1
|
Zhou J, Lin WH, Yu YL, Dong CD, Zhang H, Hu Z, Kao CM. Transitioning weathered oil fields towards new energy: A review on utilizing hydrogenotrophic methanogens for petroleum hydrocarbons remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135279. [PMID: 39047569 DOI: 10.1016/j.jhazmat.2024.135279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/06/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The weathering process can cause the volatilization of light components in crude oil, leading to the accumulation of total petroleum hydrocarbons (TPH) in weathered oil field soils. These TPH compounds are relatively resistant to biodegradation, posing a significant environmental hazard by contributing to soil degradation. TPH represents a complex mixture of petroleum-based hydrocarbons classified as persistent organic pollutants in soil and groundwater. The release of TPH pollutants into the environment poses serious threats to ecosystems and human health. Currently, various methods are available for TPH-contaminated soil remediation, with bioremediation technology recognized as an environmentally friendly and cost-effective approach. While converting TPH to CO2 is a common remediation method, the complex structures and diverse types of petroleum hydrocarbons (PHs) involved can result in excessive CO2 generation, potentially exacerbating the greenhouse effect. Alternatively, transforming TPH into energy forms like methane through bioremediation, followed by collection and reuse, can reduce greenhouse gas emissions and energy consumption. This process relies on the synergistic interaction between Methanogens archaea and syntrophic bacteria, forming a consortium known as the oil-degrading bacterial consortium. Methanogens produce methane through anaerobic digestion (AD), with hydrogenotrophic methanogens (HTMs) utilizing H2 as an electron donor, playing a crucial role in biomethane production. Candidatus Methanoliparia (Ca. Methanoliparia) was found in the petroleum archaeal community of weathered Oil field in northeast China. Ca. Methanoliparia has demonstrated its independent ability to decompose and produce new energy (biomethane) without symbiosis, contribute to transitioning weathered oil fields towards new energy. Therefore, this review focuses on the principles, mechanisms, and developmental pathways of HTMs during new energy production in the degradation of PHs. It also discusses strategies to enhance TPH degradation and recovery methods.
Collapse
Affiliation(s)
- Jiaping Zhou
- China University of Petroleum-Beijing at Karamay, Karamay, PR China
| | - Wei-Han Lin
- China University of Petroleum-Beijing at Karamay, Karamay, PR China
| | - Ying-Liang Yu
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Haibing Zhang
- China University of Petroleum-Beijing at Karamay, Karamay, PR China
| | - Zhongtao Hu
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, Australia
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Ni S, Lv W, Ji Z, Wang K, Mei Y, Li Y. Progress of Crude Oil Gasification Technology Assisted by Microorganisms in Reservoirs. Microorganisms 2024; 12:702. [PMID: 38674646 PMCID: PMC11051786 DOI: 10.3390/microorganisms12040702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Crude oil gasification bacteria, including fermenting bacteria, hydrocarbon-oxidizing bacteria, reducing bacteria, and methanogenic bacteria, participate in multi-step reactions involving initial activation, intermediate metabolism, and the methanogenesis of crude oil hydrocarbons. These bacteria degrade crude oil into smaller molecules such as hydrogen, carbon dioxide, acetic acid, and formic acid. Ultimately, they convert it into methane, which can be utilized or stored as a strategic resource. However, the current challenges in crude oil gasification include long production cycles and low efficiency. This paper provides a summary of the microbial flora involved in crude oil gasification, the gasification metabolism pathways within reservoirs, and other relevant information. It specifically focuses on analyzing the factors that affect the efficiency of crude oil gasification metabolism and proposes suggestions for improving this efficiency. These studies deepen our understanding of the potential of reservoir ecosystems and provide valuable insights for future reservoir development and management.
Collapse
Affiliation(s)
- Shumin Ni
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Weifeng Lv
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China
| | - Zemin Ji
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Kai Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Yuhao Mei
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Yushu Li
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| |
Collapse
|
3
|
Chen C, Zhang Z, Xu P, Hu H, Tang H. Anaerobic biodegradation of polycyclic aromatic hydrocarbons. ENVIRONMENTAL RESEARCH 2023; 223:115472. [PMID: 36773640 DOI: 10.1016/j.envres.2023.115472] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Although many anaerobic microorganisms that can degrade PAHs have been harnessed, there is still a large gap between laboratory achievements and practical applications. Here, we review the recent advances in the biodegradation of PAHs under anoxic conditions and highlight the mechanistic insights into the metabolic pathways and functional genes. Achievements of practical application and enhancing strategies of anaerobic PAHs bioremediation in soil were summarized. Based on the concerned issues during research, perspectives of further development were proposed including time-consuming enrichment, byproducts with unknown toxicity, and activity inhibition with low temperatures. In addition, meta-omics, synthetic biology and engineering microbiome of developing microbial inoculum for anaerobic bioremediation applications are discussed. We anticipate that integrating the theoretical research on PAHs anaerobic biodegradation and its successful application will advance the development of anaerobic bioremediation.
Collapse
Affiliation(s)
- Chao Chen
- College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhan Zhang
- China Tobacco Henan Industrial Co. Ltd., Zhengzhou, 450000, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Akash S, Sivaprakash B, Rajamohan N, Selvankumar T. Biotransformation as a tool for remediation of polycyclic aromatic hydrocarbons from polluted environment - review on toxicity and treatment technologies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120923. [PMID: 36566676 DOI: 10.1016/j.envpol.2022.120923] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/11/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons, a prominent family of persistent organic molecules produced by both anthropogenic and natural processes, are widespread in terrestrial and aquatic environments owing to their hydrophobicity, electrochemical stability and low aqueous solubility. Phenanthrene and naphthalene belong to the group of polycyclic aromatic hydrocarbons whose occurrence are reported to be relatively higher. The bioremediation mode of removing the toxicities of these two compounds has been reported to be promising than other methods. Most of the microbial classes of bacterial, fungal and algal origin are reported to degrade the target pollutants into non-toxic compounds effectively. The review aims to give an overview on toxicological studies, identification and enrichment techniques of phenanthrene and naphthalene degrading microbes and the bioremediation technologies (microbial assisted reactors, microbial fuel cells and microbial assisted constructed wetlands) reported by various researchers. All the three modes of bioremediation techniques were proved to be promising on different perspectives. In the treatment of phenanthrene, a maximum recovery of 96% and 98% was achieved in an aerobic membrane reactor with Bacillus species and single chamber air cathode microbial fuel cell with Acidovorax and Aquamicrobium respectively were reported. With the constructed wetland configuration, 95.5% of removal was attained with manganese oxide based microbial constructed wetland. The maximum degradation efficiency reported for naphthalene are 99% in a reverse membrane bioreactor, 98.5% in a marine sediment microbial fuel cell and 92.8% with a low-cost sandy soil constructed wetland.
Collapse
Affiliation(s)
- S Akash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, PC-608002, India
| | - Baskaran Sivaprakash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, PC-608002, India
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, PC-311, Oman.
| | - Thangaswamy Selvankumar
- PG and Research Department of Biotechnology, Mahendra Arts and Science College, Kalipatti, Namakkal, Tamilnadu, India
| |
Collapse
|
5
|
van Leeuwen JA, Gerritse J, Hartog N, Ertl S, Parsons JR, Hassanizadeh SM. Anaerobic degradation of benzene and other aromatic hydrocarbons in a tar-derived plume: Nitrate versus iron reducing conditions. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 248:104006. [PMID: 35439686 DOI: 10.1016/j.jconhyd.2022.104006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The anaerobic degradation of aromatic hydrocarbons in a plume originating from a Pintsch gas tar-DNAPL zone was investigated using molecular, isotopic- and microbial analyses. Benzene concentrations diminished at the relatively small meter scale dimensions of the nitrate reducing plume fringe. The ratio of benzene to toluene, ethylbenzene, xylenes and naphthalene (BTEXN) in the fringe zone compared to the plume zone, indicated relatively more loss of benzene in the fringe zone than TEXN. This was substantiated by changes in relative concentrations of BTEXN, and multi-element compound specific isotope analysis for δ2H and δ13C. This was supported by the presence of (abcA) genes, indicating the presumed benzene carboxylase enzyme in the nitrate-reducing plume fringe. Biodegradation of most hydrocarbon contaminants at iron reducing conditions in the plume core, appears to be quantitatively of greater significance due to the large volume of the plume core, rather than relatively faster biodegradation under nitrate reducing conditions at the smaller volume of the plume fringe. Contaminant concentration reductions by biodegradation processes were shown to vary distinctively between the source, plume (both iron-reducing) and fringe (nitrate-reducing) zones of the plume. High anaerobic microbial activity was detected in the plume zone as well as in the dense non aqueous phase liquid (DNAPL) containing source zone. Biodegradation of most, if not all, other water-soluble Pintsch gas tar aromatic hydrocarbon contaminants occur at the relatively large dimensions of the anoxic plume core. The highest diversity and concentrations of metabolites were detected in the iron-reducing plume core, where the sum of parent compounds of aromatic hydrocarbons was greater than 10 mg/L. The relatively high concentrations of metabolites suggest a hot spot for anaerobic degradation in the core of the plume downgradient but relatively close to the DNAPL containing source zone.
Collapse
Affiliation(s)
- Johan A van Leeuwen
- Utrecht University, Department of Earth Sciences, Environmental Hydrogeology Group, Princetonplein 9, 3584 CC Utrecht, the Netherlands; KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands.
| | - Jan Gerritse
- Deltares, Unit Subsurface and Groundwater Systems, Daltonlaan 600, 3584 BK Utrecht, the Netherlands
| | - Niels Hartog
- Utrecht University, Department of Earth Sciences, Environmental Hydrogeology Group, Princetonplein 9, 3584 CC Utrecht, the Netherlands; KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Siegmund Ertl
- Hydroisotop GmbH, Woelkestrasse 9, Sweitenkirchen 85301, Germany
| | - John R Parsons
- University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - S Majid Hassanizadeh
- Utrecht University, Department of Earth Sciences, Environmental Hydrogeology Group, Princetonplein 9, 3584 CC Utrecht, the Netherlands
| |
Collapse
|
6
|
Chen J, Tong T, Yang Y, Ke Y, Chen X, Xie S. In-situ active Bisphenol A-degrading microorganisms in mangrove sediments. ENVIRONMENTAL RESEARCH 2022; 206:112251. [PMID: 34695429 DOI: 10.1016/j.envres.2021.112251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA), as both an endocrine disrupting compound and an important industrial material, is broadly distributed in coastal regions and may cause adverse effects on mangrove ecosystems. Although many BPA degraders have been isolated from various environments, the in-situ active BPA-degrading microorganisms in mangrove ecosystem are still unknown. In this study, DNA-based stable isotope probing in combination with high-throughput sequencing was adopted to pinpoint the microbes actually involved in BPA metabolism in mangrove sediments. Five bacterial genera were speculated to be associated with BPA degradation based on linear discriminant analysis (LDA) effect size (LEfSe) analysis, including Truepera, Methylobacterium, Novosphingobium, Rhodococcus and Rhodobacter. The in-situ BPA degraders were different between mudflat and forest sediments. The Shannon index of microbes in heavy fractions was significantly lower than that in light fractions. Besides, phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) demonstrated that the functional genes relevant to cytochrome P450, benzoate degradation, bisphenol degradation and citrate cycle were up-regulated significantly in in-situ BPA-degrading microbes. These findings greatly expanded the knowledge of indigenous BPA metabolic microorganisms in mangrove ecosystems.
Collapse
Affiliation(s)
- Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yuyin Yang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China
| | - Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
7
|
Sun J, Zhang Z, Wang H, Rogers MJ, Guo H, He J. Exploration of the biotransformation of phenanthrene degradation coupled with methanogensis by metabolites and enzyme analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118491. [PMID: 34780757 DOI: 10.1016/j.envpol.2021.118491] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/21/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
The ubiquitous environmental contaminants, polycyclic aromatic hydrocarbons (PAHs), can be aerobically biodegraded. Strategies for biodegradation of PAHs are needed for the persisted character of it in anoxic environments. In current study, we obtained a highly enriched anaerobic, PAHs-degrading co-culture DYM1, from petroleum-polluted soil. DYM1 significantly degrades a range of PAHs in 4 days without supplementary terminal electron acceptors. Co-culture DYM1 is consists of two microorganisms (a degrading bacterium Paracoccus sp. strain PheM1 and an aceticlastic methanogen Methanosaeta concilii.) that utilize different carbon sources in a syntrophic metabolic process of phenanthrene. About 93% of phenanthrene (104.5 μM) has been removed under methanogenic conditions after incubation with co-culture DYM1 for 4 d, and produced 33.68 μmol CH4. Carboxylation, which is catalyzed by UbiD-like carboxylase, was proposed as the initial steps of methanogenic phenanthrene-degrading pathway based upon the detection of 2-phenanthroic acid and 4-phenanthrene acid. Reduction and hydration of the benzene rings were followed by the initial reaction. Hydrated phenanthroic acid metabolites were newly detected and characterized under anaerobic conditions. Anaerobic degradation of phenanthrene without terminal electron acceptor addition not only sheds light on a poorly understood and environmentally relevant biological process, but also supply a novel approach to recover the energy of toxic pollutant in forms of methane.
Collapse
Affiliation(s)
- Jiao Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Zuotao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Hui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Engineering Drive, 3117576, Singapore
| | - Haijiao Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Engineering Drive, 3117576, Singapore
| |
Collapse
|
8
|
Wang YQ, Wang MX, Chen YY, Li CM, Zhou ZF. Microbial community structure and co-occurrence are essential for methanogenesis and its contribution to phenanthrene degradation in paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126086. [PMID: 34020358 DOI: 10.1016/j.jhazmat.2021.126086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Although polycyclic aromatic hydrocarbons (PAHs) degradation under methanogenesis is an ideal approach to remediating PAH-polluted soil, the contribution of methanogenesis to soil PAH elimination and the relationships between microbial ecological characteristics and PAH degradation during this process remain unclear. Here, we conducted a short-term (60 days) incubation using a paddy soil amended with phenanthrene and examined the effects of a specific methanogenic inhibitor (2-bromoethanesulfonate, BES) on this process. As treatment assessments, the methane production activity (MPA), phenanthrene degradation rate (PDR), and microbial ecological characteristics were determined. The results indicated that BES significantly inhibited both soil MPA and PDR, and we detected a positive relationship between MPA and PDR. Furthermore, BES significantly altered the soil microbial community structure, and it was the microbial community structure but not α-diversity was significantly correlated with soil MPA and PDR. BES decentralized the co-occurrence of bacterial genera but intensified the co-occurrence of methanogens. Moreover, certain bacterial taxa, including Bacteroidetes-vadinHA17, Gemmatimonas, and Sporomusaceae, were responsible for the MPA and PDR in this paddy soil. Collectively, these findings confirm the role of methanogenesis in PAH elimination from paddy soil, and reveal the importance of microbial co-occurrence characteristics in the determination of soil MPA and pollutant metabolism.
Collapse
Affiliation(s)
- Yan-Qin Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Ming-Xia Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yong-Yi Chen
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Chun-Ming Li
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zhi-Feng Zhou
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Sengupta K, Pal S. A review on microbial diversity and genetic markers involved in methanogenic degradation of hydrocarbons: futuristic prospects of biofuel recovery from contaminated regions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40288-40307. [PMID: 33844144 DOI: 10.1007/s11356-021-13666-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Microbial activities within oil reservoirs have adversely impacted the world's majority of oil by lowering its quality, thereby increasing its recovery and refining cost. Moreover, conventional method of extraction leaves behind nearly two-thirds of the fossil fuels in the oil fields. This huge potential can be extracted if engineered methanogenic consortium is adapted to convert the hydrocarbons into natural gas. This process involves conversion of crude oil hydrocarbons into methanogenic substrates by syntrophic and fermentative bacteria, which are subsequently utilized by methanogens to produce methane. Microbial diversity of such environments supports the viability of this process. This review illuminates the potentials of abundant microbial groups such as Syntrophaceae, Anaerolineaceae, Clostridiales and Euryarchaeota in petroleum hydrocarbon-related environment, their genetic markers, biochemical process and omics-based bioengineering methods involved in methane generation. Increase in the copy numbers of catabolic genes during methanogenesis highlights the prospect of developing engineered biofuel recovery technology. Several lab-based methanogenic consortia from depleted petroleum reservoirs and microcosm studies so far would not be enough for field application without the advent of multi-omics-based technologies to trawl out the bottleneck parameters of the enhanced fuel recovery process. The adaptability of efficient consortium of versatile hydrocarbonoclastic and methanogenic microorganisms under environmental stress conditions is further needed to be investigated. The improved process might hold the potential of methane extraction from petroleum waste like oil tank and refinery sludge, oil field deposits, etc. What sounds as biodegradation could be a beginning of converting waste into wealth by recovery of stranded energy assets.
Collapse
Affiliation(s)
- Kriti Sengupta
- Bioenergy Group, Agharkar Research Institute, Pune, 411004, India
| | - Siddhartha Pal
- National Centre for Cell Science, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
10
|
Hashemi S, Hashemi SE, Lien KM, Lamb JJ. Molecular Microbial Community Analysis as an Analysis Tool for Optimal Biogas Production. Microorganisms 2021; 9:microorganisms9061162. [PMID: 34071282 PMCID: PMC8226781 DOI: 10.3390/microorganisms9061162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
The microbial diversity in anaerobic digestion (AD) is important because it affects process robustness. High-throughput sequencing offers high-resolution data regarding the microbial diversity and robustness of biological systems including AD; however, to understand the dynamics of microbial processes, knowing the microbial diversity is not adequate alone. Advanced meta-omic techniques have been established to determine the activity and interactions among organisms in biological processes like AD. Results of these methods can be used to identify biomarkers for AD states. This can aid a better understanding of system dynamics and be applied to producing comprehensive models for AD. The paper provides valuable knowledge regarding the possibility of integration of molecular methods in AD. Although meta-genomic methods are not suitable for on-line use due to long operating time and high costs, they provide extensive insight into the microbial phylogeny in AD. Meta-proteomics can also be explored in the demonstration projects for failure prediction. However, for these methods to be fully realised in AD, a biomarker database needs to be developed.
Collapse
Affiliation(s)
- Seyedbehnam Hashemi
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
| | - Sayed Ebrahim Hashemi
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
| | - Kristian M. Lien
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
| | - Jacob J. Lamb
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
- Department of Electronic Systems, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
- Correspondence:
| |
Collapse
|
11
|
Taylor NM, Toth CRA, Collins V, Mussone P, Gieg LM. The Effect of an Adsorbent Matrix on Recovery of Microorganisms from Hydrocarbon-Contaminated Groundwater. Microorganisms 2021; 9:microorganisms9010090. [PMID: 33401442 PMCID: PMC7823327 DOI: 10.3390/microorganisms9010090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/24/2020] [Indexed: 01/04/2023] Open
Abstract
The microbial degradation of recalcitrant hydrocarbons is an important process that can contribute to the remediation of oil and gas-contaminated environments. Due to the complex structure of subsurface terrestrial environments, it is important to identify the microbial communities that may be contributing to biodegradation processes, along with their abilities to metabolize different hydrocarbons in situ. In this study, a variety of adsorbent materials were assessed for their ability to trap both hydrocarbons and microorganisms in contaminated groundwater. Of the materials tested, a porous polymer resin (Tenax-TA) recovered the highest diversity of microbial taxa in preliminary experiments and was selected for additional (microcosm-based) testing. Oxic and anoxic experiments were prepared with groundwater collected from a contaminated aquifer to assess the ability of Tenax-TA to adsorb two environmental hydrocarbon contaminants of interest (toluene and benzene) while simultaneously providing a surface for microbial growth and hydrocarbon biodegradation. Microorganisms in oxic microcosms completely degraded both targets within 14 days of incubation, while anoxically-incubated microorganisms metabolized toluene but not benzene in less than 80 days. Community analysis of Tenax-TA-associated microorganisms revealed taxa highly enriched in sessile hydrocarbon-degrading treatments, including Saprospiraceae, Azoarcus, and Desulfoprunum, which may facilitate hydrocarbon degradation. This study showed that Tenax-TA can be used as a matrix to effectively trap both microorganisms and hydrocarbons in contaminated environmental systems for assessing and studying hydrocarbon-degrading microorganisms of interest.
Collapse
Affiliation(s)
- Nicole M. Taylor
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
| | - Courtney R. A. Toth
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada;
| | - Victoria Collins
- Applied BioNanotechnology Industrial Research Chair Program, Northern Alberta Institute of Technology, 11762-106 Street, Edmonton, AB T5G 2R1, Canada; (V.C.); (P.M.)
| | - Paolo Mussone
- Applied BioNanotechnology Industrial Research Chair Program, Northern Alberta Institute of Technology, 11762-106 Street, Edmonton, AB T5G 2R1, Canada; (V.C.); (P.M.)
| | - Lisa M. Gieg
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
- Correspondence:
| |
Collapse
|
12
|
Muccee F, Ejaz S. Whole genome shotgun sequencing of POPs degrading bacterial community dwelling tannery effluents and petrol contaminated soil. Microbiol Res 2020; 238:126504. [PMID: 32534383 DOI: 10.1016/j.micres.2020.126504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 10/24/2022]
Abstract
The present study involved identification of genes which are present in the genome of native bacteria to make them effective tools for bioremediation of persistent organic pollutants (POPs). During this study, forty-one POPs (naphthalene, toluene and petrol) metabolizing bacteria were isolated from tannery effluents and petrol contaminated soil samples by successive enrichment culturing. The taxonomic diversity and gene repertoire conferring POPs degradation ability to the isolated bacterial community were studied through whole genome shotgun sequencing of DNA consortium. The DNA consortium contained equimolar concentration of DNA extracted from each bacterial isolate using organic method. To add a double layer of confirmation the established DNA consortium was subjected to 16S rRNA metagenome sequencing and whole genome shotgun sequencing analysis. Biodiversity analysis revealed that the consortium was composed of phyla Firmicutes (80 %), Proteobacteria (12 %) and Actinobacteria (5%). Genera found included Bacillus (45 %), Burkholderia (25 %), Brevibacillus (9%) and Geobacillus (4%). Functional profiling of consortium helped us to identify genes associated with degradation pathways of a variety of organic compounds including toluene, naphthalene, caprolactam, benzoate, aminobenzoate, xylene, 4-hydroxyphenyl acetic acid, biphenyl, anthracene, aminobenzoate, chlorocyclohexane, chlorobenzene, n-phenylalkanoic acid, phenylpropanoid, salicylate, gentisate, central meta cleavage of aromatic compounds, cinnamic acid, catechol and procatechuate branch of β-ketoadipate pathway, phenyl-acetyl CoA and homogentisate catabolic pathway. The information thus generated has ensured not only biodegradation potential but also revealed many possible future applications of the isolated bacteria.
Collapse
Affiliation(s)
- Fatima Muccee
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Samina Ejaz
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| |
Collapse
|
13
|
Dhar K, Subashchandrabose SR, Venkateswarlu K, Krishnan K, Megharaj M. Anaerobic Microbial Degradation of Polycyclic Aromatic Hydrocarbons: A Comprehensive Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 251:25-108. [PMID: 31011832 DOI: 10.1007/398_2019_29] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of hazardous organic contaminants that are widely distributed in nature, and many of them are potentially toxic to humans and other living organisms. Biodegradation is the major route of detoxification and removal of PAHs from the environment. Aerobic biodegradation of PAHs has been the subject of extensive research; however, reports on anaerobic biodegradation of PAHs are so far limited. Microbial degradation of PAHs under anaerobic conditions is difficult because of the slow growth rate of anaerobes and low energy yield in the metabolic processes. Despite the limitations, some anaerobic bacteria degrade PAHs under nitrate-reducing, sulfate-reducing, iron-reducing, and methanogenic conditions. Anaerobic biodegradation, though relatively slow, is a significant process of natural attenuation of PAHs from the impacted anoxic environments such as sediments, subsurface soils, and aquifers. This review is intended to provide comprehensive details on microbial degradation of PAHs under various reducing conditions, to describe the degradation mechanisms, and to identify the areas that should receive due attention in further investigations.
Collapse
Affiliation(s)
- Kartik Dhar
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
- Department of Microbiology, University of Chittagong, Chittagong, Bangladesh
| | - Suresh R Subashchandrabose
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, India
| | - Kannan Krishnan
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|