory North Metropolitan Area, Hospital Universitari Germans Trias i Pujol, UAB, Badalona, Spain
| | - Antonio Casabella
- Laboratory of Microbiology, Hospital Universitari Parc Taulí, Sabadell, Spain
- Institut d’Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Nieves Larrosa
- Microbiology Department, Hospital Universitari Vall d’Hebron, UAB, Barcelona, Spain
- Research Network for Infectious Diseases (CIBERINFEC), ISCIII, Madrid, Spain
| | - José Yuste
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
- Spanish Pneumococcal Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Dàmaris Berbel
- Microbiology Department, Hospital Universitari de Bellvitge – IDIBELL, L'Hospitalet de Llobregat, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Marta Alonso
- Biogipuzkoa, Infectious Diseases Area, Respiratory Infection and Antimicrobial Resistance Group, Microbiology Department, Hospital Donostia, Osakidetza Basque Health Service, Donostia - San Sebastian, Spain
| | - Fe Tubau
- Microbiology Department, Hospital Universitari de Bellvitge – IDIBELL, L'Hospitalet de Llobregat, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Sophie Belman
- Earth Sciences Department, Barcelona Supercomputing Center - Centro Nacional de Supercomputación, Barcelona, Spain
| | - Irene Cadenas-Jiménez
- Microbiology Department, Hospital Universitari de Bellvitge – IDIBELL, L'Hospitalet de Llobregat, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | | | - M Ángeles Domínguez
- Microbiology Department, Hospital Universitari de Bellvitge – IDIBELL, L'Hospitalet de Llobregat, Spain
- Research Network for Infectious Diseases (CIBERINFEC), ISCIII, Madrid, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Spain
| | - Sara Martí
- Microbiology Department, Hospital Universitari de Bellvitge – IDIBELL, L'Hospitalet de Llobregat, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, University of Barcelona, Spain
| | - Josefina Liñares
- Microbiology Department, Hospital Universitari de Bellvitge – IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Román Pallarés
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
- Infectious Diseases Department, Hospital Universitari de Bellvitge – IDIBELL, L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, University of Barcelona, Spain
| | - Jordi Càmara
- Microbiology Department, Hospital Universitari de Bellvitge – IDIBELL, L'Hospitalet de Llobregat, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Carmen Ardanuy
- Microbiology Department, Hospital Universitari de Bellvitge – IDIBELL, L'Hospitalet de Llobregat, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Spain
| |
Collapse
|
20
|
Di Pietro GM, Marchisio P, Bosi P, Castellazzi ML, Lemieux P. Group A Streptococcal Infections in Pediatric Age: Updates about a Re-Emerging Pathogen. Pathogens 2024; 13:350. [PMID: 38787202 PMCID: PMC11124454 DOI: 10.3390/pathogens13050350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Group A Streptococcus (GAS) presents a significant global health burden due to its diverse clinical manifestations ranging from mild infections to life-threatening invasive diseases. While historically stable, the incidence of GAS infections declined during the COVID-19 pandemic but resurged following the relaxation of preventive measures. Despite general responsiveness to β-lactam antibiotics, there remains an urgent need for a GAS vaccine due to its substantial global disease burden, particularly in low-resource settings. Vaccine development faces numerous challenges, including the extensive strain diversity, the lack of suitable animal models for testing, potential autoimmune complications, and the need for global distribution, while addressing socioeconomic disparities in vaccine access. Several vaccine candidates are in various stages of development, offering hope for effective prevention strategies in the future.
Collapse
Affiliation(s)
- Giada Maria Di Pietro
- Pediatric Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Paola Marchisio
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (P.L.)
| | - Pietro Bosi
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (P.L.)
| | - Massimo Luca Castellazzi
- Pediatric Emergency Department, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Paul Lemieux
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (P.L.)
| |
Collapse
|
21
|
Gergova R, Boyanov V, Muhtarova A, Alexandrova A. A Review of the Impact of Streptococcal Infections and Antimicrobial Resistance on Human Health. Antibiotics (Basel) 2024; 13:360. [PMID: 38667036 PMCID: PMC11047474 DOI: 10.3390/antibiotics13040360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
Streptococcus pneumoniae, Streptococcus pyogenes (GAS), and Streptococcus agalactiae (GBS) are bacteria that can cause a range of infections, some of them life-threatening. This review examines the spread of antibiotic resistance and its mechanisms against antibiotics for streptococcal infections. Data on high-level penicillin-resistant invasive pneumococci have been found in Brazil (42.8%) and Japan (77%). The resistance is caused by mutations in genes that encode penicillin-binding proteins. Similarly, GAS and GBS strains reported from Asia, the USA, and Africa have undergone similar transformations in PBPs. Resistance to major alternatives of penicillins, macrolides, and lincosamides has become widespread among pneumococci and streptococci, especially in Asia (70-95%). The combination of several emm types with erm(B) is associated with the development of high-level macrolide resistance in GAS. Major mechanisms are ribosomal target modifications encoded by erm genes, ribosomal alterations, and active efflux pumps that regulate antibiotic entry due to mefA/E and msrD genes. Tetracycline resistance for streptococci in different countries varied from 22.4% in the USA to 83.7/100% in China, due to tet genes. Combined tetracycline/macrolide resistance is usually linked with the insertion of ermB into the transposon carrying tetM. New quinolone resistance is increasing by between 11.5 and 47.9% in Asia and Europe. The mechanism of quinolone resistance is based on mutations in gyrA/B, determinants for DNA gyrase, or parC/E encoding topoisomerase IV. The results for antibiotic resistance are alarming, and urgently call for increased monitoring of this problem and precautionary measures for control to prevent the spread of resistant mutant strains.
Collapse
Affiliation(s)
- Raina Gergova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria; (V.B.); (A.M.); (A.A.)
| | | | | | | |
Collapse
|
22
|
Lyon E, Olarte L. Community-acquired bacterial pneumonia in children: an update on antibiotic duration and immunization strategies. Curr Opin Pediatr 2024; 36:144-149. [PMID: 38169463 DOI: 10.1097/mop.0000000000001325] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW This review is structured to update clinicians on the epidemiology, antibiotic treatment, and prevention of pediatric bacterial pneumonia. The review provides information regarding the current research on antibiotic management for bacterial pneumonia and the newest immunization recommendations to prevent pneumococcal pneumonia and other respiratory infections. RECENT FINDINGS The recommended length of antibiotic therapy for bacterial pneumonia has been discrepant between low-income and high-income countries. Recently, randomized controlled trials conducted in high-income countries provided evidence to support a short antibiotic course (3-5 days) for uncomplicated bacterial pneumonia in otherwise healthy children. The negative impact of inaccurate penicillin allergy labels in children with pneumonia has emphasized the importance of prompt allergy de-labeling. Newer pneumococcal vaccines are recommended for children and are expected to have a significant impact on bacterial pneumonia rates. SUMMARY Pediatric bacterial pneumonia is an important contributor to childhood morbidity and mortality. A short antibiotic course seems to be sufficient for the outpatient management of uncomplicated bacterial pneumonia; however, more studies are required in the inpatient setting. Future studies will inform the impact of recently introduced pneumococcal and respiratory syncytial virus vaccines on the epidemiology of bacterial pneumonia.
Collapse
Affiliation(s)
- Edward Lyon
- Department of Pediatrics, Division of Infectious Diseases, Children's Mercy Kansas City
| | - Liset Olarte
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
23
|
Huang L, Bao Y, Yi Q, Yu D, Wang H, Wang H, Liu Z, Zhu C, Meng Q, Chen Y, Wang W, Deng J, Liu G, Zheng Y, Yang Y. Molecular characteristics and antimicrobial resistance of invasive pneumococcal isolates from children in the post-13-valent pneumococcal conjugate vaccine era in Shenzhen, China. J Glob Antimicrob Resist 2024; 36:399-406. [PMID: 38266961 DOI: 10.1016/j.jgar.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/24/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
OBJECTIVES This study aimed to evaluate the molecular epidemiology and antimicrobial resistance of invasive pneumococcal isolates from children in Shenzhen, China, in the early stage of the pneumococcal 13-valent conjugated vaccine (PCV-13) era from 2018 to 2020. METHODS Invasive pneumococcal strains were isolated from hospitalized children with invasive pneumococcal diseases (IPDs) from January 2018 to December 2020. The serotype identification, multilocus sequence typing (MLST), and antibiotic susceptibility tests were performed on all culture-confirmed strains. RESULTS Sixty-four invasive strains were isolated mainly from blood (70.3%). Prevalent serotypes were 23F (28.1%), 14 (18.8%), 19F (15.6%), 6A/B (14.1%), and 19A (12.5%), with a serotype coverage rate of 96.9% for PCV13. The most common sequence types (STs) were ST876 (17.1%), ST271 (10.9%), and ST320 (7.8%). Half of the strains were grouped in clonal complexes (CCs): CC271 (21.9%), CC876 (20.3%), and CC90 (14.1%). Meningitis isolates showed a higher resistance rate (90.9% and 45.5%) to penicillin and ceftriaxone than the rate (3.8% and 9.4%) of non-meningitis isolates. The resistance rates for penicillin (oral), cefuroxime, and erythromycin were 53.13%, 73.4%, and 96.9%, respectively. The dual ermB and mefA genotype was found in 81.3% of erythromycin-resistant strains. The elevated minimum inhibitory concentration (MIC) of β-lactam antibiotics and dual-genotype macrolide resistance were related mainly to three major serotype-CC combinations: 19F-CC271, 19A-CC271, and 14-CC876. CONCLUSION Invasive pneumococcus with elevated MICs of β-lactams and increased dual ermB and mefA genotype macrolide resistance were alarming. Expanded PCV13 vaccination is expected to reduce the burden of paediatric IPD and to combat antibiotic-resistant pneumococcus in Shenzhen.
Collapse
Affiliation(s)
- Lu Huang
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, PR China; Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Yanmin Bao
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Qiuwei Yi
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Dingle Yu
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Heping Wang
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Hongmei Wang
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Zihao Liu
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Chunqing Zhu
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Qing Meng
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Yunsheng Chen
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Wenjian Wang
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Jikui Deng
- Shenzhen Children's Hospital, Guangdong, 518000, PR China
| | - Gang Liu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, PR China
| | - Yuejie Zheng
- Shenzhen Children's Hospital, Guangdong, 518000, PR China.
| | - Yonghong Yang
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, PR China.
| |
Collapse
|
24
|
Miao C, Yan Z, Chen C, Kuang L, Ao K, Li Y, Li J, Huang X, Zhu X, Zhao Y, Cui Y, Jiang Y, Xie Y. Serotype, antibiotic susceptibility and whole-genome characterization of Streptococcus pneumoniae in all age groups living in Southwest China during 2018-2022. Front Microbiol 2024; 15:1342839. [PMID: 38362498 PMCID: PMC10867222 DOI: 10.3389/fmicb.2024.1342839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Background Streptococcus pneumoniae is a common pathogen that colonizes the human upper respiratory tract, causing high morbidity and mortality worldwide. This study aimed to investigate the prevalence status of S. pneumoniae isolated from patients of all ages in Southwest China, including serotype, antibiotic susceptibility and other molecular characteristics, to provide a basis for clinical antibiotic usage and vaccine development. Methods This study was conducted from January 2018 to March 2022 at West China Hospital, West China Second University Hospital, First People's Hospital of Longquanyi District (West China Longquan Hospital), Meishan Women and Children's Hospital (Alliance Hospital of West China Second University Hospital) and Chengdu Jinjiang Hospital for Women and Children Health. Demographic and clinical characteristics of 263 pneumococcal disease (PD) all-age patients were collected and analyzed. The serotypes, sequence types (STs), and antibiotic resistance of the strains were determined by next-generation sequencing, sequence analysis and the microdilution broth method. Results The most common pneumococcal serotypes were 19F (17.87%), 19A (11.41%), 3 (8.75%), 23F (6.46%) and 6A (5.70%). Coverage rates for PCV10, PCV13, PCV15, PCV20 and PCV24 were 36.12, 61.98, 61.98, 63.12 and 64.26%, respectively. Prevalent STs were ST271 (12.55%), ST320 (11.79%), ST90 (4.18%), ST876 (4.18%) and ST11972 (3.42%). Penicillin-resistant S. pneumoniae (PRSP) accounted for 82.35 and 1.22% of meningitis and nonmeningitis PD cases, respectively. Resistance genes msrD (32.7%), mefA (32.7%), ermB (95.8%), tetM (97.3%) and catTC (7.6%) were found among 263 isolates. Most isolates showed high resistance to erythromycin (96.96%) and tetracycline (79.85%), with more than half being resistant to SXT (58.94%). A few isolates were resistant to AMX (9.89%), CTX (11.03%), MEN (9.13%), OFX (1.14%), LVX (1.14%) and MXF (0.38%). All isolates were susceptible to vancomycin and linezolid. Conclusion Our study provides reliable information, including the prevalence, molecular characterization and antimicrobial resistance of S. pneumoniae isolates causing pneumococcal diseases in Southwest China. The findings contribute to informed and clinical policy decisions for prevention and treatment.
Collapse
Affiliation(s)
- Chenglin Miao
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ziyi Yan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunmei Chen
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, Sichuan, China
- Department of Laboratory Medicine, West China Second University Hospital (Tianfu), Sichuan University/Sichuan Provincial Children’s Hospital, Meishan, Sichuan, China
| | - Linghan Kuang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Keping Ao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingying Li
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Laboratory Medicine, Tibet Autonomous Region Women's and Children's Hospital, Lhasa, China
| | - Jialu Li
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaocui Huang
- Department of Laboratory Medicine, Chengdu Jinjiang District Maternal and Child Healthcare Hospital, Chengdu, Sichuan, China
| | - Xinghua Zhu
- Department of Laboratory Medicine, The First People’s Hospital of Longquanyi District, Chengdu, Sichuan, China
| | - Yijia Zhao
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, Sichuan, China
- Department of Laboratory Medicine, West China Second University Hospital (Tianfu), Sichuan University/Sichuan Provincial Children’s Hospital, Meishan, Sichuan, China
| | - Yali Cui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, Sichuan, China
- Department of Laboratory Medicine, West China Second University Hospital (Tianfu), Sichuan University/Sichuan Provincial Children’s Hospital, Meishan, Sichuan, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yi Xie
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Peela SM, Basu S, Sharma J, AlAsmari AF, AlAsmari F, Alalmaee S, Ramaiah S, Sistla S, Livingstone P, Anbarasu A. Structure Elucidation and Interaction Dynamics of MefA-MsrD Efflux Proteins in Streptococcus pneumoniae: Impact on Macrolide Susceptibility. ACS OMEGA 2023; 8:39454-39467. [PMID: 37901543 PMCID: PMC10601061 DOI: 10.1021/acsomega.3c05210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023]
Abstract
Macrolides are empirically used to treat bacterial community-acquired pneumonia (CAP). Streptococcus pneumoniae, being the major pathogen responsible for bacterial CAP with high mortality rates, express MefA-MsrD efflux pumps to hinder macrolide susceptibility. Despite its importance, the structural features of the efflux-protein complex and its impact on macrolide susceptibility have not yet been elucidated explicitly. Therefore, in the present study, combining homology, threading, and dynamics approaches, MefA and MsrD proteins in pathogenic S. pneumoniae were modeled. Both membrane (lipid-bilayer) and cytoplasmic (aqueous) environments were considered to simulate the MefA and MsrD proteins in their ideal cellular conditions followed by dynamics analyses. The simulated MefA structure represented a typical major facilitator superfamily protein structure with 13 transmembrane helices. MefA-MsrD interaction via clustering-based docking revealed low-energy conformers with stable intermolecular interactions. The higher clinical MIC value of azithromycin over erythromycin was reflected upon erythromycin eliciting stronger interactions (dissociation constant or ki = ∼52 μM) with the cytoplasmic ATP-binding MsrD than azithromycin (ki = ∼112 μM). The strong (binding energy = -132.1 ± 9.5 kcal/mol) and highly stable (root-mean-square fluctuation < 1.0 Å) physical association between MefA with MsrD was validated and was found to be unaffected by the antibiotic binding. Higher propensity of the macrolides to interact with MsrD than MefA established the importance of the former in macrolide susceptibility. Ours is probably the first report on the structural arrangements in the MefA-MsrD efflux complex and the macrolide susceptibility in S. pneumoniae. This study provides a novel lead for experimental explorations and efflux-pump inhibitor designs.
Collapse
Affiliation(s)
- Sreeram
Chandra Murthy Peela
- Department
of Microbiology, Jawaharlal Institute of
Postgraduate Medical Education and Research (JIPMER), Puducherry 605006, India
| | - Soumya Basu
- Medical
and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Jyoti Sharma
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology (IIT), Jodhpur342011, Rajasthan, India
| | - Abdullah F. AlAsmari
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz AlAsmari
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Sudha Ramaiah
- Department
of Biosciences, Vellore Institute of Technology
(VIT), Vellore 632014, Tamil Nadu, India
| | - Sujatha Sistla
- Department
of Microbiology, Jawaharlal Institute of
Postgraduate Medical Education and Research (JIPMER), Puducherry 605006, India
| | - Paul Livingstone
- Department
of Sports and Health Sciences, Cardiff Metropolitan
University, Cardiff CF5 2YB, U.K.
| | - Anand Anbarasu
- Medical
and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
26
|
Powell LM, Choi SJ, Haught BL, Demkowicz R, LaSala PR, Lukomski S. Prevalence of erythromycin-resistant emm92-type invasive group A streptococcal infections among injection drug users in West Virginia, United States, 2021-23. J Antimicrob Chemother 2023; 78:2554-2558. [PMID: 37638394 DOI: 10.1093/jac/dkad268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Increasing incidence of invasive group A Streptococcus (iGAS) disease has been reported in Europe and the USA over the past several years. Coupled with this are observations of higher rates of resistance to erythromycin and clindamycin. OBJECTIVES To characterize iGAS and pharyngitis isolates from West Virginia (WV), a US state outside of the national Active Bacteria Core surveillance purview, where risk factors associated with iGAS infections are prevalent. METHODS Seventy-seven invasive group A Streptococcus isolates were collected from 67 unique patients at the J.W. Ruby Memorial Hospital Clinical Microbiology Laboratory in WV from 2021 to 2023. Invasive isolates and 20 unique pharyngitis isolates were tested for clindamycin and erythromycin susceptibility in the clinical laboratory. Patient demographic and clinical information was retrieved from patient electronic health records. Isolates were further characterized based on emm subtype and detection of MLSB resistance determinants. RESULTS Twenty-six (39%) isolates were of a single emm92 type. All emm92 isolates were uniformly erythromycin/clindamycin resistant with inducible or constitutive MLSB resistance imparted by the plasmid-borne erm(T) gene. The majority of emm92 infections were associated with adult patients who reported IV drug use, whereas no pharyngitis infections were caused by an emm92 strain. Overall, 51 (76%) of the 67 iGAS isolates were determined to carry MLSB resistance. CONCLUSIONS Isolates of emm92 type (clonal subtype emm92.0) were associated with iGAS infections in adult IV drug users, but not with paediatric pharyngitis, and were uniformly resistant to erythromycin and clindamycin.
Collapse
Affiliation(s)
- Lillie M Powell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV, 26506USA
| | - Soo Jeon Choi
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV, 26506USA
| | - Breanna L Haught
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV, 26506USA
| | - Ryan Demkowicz
- Department of Pathology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - P Rocco LaSala
- Department of Pathology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV, 26506USA
| |
Collapse
|
27
|
Yokota SI, Tsukamoto N, Sato T, Ohkoshi Y, Yamamoto S, Ogasawara N. Serotype replacement and an increase in non-encapsulated isolates among community-acquired infections of Streptococcus pneumoniae during post-vaccine era in Japan. IJID REGIONS 2023; 8:105-110. [PMID: 37554357 PMCID: PMC10404989 DOI: 10.1016/j.ijregi.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVES It is feared that the serotype replacement of Streptococcus pneumoniae occurred by the introduction of pneumococcal vaccines as periodical inoculation leads to reduced efficacy of the approved vaccines and altered antimicrobial susceptibility. METHODS We determined serotypes of 351 S. pneumoniae isolates collected at a commercial clinical laboratory in Hokkaido prefecture, Japan, from December 2018 to February 2019 by using the polymerase chain reaction procedure of the US Centers for Disease Control and Prevention. Antimicrobial susceptibility and resistance gene profiles were also examined. RESULTS Vaccine coverage rates were 7.9% for 13-valent conjugate vaccine, and 32.5% for 23-valent polysaccharide vaccine, respectively. Non-typable strains were 19.7%. cpsA-positive isolates (group I), and null capsule clade (NCC)1, NCC2 and NCC3 (group II) comprised 31.3%, 28.4%, 32.8%, and 7.5% of the 69 non-typable strains, respectively. No penicillin-resistant/intermediate isolates were found; however, serotypes 35B and 15A/F showed low susceptibility to β-lactams. Only five strains (1.4%) were levofloxacin-resistant, and all were from the older persons, and three strains were serotype 35B. CONCLUSION The progression of serotype replacement in non-invasive pneumococcal infections has occurred during the post-vaccine era in Japan, and non-encapsulated isolates, such as NCC, have increased. Antimicrobial susceptibility is not worsened.
Collapse
Affiliation(s)
- Shin-ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | - Toyotaka Sato
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Yasuo Ohkoshi
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Clinical Laboratory, NTT Medical Center Sapporo, Sapporo, Japan
| | - Soh Yamamoto
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriko Ogasawara
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
28
|
Opavski N, Jovicevic M, Kabic J, Kekic D, Vasiljevic Z, Tosic T, Medic D, Laban S, Ranin L, Gajic I. Serotype distribution, antimicrobial susceptibility and molecular epidemiology of invasive Streptococcus pneumoniae in the nine-year period in Serbia. Front Microbiol 2023; 14:1244366. [PMID: 37670985 PMCID: PMC10475725 DOI: 10.3389/fmicb.2023.1244366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Streptococcus pneumoniae is one of the leading bacterial pathogens that can cause severe invasive diseases. The aim of the study was to characterize invasive isolates of S. pneumoniae obtained during the nine-year period in Serbia before the introduction of the pneumococcal conjugate vaccines (PCVs) into routine vaccination programs by determining: serotype distribution, the prevalence and genetic basis of antimicrobial resistance, and genetic relatedness of the circulating pneumococcal clones. A total of 490 invasive S. pneumoniae isolates were included in this study. The serotype, antimicrobial susceptibility, and ST of the strains were determined by the Quellung reaction, disk- and gradient-diffusion methods, and multilocus sequence typing (MLST), respectively. The most common serotypes in this study were 3, 19F, 14, 6B, 6A, 19A, and 23F. The serotype coverages of PCV10 and PCV13 in children less than 2 years were 71.3 and 86.1%, respectively, while PPV23 coverage in adults was in the range of 85-96%, depending on the age group. Penicillin and ceftriaxone-non-susceptible isolates account for 47.6 and 16.5% of all isolates, respectively. Macrolide non-susceptibility was detected in 40.4% of isolates, while the rate of multidrug- and extensive-drug resistance was 20.0 and 16.9%, respectively. The MLST analysis of 158 pneumococci identified 60 different STs belonging to the 16 Clonal Complexes (CCs) (consisting of 42 STs) and 18 singletons. The most common CC/ST were ST1377, CC320, CC15, CC273, CC156, CC473, CC81, and CC180. Results obtained in this study indicate that the pre-vaccine pneumococcal population in Serbia is characterized by high penicillin and macrolides non-susceptibility, worrisome rates of MDR and XDR, as well as a high degree of genetic diversity. These findings provide a basis for further investigation of the changes in serotypes and genotypes that can be expected after the routine introduction of PCVs.
Collapse
Affiliation(s)
- Natasa Opavski
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| | - Milos Jovicevic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| | - Jovana Kabic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| | - Dusan Kekic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| | - Zorica Vasiljevic
- Department of Clinical Microbiology, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", Belgrade, Serbia
| | - Tanja Tosic
- Department of Microbiology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Deana Medic
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Center for Microbiology, Institute of Public Health of Vojvodina, Novi Sad, Serbia
| | - Suzana Laban
- Department of Microbiology, University Children's Hospital, Belgrade, Serbia
| | - Lazar Ranin
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| | - Ina Gajic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|