1
|
Makhunga S, Hlongwana K. Food handling practices and sanitary conditions of charitable food assistance programs in eThekwini District, KwaZulu-Natal, South Africa. Sci Rep 2024; 14:26366. [PMID: 39487140 PMCID: PMC11530687 DOI: 10.1038/s41598-024-72359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/06/2024] [Indexed: 11/04/2024] Open
Abstract
Unsafe food handling practices by food handlers have dire health and financial implications worldwide. Each year, approximately 600 million people, or about 1 in 10 people, are said to become ill from eating contaminated food, and 420,000 people inadvertently die. According to the 2019 World Bank report on the economic burden of foodborne diseases, the annual cost of treating foodborne illnesses is estimated to be US$ 15 billion, and the total productivity loss caused by foodborne diseases in low- and middle-income countries is estimated to be US$ 95.2 billion annually. The purpose of this study was to assess the food handling practices and sanitary conditions of the charitable food assistance programs (CFAPs) in the eThekwini District of KwaZulu-Natal, South Africa. A descriptive cross-sectional study was conducted among 196 CFAPs in eight study settings across five municipal planning regions (MPRs) of the eThekwini District between January 2021 and May 2021. Data were collected using a standardized 37-item observational checklist and analysed through Stata Statistical Software (TX: StataCorp. 2021 LLC.: Release 17. College Station). Compliance levels were calculated using the compliance score (C-score), whereby 0.0-0.20 (0-20%), 0.21-0.40 (21-40%), 0.41-0.60 (41-60%), 0.61-0.80 (61-80%), and 0.81-1.00 (81-100%) were determined as very poor, poor, average, good, and very good, respectively. Statistically significant associations were declared at p < 0.05. Compliance with food hygiene, storage, and packaging was very poor (C-score = 0.003), as were personal hygiene and staff facilities (C-score = 0.147), as well as product information/labelling (C-score = 0.003). Similarly, waste management and pest control systems (C-score = 0.203), compliance with health and hygiene education/training (C-score = 0.335), as well as use and maintenance of transport (C-score = 0.333), all scored 'poor'. Only the design of premises and facilities had an average compliance score (C-score = 0.43). Given CFAPs' role in mitigating the impact of poverty, their strict compliance with hygiene protocols is of utmost importance. Systems for identifying and correcting common noncompliance in CFAPs are required.
Collapse
Affiliation(s)
- Sizwe Makhunga
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, 2nd Floor George Campbell Building, Durban, 4001, South Africa.
| | - Khumbulani Hlongwana
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, 2nd Floor George Campbell Building, Durban, 4001, South Africa
- Cancer and Infectious Diseases Epidemiology Research Unit (CIDERU), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
2
|
Lambrechts K, Rip D. Listeria monocytogenes in the seafood industry: Exploring contamination sources, outbreaks, antibiotic susceptibility and genetic diversity. Microbiologyopen 2024; 13:e70003. [PMID: 39420711 PMCID: PMC11486915 DOI: 10.1002/mbo3.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/01/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Fish and seafood are rich sources of protein, vitamins, and minerals, significantly contributing to individual health. A global increase in consumption has been observed. Listeria monocytogenes is a known problem in food processing environments and is found in various seafood forms, including raw, smoked, salted, and ready-to-eat. Without heat treatment and given L. monocytogenes' ability to multiply under refrigerated conditions, consuming seafood poses a substantial health hazard, particularly to immunocompromised individuals. Numerous global outbreaks of listeriosis have been linked to various fish products, underscoring the importance of studying L. monocytogenes. Different strains exhibit varying disease-causing abilities, making it crucial to understand and monitor the organism's virulence and resistance aspects for food safety. This paper aims to highlight the genetic diversity of L. monocytogenes found in fish products globally and to enhance understanding of contamination routes from raw fish to the final product.
Collapse
Affiliation(s)
| | - Diane Rip
- Department of Food ScienceStellenbosch UniversityMatielandSouth Africa
| |
Collapse
|
3
|
Albert V, Ramamurthy T, Das S, G Dolma K, Majumdar T, Baruah PJ, Chaliha Hazarika S, Apum B, Das M. Comprehending the risk of foodborne and waterborne disease outbreaks: Current situation and control measures with Special reference to the Indian Scenario. Heliyon 2024; 10:e36344. [PMID: 39253199 PMCID: PMC11382067 DOI: 10.1016/j.heliyon.2024.e36344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Background Foodborne and waterborne diseases and outbreaks are a neglected public health issue worldwide. In developing countries, diarrheal disease caused by foodborne and waterborne infections is a major cause of ill health. There is a lack of information on foodborne pathogens, their transmission routes, outbreaks, and related mortalities, due to the absence of a robust disease surveillance system and adequately equipped laboratories. Although hygiene practices are much better in Western countries, the widespread use of preserved and raw food items is a cause of concern. Consequently, the occurrence of foodborne diseases is not rare in these countries either. WHO has recently released the 'Global Strategy for Food Safety 2022-2030', addressing the emerging challenges, new technologies, and innovative approaches to strengthen food safety systems and enhance laboratory capacity for foodborne disease surveillance. Foodborne outbreaks are a huge challenge in India. Malnutrition, anemia, hookworm and enteric infections, are the predominant cryptic health conditions among children in rural and tribal areas, leading to severe consequences, including death, and posing a substantial threat to public health. Combating such events with adequate food safety and hygiene practices is achievable. Systematic collection of data can help to develop food safety policies that could reduce the burden of foodborne diseases. Objective This review aims to examine the current situation of foodborne and waterborne diseases, identification of the factors contributing to their occurrence and outbreaks, and defining the gaps in control measures, challenges, and potential solutions in improving the public health system. Methods Strengths, weaknesses, opportunities, and threats (SWOT) analysis was made based on the literature review of foodborne and waterborne infections to assess the current situation and to identify knowledge gaps. Finding SWOT analysis showed the strength and gaps in the different national initiatives analogous to the global programs. Though, Integrated Disease Surveillance Programme (IDSP), Food Safety and Standards Authority of India (FSSAI), the core Government missions, independently generate substantial information, sporadic and outbreak cases of diarrhea still prevail in the country due to the absence of a systematic national surveillance system. Recently, many government initiatives have been made through Sustainable Development Goals (SDGs), G20 goals, etc. However, potential threats such as risk of zoonotic disease transmission to humans, emerging infections and antimicrobial resistance (AMR), and unauthorized activities in the food sector pose a big challenge in safeguarding the public health. Conclusion Maintenance of global food safety requires a systematic analysis of present situations, identification of existing shortcomings, and targeted efforts toward prevention of infections. The ongoing G20 mission and the SDGs for 2030 represent significant strides in this direction. To have pathogen-free animals and supply of contamination-free raw foods is impractical, but, mitigating the prevalence of zoonotic diseases can be accomplished by rigorously enforcing hygiene standards throughout the food production chain. A crucial requirement at present is the implementation of integrated laboratory surveillance for foodborne and waterborne infections, as this will provide policymakers and stakeholders all the evidence based scientific information. This system will facilitate efforts in minimizing the risks associated with foodborne and waterborne infections.
Collapse
Affiliation(s)
- Venencia Albert
- Indian Council of Medical Research, Ansari Nagar East, New Delhi-110029, India
| | - Thandavarayan Ramamurthy
- ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, West Bengal 700010, India
| | - Samaresh Das
- Center for Development of Advanced Computing (CDAC), Kolkata, 700 091, West Bengal, India
| | - Karma G Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences (SMIMS), Sikkim Manipal University, Gangtok, Sikkim 737102, India
| | - Tapan Majumdar
- Department of Microbiology, Agartala Government Medical College, Agartala, Tripura 799006, India
| | | | | | - Basumoti Apum
- Department of Microbiology, Bankin Pertin General Hospital & Research Institute, Pasighat, Arunachal Pradesh 791102, India
| | - Madhuchhanda Das
- Division of Development Research, Indian Council of Medical Research, Department of Health Research (Ministry of Health & Family Welfare), P.O. Box No. 4911, Ansari Nagar East, New Delhi-110029 India
| |
Collapse
|
4
|
Kawacka I, Olejnik-Schmidt A. Gene emrC Associated with Resistance to Quaternary Ammonium Compounds Is Common among Listeria monocytogenes from Meat Products and Meat Processing Plants in Poland. Antibiotics (Basel) 2024; 13:749. [PMID: 39200049 PMCID: PMC11350778 DOI: 10.3390/antibiotics13080749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
(1) Background: L. monocytogenes is a food pathogen of great importance, characterized by a high mortality rate. Quaternary ammonium compounds (QACs), such as benzalkonium chloride (BC), are often used as disinfectants in food processing facilities. The effectiveness of disinfection procedures is crucial to food safety. (2) Methods: A collection of 153 isolates of L. monocytogenes from meat processing industry was analyzed for their sensitivity to BC using the agar diffusion method. Genes of interest were detected with PCR. (3) Results: Genes emrC, bcrABC, and qacH were found in 64 (41.8%), 6 (3.9%), and 1 isolate (0.7%), respectively, and 79 isolates (51.6%) were classified as having reduced sensitivity to BC. A strong correlation between carrying QACs resistance-related genes and phenotype was found (p-value < 0.0001). Among 51 isolates originating from bacon (collected over 13 months), 48 had the emrC gene, which could explain their persistent presence in a processing facility. Isolates with the ilsA gene (from LIPI-3) were significantly (p-value 0.006) less likely to carry QACs resistance-related genes. (4) Conclusions: Reduced sensitivity to QACs is common among L. monocytogenes from the meat processing industry. Persistent presence of these bacteria in a processing facility is presumably caused by emrC-induced QACs resistance.
Collapse
Affiliation(s)
- Iwona Kawacka
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| | - Agnieszka Olejnik-Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| |
Collapse
|
5
|
Mphaga KV, Moyo D, Rathebe PC. Unlocking food safety: a comprehensive review of South Africa's food control and safety landscape from an environmental health perspective. BMC Public Health 2024; 24:2040. [PMID: 39080671 PMCID: PMC11289970 DOI: 10.1186/s12889-024-19589-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Food fraud (often called fake food in South Africa) the deliberate misrepresentation or adulteration of food products for financial gain, is a growing problem in South Africa (SA) with severe public health and financial consequences for consumers and businesses. The recent public outcry against food fraud practices especially in communities that have lost loved ones due to the consumption of allegedly adulterated foodstuffs, highlights the grave danger that food fraud poses to consumers and the potential for significant reputational damage to food manufacturers. Despite the risks, food fraud often goes undetected, as perpetrators are becoming increasingly sophisticated. The precise magnitude of food fraud remains obscure, as incidents that do not cause consumer illnesses are frequently unreported and, as a result, are not investigated. Food fraud costs the global economy billion annually. This cost is borne by consumers, businesses, and the government. Food fraud can occur at any stage of the food supply chain, from production to processing to retailing or distribution. This is due in part to the limitations of current analytical methods, which are not always able to detect food fraud. This review of food fraud in SA looks at several factors that may be contributing to epidemic of food fraud, including inadequate penalties, inadequate government commitment, a complex labelling regulation, emerging threats such as e-commerce, and shortage of inspectors and laboratories. The review recommends establishing a single food control/safety authority, developing more food safety laboratories, and adopting innovative technologies to detect and prevent food fraud. SA faces a serious food fraud crises unless decisive action is taken.
Collapse
Affiliation(s)
- Khathutshelo Vincent Mphaga
- Department of Environmental Health, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 524, Johannesburg, 2006, South Africa
| | - Dingani Moyo
- Department of Community Medicine, Faculty of Medicine, National University of Science and Technology, Bulawayo, Zimbabwe
- Occupational Health Division, School of Public Health, University of the Witwatersrand, Parktown, Johannesburg, 2193, South Africa
| | - Phoka Caiphus Rathebe
- Department of Environmental Health, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 524, Johannesburg, 2006, South Africa.
| |
Collapse
|
6
|
Zhou G, Liu Y, Dong P, Mao Y, Zhu L, Luo X, Zhang Y. Airborne signals of Pseudomonas fluorescens modulate swimming motility and biofilm formation of Listeria monocytogenes in a contactless coculture system. Food Microbiol 2024; 120:104494. [PMID: 38431335 DOI: 10.1016/j.fm.2024.104494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
Bacterial volatile compounds (BVCs) facilitate interspecies communication in socio-microbiology across physical barriers, thereby influencing interactions between diverse species. The impact of BVCs emitted from Pseudomonas on the biofilm formation characteristics of Listeria monocytogenes within the same ecological niche has been scarcely investigated under practical conditions of food processing. The objective of this study was to explore the motility and biofilm formation characteristics of L. monocytogenes under the impact of Pseudomonas BVCs. It was revealed that BVCs of P. fluorescens, P. lundensis, and P. fragi significantly promoted swimming motility of L. monocytogenes (P < 0.05). As evidenced by crystal violet staining, the L. monocytogenes biofilms reached a maximum OD570 value of approximately 3.78 at 4 d, which was 0.65 units markedly higher than that of the control group (P < 0.05). Despite a decrease in adherent cells of L. monocytogenes biofilms among the BVCs groups, there was a remarkable increase in the abundance of extracellular polysaccharides and proteins with 3.58 and 4.90 μg/cm2, respectively (P < 0.05), contributing to more compact matrix architectures, which suggested that the BVCs of P. fluorescens enhanced L. monocytogenes biofilm formation through promoting the secretion of extracellular polymers. Moreover, the prominent up-regulated expression of virulence genes further revealed the positive regulation of L. monocytogenes under the influence of BVCs. Additionally, the presence of BVCs significantly elevated the pH and TVB-N levels in both the swimming medium and biofilm broth, thereby exhibiting a strong positive correlation with increased motility and biofilm formation of L. monocytogenes. It highlighted the crucial signaling regulatory role of BVCs in bacterial interactions, while also emphasizing the potential food safety risk associated with the hitchhiking behavior of L. monocytogenes, thereby shedding light on advancements in control strategies for food processing.
Collapse
Affiliation(s)
- Guanghui Zhou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Yunge Liu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Pengcheng Dong
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Yanwei Mao
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Lixian Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Xin Luo
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Yimin Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China.
| |
Collapse
|
7
|
Gana J, Gcebe N, Pierneef RE, Chen Y, Moerane R, Adesiyun AA. Whole Genome Sequence Analysis of Listeria monocytogenes Isolates Obtained from the Beef Production Chain in Gauteng Province, South Africa. Microorganisms 2024; 12:1003. [PMID: 38792832 PMCID: PMC11123765 DOI: 10.3390/microorganisms12051003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The study used whole-genome sequencing (WGS) and bioinformatics analysis for the genomic characterization of 60 isolates of Listeria monocytogenes obtained from the beef production chain (cattle farms, abattoirs, and retail outlets) in Gauteng province, South Africa. The sequence types (STs), clonal complexes (CCs), and the lineages of the isolates were determined using in silico multilocus sequence typing (MLST). We used BLAST-based analyses to identify virulence and antimicrobial genes, plasmids, proviruses/prophages, and the CRISPR-Cas system. The study investigated any association of the detected genes to the origin in the beef production chain of the L. monocytogenes isolates. Overall, in 60 isolates of Listeria monocytogenes, there were seven STs, six CCs, forty-four putative virulence factors, two resistance genes, one plasmid with AMR genes, and three with conjugative genes, one CRISPR gene, and all 60 isolates were positive for proviruses/prophages. Among the seven STs detected, ST204 (46.7%) and ST2 (21.7%) were the most prominent, with ST frequency varying significantly (p < 0.001). The predominant CC detected were CC2 (21.7%) and CC204 (46.7%) in lineages I and II, respectively. Of the 44 virulence factors detected, 26 (across Listeria Pathogenicity Islands, LIPIs) were present in all the isolates. The difference in the detection frequency varied significantly (p < 0.001). The two AMR genes (fosX and vga(G)) detected were present in all 60 (100%) isolates of L. monocytogenes. The only plasmid, NF033156, was present in three (5%) isolates. A CRISPR-Cas system was detected in six (10%), and all the isolates carried proviruses/prophages. The source and sample type significantly affected the frequencies of STs and virulence factors in the isolates of L. monocytogenes. The presence of fosX and vga(G) genes in all L. monocytogenes isolates obtained from the three industries of the beef production chain can potentially cause therapeutic implications. Our study, which characterized L. monocytogenes recovered from the three levels in the beef production chain, is the first time genomics was performed on this type of data set in the country, and this provides insights into the health implications of Listeria.
Collapse
Affiliation(s)
- James Gana
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa; (J.G.); (R.M.)
- Department of Agricultural Education, Federal College of Education, Kontagora 923101, Niger State, Nigeria
| | - Nomakorinte Gcebe
- Bacteriology Department, Onderstepoort Veterinary Research, Agricultural Research Council, Pretoria 0110, South Africa;
| | - Rian Edward Pierneef
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0001, South Africa;
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria 0001, South Africa
- Microbiome@UP, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0001, South Africa
| | - Yi Chen
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, 5001 Campus Dr. Room 4E-007/Mailstop HFS-710, College Park, MD 20740, USA;
| | - Rebone Moerane
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa; (J.G.); (R.M.)
| | - Abiodun Adewale Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa; (J.G.); (R.M.)
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine 685509, Trinidad and Tobago
| |
Collapse
|
8
|
Ngema SS, Madoroba E. A Mini-Review of Anti-Listerial Compounds from Marine Actinobacteria (1990-2023). Antibiotics (Basel) 2024; 13:362. [PMID: 38667038 PMCID: PMC11047329 DOI: 10.3390/antibiotics13040362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/17/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Among the foodborne illnesses, listeriosis has the third highest case mortality rate (20-30% or higher). Emerging drug-resistant strains of Listeria monocytogenes, a causative bacterium of listeriosis, exacerbate the seriousness of this public health concern. Novel anti-Listerial compounds are therefore needed to combat this challenge. In recent years, marine actinobacteria have come to be regarded as a promising source of novel antimicrobials. Hence, our aim was to provide a narrative of the available literature and discuss trends regarding bioprospecting marine actinobacteria for new anti-Listerial compounds. Four databases were searched for the review: Academic Search Ultimate, Google Scholar, ScienceDirect, and South African Thesis and Dissertations. The search was restricted to peer-reviewed full-text manuscripts that discussed marine actinobacteria as a source of antimicrobials and were written in English from 1990 to December 2023. In total, for the past three decades (1990-December 2023), only 23 compounds from marine actinobacteria have been tested for their anti-Listerial potential. Out of the 23 reported compounds, only 2-allyoxyphenol, adipostatins E-G, 4-bromophenol, and ansamycins (seco-geldanamycin B, 4.5-dihydro-17-O-demethylgeldanamycin, and seco-geldanamycin) have been found to possess anti-Listerial activity. Thus, our literature survey reveals the scarcity of published assays testing the anti-Listerial capacity of bioactive compounds sourced from marine actinobacteria during this period.
Collapse
Affiliation(s)
| | - Evelyn Madoroba
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa;
| |
Collapse
|
9
|
Tola EH. Prevalence, Antimicrobial Resistance, and Characterization of Listeria Spp. Isolated from Various Sources in Ethiopia: A Comprehensive Review. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2024; 15:109-116. [PMID: 38601062 PMCID: PMC11005847 DOI: 10.2147/vmrr.s451837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
Listeriosis is an important foodborne zoonotic disease affecting humans and animals in Ethiopia. This review aims to synthesize the epidemiology, prevalence, distribution, and antimicrobial resistance of Listeria species in the country. The literature reveals a widespread occurrence of Listeria infection in humans, animals, and food products, with an average prevalence of 21.6% for Listeria species and 6.9% for L. monocytogenes. Three sequence types (STs) of L. monocytogenes (2, 145, and 18) and twelve STs of L. innocua (1489, 1619, 603, 537, 1010, 3186, 492, 3007, 1087, 474, 1008, and 637) were reported from milk and dairy products. Contamination rates ranged from 4.1% to 42.9% across livestock, dairy, slaughterhouses, and processing facilities, indicating faults in production practices. Sporadic human listeriosis outbreaks have occurred since 1967, causing meningitis, perinatal infections, and deaths, with recent studies showing L. monocytogenes isolation in up to 10.4% of febrile patients, confirming foodborne transmission. Non-pathogenic Listeria species were also common on farms and in facilities. Ovine listeriosis poses a threat to Ethiopia's sheep and goat industries, with over 40% seroprevalence in some herds. Comprehensive control measures across the food chain are needed to curb contamination and protect public health. Isolates from various foods show antibiotic resistance to first-line agents but susceptibility to others like gentamicin and cephalosporins. In conclusion, this review synthesizes evidence on Listeria distribution in Ethiopia's food system and disease burden, highlighting the need for improved food safety policies and awareness.
Collapse
Affiliation(s)
- Eyob Hirpa Tola
- Department of Microbiology, Immunology and Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Oromia, Ethiopia
| |
Collapse
|
10
|
Wang Y, Meng F, Deng X, Yang Y, Li S, Jiao X, Li S, Liu M. Genomic epidemiology of hypervirulent Listeria monocytogenes CC619: Population structure, phylodynamics and virulence. Microbiol Res 2024; 280:127591. [PMID: 38181481 DOI: 10.1016/j.micres.2023.127591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Listeria monocytogenes is a ubiquitous foodborne pathogen causing human and animal listeriosis with high mortality. Neurological and maternal-neonatal listeriosis outbreaks in Europe and the United States were frequently associated with clonal complexes CC1, CC2 and CC6 harboring Listeria Pathogenicity Island-1 (LIPI-1), as well as CC4 carrying both LIPI-1 and LIPI-4. However, human listeriosis in China was predominantly linked to CC87 and CC619 from serotype 1/2b. To understand the genetic evolution and distribution patterns of CC619, we characterized the epidemic history, population structure, and transmission feature of CC619 strains through analysis of 49,421 L. monocytogenes genomes globally. We found that CC619 was uniquely distributed in China, and closely related with perinatal infection. As CC619 strains were being mainly isolated from livestock and poultry products, we hypothesized that pigs and live chicken were the reservoirs of CC619. Importantly, all CC619 strains not only harbored the intact LIPI-1 and LIPI-4, but these also carried LIPI-3 that could facilitate host colonization and invasion. The deficiency of LIPI-3 or LIPI-4 markedly decreased L. monocytogenes colonization capacity in a model of intragastric infection in the mouse. Altogether, our findings suggest that the hypervirulent CC619 harboring three pathogenicity islands LIPI-1, LIPI-3 and LIPI-4 is a putatively persistent population in various foods, environment, and human population, warranting the further research for deciphering its pathogenicity and strengthening epidemiological surveillance.
Collapse
Affiliation(s)
- Yiqian Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fanzeng Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xia Deng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yuheng Yang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Shaowen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xin'an Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Shaoting Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Mei Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
11
|
Erol Z, Taşçı F. Investigation of the seasonal prevalence, phenotypic, and genotypic characteristics of Listeria monocytogenes in slaughterhouses in Burdur. J Appl Microbiol 2024; 135:lxae056. [PMID: 38460954 DOI: 10.1093/jambio/lxae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/17/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
AIM This study examined Listeria monocytogenes isolates from two slaughterhouses in Burdur province, southern Turkey, over four seasons for antibiotic resistance, serogroups, virulence genes, in vitro biofilm forming capacity, and genetic relatedness. METHODS AND RESULTS Carcass (540) and environment-equipment surface (180) samples were collected from two slaughterhouses (S1, S2) for 1 year (4 samplings). Of the 89 (12.4%) positive isolates, 48 (53.9%) were from animal carcasses, and 41 (46.1%) from the environment-equipment surfaces. Autumn was the peak season for Listeria monocytogenes compared to summer and spring (P < 0.05). In addition, the most common serotype between seasons was 1/2c. Except for plcA and luxS genes, all isolates (100%) harbored inlA, inlC, inlJ, hlyA, actA, iap, flaA genes. Listeria monocytogenes isolates were identified as belonging to IIc (1/2c-3c; 68.5%), IVb (4b-4d-4e; 29.2%), and IIa (1/2a-3a; 2.2%) in the screening using multiplex polymerase chain reaction-based serogrouping test. A total of 65 pulsotypes and 13 clusters with at least 80% homology were determined by using pulsed field gel electrophoresis on samples that had been digested with ApaI. Thirty-four (38.2%) of the isolates were not resistant to any of the 14 antibiotics tested. The antibiotic to which the isolates showed the most resistance was rifampicin (44.9%). Serotype 1/2c was the most resistant serotype to antibiotics. Despite having biofilm-associated genes (inlA, inlB, actA, flaA, and luxS), a minority (11%) of isolates formed weak biofilm. CONCLUSION This study revealed seasonal changes prevalence of Listeria monocytogenes, particularly higher in autumn, posing a greater risk of meat contamination. Notably, Serotype 1/2c showed significant prevalence and antibiotic resistance. Indistinguishable isolates indicated cross-contamination, underscoring the importance of prioritized training for slaughterhouse personnel in sanitation and hygiene protocols.
Collapse
Affiliation(s)
- Zeki Erol
- Veterinary Faculty, Department of Food Hygiene and Technology, Burdur Mehmet Akif Ersoy University, 15030 Burdur, Turkey
- Veterinary Faculty, Department of Food Hygiene and Technology, Necmettin Erbakan University, 42310 Ereğli/Konya, Turkey
| | - Fulya Taşçı
- Veterinary Faculty, Department of Food Hygiene and Technology, Burdur Mehmet Akif Ersoy University, 15030 Burdur, Turkey
| |
Collapse
|
12
|
Diniso YS, Jaja IF. Dairy farmers' knowledge about milk-borne zoonosis in the Eastern Cape province, South Africa. Ital J Food Saf 2024; 13:11080. [PMID: 38481769 PMCID: PMC10928830 DOI: 10.4081/ijfs.2024.11080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/29/2023] [Indexed: 11/01/2024] Open
Abstract
Foodborne zoonosis is a longstanding global issue that limits and continues to threaten the food production industry and public health in several countries. The study's objective was to evaluate the dairy farmers' knowledge, attitudes, and practices about milkborne pathogens in the Eastern Cape province, South Africa. A total of 139 dairy farmers were interviewed using a semi-structured online questionnaire. The pathogens of interest were Brucella spp., Escherichia coli, Listeria monocytogenes, Salmonella spp., Staphylococcus aureus, and Cryptosporidium. Only 20.9% of dairy farmers reported knowledge of Brucella spp. as a milk-borne pathogen. The most known pathogen was E. coli (54.7%), followed by Listeria spp. (41.0%), Staphylococcus spp. (38.8%), and Salmonella spp. (35.3%). In this study, knowledge of milk-borne pathogens was statistically associated (p<0.05) with workplace position. Only a few participants (37.2%) showed knowledge of abortion as an important clinical sign of foodborne pathogens. Also, 84.1% of dairy farmers indicated that they consume unpasteurized milk and sour milk (77%). Some respondents (18.0%) do not believe assisting a cow during calving difficulty without wearing gloves is a risk factor for zoonosis. Knowledge assessment is essential in developing countries that have experienced a foodborne outbreak, such as South Africa. There is an urgent need to educate dairy farmers about milk-borne zoonosis to minimize the threat to food security and public health.
Collapse
Affiliation(s)
- Yanga Simamkele Diniso
- Department of Livestock and Pasture Science, University of Fort Hare, Alice, South Africa
| | | |
Collapse
|
13
|
Wei X, Hassen A, McWilliams K, Pietrzen K, Chung T, Acevedo MM, Chandross-Cohen T, Dudley EG, Vipham J, Mamo H, Tessema TS, Zewdu A, Kovac J. Genomic characterization of Listeria monocytogenes and Listeria innocua isolated from milk and dairy samples in Ethiopia. BMC Genom Data 2024; 25:12. [PMID: 38297216 PMCID: PMC10829315 DOI: 10.1186/s12863-024-01195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
Listeriosis caused by Listeria monocytogenes often poses a significant threat to vulnerable populations. Dairy products have been implicated in outbreaks of listeriosis worldwide. In Ethiopia, studies have identified Listeria spp. and L. monocytogenes in various dairy products, but the genetic diversity and phylogenetic relationships of these bacteria remain largely unknown in the low- and middle-income countries. Therefore, we conducted whole-genome sequencing on 15 L. monocytogenes and 55 L. innocua isolates obtained from different levels of the dairy supply chains across three regions in Ethiopia. Genomes were assembled and used for MLST genotyping and single nucleotide polymorphism (SNP) analysis to infer phylogenetic relationships. We identified a total of 3 L. monocytogenes (i.e., 2, 145, and 18) and 12 L. innocua (i.e., 1489, 1619, 603, 537, 1010, 3186, 492, 3007, 1087, 474, 1008, and 637) MLST sequence types among the studied isolates. Some of these sequence types showed region-specific occurrence, while others were broadly distributed across regions. Through high-quality SNP analysis, we found that among 13 L. monocytogenes identified as ST 2, 11 of them were highly similar with low genetic variation, differing by only 1 to 10 SNPs, suggesting potential selection in the dairy food supply chain. The L. innocua isolates also exhibited low intra-ST genetic variation with only 0-10 SNP differences, except for the ST 1619, which displayed a greater diversity.
Collapse
Affiliation(s)
- Xiaoyuan Wei
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Anwar Hassen
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences New Graduate Building, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
- College of Veterinary Medicine, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| | - Karen McWilliams
- Michigan Department of Agriculture and Rural Development Laboratory, East Lansing, MI, 48823, USA
| | - Karen Pietrzen
- Michigan Department of Agriculture and Rural Development Laboratory, East Lansing, MI, 48823, USA
| | - Taejung Chung
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Tyler Chandross-Cohen
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Edward G Dudley
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jessie Vipham
- Department of Animal Science and Industry, Kansas State University, Manhattan, KS, 66506, USA
| | - Hassen Mamo
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences New Graduate Building, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Tesfaye Sisay Tessema
- Institute of Biotechnology, Addis Ababa University, P.O. Box 1176, New Graduate Building, Addis Ababa, Ethiopia
| | - Ashagrie Zewdu
- Center for Food Science and Nutrition, College of Natural Sciences, Addis Ababa University, P.O. Box 1176, New Graduate Building, Addis Ababa, Ethiopia
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
14
|
Ranveer SA, Dasriya V, Ahmad MF, Dhillon HS, Samtiya M, Shama E, Anand T, Dhewa T, Chaudhary V, Chaudhary P, Behare P, Ram C, Puniya DV, Khedkar GD, Raposo A, Han H, Puniya AK. Positive and negative aspects of bacteriophages and their immense role in the food chain. NPJ Sci Food 2024; 8:1. [PMID: 38172179 PMCID: PMC10764738 DOI: 10.1038/s41538-023-00245-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteriophages infect and replicate inside a bacterial host as well as serve as natural bio-control agents. Phages were once viewed as nuisances that caused fermentation failures with cheese-making and other industrial processes, which lead to economic losses, but phages are now increasingly being observed as being promising antimicrobials that can fight against spoilage and pathogenic bacteria. Pathogen-free meals that fulfil industry requirements without synthetic additives are always in demand in the food sector. This study introduces the readers to the history, sources, and biology of bacteriophages, which include their host ranges, absorption mechanisms, lytic profiles, lysogenic profiles, and the influence of external factors on the growth of phages. Phages and their derivatives have emerged as antimicrobial agents, biodetectors, and biofilm controllers, which have been comprehensively discussed in addition to their potential applications in the food and gastrointestinal tract, and they are a feasible and safe option for preventing, treating, and/or eradicating contaminants in various foods and food processing environments. Furthermore, phages and phage-derived lytic proteins can be considered potential antimicrobials in the traditional farm-to-fork context, which include phage-based mixtures and commercially available phage products. This paper concludes with some potential safety concerns that need to be addressed to enable bacteriophage use efficiently.
Collapse
Affiliation(s)
- Soniya Ashok Ranveer
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Vaishali Dasriya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Harmeet Singh Dhillon
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Mrinal Samtiya
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Eman Shama
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Taruna Anand
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar, 125001, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Vishu Chaudhary
- University Institute of Biotechnology, Chandigarh University, Sahibzada Ajit Singh Nagar, 140413, India
| | - Priya Chaudhary
- Microbiology Department, VCSG Government Institute of Medical Science and Research, Ganganali Srikot, Srinagar Pauri Garhwal, 246174, India
| | - Pradip Behare
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Chand Ram
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Dharun Vijay Puniya
- Centre of One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Gulab D Khedkar
- Paul Hebert Centre for DNA Barcoding and Biodiversity Studies, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande, 376, 1749-024 Lisboa, Portugal.
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, 98 Gunja-Dong, Gwanjin-gu, Seoul, 143-747, Republic of Korea.
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| |
Collapse
|
15
|
Wiśniewski P, Chajęcka-Wierzchowska W, Zadernowska A. Impact of High-Pressure Processing (HPP) on Listeria monocytogenes-An Overview of Challenges and Responses. Foods 2023; 13:14. [PMID: 38201041 PMCID: PMC10778341 DOI: 10.3390/foods13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
High-pressure processing (HPP) is currently one of the leading methods of non-thermal food preservation as an alternative to traditional methods based on thermal processing. The application of HPP involves the simultaneous action of a combination of several factors-pressure values (100-600 MPa), time of operation (a few-several minutes), and temperature of operation (room temperature or lower)-using a liquid medium responsible for pressure transfer. The combination of these three factors results in the inactivation of microorganisms, thus extending food shelf life and improving the food's microbiological safety. HPP can provide high value for the sensory and quality characteristics of products and reduce the population of pathogenic microorganisms such as L. monocytogenes to the required safety level. Nevertheless, the technology is not without impact on the cellular response of pathogens. L. monocytogenes cells surviving the HPP treatment may have multiple damages, which may impact the activation of mechanisms involved in the repair of cellular damage, increased virulence, or antibiotic resistance, as well as an increased expression of genes encoding pathogenicity and antibiotic resistance. This review has demonstrated that HPP is a technology that can reduce L. monocytogenes cells to below detection levels, thus indicating the potential to provide the desired level of safety. However, problems have been noted related to the possibilities of cell recovery during storage and changes in virulence and antibiotic resistance due to the activation of gene expression mechanisms, and the lack of a sufficient number of studies explaining these changes has been reported.
Collapse
Affiliation(s)
- Patryk Wiśniewski
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland; (W.C.-W.); (A.Z.)
| | | | | |
Collapse
|
16
|
Purk L, Kitsiou M, Ioannou C, El Kadri H, Costello KM, Gutierrez Merino J, Klymenko O, Velliou EG. Unravelling the impact of fat content on the microbial dynamics and spatial distribution of foodborne bacteria in tri-phasic viscoelastic 3D models. Sci Rep 2023; 13:21811. [PMID: 38071223 PMCID: PMC10710490 DOI: 10.1038/s41598-023-48968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The aim of the current study is to develop and characterise novel complex multi-phase in vitro 3D models, for advanced microbiological studies. More specifically, we enriched our previously developed bi-phasic polysaccharide (Xanthan Gum)/protein (Whey Protein) 3D model with a fat phase (Sunflower Oil) at various concentrations, i.e., 10%, 20%, 40% and 60% (v/v), for better mimicry of the structural and biochemical composition of real food products. Rheological, textural, and physicochemical analysis as well as advanced microscopy imaging (including spatial mapping of the fat droplet distribution) of the new tri-phasic 3D models revealed their similarity to industrial food products (especially cheese products). Furthermore, microbial growth experiments of foodborne bacteria, i.e., Listeria monocytogenes, Escherichia coli, Pseudomonas aeruginosa and Lactococcus lactis on the surface of the 3D models revealed very interesting results, regarding the growth dynamics and distribution of cells at colony level. More specifically, the size of the colonies formed on the surface of the 3D models, increased substantially for increasing fat concentrations, especially in mid- and late-exponential growth phases. Furthermore, colonies formed in proximity to fat were substantially larger as compared to the ones that were located far from the fat phase of the models. In terms of growth location, the majority of colonies were located on the protein/polysaccharide phase of the 3D models. All those differences at microscopic level, that can directly affect the bacterial response to decontamination treatments, were not captured by the macroscopic kinetics (growth dynamics), which were unaffected from changes in fat concentration. Our findings demonstrate the importance of developing structurally and biochemically complex 3D in vitro models (for closer proximity to industrial products), as well as the necessity of conducting multi-level microbial analyses, to better understand and predict the bacterial behaviour in relation to their biochemical and structural environment. Such studies in advanced 3D environments can assist a better/more accurate design of industrial antimicrobial processes, ultimately, improving food safety.
Collapse
Affiliation(s)
- Lisa Purk
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, Fitzrovia, London, W1W 7TY, UK
| | - Melina Kitsiou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, Fitzrovia, London, W1W 7TY, UK
| | - Christina Ioannou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Hani El Kadri
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Katherine M Costello
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | | | - Oleksiy Klymenko
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK.
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, Fitzrovia, London, W1W 7TY, UK.
| |
Collapse
|
17
|
Lin Y, Cha X, Brennan C, Cao J, Shang Y. Contamination of Plant Foods with Bacillus cereus in a Province and Analysis of Its Traceability. Microorganisms 2023; 11:2763. [PMID: 38004774 PMCID: PMC10672870 DOI: 10.3390/microorganisms11112763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Bacillus cereus is an important zoonotic foodborne conditional pathogen. It is found in vegetables, dairy products, rice, and other foods, thereby greatly endangering human health. Investigations on B. cereus contamination in China primarily focus on raw milk, dairy products, meat, and others, and limited research has been conducted on plant-based foodstuffs. The rapid development of sequencing technology and the application of bioinformatics-related techniques means that analysis based on whole-genome sequencing has become an important tool for the molecular-epidemiology investigation of B. cereus. In this study, we investigated the contamination of B. cereus in six types of commercially available plant foods from eight regions of a province. The molecular epidemiology of the isolated B. cereus was analyzed by whole-genome sequencing. We aimed to provide fundamental data for the surveillance and epidemiology analysis of B. cereus in food products in China. The rapid traceability system of B. cereus established in this study can provide a basis for rapid molecular epidemiology analysis of B. cereus, as well as for the prevention and surveillance of B. cereus. Moreover, it can also be expanded to monitoring and rapid tracing of more foodborne pathogens.
Collapse
Affiliation(s)
- Yingting Lin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (X.C.); (C.B.)
| | - Xiaoyan Cha
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (X.C.); (C.B.)
| | - Charles Brennan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (X.C.); (C.B.)
- School of Science, Royal Melbourne Institute of Technology University, Melbourne 3000, Australia
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (X.C.); (C.B.)
| | - Ying Shang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.L.); (X.C.); (C.B.)
| |
Collapse
|
18
|
Chowdhury B, Anand S. Environmental persistence of Listeria monocytogenes and its implications in dairy processing plants. Compr Rev Food Sci Food Saf 2023; 22:4573-4599. [PMID: 37680027 DOI: 10.1111/1541-4337.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023]
Abstract
Listeriosis, an invasive illness with a fatality rate between 20% and 30%, is caused by the ubiquitous bacterium Listeria monocytogenes. Human listeriosis has long been associated with foods. This is because the ubiquitous nature of the bacteria renders it a common food contaminant, posing a significant risk to the food processing sector. Although several sophisticated stress coping mechanisms have been identified as significant contributing factors toward the pathogen's persistence, a complete understanding of the mechanisms underlying persistence across various strains remains limited. Moreover, aside from genetic aspects that promote the ability to cope with stress, various environmental factors that exist in food manufacturing plants could also contribute to the persistence of the pathogen. The objective of this review is to provide insight into the challenges faced by the dairy industry because of the pathogens' environmental persistence. Additionally, it also aims to emphasize the diverse adaptation and response mechanisms utilized by L. monocytogenes in food manufacturing plants to evade environmental stressors. The persistence of L. monocytogenes in the food processing environment poses a serious threat to food safety and public health. The emergence of areas with high levels of L. monocytogenes contamination could facilitate Listeria transmission through aerosols, potentially leading to the recontamination of food, particularly from floors and drains, when sanitation is implemented alongside product manufacturing. Hence, to produce safe dairy products and reduce the frequency of outbreaks of listeriosis, it is crucial to understand the factors that contribute to the persistence of this pathogen and to implement efficient control strategies.
Collapse
Affiliation(s)
- Bhaswati Chowdhury
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Sanjeev Anand
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
19
|
Salamandane A, Malfeito-Ferreira M, Brito L. The Socioeconomic Factors of Street Food Vending in Developing Countries and Its Implications for Public Health: A Systematic Review. Foods 2023; 12:3774. [PMID: 37893667 PMCID: PMC10606777 DOI: 10.3390/foods12203774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The sale of ready-to-eat (RTE) street food represents an important source of income in many developing countries. However, these foods are frequently implicated in outbreaks of gastrointestinal diseases. Street food vendors face several constraints that hamper improvement in the microbiological quality of their products. The aim of this review was to update knowledge about the main causes of foodborne illnesses in developing countries, including the growing concern with the microbial transmission of antibiotic resistance. Following PRISMA guidelines, this systematic review was conducted on original articles published from January 2010 to July 2023. The search was carried out using Scopus, PubMed, Web of Science, Food Science and Technology Abstracts (FSTA), the International Information System for Agricultural Sciences and Technology (AGRIS), as well as isolated searches of relevant articles from Google Scholar. The initial search identified 915 articles, 50 of which were included in this systematic review. The results indicate that, in the majority of the 15 countries examined, women constitute the predominant segment of street food vendors, representing more than 55% of the total number of these vendors. In 11 countries, street food vendors under the age of 18 were identified. Most vendors had a low level of education and, consequently, were unaware of good hygiene practices when handling food. The combination of factors such as poor hygiene practices on the part of food handlers and the lack of facilities, namely, the absence of available potable water, were frequently listed as the main causes of food contamination. Enterobacteriaceae such as Escherichia coli (61.9%), Salmonella (30.1%), and Shigella spp. (9.5%), as well as Staphylococcus aureus (30.1%) and Listeria monocytogenes (14.3%), were the most common pathogens found in RTE street foods. In 22 studies from 13 developing countries, 59% (13/22) reported high multidrug resistance in Enterobacteriaceae (40% to 86.4% in E. coli, 16.7 to 70% in Salmonella, and 31 to 76.4% in S. aureus). To address the challenges faced by street vendors and improve their economic activities, it is necessary for government entities, consumers, and vendors to work together collaboratively.
Collapse
Affiliation(s)
- Acácio Salamandane
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (M.M.-F.); (L.B.)
| | | | | |
Collapse
|
20
|
Manyi-Loh CE, Lues R. A South African Perspective on the Microbiological and Chemical Quality of Meat: Plausible Public Health Implications. Microorganisms 2023; 11:2484. [PMID: 37894142 PMCID: PMC10608972 DOI: 10.3390/microorganisms11102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Meat comprises proteins, fats, vitamins, and trace elements, essential nutrients for the growth and development of the body. The increased demand for meat necessitates the use of antibiotics in intensive farming to sustain and raise productivity. However, the high water activity, the neutral pH, and the high protein content of meat create a favourable milieu for the growth and the persistence of bacteria. Meat serves as a portal for the spread of foodborne diseases. This occurs because of contamination. This review presents information on animal farming in South Africa, the microbial and chemical contamination of meat, and the consequential effects on public health. In South Africa, the sales of meat can be operated both formally and informally. Meat becomes exposed to contamination with different categories of microbes, originating from varying sources during preparation, processing, packaging, storage, and serving to consumers. Apparently, meat harbours diverse pathogenic microorganisms and antibiotic residues alongside the occurrence of drug resistance in zoonotic pathogens, due to the improper use of antibiotics during farming. Different findings obtained across the country showed variations in prevalence of bacteria and multidrug-resistant bacteria studied, which could be explained by the differences in the manufacturer practices, handling processes from producers to consumers, and the success of the hygienic measures employed during production. Furthermore, variation in the socioeconomic and political factors and differences in bacterial strains, geographical area, time, climatic factors, etc. could be responsible for the discrepancy in the level of antibiotic resistance between the provinces. Bacteria identified in meat including Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, Campylobacter spp., Salmonella spp., etc. are incriminated as pathogenic agents causing serious infections in human and their drug-resistant counterparts can cause prolonged infection plus long hospital stays, increased mortality and morbidity as well as huge socioeconomic burden and even death. Therefore, uncooked meat or improperly cooked meat consumed by the population serves as a risk to human health.
Collapse
Affiliation(s)
- Christy E. Manyi-Loh
- Centre of Applied Food Sustainability and Biotechnology, Central University of Technology, Bloemfontein 9301, South Africa;
| | | |
Collapse
|
21
|
Van der Merwe M, Pather S. Placental Listeriosis: Case Report and Literature Review. Am J Trop Med Hyg 2023; 109:584-586. [PMID: 37487564 PMCID: PMC10484256 DOI: 10.4269/ajtmh.23-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/13/2023] [Indexed: 07/26/2023] Open
Abstract
Listeria monocytogenes, a foodborne, facultative, intracellular gram-positive bacillus, is one of 17 species of the Listeria genus and was responsible for the world's largest outbreak of listeriosis in 2017-2018 in South Africa. Listeria monocytogenes tends to cause mild gastrointestinal symptoms in healthy individuals. However, pregnancy-associated listeriosis can be fatal to the fetus and can lead to serious adverse effects in the neonate. Listeria monocytogenes has an affinity for the placenta, as opposed to other nonreproductive organs. Herein, we present a case of placental listeriosis diagnosed in a 33-year-old female, parity 4, with unknown gestational age during the listeriosis outbreak in South Africa in 2017-2018. The patient presented with pregnancy-related complications and underwent a caesarean section. Morphological features demonstrated acute suppurative villitis and intervillositis with a heavy load of gram-positive bacilli, which is highly suggestive of placental listeriosis. Multiplex polymerase chain reaction confirmed the presence of L. monocytogenes.
Collapse
Affiliation(s)
- Marquerit Van der Merwe
- Anatomical Pathology, National Health Laboratory Service, Chris Hani Baragwanath Academic Hospital, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sugeshnee Pather
- Anatomical Pathology, National Health Laboratory Service, Chris Hani Baragwanath Academic Hospital, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
22
|
Gana J, Gcebe N, Pierneef RE, Chen Y, Moerane R, Adesiyun AA. Genomic Characterization of Listeria innocua Isolates Recovered from Cattle Farms, Beef Abattoirs, and Retail Outlets in Gauteng Province, South Africa. Pathogens 2023; 12:1062. [PMID: 37624022 PMCID: PMC10457781 DOI: 10.3390/pathogens12081062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Whole-genome sequencing (WGS) was used for the genomic characterization of one hundred and ten strains of Listeria innocua (L. innocua) isolated from twenty-three cattle farms, eight beef abattoirs, and forty-eight retail outlets in Gauteng province, South Africa. In silico multilocus sequence typing (MLST) was used to identify the isolates' sequence types (STs). BLAST-based analyses were used to identify antimicrobial and virulence genes. The study also linked the detection of the genes to the origin (industries and types of samples) of the L. innocua isolates. The study detected 14 STs, 13 resistance genes, and 23 virulence genes. Of the 14 STs detected, ST637 (26.4%), ST448 (20%), 537 (13.6%), and 1085 (12.7%) were predominant, and the frequency varied significantly (p < 0.05). All 110 isolates of L. innocua were carriers of one or more antimicrobial resistance genes, with resistance genes lin (100%), fosX (100%), and tet(M) (30%) being the most frequently detected (p < 0.05). Of the 23 virulence genes recognized, 13 (clpC, clpE, clpP, hbp1, svpA, hbp2, iap/cwhA, lap, lpeA, lplA1, lspA, oatA, pdgA, and prsA2) were found in all 110 isolates of L. innocua. Overall, diversity and significant differences were detected in the frequencies of STs, resistance, and virulence genes according to the origins (source and sample type) of the L. innocua isolates. This, being the first genomic characterization of L. innocua recovered from the three levels/industries (farm, abattoir, and retail) of the beef production system in South Africa, provides data on the organism's distribution and potential food safety implications.
Collapse
Affiliation(s)
- James Gana
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (J.G.); (R.M.)
- Agricultural Education, Federal College of Education, Kontagora 923101, Nigeria
| | - Nomakorinte Gcebe
- Bacteriology Department, Onderstepoort Veterinary Research, Agricultural Research Council, Pretoria 0110, South Africa;
| | - Rian Ewald Pierneef
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0001, South Africa;
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria 0001, South Africa
- Microbiome@UP, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria 0001, South Africa
| | - Yi Chen
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, 5001 Campus Dr. Room 4E-007/Mailstop HFS-710, College Park, MD 20740, USA;
| | - Rebone Moerane
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (J.G.); (R.M.)
| | - Abiodun Adewale Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (J.G.); (R.M.)
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine 685509, Trinidad and Tobago
| |
Collapse
|
23
|
Meza-Bone GA, Meza Bone JS, Cedeño Á, Martín I, Martín A, Maddela NR, Córdoba JJ. Prevalence of Listeria monocytogenes in RTE Meat Products of Quevedo (Ecuador). Foods 2023; 12:2956. [PMID: 37569226 PMCID: PMC10418838 DOI: 10.3390/foods12152956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 08/13/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that causes listeriosis and can be a problem in areas where meat products are sold at unregulated storage temperatures. In this work, the prevalence of L. monocytogenes was determined in the five most widely traded meat products in the province of Quevedo (Ecuador): bacon, "chorizo paisa", grilled hamburger meat, mortadella, and salami. A total of 1000 samples of these products were analyzed in two seasons of the year (dry season/rainy season). All L. monocytogenes isolates were confirmed by PCR with primers designed for the iap gene. Furthermore, the positive samples were quantified for L. monocytogenes. Of the 1000 meat products analyzed, 163 were positive for L. monocytogenes (16.3%). The prevalence of L. monocytogenes in the two seasons in different meat products was as follows: 22.5% in mortadella, 19% in hamburger meat, 15% in bacon, 14.5% in chorizo paisa and 10.5% in salami. In addition, the concentration of L. monocytogenes in most of the positive samples was in the range of 4-6 log CFU/g or even higher. The results show the need for improvements in the hygienic measures and meat storage temperatures in Quevedo (Ecuador) to avoid risks of foodborne listeriosis.
Collapse
Affiliation(s)
- Gary Alex Meza-Bone
- Ruminology Laboratory, Faculty of Animal and Biological Sciences, State Technical University of Quevedo, Quevedo 120301, Ecuador;
| | | | - Ángel Cedeño
- Biotechnology Laboratory, Microbiology, Science and Technology Research Department, State Technical University of Quevedo, Quevedo 120301, Ecuador;
| | - Irene Martín
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain; (I.M.); (J.J.C.)
| | - Alberto Martín
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain; (I.M.); (J.J.C.)
| | - Naga Raju Maddela
- Department of Biological Sciences, Faculty of Health Sciences, Technical University of Manabí, Portoviejo 130103, Ecuador;
| | - Juan J. Córdoba
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain; (I.M.); (J.J.C.)
| |
Collapse
|
24
|
Schiavano GF, Guidi F, Pomilio F, Brandi G, Salini R, Amagliani G, Centorotola G, Palma F, Felici M, Lorenzetti C, Blasi G. Listeria monocytogenes Strains Persisting in a Meat Processing Plant in Central Italy: Use of Whole Genome Sequencing and In Vitro Adhesion and Invasion Assays to Decipher Their Virulence Potential. Microorganisms 2023; 11:1659. [PMID: 37512831 PMCID: PMC10383671 DOI: 10.3390/microorganisms11071659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, we used both a WGS and an in vitro approach to study the virulence potential of nine Listeria monocytogenes (Lm) strains belonging to genetic clusters persisting in a meat processing plant in Central Italy. The studied clusters belonged to CC1-ST1, CC9-ST9, and CC218-ST2801. All the CC1 and CC218 strains presented the same accessory virulence genes (LIPI-3, gltA, gltB, and aut_IVb). CC1 and CC9 strains presented a gene profile similarity of 22.6% as well as CC9 and CC218 isolates. CC1 and CC218 showed a similarity of 45.2% of the same virulence profile. The hypervirulent strains of lineage I (CC1 and CC218) presented a greater ability to adhere and invade Caco-2 cells than hypovirulent ones (CC9). CC1 strains were significantly more adhesive and invasive compared with CC9 and CC218 strains, although these last CCs presented the same accessory virulence genes. No statistically significant difference was found comparing CC218 with CC9 strains. This study provided for the first time data on the in vitro adhesiveness and invasiveness of CC218-ST2801 and added more data on the virulence characteristics of CC1 and CC9. What we observed confirmed that the ability of Lm to adhere to and invade human cells in vitro is not always decipherable from its virulence gene profile.
Collapse
Affiliation(s)
- Giuditta Fiorella Schiavano
- Dipartimento di Studi Umanistici, Università degli Studi di Urbino "Carlo Bo", Via Bramante, 17, 61029 Urbino, Italy
| | - Fabrizia Guidi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Laboratorio Nazionale di Riferimento per Listeria Monocytogenes, Via Campo Boario, 64100 Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Laboratorio Nazionale di Riferimento per Listeria Monocytogenes, Via Campo Boario, 64100 Teramo, Italy
| | - Giorgio Brandi
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Via Santa Chiara, 27, 61029 Urbino, Italy
| | - Romolo Salini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Centro Operativo Veterinario per l'Epidemiologia, Programmazione, Informazione e Analisi del Rischio (COVEPI), National Reference Center for Veterinary Epidemiology, Via Campo Boario, 64100 Teramo, Italy
| | - Giulia Amagliani
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Via Santa Chiara, 27, 61029 Urbino, Italy
| | - Gabriella Centorotola
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Laboratorio Nazionale di Riferimento per Listeria Monocytogenes, Via Campo Boario, 64100 Teramo, Italy
| | - Francesco Palma
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Via Santa Chiara, 27, 61029 Urbino, Italy
| | - Martina Felici
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Via Santa Chiara, 27, 61029 Urbino, Italy
| | - Cinzia Lorenzetti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| | - Giuliana Blasi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| |
Collapse
|
25
|
Gędas A, Draszanowska A, den Bakker H, Diez-Gonzalez F, Simões M, Olszewska MA. Prevention of surface colonization and anti-biofilm effect of selected phytochemicals against Listeria innocua strain. Colloids Surf B Biointerfaces 2023; 228:113391. [PMID: 37290199 DOI: 10.1016/j.colsurfb.2023.113391] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
This work aimed to determine the ability of Listeria innocua (L.i.) to colonize eight materials found in food-processing and packaging settings and to evaluate the viability of the sessile cells. We also selected four commonly used phytochemicals (trans-cinnamaldehyde, eugenol, citronellol, and terpineol) to examine and compare their efficacies against L.i. on each surface. Biofilms were also deciphered in chamber slides using confocal laser scanning microscopy to learn more about how phytochemicals affect L.i. The materials tested were silicone rubber (Si), polyurethane (PU), polypropylene (PP), polytetrafluoroethylene (PTFE), stainless steel 316 L (SS), copper (Cu), polyethylene terephthalate (PET), and borosilicate glass (GL). L.i. colonized Si and SS abundantly, followed by PU, PP, Cu, PET, GL, and PTFE surfaces. The live/dead status ranged from 65/35% for Si to 20/80% for Cu, and the estimates of cells unable to grow on Cu were the highest, reaching even 43%. Cu was also characterized by the highest degree of hydrophobicity (ΔGTOT = -81.5 mJ/m2). Eventually, it was less prone to attachment, as we could not recover L.i. after treatments with control or phytochemical solutions. The PTFE surface demonstrated the least total cell densities and fewer live cells (31%) as compared to Si (65%) or SS (nearly 60%). It also scored high in hydrophobicity degree (ΔGTOT = -68.9 mJ/m2) and efficacy of phytochemical treatments (on average, biofilms were reduced by 2.1 log10 CFU/cm2). Thus, the hydrophobicity of surface materials plays a role in cell viability, biofilm formation, and then biofilm control and could be the prevailing parameter when designing preventive measures and interventions. As for phytochemical comparison, trans-cinnamaldehyde displayed greater efficacies, with the highest reductions seen on PET and Si (4.6 and 4.0 log10 CFU/cm2). The biofilms in chamber slides exposed to trans-cinnamaldehyde revealed the disrupted organization to a greater extent than other molecules. This may help establish better interventions via proper phytochemical selection for incorporation in environment-friendly disinfection approaches.
Collapse
Affiliation(s)
- Astrid Gędas
- Department of Industrial and Food Microbiology, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Anna Draszanowska
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45 f, 10-709 Olsztyn, Poland
| | - Henk den Bakker
- Center for Food Safety, College of Agriculture and Environmental Sciences, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA
| | - Francisco Diez-Gonzalez
- Center for Food Safety, College of Agriculture and Environmental Sciences, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA
| | - Manuel Simões
- ALiCE, Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Magdalena A Olszewska
- Department of Industrial and Food Microbiology, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland.
| |
Collapse
|
26
|
Vishnuraj MR, Ajay G, Aravind Kumar N, Renuka J, Pollumahanti N, Anusha Chauhan H, Vaithiyanathan S, Rawool DB, Barbuddhe SB. Duplex real-time PCR assay with high-resolution melt analysis for the detection and quantification of Listeria species and Listeria monocytogenes in meat products. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1541-1550. [PMID: 37033312 PMCID: PMC10076466 DOI: 10.1007/s13197-023-05695-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/30/2023] [Accepted: 02/12/2023] [Indexed: 03/05/2023]
Abstract
Listeria contamination in foods of animal origin is one of the most concerning food safety issues. A duplex, SYBR green-based, real-time PCR assay was developed with high-resolution melting analysis-based differentiation of the genus Listeria and Listeria monocytogenes. The primers were designed and tested against other related foodborne pathogens. The assay was optimized for standard parameters in a non-orthogonal fashion and validated following international standards. The LODabs and LOQ of the assay were calculated to be 0.78 and 1.56 ng of the target DNA. The LODrel of the assay was found to be 1% Listeria DNA in background DNA. The assay was evaluated for applicability in artificially spiked samples, providing a 120 CFU/ml detection. The assay was validated with proficiency test samples and also with samples collected for surveillance analysis. This well-established and validated assay can be utilized as a qualitative and quantitative tool for addressing the Listeria contamination in the food safety contexts. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05695-2.
Collapse
Affiliation(s)
- M. R. Vishnuraj
- ICAR - National Meat Research Institute, Chengicherla, Hyderabad, 500092 India
| | - G. Ajay
- ICAR - National Meat Research Institute, Chengicherla, Hyderabad, 500092 India
| | - N. Aravind Kumar
- ICAR - National Meat Research Institute, Chengicherla, Hyderabad, 500092 India
| | - J. Renuka
- ICAR - National Meat Research Institute, Chengicherla, Hyderabad, 500092 India
| | | | - H. Anusha Chauhan
- ICAR - National Meat Research Institute, Chengicherla, Hyderabad, 500092 India
| | - S. Vaithiyanathan
- ICAR - National Meat Research Institute, Chengicherla, Hyderabad, 500092 India
| | - Deepak B. Rawool
- ICAR - National Meat Research Institute, Chengicherla, Hyderabad, 500092 India
| | - S. B. Barbuddhe
- ICAR - National Meat Research Institute, Chengicherla, Hyderabad, 500092 India
| |
Collapse
|
27
|
Makhunga SE, Macherera M, Hlongwana K. Food handlers' knowledge, attitudes and self-reported practices regarding safe food handling in charitable food assistance programmes in the eThekwini District, South Africa: cross-sectional study. BMJ Open 2023; 13:e065357. [PMID: 37185184 PMCID: PMC10151870 DOI: 10.1136/bmjopen-2022-065357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
OBJECTIVE This study aimed to assess food handlers' knowledge, attitudes and self-reported practices towards safer donated foods. DESIGN This cross-sectional study was conducted from January to May 2021. SETTING This study was conducted in the eThekwini District, South Africa. PARTICIPANTS A convenience sampling-based cross-sectional survey of food handlers (n=252) served as the study's main source of data. A total of eight study sites across five municipal planning regions of eThekwini District were visited. The principal investigator administered the validated structured standardised questionnaire, using participants' language of choice, which was either English or isiZulu. All the questions in the questionnaire were asked in exactly the same manner, following the same flow, in order to avoid bias and ensure consistency. Furthermore, the close-ended nature of questions in the questionnaire mitigated the risks of question manipulation. The questionnaire was adapted from the WHO's five keys to a safer food manual. PRIMARY AND SECONDARY OUTCOME MEASURES The primary outcome was the knowledge, attitudes and self-reported practices towards safer donated foods. The secondary outcomes were the sanitary conditions of infrastructure and facilities, food handlers' observed food handling behaviour and nutritional information/labelling. RESULTS The results show that the food handlers had good knowledge, positive attitude and acceptable behaviours towards safe food handling and general hygiene, with mean scores (SD) of 62.8 (14.6), 92.5 (14.1) and 80.4 (13.3), respectively. Significant correlations were found between knowledge and attitudes (p=0001), knowledge and practices (p<0001), and attitudes and practices (p=0.02). However, the correlations between knowledge versus attitude and attitude versus practice were poor (Spearman's r<0.3), and the association between knowledge versus practice was moderate (0.3-0.7). The majority of food handlers (92.5%) did not understand the value of thorough cooking and temperature control. About 53% of respondents acknowledged to never adequately reheating cooked meals, 5% did not see the significance of preventing cross-contamination and 5% were unsure. CONCLUSIONS Despite the relatively positive knowledge, attitude and practice levels of the food handlers, safe food handling and hygiene practices, such as thorough cooking and temperature control, properly reheating cooked meals and taking precautions to prevent cross-contamination, require some emphasis.
Collapse
Affiliation(s)
- Sizwe Earl Makhunga
- Public Health, University of KwaZulu-Natal College of Health Sciences, Durban, KwaZulu-Natal, South Africa
| | - Margaret Macherera
- Department of Crop and Soil Sciences, Lupane State University, Bulawayo, Zimbabwe
| | - Khumbulani Hlongwana
- Public Health, University of KwaZulu-Natal College of Health Sciences, Durban, KwaZulu-Natal, South Africa
- Cancer and Infectious Diseases Epidemiology Research Unit (CIDERU), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
28
|
A review of potential antibacterial activities of nisin against Listeria monocytogenes: the combined use of nisin shows more advantages than single use. Food Res Int 2023; 164:112363. [PMID: 36737951 DOI: 10.1016/j.foodres.2022.112363] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen causing serious public health problems. Nisin is a natural antimicrobial agent produced by Lactococcus lactis and widely used in the food industry. However, the anti-L. monocytogenes efficiency of nisin might be decreased due to natural or acquired resistance of L. monocytogenes to nisin, or complexity of the food environment. The limitation of nisin as a bacteriostatic agent in food could be improved using a combination of methods. In this review, the physiochemical characteristics, species, bioengineered mutants, and antimicrobial mechanism of nisin are reviewed. Strategies of nisin combined with other antibacterial methods, including physical, chemical, and natural substances, and nanotechnology to enhance antibacterial effect are highlighted and discussed. Additionally, the antibacterial efficiency of nisin applied in real meat, dairy, and aquatic products is evaluated and analyzed. Among the various binding treatments, the combination with natural substances is more effective than the combination with physical and chemical methods. However, the combination of nisin and nanotechnology has more potential in terms of the impact on food quality.
Collapse
|
29
|
Hyla K, Dusza I, Skaradzińska A. Recent Advances in the Application of Bacteriophages against Common Foodborne Pathogens. Antibiotics (Basel) 2022; 11:1536. [PMID: 36358191 PMCID: PMC9686946 DOI: 10.3390/antibiotics11111536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 02/13/2024] Open
Abstract
Bacteriophage potential in combating bacterial pathogens has been recognized nearly since the moment of discovery of these viruses at the beginning of the 20th century. Interest in phage application, which initially focused on medical treatments, rapidly spread throughout different biotechnological and industrial fields. This includes the food safety sector in which the presence of pathogens poses an explicit threat to consumers. This is also the field in which commercialization of phage-based products shows the greatest progress. Application of bacteriophages has gained special attention particularly in recent years, presumably due to the potential of conventional antibacterial strategies being exhausted. In this review, we present recent findings regarding phage application in fighting major foodborne pathogens, including Salmonella spp., Escherichia coli, Yersinia spp., Campylobacter jejuni and Listeria monocytogenes. We also discuss advantages of bacteriophage use and challenges facing phage-based antibacterial strategies, particularly in the context of their widespread application in food safety.
Collapse
Affiliation(s)
| | | | - Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| |
Collapse
|
30
|
Vidovic S, Paturi G, Gupta S, Fletcher GC. Lifestyle of Listeria monocytogenes and food safety: Emerging listericidal technologies in the food industry. Crit Rev Food Sci Nutr 2022; 64:1817-1835. [PMID: 36062812 DOI: 10.1080/10408398.2022.2119205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Listeria monocytogenes, a causative agent of listeriosis, is a major foodborne pathogen. Among pathogens, L. monocytogenes stands out for its unique ecological and physiological characteristics. This distinct lifestyle of L. monocytogenes has a significant impact on food safety and public health, mainly through the ability of this pathogen to multiply at refrigeration temperature and to persist in the food processing environment. Due to a combination of these characteristics and emerging trends in consumer preference for ready-to-eat and minimally processed food, there is a need to develop effective and sustainable approaches to control contamination of food products with L. monocytogenes. Implementation of an efficient and reliable control strategy for L. monocytogenes must first address the problem of cross-contamination. Besides the preventive control strategies, cross-contamination may be addressed with the introduction of emerging post packaging non-thermal or thermal hurdles that can ensure delivery of a listericidal step in a packed product without interfering with the organoleptic characteristics of a food product. This review aims to present the most relevant findings underlying the distinct lifestyle of L. monocytogenes and its impact on food safety. We also discuss emerging food decontamination technologies that can be used to better control L. monocytogenes.
Collapse
Affiliation(s)
- Sinisa Vidovic
- Food Safety Preservation Team, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Gunaranjan Paturi
- Food Safety Preservation Team, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Sravani Gupta
- Food Safety Preservation Team, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Graham C Fletcher
- Food Safety Preservation Team, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
31
|
Kaptchouang Tchatchouang CD, Fri J, Montso PK, Amagliani G, Schiavano GF, Manganyi MC, Baldelli G, Brandi G, Ateba CN. Evidence of Virulent Multi-Drug Resistant and Biofilm-Forming Listeria Species Isolated from Various Sources in South Africa. Pathogens 2022; 11:pathogens11080843. [PMID: 36014964 PMCID: PMC9416180 DOI: 10.3390/pathogens11080843] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023] Open
Abstract
Listeriosis is a foodborne disease caused by Listeria monocytogenes species and is known to cause severe complications, particularly in pregnant women, young children, the elderly, and immunocompromised individuals. The aim of this study was to investigate the presence of Listeria species in food and water using both biochemical and species-specific PCR analysis. L. monocytogenes isolates were further screened for the presence of various antibiotic resistance, virulence, and biofilm-forming determinants profiles using phenotypic and genotypic assays. A total of 207 samples (composed of meat, milk, vegetables, and water) were collected and analyzed for presence of L. monocytogenes using species specific PCR analysis. Out of 267 presumptive isolates, 53 (19.85%) were confirmed as the Listeria species, and these comprised 26 L. monocytogenes, 3 L. innocua, 2 L. welshimeri, and 1 L. thailandensis. The remaining 21 Listeria species were classified as uncultured Listeria, based on 16SrRNA sequence analysis results. A large proportion (76% to 100%) of the L. monocytogenes were resistant to erythromycin (76%), clindamycin (100%), gentamicin (100%), tetracycline (100%), novobiocin (100%), oxacillin (100%), nalidixic acid (100%), and kanamycin (100%). The isolates revealed various multi-drug resistant (MDR) phenotypes, with E-DA-GM-T-NO-OX-NA-K being the most predominant MDR phenotypes observed in the L. monocytogenes isolates. The virulence genes prfA, hlyA, actA, and plcB were detected in 100%, 68%, 56%, and 20% of the isolates, respectively. In addition, L. monocytogenes isolates were capable of forming strong biofilm at 4 °C (%) after 24 to 72 h incubation periods, moderate for 8% isolates at 48 h and 20% at 72 h (p < 0.05). Moreover, at 25 °C and 37 °C, small proportions of the isolates displayed moderate (8−20%) biofilm formation after 48 and 72 h incubation periods. Biofilm formation genes flaA and luxS were detected in 72% and 56% of the isolates, respectively. These findings suggest that proper hygiene measures must be enforced along the food chain to ensure food safety.
Collapse
Affiliation(s)
- Christ-Donald Kaptchouang Tchatchouang
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
| | - Justine Fri
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
| | - Peter Kotsoana Montso
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
| | - Giulia Amagliani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (G.A.); (G.B.); (G.B.)
| | | | - Madira Coutlyne Manganyi
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University, Mthatha 5117, South Africa;
| | - Giulia Baldelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (G.A.); (G.B.); (G.B.)
| | - Giorgio Brandi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (G.A.); (G.B.); (G.B.)
| | - Collins Njie Ateba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
- Correspondence: ; Tel.: +27-18-389-2247
| |
Collapse
|
32
|
Osei Tutu B, Laryea EB, Asante R, Darko DA. Evaluation of surveillance system for post market activities on pre-packaged foods in Greater Accra Region, Ghana, 2021. PUBLIC HEALTH IN PRACTICE 2022; 4:100292. [PMID: 36570390 PMCID: PMC9773048 DOI: 10.1016/j.puhip.2022.100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 12/27/2022] Open
Abstract
Objectives This evaluation was to assess the usefulness and attributes of the surveillance system for post market activities on pre-packaged foods in the Greater Accra Region of Ghana and also to determine if the systems objectives are being met. Methods A descriptive cross-sectional design was used for the evaluation. Data/records on Food Market Surveillance collected between 2018 and 2020 was reviewed and key stakeholders involved in the Food Market Surveillance interviewed using a semi-structured questionnaire. Surveillance operations were also observed. Quantitative data was analyzed using descriptive summary statistics. Information gathered from interviews were put under themes. Result Some policy decision taken were based on analysis of data from the surveillance system. The system is useful in detecting trends signaling changes on label of registered prepackage food products. The system can permit assessment of the compliance of levels of importers/manufacturers; however, such analysis was not done. The system involves single step notification and processing steps and can incorporate data from other systems. Some retailers perceived the system as a hindrance to business. Completion of notification forms takes 2-5 min and 1-5 working days to process and take regulatory action. The surveillance system had a data accuracy and completeness of 94.6% (194/205) and 94.1% (193/205) respectively with less than 0.1% (3/95) double entries. The system did not have any data validation process or team in place. Conclusion The system was partially meeting its intended objectives and found useful despite some gaps and challenges observed. The system is simple, flexible, accepted by most of the stakeholders and covers almost the entire districts in the Greater Accra Region. We recommend that data validation process or team be instituted to ensure reliability of data generated for policy and regulatory decisions.
Collapse
Affiliation(s)
- Benjamin Osei Tutu
- Food and Drugs Authority, Accra, Ghana,Ghana Field Epidemiology and Laboratory Training Programme (GFELTP), Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Legon, Accra, Ghana,Corresponding author. Food and Drugs Authority, Accra, Ghana.
| | - Eunice Baiden Laryea
- Ghana Field Epidemiology and Laboratory Training Programme (GFELTP), Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Legon, Accra, Ghana
| | - Rita Asante
- Food and Drugs Authority, Accra, Ghana,Ghana Field Epidemiology and Laboratory Training Programme (GFELTP), Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Legon, Accra, Ghana
| | | |
Collapse
|
33
|
Listeria monocytogenes post-outbreak management - When could a food production be considered under control again? Int J Food Microbiol 2022; 379:109844. [DOI: 10.1016/j.ijfoodmicro.2022.109844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 06/23/2022] [Accepted: 07/17/2022] [Indexed: 11/21/2022]
|
34
|
BABACAN O. Investigation of Escherichia coli O157 and Listeria monocytogenes presence and antibiotic susceptibility isolated from ruminant feces and feeds in Balikesir province. ANKARA ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2022. [DOI: 10.33988/auvfd.1007572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this study, which was conducted for the first time in Balıkesir, it was purposed to determine the existense, virulence factors and antibiotic susceptibility of Escherichia coli O157, which is zoonotic in ruminant feces and feed, and the pathogen Listeria monocytogenes, which causes diseases in humans and animals, and to use these results as epidemiological data in our province, region and country. Feces and animal feed samples were analyzed simultaneously for in order of E. coli O157 and L. Monocytogenes according to ISO 16654: 2001 / Amd 1: 2017 and ISO 11290-1. 38 E.coli O157 was isolated from a total of one hunderd stool samples. 18 L. monocytogenes were isolated from a total of one hunderd stool samples. 6 L. monocytogenes were isolated from 50 silage samples. Three of these isolates were isolated from faeces and silage samples taken from the same farm with L. monocytogenes isolates isolated from sheep feces. E. coli O157 could not be isolated from a total of 100 silage and feed samples. All L. monocytogenes isolates were susceptible to sulfamethoxazole / trimethoprim, tetracycline, streptomycin, meropenem and erythromycin. The highest resistance was detected against Sulbactam / ampicillin. 3 E. coli O157 isolates were found resistant to Gentamicin and 7 isolates to Tobramycin. 21 isolates were resistant to erythromycin, and 12 isolates were intermediate. According to PCR results of fliCH7, Stx1, Stx2, eaeA and EhlyA genes, EhlyA gene was found in 20 E. coli O157 isolates. Of these isolates, 4 were isolated from sheep feces and 16 from calf feces. The stx1 gene was found in a total of 5 E. coli O157 isolates, one from sheep feces and four from calf feces. EhlyA gene was also found in all isolates with stx1 gene. The stx2 gene was found in a total of 3 E. coli O157 isolates, one from sheep dung and two from calf dung. Intimin gene was found in 8 E. coli O157 isolates, two of which are sheep faeces and six calf faecal isolates. EhlyA gene was found in all isolates with intimin gene. In this study, enterohaemolysin is the predominant virulence factor among the isolates. Epidemiologically, silage was thought to be the main source of L. monocytogenes contamination, and recently, silage contamination continued in Balikesir.
Collapse
Affiliation(s)
- Orkun BABACAN
- BALIKESİR ÜNİVERSİTESİ, KEPSUT MESLEK YÜKSEKOKULU, VETERİNERLİK BÖLÜMÜ
| |
Collapse
|
35
|
Acciari VA, Ruolo A, Torresi M, Ricci L, Pompei A, Marfoglia C, Valente FM, Centorotola G, Conte A, Salini R, D'Alterio N, Migliorati G, Pomilio F. Genetic diversity of Listeria monocytogenes strains contaminating food and food producing environment as single based sample in Italy (retrospective study). Int J Food Microbiol 2022; 366:109562. [DOI: 10.1016/j.ijfoodmicro.2022.109562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
|
36
|
Ke Y, Ye L, Zhu P, Sun Y, Zhu Z. Listeriosis during pregnancy: a retrospective cohort study. BMC Pregnancy Childbirth 2022; 22:261. [PMID: 35346105 PMCID: PMC8962181 DOI: 10.1186/s12884-022-04613-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
Pregnancy-associated listeriosis is a severe infectious disease and potentially leads to fetal/neonatal fatal, while limited information on pregnancy-associated listeriosis is available in China. This study aimed to reveal the clinical characteristics and outcomes of pregnancy-associated listeriosis cases and provide references for treating and managing this disease.
Methods
We performed a retrospective study on maternal and neonatal patients with pregnancy-associated listeriosis. The clinical characteristics of pregnancy-associated listeriosis were studied, and the outcome determinants of neonatal listeriosis were explored.
Results
14 cases of pregnancy-associated listeriosis were identified. The incidence of pregnancy-associated listeriosis in our hospital was 16.69/100,000 births. All of the 14 maternal patients eventually recovered after delivery shortly with no sequelae. None of the 12 mothers who delivered in this hospital received antepartum first-line empirical treatment. Among the 14 neonatal cases, 1 was late-onset listeriosis and 13 were early-onset cases; 11 survived and 3 died. Fatality rates were significantly higher in outborn neonates (P = 0.005). Besides, higher mortality rates were observed in neonates with lower birth weight (P = 0.038), gestational age < 28 weeks (P = 0.056), and Apgar score (5th min) < 5 (P = 0.056), with marginally significant differences.
Conclusions
Pregnancy-associated listeriosis would bring disastrous effects to the neonatal cases, especially to the outborn, low birth weight, and low gestational age of neonates. Timely detection and treatment should be taken seriously for the key neonates. How to early detect L. monocytogenes infected cases, especially in the prenatal stage, remains a serious challenge.
Collapse
|
37
|
Lotoux A, Milohanic E, Bierne H. The Viable But Non-Culturable State of Listeria monocytogenes in the One-Health Continuum. Front Cell Infect Microbiol 2022; 12:849915. [PMID: 35372114 PMCID: PMC8974916 DOI: 10.3389/fcimb.2022.849915] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Many bacterial species, including several pathogens, can enter a so-called “viable but non-culturable” (VBNC) state when subjected to stress. Bacteria in the VBNC state are metabolically active but have lost their ability to grow on standard culture media, which compromises their detection by conventional techniques based on bacterial division. Under certain conditions, VBNC bacteria can regain their growth capacity and, for pathogens, their virulence potential, through a process called resuscitation. Here, we review the current state of knowledge of the VBNC state of Listeria monocytogenes (Lm), a Gram-positive pathogenic bacterium responsible for listeriosis, one of the most dangerous foodborne zoonosis. After a brief summary of characteristics of VBNC bacteria, we highlight work on VBNC Lm in the environment and in agricultural and food industry settings, with particular emphasis on the impact of antimicrobial treatments. We subsequently discuss recent data suggesting that Lm can enter the VBNC state in the host, raising the possibility that VBNC forms contribute to the asymptomatic carriage of this pathogen in wildlife, livestock and even humans. We also consider the resuscitation and virulence potential of VBNC Lm and the danger posed by these bacteria to at-risk individuals, particularly pregnant women. Overall, we put forth the hypothesis that VBNC forms contribute to adaptation, persistence, and transmission of Lm between different ecological niches in the One-Health continuum, and suggest that screening for healthy carriers, using alternative techniques to culture-based enrichment methods, should better prevent listeriosis risks.
Collapse
|
38
|
Bland R, Brown SRB, Waite-Cusic J, Kovacevic J. Probing antimicrobial resistance and sanitizer tolerance themes and their implications for the food industry through the Listeria monocytogenes lens. Compr Rev Food Sci Food Saf 2022; 21:1777-1802. [PMID: 35212132 DOI: 10.1111/1541-4337.12910] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
The development of antibiotic resistance is a serious public health crisis, reducing our ability to effectively combat infectious bacterial diseases. The parallel study of reduced susceptibility to sanitizers is growing, particularly for environmental foodborne pathogens, such as Listeria monocytogenes. As regulations demand a seek-and-destroy approach for L. monocytogenes, understanding sanitizer efficacy and its uses are critical for the food industry. Studies have reported the ability of L. monocytogenes to survive in sanitizer concentrations 10-1000 times lower than the manufacturer-recommended concentration (MRC). Notably, data show that at MRC and when applied according to the label instructions, sanitizers remain largely effective. Studies also report that variables such as the presence of organic material, application time/temperature, and bacterial attachment to surfaces can impact sanitizer effectiveness. Due to the lack of standardization in the methodology and definitions of sanitizer resistance, tolerance, and susceptibility, different messages are conveyed in different studies. In this review, we examine the diversity of definitions, terminology, and methodologies used in studies examining L. monocytogenes resistance and susceptibility to antimicrobials. Research available to date fails to demonstrate "resistance" of L. monocytogenes to recommended sanitizer treatments as prescribed by the label. As such, sanitizer tolerance would be a more accurate description of L. monocytogenes response to low sanitizer concentrations (i.e., sub-MRC). Conservative use of word "resistance" will reduce confusion and allow for concise messaging as sanitizer research findings are communicated to industry and regulators.
Collapse
Affiliation(s)
- Rebecca Bland
- Food Innovation Center, Oregon State University, Portland, Oregon, USA.,Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Stephanie R B Brown
- Food Innovation Center, Oregon State University, Portland, Oregon, USA.,Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Joy Waite-Cusic
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Jovana Kovacevic
- Food Innovation Center, Oregon State University, Portland, Oregon, USA.,Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
39
|
Geteneh A, Biset S, Tadesse S, Admas A, Seid A, Belay DM. A vigilant observation to pregnancy associated listeriosis in Africa: Systematic review and meta-analysis. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0001023. [PMID: 36962624 PMCID: PMC10021409 DOI: 10.1371/journal.pgph.0001023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022]
Abstract
The burden of human listeriosis, an emerging food-borne illness would be higher in Africa due to poor food processing practices. The severity of the disease and the high case fatality rate make human listeriosis an important public health problem. Besides, pregnant women and their fetuses are at higher risk of gaining human listeriosis. Thus, we planned to estimate the pooled prevalence of pregnancy-associated human listeriosis in Africa. Primary studies were exhaustively searched using PubMed, Cochrane, Web of Science, Google Scholar, and University of Gondar online research repository. Observational studies (cross-sectional) revealing the pregnancy-associated human listeriosis were incorporated. Eligible studies were selected and critically appraised for quality using the Joanna Briggs Institute (JBI) quality appraisal checklist. The required data were extracted and exported to Stata version 14 for meta-analysis. The pooled prevalence of pregnancy-associated human listeriosis in Africa was estimated using a weighted inverse random effect model. Sensitivity and sub-group analysis were conducted for evidence of heterogeneity. Among 639 reviewed articles, 5 articles were eligible with total study participants of 621. The pooled prevalence of pregnancy-associated listeriosis was found to be 5.17% (95% CI, 1.51, 8.82). The pooled level resistance of isolates was high. Cotrimoxazole and erythromycin were the relative choices of antibiotics for pregnancy-associated listeriosis in Africa. The burden of pregnancy-associated listeriosis in Africa was higher with an increased level of antibiotic resistance. Therefore, we recommend due attention to the deadly emerging disease in terms of health educations and the role of food hygiene particularly for risk groups, pregnant women. The antibiotics of choice should be after performing drug susceptibility test.
Collapse
Affiliation(s)
- Alene Geteneh
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Sirak Biset
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, University of Gondar, Gondar, Ethiopia
| | - Selamyhun Tadesse
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Alemale Admas
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Abdu Seid
- Department of Midwifery, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Demeke Mesfin Belay
- Department of Pediatrics and Child Health Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
40
|
Whole-Genome Sequencing Characterization of Virulence Profiles of Listeria monocytogenes Food and Human Isolates and In Vitro Adhesion/Invasion Assessment. Microorganisms 2021; 10:microorganisms10010062. [PMID: 35056510 PMCID: PMC8779253 DOI: 10.3390/microorganisms10010062] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022] Open
Abstract
Listeria monocytogenes (Lm) is the causative agent of human listeriosis. Lm strains have different virulence potential. For this reason, we preliminarily characterised via Whole-Genome Sequencing (WGS) some Lm strains for their key genomic features and virulence-associated determinants, assigning the clonal complex (CC). Moreover, the ability of the same strains to adhere to and invade human colon carcinoma cell line Caco-2, evaluating the possible correspondence with their genetic virulence profile, was also assessed. The clinical strains typed belonged to clonal complex (CC)1, CC31, and CC101 and showed a very low invasiveness. The Lm strains isolated from food were assigned to CC1, CC7, CC9, and CC121. All CC1 carried the hypervirulence pathogenicity island LIPI-3 in addition to LIPI-1. Premature stop codons in the inlA gene were found only in Lm of food origin belonging to CC9 and CC121. The presence of LIPI2_inlII was observed in all the CCs except CC1. The CC7 strain, belonging to an epidemic cluster, also carried the internalin genes inlG and inlL and showed the highest level of invasion. In contrast, the human CC31 strain lacked the lapB and vip genes and presented the lowest level of invasiveness. In Lm, the genetic determinants of hypo- or hypervirulence are not necessarily predictive of a cell adhesion and/or invasion ability in vitro. Moreover, since listeriosis results from the interplay between host and virulence features of the pathogen, even hypovirulent clones are able to cause infection in immunocompromised people.
Collapse
|
41
|
A systematic review of clean-label alternatives to synthetic additives in raw and processed meat with a special emphasis on high-pressure processing (2018-2021). Food Res Int 2021; 150:110792. [PMID: 34865807 DOI: 10.1016/j.foodres.2021.110792] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/11/2021] [Accepted: 10/24/2021] [Indexed: 01/03/2023]
Abstract
The meat industry is continuously facing challenges with food safety, and quality losses caused by thermal processing. This systematic review reports recent clean label approaches in high-pressure production of meat. A literature search was performed using Scopus, Web of Science, PubMed, and Springer databases for studies published in 2018-2021. In this regard, 69 articles were assessed out of 386 explored research articles in the identified stage. The findings indicate that most of the earlier work on high-pressure processing (HPP) focused on physicochemical and sensorial meat quality rather than providing nutritional aspects and clean-label solutions. However, few advanced studies report effective and innovative solutions to develop low salt/fat, and reduced nitrite for raw and cured meat products. HPP could help on increasing the shell life by five times in meat products; however, it depends on the formulation and packaging, etc. HPP can also preserve nutrients by using this non-thermal technology and reduce food waste as once the shelf life of products is known, it easily reduces the shrinkage in the marketplace. This review explores the latest trend of experimental research in high-pressure processing alone, or multi-hurdle techniques employed to increase the effect of clean-label ingredients for enhanced meat safety/quality.
Collapse
|
42
|
Li S, Xu X, Wei L, Wang L, Lv Q. Acacetin Alleviates Listeria monocytogenes Virulence Both In Vitro and In Vivo via the Inhibition of Listeriolysin O. Foodborne Pathog Dis 2021; 19:115-125. [PMID: 34809484 DOI: 10.1089/fpd.2021.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous Gram-positive foodborne pathogen that is responsible for listeriosis in both humans and several animal species. The bacterium secretes a pore-forming cholesterol-dependent cytolysin, listeriolysin O (LLO), a major virulence factor involved in the activation of cellular processes. The ability of LLO to lyse erythrocytes is a measure of LLO activity. We used hemolytic activity assay to screen the LLO inhibitors. Acacetin was found to be an LLO inhibitor, which is a di-hydroxy and mono-methoxy flavone present in various plants, including Black locust, Damiana, and Silver birch. As the features of acacetin are of low toxicity and have less acquired resistance, it comes to a hotspot in drug development. In our study, we report that acacetin antagonized the hemolytic activity of L. monocytogenes culture supernatants and purified LLO by directly interfering with the formation of oligomers without inhibiting the bacterial growth and the expression of LLO. Acacetin also relieved the injury of alveolar epithelial cells by inhibiting LLO activity. Further, acacetin significantly promoted the clearance of L. monocytogenes and alleviated the histopathological damage, thereby raising survival rate, which conferred mice with effective protection against L. monocytogenes infection. Using molecular docking and dynamics simulation, we further proved the mechanism of acacetin antagonizing LLO pore-forming activity by direct binding to the second membrane-inserting helix bundle (HB2) of LLO domain 3. These data suggested that acacetin recedes the virulence of L. monocytogenes both in vivo and in vitro, and this study provided a promising candidate and potential alternative for the prevention and treatment of L. monocytogenes infections.
Collapse
Affiliation(s)
- Shufang Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiangzhu Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lijuan Wei
- Laigang Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qianghua Lv
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
43
|
Shi C, Lv D, Zhou K, Jin T, Wang G, Wang B, Li Y, Xu Y. Clinical and Laboratory Characteristics of Patients infected by Listeria monocytogenes at a Tertiary Hospital in Hefei City, China. Infect Drug Resist 2021; 14:4409-4419. [PMID: 34729017 PMCID: PMC8555528 DOI: 10.2147/idr.s334929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/13/2021] [Indexed: 12/03/2022] Open
Abstract
Background Human listeriosis is a severe foodborne infection caused by Listeria monocytogenes and the data of patients with this infection are largely limited for the Hefei population. Purpose This is a retrospective study that evaluated the clinical and laboratory data of patients with listeriosis at a tertiary hospital in Hefei City. Patients and Methods A total of 24 listeriosis patients were admitted to the First Affiliated Hospital of Anhui Medical University from January 2003 to July 2021. Data from all patients were collected from the hospital’s electronic medical records. Results The most common symptom of all patients was fever (91.7%), followed by altered consciousness (50.0%), rashes (45.8%), respiratory distress symptoms (37.5%), nuchal rigidity (29.2%), and headaches (20.8%). Laboratory results also indicated elevated C-reactive protein (CRP) (79.1%), hypoproteinemia (75.0%), anemia (62.5%), leukocytosis (45.8%), and neutrophilia (45.8%). The mean value of 5.1 μg/mL (SD, 3.8) for D‐dimer (D‐D) was significantly higher than the normal value ((0.00–0.50) μg/mL), while both altered consciousness (6 vs 4, P = 0.034) and headaches (4 vs 1, P = 0.036) occurred more frequently in the neurolisteriosis group compared with the bacteremia one. Additionally, the mean maximal body temperature (°C) (40.5 ± 0.7) as well as white blood cell (WBC) (15.3 vs 7.5 ×109/L, P = 0.014) and neutrophil (NEUT#) (13.2 vs 6.1 ×109/L, P = 0.026) counts of neurolisteriosis patients were higher than those of bacteremia (39.4 ± 0.4) (P = 0.001). Of all patients, four (50%) from the maternal-neonatal group remained uncured. Conclusion Listeriosis is a rare disease with extremely variable clinical characteristics in Hefei City. Our data indicated that unexplained fever, altered consciousness, hypoproteinemia, anemia, elevated CRP and DD should be considered to assist diagnosis of listeriosis for early treatment interventions.
Collapse
Affiliation(s)
- Cuixiao Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Dongmei Lv
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Kai Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Tengchuan Jin
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Gang Wang
- The Second Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Bo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Yajuan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| |
Collapse
|
44
|
Barbuddhe SB, Rawool DB, Doijad SP, Vergis J, Malik SS, Chakraborty T. Ecology of Listeria monocytogenes and Listeria species in India: the occurrence, resistance to biocides, genomic landscape and biocontrol. Environ Microbiol 2021; 24:2759-2780. [PMID: 34693631 DOI: 10.1111/1462-2920.15819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/28/2022]
Abstract
Listeria monocytogenes, the causative agent of listeriosis, has been implicated in increasing foodborne outbreaks worldwide. The disease is manifested in various forms ranging from severe sepsis in immune-compromised individuals, febrile gastroenteritis, still birth, abortions and meningoencephalitis. In India, data from studies on the detection and molecular epidemiological analysis of L. monocytogenes are only recently emerging. The presence of Listeria in different ecological niches has been recorded from India, including foods, soil, vegetables, mangrove swamps, seafood, freshwater fishes, clinical cases, and also insects. The organism has also been isolated from women with spontaneous abortions, miscarriage or recurrent obstetric history, aborted foetuses, animal clinical cases and wildlife samples. A novel species of Listeria has also been characterized. Listeria monocytogenes strains isolated from clinical, environmental, and foods showed biofilm-forming abilities. Listeria monocytogenes serotype 4b isolates of ST328, a predominant and unique ST observed in India, was repeatedly isolated from different sources, times, and geographical locations. Here, we reviewed the occurrence of Listeria in different sources in India, its resistance to biocides, and provide epidemiological analysis on its genomic landscape.
Collapse
Affiliation(s)
| | - Deepak Bhiwa Rawool
- ICAR- National Research Centre on Meat, Chengicherla, Hyderabad, Telangana, 500092, India
| | - Swapnil Prakash Doijad
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, 35392, Germany.,German Center for Infection Research (DZIF), Giessen, 35392, Germany
| | - Jess Vergis
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, Kerala, 673576, India
| | - Satyaveer Singh Malik
- Division of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243122, India
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, 35392, Germany.,German Center for Infection Research (DZIF), Giessen, 35392, Germany
| |
Collapse
|
45
|
Prevalence and characteristics of Listeria species from selected African countries. TROPICAL DISEASES TRAVEL MEDICINE AND VACCINES 2021; 7:26. [PMID: 34521480 PMCID: PMC8442394 DOI: 10.1186/s40794-021-00151-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/11/2021] [Indexed: 11/10/2022]
Abstract
Listeriosis, caused by Listeria spp., presents varying clinical manifestations among individuals, from moderate fecal infections such as diarrhea to severe infections such as septicemia, meningitis and abortion or newborn listeriosis in perinatal patients. In Africa, listeriosis is attributed to poor sanitation and cross-contamination in food processing environments, particularly ready to eat (RTE) foods including dairy products, leafy vegetables, fish and meat. Despite the global increase in reported cases and research on listeriosis, data from Africa remains scarce and this could lead to possible underestimation of the importance of listeriosis on the continent. This paper therefore presents a comprehensive overview of currently available reports on Listeria spp. in Africa with emphasis on molecular characteristics, antimicrobial susceptibility, and prevalence in food, animal and environmental samples. The majority of studies on Listeria spp. in Africa have so far focused on the prevalence and antibiotic susceptibility of L. monocytogenes isolated from RTE foods and raw meat but rarely from humans, animals, and the environment. The overall calculated average prevalence values from the available reports are 23.7 and 22.2% for Listeria spp. and L. monocytogenes, respectively. Listeria spp. isolated from different parts of Africa are generally sensitive to ciprofloxacin, but resistant to penicillin. The majority of these studies employed conventional culture and biochemical tests to characterize Listeria spp. However, the use of modern molecular techniques such as PCR and whole-genome sequencing is on the rise. Most of the studies employing molecular tools were carried out in South Africa and Nigeria, with the predominant strain reported in South Africa being ST6. In order to provide a better understanding of the importance of listeria in Africa, there is the need for extensive and coordinated studies using modern molecular-based techniques to characterize the various Listeria species, and to assess the disease epidemiology using the one health concept.
Collapse
|
46
|
Manganyi MC, Tlatsana GS, Mokoroane GT, Senna KP, Mohaswa JF, Ntsayagae K, Fri J, Ateba CN. Bulbous Plants Drimia: "A Thin Line between Poisonous and Healing Compounds" with Biological Activities. Pharmaceutics 2021; 13:1385. [PMID: 34575461 PMCID: PMC8465487 DOI: 10.3390/pharmaceutics13091385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022] Open
Abstract
Drimia (synonym Urginea) plants are bulbous plants belonging to the family Asparagaceae (formerly the family Hyacinthaceae) and are distinctive, powerful medicinal plants. Just some species are indigenous to South Africa and have been traditionally utilized for centuries to cure various diseases and/or ailments. They have been recognized among the most famous and used medicinal plants in South Africa. Traditionally, the plants are used for various illnesses such as dropsy, respiratory disease, bone and joint complications, skin disorders, epilepsy and cancer. A number of studies have reported biological properties such as antiviral, antibacterial, antioxidant and anti-inflammatory, immunomodulatory, and anticancer activities. Their bulbs are a popular treatment for colds, measles, pneumonia, coughs, fever and headaches. However, some plant species are regarded as one of the six most common poisonous plants in Southern Africa that are toxic to livestock and humans. Due to the therapeutic effects of the Drimia plant bulb, research has focused on the phytochemicals of Drimia species. The principal constituents isolated from this genus are cardiac glycosides. In addition, phenolic compounds, phytosterols and other phytochemical constituents were identified. This study constitutes a critical review of Drimia species' bioactive compounds, toxicology, biological properties and phytochemistry, advocating it as an important source for effective therapeutic medicine. For this purpose, various scientific electronic databases such as ScienceDirect, Scopus, Google Scholar, PubMed and Web of Science were researched and reviewed to conduct this study. Despite well-studied biological investigations, there is limited research on the toxic properties and the toxic compounds of certain Drimia species. Searching from 2017 to 2021, Google Scholar search tools retrieved 462 publications; however, only 3 investigated the toxicity and safety aspects of Drimia. The aim was to identify the current scientific research gap on Drimia species, hence highlighting a thin line between poisonous and healing compounds, dotted across numerous publications, in this review paper.
Collapse
Affiliation(s)
- Madira Coutlyne Manganyi
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University, PBX1, Mthatha 5117, South Africa
| | - Gothusaone Simon Tlatsana
- Department of Microbiology, Mafikeng Campus, North West University, Mmabatho 2735, South Africa; (G.S.T.); (G.T.M.); (K.P.S.); (J.F.M.); (K.N.); (J.F.)
| | - Given Thato Mokoroane
- Department of Microbiology, Mafikeng Campus, North West University, Mmabatho 2735, South Africa; (G.S.T.); (G.T.M.); (K.P.S.); (J.F.M.); (K.N.); (J.F.)
| | - Keamogetswe Prudence Senna
- Department of Microbiology, Mafikeng Campus, North West University, Mmabatho 2735, South Africa; (G.S.T.); (G.T.M.); (K.P.S.); (J.F.M.); (K.N.); (J.F.)
| | - John Frederick Mohaswa
- Department of Microbiology, Mafikeng Campus, North West University, Mmabatho 2735, South Africa; (G.S.T.); (G.T.M.); (K.P.S.); (J.F.M.); (K.N.); (J.F.)
| | - Kabo Ntsayagae
- Department of Microbiology, Mafikeng Campus, North West University, Mmabatho 2735, South Africa; (G.S.T.); (G.T.M.); (K.P.S.); (J.F.M.); (K.N.); (J.F.)
| | - Justine Fri
- Department of Microbiology, Mafikeng Campus, North West University, Mmabatho 2735, South Africa; (G.S.T.); (G.T.M.); (K.P.S.); (J.F.M.); (K.N.); (J.F.)
| | - Collins Njie Ateba
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa;
| |
Collapse
|
47
|
Malla BA, Ramanjeneya S, Vergis J, Malik SS, Barbuddhe SB, Rawool DB. Comparison of recombinant and synthetic listeriolysin- O peptide- based indirect ELISA vis-à-vis cultural isolation for detection of listeriosis in caprine and ovine species. J Microbiol Methods 2021; 188:106278. [PMID: 34246691 DOI: 10.1016/j.mimet.2021.106278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
The present study evaluated the comparative serodiagnostic efficacy of recombinant listeriolysin-O (rLLO) and synthetic LLO- 2 peptide-based indirect ELISA vis-à-vis cultural isolation using samples (n = 1326; blood, sera, vaginal swabs, and rectal swabs) collected from caprines (n = 350) and ovines (n = 50) having reproductive and/or nervous system disorders and/or healthy animals. On screening the test sera by rLLO- based ELISA, the antibodies against LLO (ALLO) were observed in 17.71% of the caprines and 2% of the ovines, respectively, while synthetic LLO-2- based ELISA revealed ALLO in 6.86% of caprines and not in ovines. Moreover, the adsorption of positive test sera with streptolysin-O (SLO) resulted in a significant reduction (7.43%; p < 0.05) in the seropositivity with rLLO- based ELISA, whereas LLO-2- based ELISA revealed marginal reduction (4.29%; p > 0.05) in the seropositivity. Overall, the seropositivity with LLO-2 synthetic peptide revealed comparatively less cross-reactivity in comparison to rLLO. The cultural isolation yielded five pathogenic L. monocytogenes isolates and three non-pathogenic Listeria spp. from caprine samples; however, Listeria spp. could not be recovered from any of the ovine samples. Further, on comparing seropositivity with the isolation study results, it was found that two out of the five animals from which pathogenic L. monocytogenes isolated were also found seropositive in both the ELISAs even after adsorption with SLO. Interestingly, rLLO- based ELISA detected antibodies against unadsorbed caprine sera even in those samples from which non-pathogenic Listeria spp. were isolated, whereas antibodies were not detected in LLO-2 peptide-based ELISA. In conclusion, it could be inferred that the synthetic LLO-2 peptide serves as a non- cross-reactive, ideal diagnostic antigen in serodiagnosis of capro-ovine listeriosis.
Collapse
Affiliation(s)
- Bilal Ahmad Malla
- Division of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India
| | - Sunitha Ramanjeneya
- Division of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India
| | - Jess Vergis
- Division of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India
| | - Satyaveer Singh Malik
- Division of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India
| | | | - Deepak Bhiwa Rawool
- Division of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India; ICAR- National Research Centre on Meat, Chengicherla, Hyderabad 500 092, India.
| |
Collapse
|
48
|
Zwirzitz B, Wetzels SU, Dixon ED, Fleischmann S, Selberherr E, Thalguter S, Quijada NM, Dzieciol M, Wagner M, Stessl B. Co-Occurrence of Listeria spp. and Spoilage Associated Microbiota During Meat Processing Due to Cross-Contamination Events. Front Microbiol 2021; 12:632935. [PMID: 33613505 PMCID: PMC7892895 DOI: 10.3389/fmicb.2021.632935] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/13/2021] [Indexed: 12/27/2022] Open
Abstract
A large part of foodborne outbreaks related to Listeria monocytogenes are linked to meat and meat products. Especially, recontamination of meat products and deli-meat during slicing, packaging, and repackaging is in the focus of food authorities. In that regard, L. monocytogenes persistence in multi-species biofilms is one major issue, since they survive elaborate cleaning and disinfection measures. Here, we analyzed the microbial community structure throughout a meat processing facility using a combination of high-throughput full-length 16S ribosomal RNA (rRNA) gene sequencing and traditional microbiological methods. Samples were taken at different stages during meat cutting as well as from multiple sites throughout the facility environment to capture the product and the environmental associated microbiota co-occurring with Listeria spp. and L. monocytogenes. The listeria testing revealed a widely disseminated contamination (50%; 88 of 176 samples were positive for Listeria spp. and 13.6%; 24 of 176 samples were positive for L. monocytogenes). The pulsed-field gel electrophoresis (PFGE) typing evidenced 14 heterogeneous L. monocytogenes profiles with PCR-serogroup 1/2a, 3a as most dominant. PFGE type MA3-17 contributed to the resilient microbiota of the facility environment and was related to environmental persistence. The core in-house microbiota consisted mainly of the genera Acinetobacter, Pseudomonas, Psychrobacter (Proteobacteria), Anaerobacillus, Bacillus (Firmicutes), and Chryseobacterium (Bacteroidota). While the overall microbial community structure clearly differed between product and environmental samples, we were able to discern correlation patterns regarding the presence/absence of Listeria spp. in both sample groups. Specifically, our longitudinal analysis revealed association of Listeria spp. with known biofilm-producing Pseudomonas, Acinetobacter, and Janthinobacterium species on the meat samples. Similar patterns were also observed on the surface, indicating dispersal of microorganisms from this multispecies biofilm. Our data provided a better understanding of the built environment microbiome in the meat processing context and promoted more effective options for targeted disinfection in the analyzed facility.
Collapse
Affiliation(s)
- Benjamin Zwirzitz
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
| | - Stefanie U. Wetzels
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
| | - Emmanuel D. Dixon
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Svenja Fleischmann
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Evelyne Selberherr
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Sarah Thalguter
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Narciso M. Quijada
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
| | - Monika Dzieciol
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Martin Wagner
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
| | - Beatrix Stessl
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
49
|
AlMasoud N, Muhamadali H, Chisanga M, AlRabiah H, Lima CA, Goodacre R. Discrimination of bacteria using whole organism fingerprinting: the utility of modern physicochemical techniques for bacterial typing. Analyst 2021; 146:770-788. [DOI: 10.1039/d0an01482f] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review compares and contrasts MALDI-MS, FT-IR spectroscopy and Raman spectroscopy for whole organism fingerprinting and bacterial typing.
Collapse
Affiliation(s)
- Najla AlMasoud
- Department of Chemistry
- College of Science
- Princess Nourah bint Abdulrahman University
- Riyadh 11671
- Saudi Arabia
| | - Howbeer Muhamadali
- Department of Biochemistry and Systems Biology
- Institute of Systems
- Molecular and Integrative Biology
- University of Liverpool
- Liverpool L69 7ZB
| | - Malama Chisanga
- School of Chemistry and Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| | - Haitham AlRabiah
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Saudi Arabia
| | - Cassio A. Lima
- Department of Biochemistry and Systems Biology
- Institute of Systems
- Molecular and Integrative Biology
- University of Liverpool
- Liverpool L69 7ZB
| | - Royston Goodacre
- Department of Biochemistry and Systems Biology
- Institute of Systems
- Molecular and Integrative Biology
- University of Liverpool
- Liverpool L69 7ZB
| |
Collapse
|
50
|
Effectiveness of Phage-Based Inhibition of Listeria monocytogenes in Food Products and Food Processing Environments. Microorganisms 2020; 8:microorganisms8111764. [PMID: 33182551 PMCID: PMC7697088 DOI: 10.3390/microorganisms8111764] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 02/07/2023] Open
Abstract
Providing safe products and compliance of legal requirements is still a great challenge for food manufacturers regarding microbiological safety, especially in the context of Listeria monocytogenes food contamination. L. monocytogenes is a human pathogen, which, due to the ability of survival and proliferation in preservation conditions such as high salinity, acidity and refrigeration temperatures, is a significant threat to the food industry. Novel methods of elimination of the bacterial pathogen in food products and food processing environments are required. Among emerging technologies, one of the very promising solutions is using bacteriophages as natural control agents. This review focus on the major aspects of phage-based inhibition of L. monocytogenes in aspects of food safety. We describe an overview of foods and technological factors influencing the efficacy of phage use in biocontrol of L. monocytogenes. The most noteworthy are food matrix properties, phage concentration and stability, the time of phage application and product storage temperature. The combined methods, phage immobilization (active packing), pathogen resistance to phages and legislation aspects of antilisterial bacteriophage use in the food industry are also discussed.
Collapse
|