1
|
Rao Z, Li Y, Yang X, Guo Y, Zhang W, Wang Z. Diet xylo-oligosaccharide supplementation improves growth performance, immune function, and intestinal health of broilers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:165-176. [PMID: 38779325 PMCID: PMC11109738 DOI: 10.1016/j.aninu.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 05/25/2024]
Abstract
The effects of xylo-oligosaccharides (XOS) on broiler growth performance, immune function, and intestinal health were investigated. A total of 540 one-d-old Arbor Acres Plus broilers were randomly divided into 5 groups with 6 replicates per group and 18 chickens per replicate. Broilers in the control (CON) group received a corn-soybean meal based basal diet, those in the antibiotics (ANT) group received the basal diet plus 500 mg/kg oxytetracycline, and those in XOS groups received the basal diet plus 150, 300, or 450 mg/kg XOS. Compared with CON, the body weight at 42 d and average daily gain from 1 to 42 d were significantly increased in the 150, 450 mg/kg XOS-added and ANT groups (P = 0.018), and the relative expression of claudin-1 and ZO-1 mRNA in the ileum was significantly higher in the 300 and 450 mg/kg XOS-added groups (P < 0.001). The feed conversion ratios (P < 0.001) and abdominal fat rates (P = 0.012) of broilers from 1 to 42 d of age were significantly lower in all XOS-added groups than in the control group. Splenic index (P = 0.036) and bursa of Fabricius index (P = 0.009) were significantly better in the ANT group and each XOS-added group than in the control group. Compared to CON and ANT, serum IgA (P = 0.007) and IgG (P = 0.002) levels were significantly higher in the 300 mg/kg XOS-added group, and the relative abundance of short-chain fatty acid-producing genera (Alistipes) was also significantly higher (P < 0.001). Meanwhile, ileal villus height (P < 0.001) and ratio of villus height to crypt depth (V:C) (P = 0.001) were significantly increased in XOS-added broilers. In analysis of relationships between cecal microbes and the physical barrier of the gut, [Ruminococcus]_torques_group was positively correlated with mRNA expression of ileal ZO-1 and claudin-1 (P < 0.05), and Bacteroides was positively correlated with increased ileal villus height and V:C (P < 0.05). Overall, XOS addition to broiler diets improved growth performance, promoted intestinal health by enhancing intestinal barrier function and regulating cecal microbiota diversity, and had positive effects on immunity.
Collapse
Affiliation(s)
- Zhiyong Rao
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yue Li
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaopeng Yang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongpeng Guo
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Wei Zhang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhixiang Wang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
2
|
Oke OE, Akosile OA, Uyanga VA, Oke FO, Oni AI, Tona K, Onagbesan OM. Climate change and broiler production. Vet Med Sci 2024; 10:e1416. [PMID: 38504607 PMCID: PMC10951626 DOI: 10.1002/vms3.1416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Climate change has emerged as a significant occurrence that adversely affects broiler production, especially in tropical climates. Broiler chickens, bred for rapid growth and high meat production, rely heavily on optimal environmental conditions to achieve their genetic potential. However, climate change disrupts these conditions and poses numerous challenges for broiler production. One of the primary impacts of climate change on broiler production is the decreased ability of birds to attain their genetic potential for faster growth. Broilers are bred to possess specific genetic traits that enable them to grow rapidly and efficiently convert feed into meat. However, in tropical climates affected by climate change, the consequent rise in daily temperatures, increased humidity and altered precipitation patterns create an unfavourable environment for broilers. These conditions impede their growth and development, preventing them from reaching their maximum genetic influence, which is crucial for achieving desirable production outcomes. Furthermore, climate change exacerbates the existing challenges faced by broiler production systems. Higher feed costs impact the industry's economic viability and limit the availability of quality nutrition for the birds, further hampering their growth potential. In addition to feed scarcity, climate change also predisposes broiler chickens to thermal stress. This review collates existing information on climate change and its impact on broiler production, including nutrition, immune function, health and disease susceptibility. It also summarizes the challenges of broiler production under hot and humid climate conditions with different approaches to ameliorating the effects of harsh climatic conditions in poultry.
Collapse
Affiliation(s)
- Oyegunle Emmanuel Oke
- Department of Animal PhysiologyFederal University of AgricultureAbeokutaNigeria
- Centre of Excellence in Poultry SciencesUniversity of LomeLomeTogo
| | | | | | - Folasade Olukemi Oke
- Department of Agricultural Economics and Farm ManagementFederal University of AgricultureAbeokutaNigeria
| | | | - Kokou Tona
- Centre of Excellence in Poultry SciencesUniversity of LomeLomeTogo
| | | |
Collapse
|
3
|
El Jeni R, Villot C, Koyun OY, Osorio-Doblado A, Baloyi JJ, Lourenco JM, Steele M, Callaway TR. Invited review: "Probiotic" approaches to improving dairy production: Reassessing "magic foo-foo dust". J Dairy Sci 2024; 107:1832-1856. [PMID: 37949397 DOI: 10.3168/jds.2023-23831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The gastrointestinal microbial consortium in dairy cattle is critical to determining the energetic status of the dairy cow from birth through her final lactation. The ruminant's microbial community can degrade a wide variety of feedstuffs, which can affect growth, as well as production rate and efficiency on the farm, but can also affect food safety, animal health, and environmental impacts of dairy production. Gut microbial diversity and density are powerful tools that can be harnessed to benefit both producers and consumers. The incentives in the United States to develop Alternatives to Antibiotics for use in food-animal production have been largely driven by the Veterinary Feed Directive and have led to an increased use of probiotic approaches to alter the gastrointestinal microbial community composition, resulting in improved heifer growth, milk production and efficiency, and animal health. However, the efficacy of direct-fed microbials or probiotics in dairy cattle has been highly variable due to specific microbial ecological factors within the host gut and its native microflora. Interactions (both synergistic and antagonistic) between the microbial ecosystem and the host animal physiology (including epithelial cells, immune system, hormones, enzyme activities, and epigenetics) are critical to understanding why some probiotics work but others do not. Increasing availability of next-generation sequencing approaches provides novel insights into how probiotic approaches change the microbial community composition in the gut that can potentially affect animal health (e.g., diarrhea or scours, gut integrity, foodborne pathogens), as well as animal performance (e.g., growth, reproduction, productivity) and fermentation parameters (e.g., pH, short-chain fatty acids, methane production, and microbial profiles) of cattle. However, it remains clear that all direct-fed microbials are not created equal and their efficacy remains highly variable and dependent on stage of production and farm environment. Collectively, data have demonstrated that probiotic effects are not limited to the simple mechanisms that have been traditionally hypothesized, but instead are part of a complex cascade of microbial ecological and host animal physiological effects that ultimately impact dairy production and profitability.
Collapse
Affiliation(s)
- R El Jeni
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - C Villot
- Lallemand SAS, Blagnac, France, 31069
| | - O Y Koyun
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - A Osorio-Doblado
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J J Baloyi
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - M Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - T R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
4
|
Milby-Blackledge A, Farnell Y, Zhao D, Berghman L, Laino C, Muller M, Byrd JA, Farnell M. Serum cytokine profile of neonatal broiler chickens infected with Salmonella Typhimurium. Front Physiol 2024; 15:1359722. [PMID: 38465263 PMCID: PMC10920336 DOI: 10.3389/fphys.2024.1359722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
The avian immune system responds to Salmonella infection by expressing cytokines and chemokines. We hypothesized that the immune status of Salmonella Typhimurium (ST) challenged neonatal broilers would differ from the uninfected treatment. The objective of this experiment was to evaluate 12 cytokines. Day of hatch male chicks were randomly allocated into a control or ST challenged group. At day three of age, sterile diluent or 5.0 × 108 CFU of ST was given orally to each chick. Blood was obtained 24 h post challenge and serum separated for later analysis (n = 30 chicks/treatment). Significant (p ≤ 0.05) increases in pro-inflammatory cytokines-interleukin-6 (IL-6), IL-16, and IL-21; anti-inflammatory cytokines- IL-10; chemokines-regulated on activation, normal T cell expressed and secreted (RANTES), macrophage inflammatory protein-1β (MIP-1β), and MIP-3α; colony stimulating factors-macrophage colony-stimulating factor (M-CSF); and growth factors-vascular endothelial growth factor (VEGF) were observed in the serum of the challenged chicks when compared to the control. No significant differences were observed in IL-2, interferon gamma (IFNγ), and IFNα. These data indicate the detection of mucosal immune responses in broiler chickens following ST infection. The heightened levels of pro-inflammatory cytokines, chemokines, and colony stimulating factors align with known inflammatory mechanisms, like the influx of immune cells. However, the elevation of IL-10 was unexpected, due to its immunoregulatory properties. Notably, the rise in VEGF levels is compelling, as it suggests the possibility of tissue repair and angiogenesis in ST infected birds.
Collapse
Affiliation(s)
| | - Yuhua Farnell
- Texas A&M AgriLife Research, Department of Poultry Science, College Station, TX, United States
| | - Dan Zhao
- Texas A&M AgriLife Research, Department of Poultry Science, College Station, TX, United States
| | - Luc Berghman
- Texas A&M AgriLife Research, Department of Poultry Science, College Station, TX, United States
| | - Craig Laino
- Millipore Sigma, Saint Louis, MO, United States
| | | | - J. Allen Byrd
- United States Department of Agriculture, Southern Plains Agricultural Research Service, College Station, TX, United States
| | - Morgan Farnell
- Texas A&M AgriLife Research, Department of Poultry Science, College Station, TX, United States
| |
Collapse
|
5
|
Dong S, Li L, Hao F, Fang Z, Zhong R, Wu J, Fang X. Improving quality of poultry and its meat products with probiotics, prebiotics, and phytoextracts. Poult Sci 2024; 103:103287. [PMID: 38104412 DOI: 10.1016/j.psj.2023.103287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Remarkable changes have occurred in poultry farming and meat processing in recent years, driven by advancements in breeding technology, feed processing technology, farming conditions, and management practices. The incorporation of probiotics, prebiotics, and phytoextracts has made significant contributions to the development of poultry meat products that promote both health and functionality throughout the growth phase and during meat processing. Poultry fed with these substances improve meat quality, while incorporating probiotics, prebiotics, and phytoextracts in poultry processing, as additives or supplements, inhibits pathogens and offers health benefits to consumers. However, it is vital to assess the safety of functional fermented meat products containing these compounds and their potential effects on consumer health. Currently, there's still uncertainty in these aspects. Additionally, research on utilizing next-generation probiotic strains and synergistic combinations of probiotics and prebiotics in poultry meat products is in its early stages. Therefore, further investigation is required to gain a comprehensive understanding of the beneficial effects and safety considerations of these substances in poultry meat products in the future. This review offered a comprehensive overview of the applications of probiotics and prebiotics in poultry farming, focusing on their effects on nutrient utilization, growth efficiency, and gut health. Furthermore, potential of probiotics, prebiotics, and phytoextracts in enhancing poultry meat production was explored for improved health benefits and functionality, and possible issues associated with the use of these substances were discussed. Moreover, the conclusions drawn from this review and potential future perspectives in this field are presented.
Collapse
Affiliation(s)
- Sashuang Dong
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512000, PR China
| | - Lanyin Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Fanyu Hao
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Ziying Fang
- Weiran Food Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518000, PR China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512000, PR China
| | - Jianfeng Wu
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China.
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
6
|
Abdel Aziz AA, Abdel Aziz ESA, Khairy MH, Fadel C, Giorgi M, Abdelaziz AS. The effect of butyric acid and nucleotides supplementation on broiler ( Gallus gallus domesticus) growth performance, immune status, intestinal histology, and serum parameters. Open Vet J 2024; 14:324-334. [PMID: 38633159 PMCID: PMC11018416 DOI: 10.5455/ovj.2024.v14.i1.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/15/2023] [Indexed: 04/19/2024] Open
Abstract
Background Butyric acid and its derivatives support the immune system, lessen inflammation, and lessen oxidative stress in broilers in addition to preserving gut homeostasis and epithelial integrity. Broiler performance has also been demonstrated to rise with the addition of nucleotides to the diet. Aim The purpose of the study was to ascertain the effects of butyric acid and nucleotides added to feed on the overall performance, immunity, oxidant/antioxidant enzyme levels, intestinal histology, and hepatic functions of broilers. Methods Four experimental groups of thirty chickens, each were used in the present study. The groups were assigned as a control group that received normal diet without additives, butyrate (B) group received the diet supplemented with butyric acid (250 g/ton feed), nucleotides (N) group received the diet supplemented with nucleotides (200 g/ton feed), and the fourth group received the diet supplemented with a combination of butyrate and nucleotide (BN) (250 g/ton B feed, and 200 g/ton N feed, respectively). Necrotic enteritis was produced in ten birds from each group to assess the immune-modulatory effect of these supplements, antioxidant status, intestinal histology, and liver functions were measured in all experimental groups. Results The addition of butyric acid and nucleotides to feed enhanced body weight, growth performance, hepatic functions, and antioxidant capabilities. Histological sections of the gut from challenged or unchallenged (with necrotic enteritis) groups in the BN group showed considerable improvement, as shown by strong proliferation in intestinal crypts and villus enterocytes. Conclusion Nucleotides and butyric acid can be added to broiler feeding regimens to enhance growth and health.
Collapse
Affiliation(s)
- Ahmed A.M. Abdel Aziz
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - El-Sayed A. Abdel Aziz
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed H. Khairy
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Charbel Fadel
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Mario Giorgi
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Ahmed S. Abdelaziz
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
Racines MP, Solis MN, Šefcová MA, Herich R, Larrea-Álvarez M, Revajová V. An Overview of the Use and Applications of Limosilactobacillus fermentum in Broiler Chickens. Microorganisms 2023; 11:1944. [PMID: 37630504 PMCID: PMC10459855 DOI: 10.3390/microorganisms11081944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The implementation of government regulations on antibiotic use, along with the public's concern for drug resistance, has strengthened interest in developing alternatives not only aimed at preserving animal production but also at reducing the effects of pathogenic infections. Probiotics, in particular, are considered microorganisms that induce health benefits in the host after consumption of adequate amounts; they have been established as a potential strategy for improving growth, especially by stimulating intestinal homeostasis. Probiotics are commonly associated with lactic acid bacteria, and Limosilactobacillus fermentum is a well-studied species recognized for its favorable characteristics, including adhesion to epithelial cells, production of antimicrobial compounds, and activation of receptors that prompt the transcription of immune-associated genes. Recently, this species has been used in animal production. Different studies have shown that the application of L. fermentum strains not only improves the intestinal ecosystem but also reduces the effects caused by potentially pathogenic microorganisms. These studies have also revealed key insights into the mechanisms behind the actions exerted by this probiotic. In this manuscript, we aim to provide a concise overview of the effects of L. fermentum administration on broiler chicken health and performance.
Collapse
Affiliation(s)
- Maria Paula Racines
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador; (M.P.R.); (M.N.S.); (M.A.Š.)
| | - Maria Nicole Solis
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador; (M.P.R.); (M.N.S.); (M.A.Š.)
| | - Miroslava Anna Šefcová
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador; (M.P.R.); (M.N.S.); (M.A.Š.)
| | - Róbert Herich
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 040 01 Košice, Slovakia;
| | - Marco Larrea-Álvarez
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador; (M.P.R.); (M.N.S.); (M.A.Š.)
| | - Viera Revajová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 040 01 Košice, Slovakia;
| |
Collapse
|
8
|
Sadr AS, Nassiri M, Ghaderi-Zefrehei M, Heidari M, Smith J, Muhaghegh Dolatabady M. RNA-Seq Profiling between Commercial and Indigenous Iranian Chickens Highlights Differences in Innate Immune Gene Expression. Genes (Basel) 2023; 14:genes14040793. [PMID: 37107551 PMCID: PMC10138050 DOI: 10.3390/genes14040793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The purpose of the current study was to examine transcriptomic-based profiling of differentially expressed innate immune genes between indigenous and commercial chickens. In order to compare the transcriptome profiles of the different chicken breeds, we extracted RNA from blood samples of the Isfahan indigenous chicken (as indigenous) and Ross broiler chicken (as commercial) breeds. RNA-Seq yielded totals of 36,763,939 and 31,545,002 reads for the indigenous and commercial breeds, respectively, with clean reads then aligned to the chicken reference genome (Galgal5). Overall, 1327 genes were significantly differentially expressed, of which 1013 genes were upregulated in the commercial versus the indigenous breed, while 314 were more highly expressed in the indigenous birds. Furthermore, our results demonstrated that the SPARC, ATP6V0D2, IL4I1, SMPDL3A, ADAM7, TMCC3, ULK2, MYO6, THG1L and IRG1 genes were the most significantly expressed genes in the commercial birds and the PAPPA, DUSP1, PSMD12, LHX8, IL8, TRPM2, GDAP1L1, FAM161A, ABCC2 and ASAH2 genes were the most significant in the indigenous chickens. Of notable finding in this study was that the high-level gene expressions of heat-shock proteins (HSPs) in the indigenous breeds could serve as a guideline for future genetic improvement. This study identified genes with breed-specific expression, and comparative transcriptome analysis helped understanding of the differences in underlying genetic mechanisms between commercial and local breeds. Therefore, the current results can be used to identify candidate genes for further breed improvement.
Collapse
Affiliation(s)
- Ayeh Sadat Sadr
- South of Iran Aquaculture Research Institute, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Ahvaz 71867-37533, Iran
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran
- Research Associate/Peptide Drug and Bioinformatics, School of Biotechnology and Biomolecular Sciences Level 2, E26, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Mostafa Ghaderi-Zefrehei
- Department of Animal Science, Agricultural Faculty, Yasouj University, Yasouj 75918-74934, Iran
- Correspondence: or (M.G.-Z.); (J.S.)
| | - Maryam Heidari
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 83111-84156, Iran
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
- Correspondence: or (M.G.-Z.); (J.S.)
| | | |
Collapse
|
9
|
Corrêa JAF, de Melo Nazareth T, Rocha GFD, Luciano FB. Bioactive Antimicrobial Peptides from Food Proteins: Perspectives and Challenges for Controlling Foodborne Pathogens. Pathogens 2023; 12:pathogens12030477. [PMID: 36986399 PMCID: PMC10052163 DOI: 10.3390/pathogens12030477] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Bioactive peptides (BAPs) derived from food proteins have been extensively studied for their health benefits, majorly exploring their potential use as nutraceuticals and functional food components. These peptides possess a range of beneficial properties, including antihypertensive, antioxidant, immunomodulatory, and antibacterial activities, and are naturally present within dietary protein sequences. To release food-grade antimicrobial peptides (AMPs), enzymatic protein hydrolysis or microbial fermentation, such as with lactic acid bacteria (LAB), can be employed. The activity of AMPs is influenced by various structural characteristics, including the amino acid composition, three-dimensional conformation, liquid charge, putative domains, and resulting hydrophobicity. This review discusses the synthesis of BAPs and AMPs, their potential for controlling foodborne pathogens, their mechanisms of action, and the challenges and prospects faced by the food industry. BAPs can regulate gut microbiota by promoting the growth of beneficial bacteria or by directly inhibiting pathogenic microorganisms. LAB-promoted hydrolysis of dietary proteins occurs naturally in both the matrix and the gastrointestinal tract. However, several obstacles must be overcome before BAPs can replace antimicrobials in food production. These include the high manufacturing costs of current technologies, limited in vivo and matrix data, and the difficulties associated with standardization and commercial-scale production.
Collapse
Affiliation(s)
- Jessica Audrey Feijó Corrêa
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| | - Tiago de Melo Nazareth
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Giovanna Fernandes da Rocha
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| | - Fernando Bittencourt Luciano
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| |
Collapse
|
10
|
Perry F, Lahaye L, Santin E, Johnson C, Korver D, Kogut M, Arsenault R. Protected Biofactors and Antioxidants Reduce the Negative Consequences of Virus and Cold Challenge while Enhancing Performance by Modulating Immunometabolism through Cytoskeletal and Immune Signaling in the Jejunum. Poult Sci 2022; 101:102172. [PMID: 36240637 PMCID: PMC9573920 DOI: 10.1016/j.psj.2022.102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022] Open
|
11
|
Seijo M, Bonanno MN, Bryk G, Zeni Coronel ME, Pita Martin de Portela ML, Zeni SN. Does Vitamin D Insufficiency Influence Prebiotic Effect on Calcium Absorption and Bone Retention? Calcif Tissue Int 2022; 111:300-312. [PMID: 35505249 DOI: 10.1007/s00223-022-00984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/12/2022] [Indexed: 11/02/2022]
Abstract
Higher calcium (Ca) absorption would partially compensate for Ca intake below requirements for bone health. Previously, we found that GOS/FOS prebiotic mixture (PM) increases Ca absorption in the colon and retention in bone. Ca absorption and retention are regulated by vitamin D (VD). Hence, it is relevant to explore whether VD insufficiency influences the effect of the PM in the colon. The effect of the PM on Ca, phosphate (IP), and magnesium (Mg) absorption and retention under conditions of VD sufficiency and insufficiency (VDInsuff) was compared using a preclinical model of VDInsuff and low bone mass. Ovariectomized rats were fed isocaloric semisynthetic diets according to AIN-93 M. The diets varied in Ca (0.5% or 0.3%), VD [100 IU% (+ D) or 0 IU% (- D)], and PM (2.5% or 0%) content. The following eight groups were studied: + D0.5; + D0.3; + DPM0.5; + DPM0.3; - D0.5; - D0.3; - DPM0.5; and - DPM0.3. Irrespective of Ca content, VDInsuff did not affect the prebiotic effect of the PM on caecum pH, lactobacillus colony growth, or Mg absorption but significantly decreased its effect on colonic crypt length and cell/crypt and Ca and IP absorption. The PM failed to counterbalance the pro-inflammatory effect of VDInsuff. Moreover, bone retention i.e., bone mineral content and density, bone volume, and bone quality parameters were significantly lower (p < 0.05) and bone turnover significantly was higher (p < 0.05). Although the PM is a useful tool to improve mineral absorption and bone retention, it would seem important to monitor VD nutritional status to ensure the full prebiotic effect in the large intestine.
Collapse
Affiliation(s)
- Mariana Seijo
- Laboratory of Metabolic Bone Diseases, School of Pharmacy and Biochemistry (FFyB), Clinical Hospital "José de San Martín", Institute of Immunology, Genetics and Metabolism (INIGEM), National Council for Scientific and Technological Research (CONICET), Buenos Aires University (UBA), Buenos Aires, Argentina
| | - Marina N Bonanno
- Laboratory of Metabolic Bone Diseases, School of Pharmacy and Biochemistry (FFyB), Clinical Hospital "José de San Martín", Institute of Immunology, Genetics and Metabolism (INIGEM), National Council for Scientific and Technological Research (CONICET), Buenos Aires University (UBA), Buenos Aires, Argentina
- Department of Embryology and Histology, School of Dentistry, UBA, Buenos Aires, Argentina
| | - Gabriel Bryk
- Laboratory of Metabolic Bone Diseases, School of Pharmacy and Biochemistry (FFyB), Clinical Hospital "José de San Martín", Institute of Immunology, Genetics and Metabolism (INIGEM), National Council for Scientific and Technological Research (CONICET), Buenos Aires University (UBA), Buenos Aires, Argentina
- Laboratory Division, Assuta Ashdod Medical Center, Faculty of Health Sciences, Ben-Gurion University, Ashdod, Israel
| | - Magali E Zeni Coronel
- Laboratory of Metabolic Bone Diseases, School of Pharmacy and Biochemistry (FFyB), Clinical Hospital "José de San Martín", Institute of Immunology, Genetics and Metabolism (INIGEM), National Council for Scientific and Technological Research (CONICET), Buenos Aires University (UBA), Buenos Aires, Argentina
- Department of Biostatistics, School of Veterinary Sciences (FVet), UBA, Buenos Aires, Argentina
| | | | - Susana N Zeni
- Laboratory of Metabolic Bone Diseases, School of Pharmacy and Biochemistry (FFyB), Clinical Hospital "José de San Martín", Institute of Immunology, Genetics and Metabolism (INIGEM), National Council for Scientific and Technological Research (CONICET), Buenos Aires University (UBA), Buenos Aires, Argentina.
- , Cordoba Ave 2351, 8th floor, Zip Code 1120, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Iqbal MA, Reyer H, Oster M, Hadlich F, Trakooljul N, Perdomo-Sabogal A, Schmucker S, Stefanski V, Roth C, Camarinha Silva A, Huber K, Sommerfeld V, Rodehutscord M, Wimmers K, Ponsuksili S. Multi-Omics Reveals Different Strategies in the Immune and Metabolic Systems of High-Yielding Strains of Laying Hens. Front Genet 2022; 13:858232. [PMID: 35432452 PMCID: PMC9010826 DOI: 10.3389/fgene.2022.858232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/10/2022] [Indexed: 01/22/2023] Open
Abstract
Lohmann Brown (LB) and Lohmann Selected Leghorn (LSL) are two commercially important laying hen strains due to their high egg production and excellent commercial suitability. The present study integrated multiple data sets along the genotype-phenotype map to better understand how the genetic background of the two strains influences their molecular pathways. In total, 71 individuals were analyzed (LB, n = 36; LSL, n = 35). Data sets include gut miRNA and mRNA transcriptome data, microbiota composition, immune cells, inositol phosphate metabolites, minerals, and hormones from different organs of the two hen strains. All complex data sets were pre-processed, normalized, and compatible with the mixOmics platform. The most discriminant features between two laying strains included 20 miRNAs, 20 mRNAs, 16 immune cells, 10 microbes, 11 phenotypic traits, and 16 metabolites. The expression of specific miRNAs and the abundance of immune cell types were related to the enrichment of immune pathways in the LSL strain. In contrast, more microbial taxa specific to the LB strain were identified, and the abundance of certain microbes strongly correlated with host gut transcripts enriched in immunological and metabolic pathways. Our findings indicate that both strains employ distinct inherent strategies to acquire and maintain their immune and metabolic systems under high-performance conditions. In addition, the study provides a new perspective on a view of the functional biodiversity that emerges during strain selection and contributes to the understanding of the role of host–gut interaction, including immune phenotype, microbiota, gut transcriptome, and metabolome.
Collapse
Affiliation(s)
- Muhammad Arsalan Iqbal
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
| | - Alvaro Perdomo-Sabogal
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
| | - Sonja Schmucker
- University of Hohenheim, Institute of Animal Science, Stuttgart, Germany
| | - Volker Stefanski
- University of Hohenheim, Institute of Animal Science, Stuttgart, Germany
| | - Christoph Roth
- University of Hohenheim, Institute of Animal Science, Stuttgart, Germany
| | | | - Korinna Huber
- University of Hohenheim, Institute of Animal Science, Stuttgart, Germany
| | - Vera Sommerfeld
- University of Hohenheim, Institute of Animal Science, Stuttgart, Germany
| | | | - Klaus Wimmers
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
- University Rostock, Faculty of Agricultural and Environmental Sciences, Rostock, Germany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
- *Correspondence: Siriluck Ponsuksili,
| |
Collapse
|
13
|
Olson EG, Dittoe DK, Jendza JA, Stock DA, Ricke SC. Application of Microbial Analyses to Feeds and Potential Implications for Poultry Nutrition. Poult Sci 2022; 101:101789. [PMID: 35346494 PMCID: PMC9079344 DOI: 10.1016/j.psj.2022.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Elena G Olson
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Dana K Dittoe
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Joshua A Jendza
- BASF Corporation, 100 Park Avenue, Florham Park, NJ 07932, USA
| | - David A Stock
- Biology Department, Stetson University, Deland, FL 32723, USA
| | - Steven C Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
14
|
Koyun OY, Callaway TR, Nisbet DJ, Anderson RC. Innovative Treatments Enhancing the Functionality of Gut Microbiota to Improve Quality and Microbiological Safety of Foods of Animal Origin. Annu Rev Food Sci Technol 2022; 13:433-461. [DOI: 10.1146/annurev-food-100121-050244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gastrointestinal tract, or gut, microbiota is a microbial community containing a variety of microorganisms colonizing throughout the gut that plays a crucial role in animal health, growth performance, and welfare. The gut microbiota is closely associated with the quality and microbiological safety of foods and food products originating from animals. The gut microbiota of the host can be modulated and enhanced in ways that improve the quality and safety of foods of animal origin. Probiotics—also known as direct-fed microbials—competitive exclusion cultures, prebiotics, and synbiotics have been utilized to achieve this goal. Reducing foodborne pathogen colonization in the gut prior to slaughter and enhancing the chemical, nutritional, or sensory characteristics of foods (e.g., meat, milk, and eggs) are two of many positive outcomes derived from the use of these competitive enhancement–based treatments in food-producing animals. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Osman Y. Koyun
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Todd R. Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - David J. Nisbet
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, Texas, USA
| | - Robin C. Anderson
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, Texas, USA
| |
Collapse
|
15
|
Feye KM, Dittoe DK, Jendza JA, Caldas-Cueva JP, Mallmann BA, Booher B, Tellez-Isaias G, Owens CM, Kidd MT, Ricke SC. A comparison of formic acid or monoglycerides to formaldehyde on production efficiency, nutrient absorption, and meat yield and quality of Cobb 700 broilers. Poult Sci 2021; 100:101476. [PMID: 34710711 PMCID: PMC8560989 DOI: 10.1016/j.psj.2021.101476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/30/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
After being banned by the European Commission in 2018, the use of formaldehyde as a feed amendment in the United States has come into question. Therefore, this study was conducted to explore alternatives to formaldehyde, such as formic acid and monoglycerides, and their effects on poultry production. In total, 1,728 Cobb 700 broilers were randomly assigned to 96-floor pens on day of hatch (18 birds/pen). Using a randomized complete block design (4 blocks), treatments were assigned to pens with blocking based on location within the barn, with the eastern half of the barn designated for digestibility and the western half designated for production (per experiment: 8 control pens and 10 pens per treatment). All diets were based on a negative control (NC), basal diet. Dietary treatments consisted of: NC, NC + 0.25% formalin (F), NC + 0.25 and 0.50% Amasil NA (AML and AMH; 61% formic acid and 20.5% Na-formate), and NC + SILO Health 104L (SILO; mixture of monoglycerides; 0.5% from 0 to 14 d, 0.4% from 14 to 28 d, and 0.2% from 28 to 42 d). Water and feed were provided ad libitum. Performance data were collected during feed changes on d 0, 14, 28, and 42, with digestibility data collected at d 14 (2 per pen) and carcass quality (6 per pen) assessed at d 46 with a randomly selected group of broilers. A one-way ANOVA followed by Dunnett's multiple comparison, where treatments were evaluated against F were conducted using JMP 14.0 (P ≤ 0.05). Main effect of treatment was significant for performance, nutrient digestibility, and carcass quality. Differences in body weight and ADG were observed from d 14 to d 28, resulting in a trending improvement in lysine digestibility on d 14 and carcass quality on d 46 of birds fed AML and AMH in comparison to those fed F (P < 0.05). Whereas birds fed SILO had reduced digestibility of methionine on d 14 and a decrease in meat quality on d 46 in comparison to those fed F (P < 0.05). Therefore, Amasil NA at 0.25 or 0.50% may be an effective alternative to formaldehyde as a feed amendment for poultry production.
Collapse
Affiliation(s)
- K M Feye
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - D K Dittoe
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - J P Caldas-Cueva
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - B A Mallmann
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - B Booher
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - G Tellez-Isaias
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - C M Owens
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - M T Kidd
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - S C Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
16
|
Ngunjiri JM, Taylor KJM, Ji H, Abundo MC, Ghorbani A, Kc M, Lee CW. Influenza A virus infection in turkeys induces respiratory and enteric bacterial dysbiosis correlating with cytokine gene expression. PeerJ 2021; 9:e11806. [PMID: 34327060 PMCID: PMC8310620 DOI: 10.7717/peerj.11806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022] Open
Abstract
Turkey respiratory and gut microbiota play important roles in promoting health and production performance. Loss of microbiota homeostasis due to pathogen infection can worsen the disease or predispose the bird to infection by other pathogens. While turkeys are highly susceptible to influenza viruses of different origins, the impact of influenza virus infection on turkey gut and respiratory microbiota has not been demonstrated. In this study, we investigated the relationships between low pathogenicity avian influenza (LPAI) virus replication, cytokine gene expression, and respiratory and gut microbiota disruption in specific-pathogen-free turkeys. Differential replication of two LPAI H5N2 viruses paralleled the levels of clinical signs and cytokine gene expression. During active virus shedding, there was significant increase of ileal and nasal bacterial contents, which inversely corresponded with bacterial species diversity. Spearman’s correlation tests between bacterial abundance and local viral titers revealed that LPAI virus-induced dysbiosis was strongest in the nasal cavity followed by trachea, and weakest in the gut. Significant correlations were also observed between cytokine gene expression levels and relative abundances of several bacteria in tracheas of infected turkeys. For example, interferon γ/λ and interleukin-6 gene expression levels were correlated positively with Staphylococcus and Pseudomonas abundances, and negatively with Lactobacillus abundance. Overall, our data suggest a potential relationship where bacterial community diversity and enrichment or depletion of several bacterial genera in the gut and respiratory tract are dependent on the level of LPAI virus replication. Further work is needed to establish whether respiratory and enteric dysbiosis in LPAI virus-infected turkeys is a result of host immunological responses or other causes such as changes in nutritional uptake.
Collapse
Affiliation(s)
- John M Ngunjiri
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH, United States of America
| | - Kara J M Taylor
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH, United States of America.,Department of Biology, University of Florida, Gainesville, FL, United States of America
| | - Hana Ji
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH, United States of America.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Columbus, OH, United States of America
| | - Michael C Abundo
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH, United States of America
| | - Amir Ghorbani
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH, United States of America.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Columbus, OH, United States of America
| | - Mahesh Kc
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH, United States of America.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Columbus, OH, United States of America.,Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Chang-Won Lee
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH, United States of America.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
17
|
Food Security, Environmental Health, and the Economy in Mexico: Lessons Learned with the COVID-19. SUSTAINABILITY 2021. [DOI: 10.3390/su13137470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The COVID-19 pandemic showed an impact mainly on the health of people and the economy of households. The levels of food security in the world’s households, especially in Mexico, have decreased. When people do not have food security, their health is compromised and they have financial problems; on the other hand, environmental deterioration has a link with food security. The purpose of this review is to analysis of the current situation in Mexico of food security, environmental health and economy, the main lessons learned in these areas and their proposals integrating public policies. A review was carried out in the main databases (MEDLINE, Embase, CINAHL Plus, Web of Science, CAB Abstracts y PAIS Index) with the following keywords and according to the MeSH terms: Food security, food insecurity, environmental health, public policies, environmental, production, integrating the word COVID-19 in English and Spanish. Only 44.5% of Mexican households presented food security. For food insecurity, 22.6% had moderate and severe food insecurity, while 32.9% had mild insecurity. Food insecurity and the health impacts of environmental origin (waste management during the coronavirus pandemic, water contaminated by bacteria, viruses, and toxins; air pollution) generates impacts on economic activity by not offering food that meets health regulations. Without the application of cost-effective measures and interventions for the prevention and control of patients with obesity, the direct costs for 2023 will amount to 9 million dollars, which worsens the household economy. Despite having laws and policies on the right to food, a healthy environment (water), and opportunities for economic growth, these human rights are not fulfilled. The conclusion is that it is necessary to use a health and agroecological model to promote public policies (health, environment, and economy) that aims to prevent the discussed issues, with multidisciplinary and intersectoral interventions (government, academia, researchers, civil society organizations, industry, and population). This upholds the human right that all people should enjoy an adequate, healthy environment and have access to high-quality food.
Collapse
|
18
|
Yaqoob MU, El-Hack MEA, Hassan F, El-Saadony MT, Khafaga AF, Batiha GE, Yehia N, Elnesr SS, Alagawany M, El-Tarabily KA, Wang M. The potential mechanistic insights and future implications for the effect of prebiotics on poultry performance, gut microbiome, and intestinal morphology. Poult Sci 2021; 100:101143. [PMID: 34062442 PMCID: PMC8170421 DOI: 10.1016/j.psj.2021.101143] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/12/2021] [Accepted: 03/14/2021] [Indexed: 12/02/2022] Open
Abstract
Prebiotics may modify the biological processes in the chickens' gastrointestinal tract to improve poultry performance and health. Prebiotics are natural feed additives that offer many economic advantages by decreasing mortality rates, increasing growth rates, and improving birds' feed efficiency. Prebiotic action potentially affects the degradation of indigestible dietary compounds, the synthesis of nitrogen components and vitamins, and simplifies the removal of undesirable elements in the diet. Prebiotics could also induce desirable gut microbiome modifications and affect host metabolism and immune health. It is worth mentioning that gut bacteria metabolize the prebiotic compounds into organic compounds that the host can subsequently use. It is important to limit the concept of prebiotics to compounds that influence the metabolism of resident microorganisms. Any medicinal component or feed ingredient beneficial to the intestinal microecosystem can be considered a prebiotic. In this review, the impacts of prebiotics on the gut microbiome and physiological structure are discussed, emphasizing the poultry's growth performance. The current review will highlight the knowledge gaps in this area and future research directions.
Collapse
Affiliation(s)
- M U Yaqoob
- College of Animal Science, Zhejiang University, Hangzhou 310058, PR China
| | - M E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - F Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - M T El-Saadony
- Agricultural Microbiology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - A F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - G E Batiha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, 080-8555, Obihiro, Hokkaido, Japan; Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Egypt
| | - N Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research center, Cairo, Egypt
| | - S S Elnesr
- Poultry Production Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - M Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - K A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al-Ain, United Arab Emirates; Biosecurity and One Health Research Centre, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - M Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
19
|
Shini S, Bryden WL. Probiotics and gut health: linking gut homeostasis and poultry productivity. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of probiotics in poultry production has increased rapidly, and this movement has been promoted by global events, such as the prohibition or decline in the use of antibiotic growth promotants in poultry feeds. There has been a persistent search for alternative feed additives, and probiotics have shown that they can restore the composition of the gut microbiota, and produce health benefits to the host, including improvements in performance. Probiotics have shown potential to increase productivity in poultry, especially in flocks challenged by stressors. However, the outcomes of probiotic use have not always been consistent. There is an increasing demand for well defined products that can be applied strategically, and currently, probiotic research is focusing on delineating their mechanisms of action in the gut that contribute to an improved efficacy. In particular, mechanisms involved in the maintenance and protection of intestinal barrier integrity and the role of the gut microbiota are being extensively investigated. It has been shown that probiotics modulate intestinal immune pathways both directly and through interactions with the gut microbiota. These interactions are key to maintaining gut homeostasis and function, and improving feed efficiency. Research has demonstrated that probiotics execute their effects through multiple mechanisms. The present review describes recent advances in probiotic use in poultry. It focuses on the current understanding of gut homeostasis and gut health in chickens, and how it can be assessed and improved through supplementation of poultry diets with probiotics in poultry diets. In particular, cellular and molecular mechanisms involved in the maintenance and protection of gut barrier structure and function are described. It also highlights important factors that influence probiotic efficacy and bird performance.
Collapse
|
20
|
Meijerink N, de Oliveira JE, van Haarlem DA, Hosotani G, Lamot DM, Stegeman JA, Rutten VPMG, Jansen CA. Glucose Oligosaccharide and Long-Chain Glucomannan Feed Additives Induce Enhanced Activation of Intraepithelial NK Cells and Relative Abundance of Commensal Lactic Acid Bacteria in Broiler Chickens. Vet Sci 2021; 8:110. [PMID: 34204778 PMCID: PMC8231533 DOI: 10.3390/vetsci8060110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/25/2022] Open
Abstract
Restrictions on the use of antibiotics in the poultry industry stimulate the development of alternative nutritional solutions to maintain or improve poultry health. This requires more insight in the modulatory effects of feed additives on the immune system and microbiota composition. Compounds known to influence the innate immune system and microbiota composition were selected and screened in vitro, in ovo, and in vivo. Among all compounds, 57 enhanced NK cell activation, 56 increased phagocytosis, and 22 increased NO production of the macrophage cell line HD11 in vitro. Based on these results, availability and regulatory status, six compounds were selected for further analysis. None of these compounds showed negative effects on growth, hatchability, and feed conversion in in ovo and in vivo studies. Based on the most interesting numerical results and highest future potential feasibility, two compounds were analyzed further. Administration of glucose oligosaccharide and long-chain glucomannan in vivo both enhanced activation of intraepithelial NK cells and led to increased relative abundance of lactic acid bacteria (LAB) amongst ileum and ceca microbiota after seven days of supplementation. Positive correlations between NK cell subsets and activation, and relative abundance of LAB suggest the involvement of microbiota in the modulation of the function of intraepithelial NK cells. This study identifies glucose oligosaccharide and long-chain glucomannan supplementation as effective nutritional strategies to modulate the intestinal microbiota composition and strengthen the intraepithelial innate immune system.
Collapse
Affiliation(s)
- Nathalie Meijerink
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
| | | | - Daphne A. van Haarlem
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
| | - Guilherme Hosotani
- Cargill R&D Center Europe, B-1800 Vilvoorde, Belgium; (J.E.d.O.); (G.H.)
| | - David M. Lamot
- Cargill Animal Nutrition and Health Innovation Center, 5334 LD Velddriel, The Netherlands;
| | - J. Arjan Stegeman
- Department Population Health Sciences, Division Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Victor P. M. G. Rutten
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa
| | - Christine A. Jansen
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
| |
Collapse
|
21
|
Montoro-Dasi L, Villagra A, Vega S, Marin C. Influence of farm management on the dynamics of Salmonella enterica serovar Infantis shedding and antibiotic resistance during the growing period of broiler chickens. Vet Rec 2021; 188:e302. [PMID: 33870529 DOI: 10.1002/vetr.302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/26/2020] [Accepted: 03/07/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Salmonella enterica serovar Infantis is a zoonotic pathogen isolated in broilers causing great economic losses in the European poultry sector. It is demonstrated that an investment in management measures at farm level could directly affect the control of food chain microorganisms. The aim of this study was to investigate the development of S. Infantis antimicrobial resistance (AMR) patterns during the growing period, according to flock density and ventilation management, without antibiotic administration. METHODS The experiment was performed in two identical poultry houses, evaluating commercial and optimal farm conditions. At 24 h of rearing, 20% of the animals were orally infected with a S. Infantis strain susceptible to all the antibiotics tested. To study Salmonella shedding, faeces samples from each experimental group were taken weekly and analysed as per ISO/TS 6579-2:2017. Antibiotic susceptibility was assessed according to Decision 2013/653. RESULTS Salmonella shedding showed that the lowest counts were observed in the first week post-infection and highest at slaughter day for both groups. Moreover, 100% of the isolates were multi-resistant. CONCLUSION The acquisition of AMR by S. Infantis starts at the onset of the production cycle and is maintained until the end, demonstrating the importance of transmission of AMR in zoonotic bacteria at farm level.
Collapse
Affiliation(s)
- Laura Montoro-Dasi
- Instituto de Ciencia y Tecnología Animal, Universidad Politécnica de Valencia, Valencia, Spain.,Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), Castellón, Spain
| | - Arantxa Villagra
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Castellón, Spain
| | - Santiago Vega
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, España
| | - Clara Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, España
| |
Collapse
|
22
|
Montoro-Dasi L, Villagra A, Sevilla-Navarro S, Pérez-Gracia MT, Vega S, Marin C. Commensal Escherichia coli Antimicrobial Resistance and Multidrug-Resistance Dynamics during Broiler Growing Period: Commercial vs. Improved Farm Conditions. Animals (Basel) 2021; 11:ani11041005. [PMID: 33916657 PMCID: PMC8066766 DOI: 10.3390/ani11041005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary This experiment was designed to evaluate the differences in antimicrobial and multidrug resistance dynamics in broilers reared under two different farm conditions (commercial vs. improved) during the growing period, using Escherichia coli as sentinel bacterium. Although no antibiotics were applied during rearing for two different management conditions tested, high rates of antimicrobial and multidrug-resistant bacteria were observed throughout rearing, with the percentages of resistant bacteria observed being of particular concern in day-old chicks on arrival day and in chickens at the end of the growing period, just before delivery to the slaughterhouse. Abstract New measures applied to reduce antimicrobial resistances (AMR) at field level in broiler production are focused on improving animals’ welfare and resilience. However, it is necessary to have better knowledge of AMR epidemiology. Thus, the aim of this study was to evaluate AMR and multidrug resistance (MDR) dynamics during the rearing of broilers under commercial (33 kg/m2 density and max. 20 ppm ammonia) and improved (17 kg/m2 density and max. 10 ppm ammonia) farm conditions. Day-old chicks were housed in two poultry houses (commercial vs. improved), and no antimicrobial agents were administered at any point. Animals were sampled at arrival day, mid-period and at slaughter day. High AMR rates were observed throughout rearing. No statistical differences were observed between groups. Moreover, both groups presented high MDR at slaughter day. These results could be explained by vertical or horizontal resistance acquisition. In conclusion, AMR and MDR are present throughout rearing. Moreover, although a lower level of MDR was observed at mid-period in animals reared under less intensive conditions, no differences were found at the end. In order to reduce the presence of AMR bacteria in poultry, further studies are needed to better understand AMR acquisition and prevalence in differing broiler growing conditions.
Collapse
Affiliation(s)
- Laura Montoro-Dasi
- Instituto de Ciencia y Tecnología Animal, Universidad Politécnica de Valencia, 46022 Valencia, Spain;
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), 12539 Castellón, Spain;
| | - Arantxa Villagra
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, 12400 Castellón, Spain;
| | - Sandra Sevilla-Navarro
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), 12539 Castellón, Spain;
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Avenida Seminario s/n, 46113 Moncada, Spain;
| | - Maria Teresa Pérez-Gracia
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Avenida Seminario s/n, 46113 Moncada, Spain;
| | - Santiago Vega
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Avenida Seminario s/n, 46113 Moncada, Spain;
| | - Clara Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Avenida Seminario s/n, 46113 Moncada, Spain;
- Correspondence: ; Tel.: +34-657-506-085
| |
Collapse
|
23
|
Jeni RE, Dittoe DK, Olson EG, Lourenco J, Corcionivoschi N, Ricke SC, Callaway TR. Probiotics and potential applications for alternative poultry production systems. Poult Sci 2021; 100:101156. [PMID: 34077849 PMCID: PMC8181177 DOI: 10.1016/j.psj.2021.101156] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
Concerns over animal welfare continue to be a critical component of law and policies associated with commercial food animal production. Social and market pressures are the driving forces behind the legislation and result in the change of poultry production management systems. As a result, the movement toward cage-free and aviary-based egg production systems has become standard practices. Cage-based systems being replaced by alternative methods that offer a suitable housing environment to meet or exceed poultry welfare needs and require different management, including the ban of antibiotics in poultry diets. For broiler production, pasture- raised and free-range management systems have become more popular. However, challenges remain from exposure to disease-causing organisms and foodborne pathogens in these environments. Consequently, probiotics can be supplemented in poultry diets as commercial feed additives. The present review discusses the impacts of these probiotics on the performance of alternative poultry production systems for improving food safety and poultry health by mitigating pathogenic organisms and improving egg and meat quality and production.
Collapse
Affiliation(s)
- Rim El Jeni
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Dana K Dittoe
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, USA
| | - Elena G Olson
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, USA
| | - Jeferson Lourenco
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland, United Kingdom
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland, United Kingdom; Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine - King Michael I of Romania, Timisoara, Romania
| | - Steven C Ricke
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, USA
| | - Todd R Callaway
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine - King Michael I of Romania, Timisoara, Romania.
| |
Collapse
|
24
|
Molecular associations of gallinacin genes with immune response against Salmonella typhimurium in chickens. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Surai PF, Kochish II, Kidd MT. Redox Homeostasis in Poultry: Regulatory Roles of NF-κB. Antioxidants (Basel) 2021; 10:186. [PMID: 33525511 PMCID: PMC7912633 DOI: 10.3390/antiox10020186] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Redox biology is a very quickly developing area of modern biological sciences, and roles of redox homeostasis in health and disease have recently received tremendous attention. There are a range of redox pairs in the cells/tissues responsible for redox homeostasis maintenance/regulation. In general, all redox elements are interconnected and regulated by various means, including antioxidant and vitagene networks. The redox status is responsible for maintenance of cell signaling and cell stress adaptation. Physiological roles of redox homeostasis maintenance in avian species, including poultry, have received limited attention and are poorly characterized. However, for the last 5 years, this topic attracted much attention, and a range of publications covered some related aspects. In fact, transcription factor Nrf2 was shown to be a master regulator of antioxidant defenses via activation of various vitagenes and other protective molecules to maintain redox homeostasis in cells/tissues. It was shown that Nrf2 is closely related to another transcription factor, namely, NF-κB, responsible for control of inflammation; however, its roles in poultry have not yet been characterized. Therefore, the aim of this review is to describe a current view on NF-κB functioning in poultry with a specific emphasis to its nutritional modulation under various stress conditions. In particular, on the one hand, it has been shown that, in many stress conditions in poultry, NF-κB activation can lead to increased synthesis of proinflammatory cytokines leading to systemic inflammation. On the other hand, there are a range of nutrients/supplements that can downregulate NF-κB and decrease the negative consequences of stress-related disturbances in redox homeostasis. In general, vitagene-NF-κB interactions in relation to redox balance homeostasis, immunity, and gut health in poultry production await further research.
Collapse
Affiliation(s)
- Peter F. Surai
- Department of Biochemistry, Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
- Department of Biochemistry and Physiology, Saint-Petersburg State Academy of Veterinary Medicine, 196084 St. Petersburg, Russia
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
| | - Ivan I. Kochish
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
| | - Michael T. Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
26
|
The Probiotic Lactobacillus fermentum Biocenol CCM 7514 Moderates Campylobacter jejuni-Induced Body Weight Impairment by Improving Gut Morphometry and Regulating Cecal Cytokine Abundance in Broiler Chickens. Animals (Basel) 2021; 11:ani11010235. [PMID: 33477806 PMCID: PMC7832853 DOI: 10.3390/ani11010235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary High consumption of chicken meat and derived products has been associated with Campylobacter jejuni infections in humans. Probiotics have been exploited successfully with the aim of preventing colonization by unwanted microorganisms in birds. In this research, we investigated the effects of Lactobacillus fermentum Biocenol CCM 7514 supplementation on body weight, morphometry of the intestine and the cecal cytokine response. Probiotic-treated chickens showed higher body weight values than those exposed to C. jejuni or reared under control conditions. These differences in body weight were correlated to the overall characteristics of the small intestine, with larger villi and deeper crypts, observed in chickens administered with L. fermentum; such conditions are known to favor nutrient absorption. Likewise, body weight proved to be correlated to transcript abundance of IL-1β and IL-13. In probiotic-treated birds, such factors were upregulated in comparison to what was detected in C. jejuni-infected chickens; these interleukins are considered crucial in the response to invading pathogens. Clearly, these results show that administration of this probiotic strain lessens the negative effects elicited by C. jejuni and ultimately improves chicken body weight. Abstract This research was conducted to investigate if the administration of the probiotic Lactobacillus fermentum could influence body weight, intestinal morphometry and the cecal cytokine response in Campylobacter jejuni-infected chickens. Seventy-two 1-day old COBB 500 male chicks were allocated randomly into four experimental groups. (I) Control group (C), in which chicks were left untreated. (II) LB group, treated with L. fermentum. (III) Cj group, infected with C. jejuni and (IV) coexposure group in which both bacteria were administered. Body weight was registered and then all birds were slaughtered; samples from the small intestine and caecum were collected at 4- and 7-days post infection. The experiment lasted eleven days. Villi height and crypt depth ratios of the duodenum, jejunum and ileum were evaluated using appropriate software, while reverse transcription quantitative PCR (RT-qPCR) was utilized for assessing transcript levels of key cecal inflammatory cytokines (IL-1β, IL-18, IL-17, IL-15, IL13 and IL-4). Campylobacter-infected birds showed lower body weight values than those supplemented with the probiotic; these birds, in turn, proved to be heavier than those reared under control conditions. L. fermentum administration improved morphometrical parameters of the duodenum, jejunum and ileum; in general, villi were larger and crypts deeper than those identified in control conditions. Moreover, the negative effects elicited by C. jejuni were not observed in chickens exposed to the probiotic. Significant differences were also determined with regards to transcript abundance of all evaluated cytokines in the caecum. C. jejuni induced a downregulation of the studied interleukins; however, such a response was heightened by administration of L. fermentum, with an increase rate of transcription that promoted a more effective response to a C. jejuni infection. The effects of experimental treatments proved to vary between sampling points. Conclusively, these results demonstrate that L. fermentum lessens the negative effects elicited by C. jejuni on body weight by alleviating the impact on intestinal morphometry and cecal cytokine response, which ultimately improve chicken growth performance.
Collapse
|
27
|
Krueger LA, Gaydos TA, Sims MD, Spangler DA. Avi-Lution supplemented at 250 or 500 mg per kg in feed decreases the abundance of Salmonella Enteritidis in ceca of layer pullets. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2020.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
28
|
Nature-Identical Compounds and Organic Acids Ameliorate and Prevent the Damages Induced by an Inflammatory Challenge in Caco-2 Cell Culture. Molecules 2020; 25:molecules25184296. [PMID: 32961674 PMCID: PMC7570934 DOI: 10.3390/molecules25184296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 01/24/2023] Open
Abstract
Bioactive compounds, such as organic acids (OA) and nature-identical compounds (NIC), can exert a role in the protection of intestinal mucosa functionality due to their biological properties. The aim of this study was to understand the role of 2 OA (citric and sorbic acid) and 2 NIC (thymol and vanillin), alone or combined in a blend (OA + NIC), on intestinal barrier functionality, either during homeostatic condition or during an inflammatory challenge performed with pro-inflammatory cytokines and lipopolysaccharides (LPS). The study was performed on the human epithelial cell line Caco-2, a well-known model of the intestinal epithelial barrier. The results showed how OA and NIC alone can improve transepithelial electrical resistance (TEER) and mRNA levels of tight junction (TJ) components, but OA + NIC showed stronger efficacy compared to the single molecules. When an inflammatory challenge occurred, OA + NIC blend was able both to ameliorate, and prevent, damage caused by the pro-inflammatory stimulus, reducing or preventing the drop in TEER and improving the TJ mRNA expression. The data support the role of OA + NIC in modulating gut barrier functionality and reducing the negative effects of inflammation in intestinal epithelial cells, thereby supporting the gut barrier functionality.
Collapse
|
29
|
Liu S, Zhuang Q, Wang S, Jiang W, Jin J, Peng C, Hou G, Li J, Yu J, Yu X, Liu H, Sun S, Yuan L, Chen J. Control of avian influenza in China: Strategies and lessons. Transbound Emerg Dis 2020; 67:1463-1471. [PMID: 32065513 DOI: 10.1111/tbed.13515] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/13/2020] [Accepted: 02/13/2020] [Indexed: 11/30/2022]
Abstract
In recent decades, multiple subtypes (i.e. H9N2, H5N1 and H7N9) of avian influenza virus (AIV) have become widespread in China, which has caused enormous economic losses and posed considerable threats to public health. In this review, with the aim to provide insights into and guidelines for the control of AIV spread in China and globally in the future, we analysed the reasons why AIV has persisted in China based on socio-economic features, including poultry biosecurity, live bird markets, live bird transportation, wild birds, poultry waterfowl, poultry density, poultry population and infected birds. We also described the present status of the AIV subtypes H9, H5 and H7 in China to elucidate the effectiveness of the strategies currently employed in China (i.e. culling, mass vaccination and biosecurity improvement) to control the disease based on a literature review and our unpublished surveillance data collected over a 12-year period from 2007 to 2018. We then summarized the lessons to be learned from the control experience in China, including whether culling of infected birds is of limited value for disease control and whether improved biosecurity is a better option than culling and vaccination for the long-term control of AIV, and when the vaccine strain should be updated.
Collapse
Affiliation(s)
- Shuo Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Qingye Zhuang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Suchun Wang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Wenming Jiang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Jihui Jin
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Cheng Peng
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Guangyu Hou
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Jinping Li
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Jianmin Yu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Xiaohui Yu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Hualei Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Shufang Sun
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Liping Yuan
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Jiming Chen
- China Animal Health and Epidemiology Center, Qingdao, China
| |
Collapse
|
30
|
Ricke SC, Lee SI, Kim SA, Park SH, Shi Z. Prebiotics and the poultry gastrointestinal tract microbiome. Poult Sci 2020; 99:670-677. [PMID: 32029153 PMCID: PMC7587714 DOI: 10.1016/j.psj.2019.12.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 12/16/2022] Open
Abstract
Feed additives that can modulate the poultry gastrointestinal tract and provide benefit to bird performance and health have recently received more interest for commercial applications. Such feed supplements offer an economic advantage because they may directly benefit poultry producers by either decreasing mortality rates of farm animals, increasing bird growth rates, or improve feed efficieny. They can also limit foodborne pathogen establishment in bird flocks by modifying the gastrointestinal microbial population. Prebiotics are known as non-digestible carbohydrates that selectively stimulate the growth of beneficial bacteria, thus improving the overall health of the host. Once prebiotics are introduced to the host, 2 major modes of action can potentially occur. Initially, the corresponding prebiotic reaches the intestine of the chicken without being digested in the upper part of the gastrointestinal tract but are selectively utilized by certain bacteria considered beneficial to the host. Secondly, other gut activities occur due to the presence of the prebiotic, including generation of short-chain fatty acids and lactic acid as microbial fermentation products, a decreased rate of pathogen colonization, and potential bird health benefits. In the current review, the effect of prebiotics on the gastrointestinal tract microbiome will be discussed as well as future directions for further research.
Collapse
Affiliation(s)
- Steven C Ricke
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704; Cell and Molecular Biology Graduate Program, Department of Food Science, University of Arkansas, Fayetteville, AR 72701.
| | - Sang In Lee
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704; Cell and Molecular Biology Graduate Program, Department of Food Science, University of Arkansas, Fayetteville, AR 72701
| | - Sun Ae Kim
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704
| | - Si Hong Park
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704
| | - Zhaohao Shi
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704
| |
Collapse
|
31
|
Flaujac Lafontaine GM, Richards PJ, Connerton PL, O’Kane PM, Ghaffar NM, Cummings NJ, Fish NM, Connerton IF. Prebiotic Driven Increases in IL-17A Do Not Prevent Campylobacter jejuni Colonization of Chickens. Front Microbiol 2020; 10:3030. [PMID: 32010094 PMCID: PMC6972505 DOI: 10.3389/fmicb.2019.03030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/17/2019] [Indexed: 01/13/2023] Open
Abstract
Worldwide Campylobacter jejuni is a leading cause of foodborne disease. Contamination of chicken meat with digesta from C. jejuni-positive birds during slaughter and processing is a key route of transmission to humans through the food chain. Colonization of chickens with C. jejuni elicits host innate immune responses that may be modulated by dietary additives to provide a reduction in the number of campylobacters colonizing the gastrointestinal tract and thereby reduce the likelihood of human exposure to an infectious dose. Here we report the effects of prebiotic galacto-oligosaccharide (GOS) on broiler chickens colonized with C. jejuni when challenged at either an early stage in development at 6 days of age or 20 days old when campylobacters are frequently detected in commercial flocks. GOS-fed birds had increased growth performance, but the levels of C. jejuni colonizing the cecal pouches were unchanged irrespective of the age of challenge. Dietary GOS modulated the immune response to C. jejuni by increasing cytokine IL-17A expression at colonization. Correspondingly, reduced diversity of the cecal microbiota was associated with Campylobacter colonization in GOS-fed birds. In birds challenged at 6 days-old the reduction in microbial diversity was accompanied by an increase in the relative abundance of Escherichia spp. Whilst immuno-modulation of the Th17 pro-inflammatory response did not prevent C. jejuni colonization of the intestinal tract of broiler chickens, the study highlights the potential for combinations of prebiotics, and specific competitors (synbiotics) to engage with the host innate immunity to reduce pathogen burdens.
Collapse
Affiliation(s)
- Geraldine M. Flaujac Lafontaine
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Philip J. Richards
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Phillippa L. Connerton
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Peter M. O’Kane
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Nacheervan M. Ghaffar
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Nicola J. Cummings
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Neville M. Fish
- Saputo Dairy UK, Dairy Crest Innovation Centre, Harper Adams University, Newport, United Kingdom
| | - Ian F. Connerton
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
32
|
Beier RC, Foley SL, Harvey RB. Editorial for the Special Issue: Foodborne Pathogen Distribution, Ecology, Inactivation, and Methods of Differentiation. Microorganisms 2019; 7:microorganisms7120701. [PMID: 31847499 PMCID: PMC6956317 DOI: 10.3390/microorganisms7120701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/12/2019] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ross C. Beier
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, College Station, TX 77845, USA;
- Correspondence: ; Tel.: +979-260-9411
| | - Steven L. Foley
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA;
| | - Roger B. Harvey
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, College Station, TX 77845, USA;
| |
Collapse
|
33
|
Freem L, Summers KM, Gheyas AA, Psifidi A, Boulton K, MacCallum A, Harne R, O’Dell J, Bush SJ, Hume DA. Analysis of the Progeny of Sibling Matings Reveals Regulatory Variation Impacting the Transcriptome of Immune Cells in Commercial Chickens. Front Genet 2019; 10:1032. [PMID: 31803225 PMCID: PMC6870463 DOI: 10.3389/fgene.2019.01032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/25/2019] [Indexed: 01/05/2023] Open
Abstract
There is increasing recognition that the underlying genetic variation contributing to complex traits influences transcriptional regulation and can be detected at a population level as expression quantitative trait loci. At the level of an individual, allelic variation in transcriptional regulation of individual genes can be detected by measuring allele-specific expression in RNAseq data. We reasoned that extreme variants in gene expression could be identified by analysis of inbred progeny with shared grandparents. Commercial chickens have been intensively selected for production traits. Selection is associated with large blocks of linkage disequilibrium with considerable potential for co-selection of closely linked "hitch-hiker alleles" affecting traits unrelated to the feature being selected, such as immune function, with potential impact on the productivity and welfare of the animals. To test this hypothesis that there is extreme allelic variation in immune-associated genes we sequenced a founder population of commercial broiler and layer birds. These birds clearly segregated genetically based upon breed type. Each genome contained numerous candidate null mutations, protein-coding variants predicted to be deleterious and extensive non-coding polymorphism. We mated selected broiler-layer pairs then generated cohorts of F2 birds by sibling mating of the F1 generation. Despite the predicted prevalence of deleterious coding variation in the genomic sequence of the founders, clear detrimental impacts of inbreeding on survival and post-hatch development were detected in only one F2 sibship of 15. There was no effect on circulating leukocyte populations in hatchlings. In selected F2 sibships we performed RNAseq analysis of the spleen and isolated bone marrow-derived macrophages (with and without lipopolysaccharide stimulation). The results confirm the predicted emergence of very large differences in expression of individual genes and sets of genes. Network analysis of the results identified clusters of co-expressed genes that vary between individuals and suggested the existence of trans-acting variation in the expression in macrophages of the interferon response factor family that distinguishes the parental broiler and layer birds and influences the global response to lipopolysaccharide. This study shows that the impact of inbreeding on immune cell gene expression can be substantial at the transcriptional level, and potentially opens a route to accelerate selection using specific alleles known to be associated with desirable expression levels.
Collapse
Affiliation(s)
- Lucy Freem
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Almas A. Gheyas
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Androniki Psifidi
- Department of Clinical Sciences and Services, Royal Veterinary College, University of London, London, United Kingdom
| | - Kay Boulton
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Amanda MacCallum
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rakhi Harne
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jenny O’Dell
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen J. Bush
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|