1
|
Barman I, Seo H, Kim S, Rahim MA, Yoon Y, Hossain MS, Shuvo MSH, Song HY. Isolation of New Strains of Lactic Acid Bacteria from the Vaginal Microbiome of Postmenopausal Women and their Probiotic Characteristics. Curr Microbiol 2025; 82:76. [PMID: 39789171 DOI: 10.1007/s00284-024-04034-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
Lactic acid bacteria (LAB), traditionally consumed as fermented foods, are now being applied to the medical field beyond health-functional food as probiotics. Therefore, it is necessary to continuously discover and evaluate new strains with suitable probiotic characteristics, mainly focusing on safety. In this study, we isolated eight new strains from postmenopausal vaginal fluid using culturomics approaches, an emerging area of interest. Data showed that most strains possessed significant cell surface hydrophobicity (≥ 76%), auto-aggregation capacity (17 to 61%), strong adhesion activity (8 to 34%), and excellent resistance to gastric acid, bile salt, and digestive enzyme, enhancing their survival in the gastrointestinal tract. Moreover, the strains exhibited functional characteristics, including substantial antibacterial activity with a minimal inhibitory concentration (MIC) ranging from 12.5 to 50%. They also harbored bacteriocins genes, produced short-chain fatty acids (acetate and propionate), exhibited significant phagocytic activity, possessed high antioxidative properties, rapidly depleted sodium nitrite, and exhibited proteolysis and β-glucosidase activity. In addition, heat-killed LAB strains significantly reduced the gene expressions of proinflammatory cytokines such as IL-β, IL-6, and iNOS in macrophages. Safety assessment revealed no cytotoxicity in macrophage cell lines. All strains tested negative for biogenic amine or H2O2 production, displayed no gelatinase or hemolytic activity, lacked virulence genes or detrimental enzymes, and displayed antibiotic susceptibility. In summary, these newly isolated strains demonstrate excellent probiotic functionality with a strong focus on safety, making them promising candidates for future drug development in the relevant fields.
Collapse
Affiliation(s)
- Indrajeet Barman
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, 31151, Republic of Korea
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan-si, Chungnam, 31538, Republic of Korea
| | - Hoonhee Seo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, 31151, Republic of Korea
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan-si, Chungnam, 31538, Republic of Korea
| | - Sukyung Kim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, 31151, Republic of Korea
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan-si, Chungnam, 31538, Republic of Korea
| | - Md Abdur Rahim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, 31151, Republic of Korea
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan-si, Chungnam, 31538, Republic of Korea
| | - Youjin Yoon
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, 31151, Republic of Korea
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan-si, Chungnam, 31538, Republic of Korea
| | - Mohammed Solayman Hossain
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, 31151, Republic of Korea
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan-si, Chungnam, 31538, Republic of Korea
| | - Md Sarower Hossen Shuvo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, 31151, Republic of Korea
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan-si, Chungnam, 31538, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, 31151, Republic of Korea.
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan-si, Chungnam, 31538, Republic of Korea.
| |
Collapse
|
2
|
Stojanov S, Plavec TV, Zupančič Š, Berlec A. Modified vaginal lactobacilli expressing fluorescent and luminescent proteins for more effective monitoring of their release from nanofibers, safety and cell adhesion. Microb Cell Fact 2024; 23:333. [PMID: 39696572 DOI: 10.1186/s12934-024-02612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024] Open
Abstract
Electrospun nanofibers offer a highly promising platform for the delivery of vaginal lactobacilli, providing an innovative approach to preventing and treating vaginal infections. To advance the application of nanofibers for the delivery of lactobacilli, tools for studying their safety and efficacy in vitro need to be established. In this study, fluorescent (mCherry and GFP) and luminescent (NanoLuc luciferase) proteins were expressed in three vaginal lactobacilli (Lactobacillus crispatus, Lactobacillus gasseri and Lactobacillus jensenii) and a control Lactiplantibacillus plantarum with the aim to use this technology for close tracking of lactobacilli release from nanofibers and their adhesion on epithelial cells. The recombinant proteins influenced the growth of the bacteria, but not their ability to produce hydrogen peroxide. Survival of lactobacilli in nanofibers immediately after electrospinning varied among species. Bacteria retained fluorescence upon incorporation into PEO nanofibers, which was vital for evaluation of their rapid release. In addition, fluorescent labelling facilitated efficient tracking of bacterial adhesion to Caco-2 epithelial cells, while luminescence provided important quantitative insights into bacterial attachment, which varied from 0.5 to 50% depending on the species. The four lactobacilli in dispersion or in nanofibers were not detrimental for the viability of Caco-2 cells, and did not demonstrate hemolytic activity highlighting the safety profiles of both bacteria and PEO nanofibers. To summarize, this study contributes to the development of a promising delivery system, tailored for local administration of safe vaginal lactobacilli.
Collapse
Affiliation(s)
- Spase Stojanov
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia
| | - Tina Vida Plavec
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana, Slovenia
| | - Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia.
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Kim S, Rahim MA, Tajdozian H, Barman I, Park HA, Yoon Y, Jo S, Lee S, Shuvo MSH, Bae SH, Lee H, Ju S, Park CE, Kim HK, Han JH, Kim JW, Yoon SG, Kim JH, Choi YG, Lee S, Seo H, Song HY. Clinical Potential of Novel Microbial Therapeutic LP51 Based on Xerosis-Microbiome Index. Cells 2024; 13:2029. [PMID: 39682776 DOI: 10.3390/cells13232029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Xerosis, characterized by dry, rough skin, causes discomfort and aesthetic concerns, necessitating effective treatment. Traditional treatments often show limited efficacy, prompting the need for innovative therapies. This study highlights the efficacy of microbiome therapeutic LP51, derived from a healthy vaginal microbiome, in improving xerosis. A double-blind clinical trial involving 43 subjects with dry inner arm skin compared the effects of a 2.9% LP51 extract formulation to a placebo over 4 weeks. The LP51 group exhibited a significant increase in stratum corneum hydration (10.0 A.U.) compared to the placebo group (4.8 A.U.) and a 21.4% decrease in transepidermal water loss (TEWL), whereas the placebo group showed no significant change. LP51 also demonstrated benefits in enhancing skin hydration, improving the skin barrier, and exhibited anti-atopic, anti-inflammatory, and antioxidant properties. Safety was confirmed through in vitro cytotoxicity tests. These effects are attributed to the microbiome-safe component in LP51 and its role in improving xerosis, reflected by an increase in the xerosis-microbiome index, defined by the Firmicutes/Actinobacteria ratio. These findings position microbiome therapeutic LP51 as a promising novel treatment for xerosis.
Collapse
Affiliation(s)
- Sukyung Kim
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
| | - Md Abdur Rahim
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
| | - Hanieh Tajdozian
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea
| | - Indrajeet Barman
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea
| | - Hyun-A Park
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
| | - Youjin Yoon
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea
| | - Sujin Jo
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea
| | - Soyeon Lee
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea
| | - Md Sarower Hossen Shuvo
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea
| | - Sung Hae Bae
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
| | - Hyunji Lee
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
| | - Sehee Ju
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
| | - Chae-Eun Park
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea
| | - Ho-Kyoung Kim
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
| | - Jeung Hi Han
- Materials Science Research Institute, LABIO, Inc., 184 Gasan Digital 2-ro, Geumcheon-gu, Seoul 08501, Republic of Korea
| | - Ji-Woong Kim
- Materials Science Research Institute, LABIO, Inc., 184 Gasan Digital 2-ro, Geumcheon-gu, Seoul 08501, Republic of Korea
| | - Sung Geon Yoon
- Materials Science Research Institute, LABIO, Inc., 184 Gasan Digital 2-ro, Geumcheon-gu, Seoul 08501, Republic of Korea
| | - Jae Hong Kim
- Materials Science Research Institute, LABIO, Inc., 184 Gasan Digital 2-ro, Geumcheon-gu, Seoul 08501, Republic of Korea
| | - Yang Gyu Choi
- Materials Science Research Institute, LABIO, Inc., 184 Gasan Digital 2-ro, Geumcheon-gu, Seoul 08501, Republic of Korea
| | - Saebim Lee
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
| | - Hoonhee Seo
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
| | - Ho-Yeon Song
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea
| |
Collapse
|
4
|
Modasiya I, Mori P, Maniya H, Chauhan M, Grover CR, Kumar V, Sarkar AK. In Vitro Screening of Bacterial Isolates From Dairy Products for Probiotic Properties and Other Health-Promoting Attributes. Food Sci Nutr 2024; 12:10756-10769. [PMID: 39723103 PMCID: PMC11666839 DOI: 10.1002/fsn3.4537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 12/28/2024] Open
Abstract
The present research was aimed to isolate potential probiotic organisms from dairy products locally made in and around the Saurashtra region of Gujarat. A total of 224 colonies were screened for primary attributes. Based on the results, 70 isolates were carried further for secondary screening. Out of these, only 23 isolates were further tested for antioxidant activities. Only 6 potential probiotic strains were found to have all the probiotic attributes. These isolates demonstrated survivability up to 4 h at pH ≤ 3, bile concentration ≥ 1.5%, autoaggregation ability ≥ 81.08%, and cell surface hydrophobicity more than 70% while using toluene as the test hydrocarbon. The promising six isolates were subjected to 16S rRNA sequencing for species-level identification and found to be belonging to the genus Bacillus, Enterococcus, and Lactobacillus. The isolates demonstrated higher antioxidant potential as determined by ABTS, DPPH, and FRAP methods. For all three methods, L. rhamnosus was taken as a positive control that showed 85.61%, 39.56%, and 78.18% reduction of free radicals as determined by the ABTS, DPPH, and FRAP methods, respectively. Compared to this, Limosilactobacillus fermentum BAB 7912 demonstrated the highest reduction of ABTS radicals (83.45%), while Bacillus subtilis BAB 7918 reduced 29.95% DPPH free radicals and Bacillus spizizenii BAB 7915 reduced 80.93% ferric ions as determined by the FRAP method. Isolates were subjected to 16S rRNA sequencing for species-level identification and found to be belonging to genus Bacillus, Enterococcus, and Lactobacillus.
Collapse
Affiliation(s)
- Ishita Modasiya
- Postbiotics and Foodomics Lab, Department of Microbiology, School of ScienceRK UniversityRajkotGujaratIndia
| | - Priya Mori
- Postbiotics and Foodomics Lab, Department of Microbiology, School of ScienceRK UniversityRajkotGujaratIndia
| | - Hina Maniya
- Postbiotics and Foodomics Lab, Department of Microbiology, School of ScienceRK UniversityRajkotGujaratIndia
| | - Mehul Chauhan
- Postbiotics and Foodomics Lab, Department of Microbiology, School of ScienceRK UniversityRajkotGujaratIndia
| | - Chand Ram Grover
- Symbiotics, Functional Food and Bioremediation Lab, Dairy Microbiology DivisionICAR‐N.D.R.IKarnalHaryanaIndia
| | - Vijay Kumar
- Postbiotics and Foodomics Lab, Department of Microbiology, School of ScienceRK UniversityRajkotGujaratIndia
| | | |
Collapse
|
5
|
Li Y, Song Q, Yang H, Wei Y, Menghe B, Liu W. Bifidobacterium favimelis sp. nov., isolated from black comb honey. Int J Syst Evol Microbiol 2024; 74. [PMID: 39514412 DOI: 10.1099/ijsem.0.006573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
A strain of the bacterial genus Bifidobacterium, IMAU50987T, that was isolated from black comb honey from Lianghe County, Dehong Autonomous Prefecture, Yunnan Province, China, could not be accurately identified as a known species using 16S rRNA gene sequencing. In this study, the taxonomic status of strain IMAU50987T was evaluated using whole-genome sequencing combined with phenotypic analyses. Strain IMAU50987T was Gram-positive, non-motile and non-spore-forming. Comparative of 16S rRNA gene sequence similarity analysis indicated that strain IMAU50987T could be attributed to the genus Bifidobacterium and most closely related to the B. mellis Bin7NT (98.5% identity). Comparative sequence analysis of eight housekeeping genes (pyrG, thrS, glnA1, recA, tuf, dnaB, rpoC and xfp) showed that strain IMAU50987T was different from closely related species. Phylogenomic analysis based on the 88 single-copy genes in the phylogenetic tree showed that strain IMAU50987T belonged to the B. asteroides group. The highest average nucleotide identity value for strain IMAU50987T was 77.0% in comparison with B. choladohabitans B14384H11T and B. apis F753-1T. However, the highest digital DNA-DNA hybridization value was 23.1% compared with B. apis F753-1T and B. xylocopae XV2T; the highest average amino acid identity value was 73.2% compared with B. polysaccharolyticum W8117T. These values are below the accepted threshold for novel species boundaries. The draft genome size of strain IMAU50987T was 1.9 Mb, and the DNA G+C content was 63.5%. The major cellular fatty acids of strain IMAU50987T were C16 : 0, C18 : 1 ω9c and Sum in Feature 7 (C19 : 1 ω7c/C19 : 1 ω6c). The cell-wall peptidoglycan was of the A3α l-Lys-Gly type. Based on data from this study, a novel species, Bifidobacterium favimelis sp. nov., is proposed with the type strain IMAU50987T (= GDMCC 1.4189T = JCM 36315T).
Collapse
Affiliation(s)
- Yu Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- National Collection of Microbial Resource for Feed (Inner Mongolia), Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Qiujie Song
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- National Collection of Microbial Resource for Feed (Inner Mongolia), Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Haizhu Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- National Collection of Microbial Resource for Feed (Inner Mongolia), Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Yue Wei
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- National Collection of Microbial Resource for Feed (Inner Mongolia), Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Bilege Menghe
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- National Collection of Microbial Resource for Feed (Inner Mongolia), Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
- National Collection of Microbial Resource for Feed (Inner Mongolia), Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| |
Collapse
|
6
|
Khalifa A, Alkuwayti MA, Abdallah BM, Ali EM, Ibrahim HIM. Probiotic and Rice-Derived Compound Combination Mitigates Colitis Severity. Pharmaceuticals (Basel) 2024; 17:1463. [PMID: 39598375 PMCID: PMC11597685 DOI: 10.3390/ph17111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/07/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND This study investigated the ability of Enterococcus lactis (E. lactis) and Hasawi rice protein lysate (HPL) to suppress colitis induced by dextran sulfate sodium (DSS) in miceColitis is characterized by inflammation of the colon, and exploring potential therapeutic agents could lead to improved management strategies. METHODS Male mice were subjected to DSS treatment to induce colitis, followed by supplementation with E. lactis and/or HPL. The study assessed various parameters, including disease activity index (DAI) scores, gut permeability measured using FITC-dextran, and superoxide dismutase (SOD) activity in excised colon tissues from both treated and untreated control groups. RESULTS E. lactis supplementation significantly alleviated DSS-induced colitis, as evidenced by improved DAI scores and enhanced gut permeability. Notably, E. lactis combined with HPL (0.1 mg/108) exhibited superior tolerance to a 0.5% pancreatin solution compared to E. lactis alone. Both E. lactis and the combination treatment significantly increased SOD activity (5.6 ± 0.23 SOD U/mg protein for E. lactis and 6.7 ± 0.23 SOD U/mg protein for the combination) relative to the Azoxymethane (AOM)/DSS group, suggesting a reduction in oxidative stress. Additionally, pro-inflammatory markers were significantly reduced in the group receiving both E. lactis and HPL compared to the E. lactis-only group. Levels of proteins associated with cell death, such as PCNA, PTEN, VEGF, COX-2, and STAT-3, were significantly decreased by 14.8% to 80% following E. lactis supplementation, with the combination treatment showing the most pronounced effects. CONCLUSIONS These findings suggest E. lactis supplementation may be beneficial for colitis, with HPL potential to enhance its effectiveness.
Collapse
Affiliation(s)
- Ashraf Khalifa
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mayyadah Abdullah Alkuwayti
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Basem M. Abdallah
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Enas M. Ali
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Hairul Islam M. Ibrahim
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Molecular Biology Division, Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry 605004, India
| |
Collapse
|
7
|
Lugli GA, Argentini C, Tarracchini C, Mancabelli L, Viappiani A, Anzalone R, Angelini L, Alessandri G, Longhi G, Bianchi MG, Taurino G, Bussolati O, Milani C, Turroni F, Ventura M. Characterization of a Bifidobacterium animalis subsp. lactis reference strain based on ecology and transcriptomics. Appl Environ Microbiol 2024; 90:e0108024. [PMID: 39235395 PMCID: PMC11497779 DOI: 10.1128/aem.01080-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/18/2024] [Indexed: 09/06/2024] Open
Abstract
Bifidobacteria are recognized as health-promoting bacteria that reside in the human gut, helping in the digestion of fiber, preventing infections, and producing essential compounds like vitamins. To date, Bifidobacterium animalis subsp. lactis, together with Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium breve, and Bifidobacterium longum, represents one of the species that are used as probiotic bacteria. Despite the extensive and detailed scientific research conducted on this microbial taxon, the molecular mechanisms by which B. animalis subsp. lactis exerts health benefits to its host are still largely unknown. Thus, we dissected the genetic repertoire and phylogenetic relationship of 162 strains of B. animalis subsp. lactis to select a representative reference strain of this taxon suitable for investigating its interaction with the host. The B. animalis subsp. lactis PRL2013 strain, which was isolated by a mucosal sample of a healthy adult, was chosen as the reference of the monophyletic cluster of human origin and revealed a greater adhesion index than that observed for another B. animalis subsp. lactis strain used in the industry as a probiotic supplement. Transcriptomics analyses of PRL2013 strain, when exposed to human cell monolayers, revealed 291 significantly upregulated genes, among which were found genes predicted to encode extracellular structures that may directly interact with human cells, such as extracellular polymeric substances, wall teichoic acids, and pili. IMPORTANCE To date, many Bifidobacterium animalis subsp. lactis strains have been isolated from human fecal samples. However, their presence in these samples does not necessarily suggest an ability to colonize the human gut. Furthermore, probiotics of non-human origin may not effectively interact with the gut epithelium, resulting in transient bacteria of the gut microbiota. In vitro experiments with human cells revealed that B. animalis subsp. lactis PRL2013, an autochthonous member of the human gut, shows colonization capability, leading to future applications in functional foods.
Collapse
Affiliation(s)
- Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | | | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Massimiliano G. Bianchi
- Microbiome Research Hub, University of Parma, Parma, Italy
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Microbiome Research Hub, University of Parma, Parma, Italy
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Microbiome Research Hub, University of Parma, Parma, Italy
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
8
|
Shokrak NM, Khairi N, Hazrin-Chong NH, Mohamed RA, Abdella B. Isolation, characterization, and assessment of Bacillus rugosus potential as a new probiotic for aquaculture applications. Sci Rep 2024; 14:25019. [PMID: 39443501 PMCID: PMC11499992 DOI: 10.1038/s41598-024-74534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Aquaculture is an important component of the world food supply and a significant source of protein. However, this industry faces numerous problems. Including poor fish feed digestion and uneconomic nutrient utilization. This can result in unsatisfactory growth rates and poor stock performance. Utilizing probiotics, which are beneficial microbes that can enhance digestive systems and general fish health, is one possible way to address these issues. This study was designed to identify and evaluate a novel strain of Bacillus as a promising probiotic. The strain of Bacillus rugosus that was examined and coded NM007 showed promising probiotic characteristics that could help fish digest and utilize their feed more efficiently, reduce feed waste, and improve their digestive systems. B. rugosus NM007 exhibited the ability to produce digestive enzymes like protease, amylase, and lipase, which are the main digestive enzymes. It showed strong auto-aggregation activity and co-aggregation activity with Aeromonas sp. and Streptococcus sp. It also demonstrated tolerance to the presence of bile salt, acidic pH, and salinity up to 60 ppt. The sensitivity analysis towards antibiotics, hemolytic activity and the safety assessment on Nile tilapia fish (Oreochromis niloticus) confirmed the safety of this isolate. Based on the findings of this investigation and the isolate's characterization, Bacillus rugosus NM007 could serve as a new promising probiotic bacterium for aquaculture.
Collapse
Affiliation(s)
- Nermeen M Shokrak
- Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Nabilah Khairi
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Nur Hazlin Hazrin-Chong
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Radi A Mohamed
- Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Bahaa Abdella
- Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
9
|
Luo B, Dong F, Liu Y, Du J, Sun H, Ni Y, Zhang Y. Insights into the microbiota of raw milk from seven breeds animals distributing in Xinjiang China. Front Microbiol 2024; 15:1382286. [PMID: 39507343 PMCID: PMC11537933 DOI: 10.3389/fmicb.2024.1382286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024] Open
Abstract
Owing to its high nutritional content, raw milk contains a rich microbiota. Thus, to study microorganisms present in raw milk available in Xinjiang China, 142 raw milk samples from seven animal breeds (cow, sheep, goat, donkey, horse, camel, and yak) and four regions (Hami, Tarbagatay, Kashgar, and Ili) were analyzed by high-throughput DNA sequencing. These microorganisms were characterized by 10 dominant phyla. Proteobacteria (68.33%) was the major phylum, followed by Firmicutes (18.80%) and Thermi (3.16%). Horse milk contained more Bacteroidetes, sheep milk contained more Gammaproteobacteria, and donkey milk contained more unclassified sequences. Camel and donkey milk contained the highest and lowest bacterial diversity compared with that contained by the remaining milk samples, respectively. Additionally, spoilage microorganisms, including Chryseobacterium, Propionibacterium, and Flavobacterium, and pathogenic bacteria, including Ochrobactrum anthropi and Sphingomonas, were more prevalent in horse and yak milk, whereas probiotic lactic acid bacteria (LAB), such as Leuconostoc, Lactococcus, or Lactobacillus, were more prevalent in goat, donkey, and camel milk. Furthermore, Moraxella was abundantly present in goat, camel, and yak milk, Acinetobacter was more abundant in camel milk, and Pseudomonas was relatively abundant in sheep and donkey milk. Overall, specific harmful microorganisms and probiotic lactic acid bacteria were found in the raw milk samples obtained from different animals, which provided a basis for preventing and controlling the growth of harmful bacteria, as well as investigating probiotic resources in raw milk.
Collapse
Affiliation(s)
- Baolong Luo
- Key Laboratory of Xinjiang Special Probiotics and Dairy Technology of Shihezi Municipal Government, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Xinjiang Production and Construction Corps Industrial Innovation Research Institute of Dairy Products, Xinjiang Tianrun Dairy Co., Ltd., Urumchi, Xinjiang, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Fujin Dong
- Key Laboratory of Xinjiang Special Probiotics and Dairy Technology of Shihezi Municipal Government, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yuyang Liu
- Key Laboratory of Xinjiang Special Probiotics and Dairy Technology of Shihezi Municipal Government, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Jie Du
- Key Laboratory of Xinjiang Special Probiotics and Dairy Technology of Shihezi Municipal Government, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Hailong Sun
- Key Laboratory of Xinjiang Special Probiotics and Dairy Technology of Shihezi Municipal Government, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Xinjiang Production and Construction Corps Industrial Innovation Research Institute of Dairy Products, Xinjiang Tianrun Dairy Co., Ltd., Urumchi, Xinjiang, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yongqing Ni
- Key Laboratory of Xinjiang Special Probiotics and Dairy Technology of Shihezi Municipal Government, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Xinjiang Production and Construction Corps Industrial Innovation Research Institute of Dairy Products, Xinjiang Tianrun Dairy Co., Ltd., Urumchi, Xinjiang, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yan Zhang
- Key Laboratory of Xinjiang Special Probiotics and Dairy Technology of Shihezi Municipal Government, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
10
|
Karssa TH, Kussaga JB, Semedo‐Lemsaddek T, Mugula JK. Insights on the microbiology of Ethiopian fermented milk products: A review. Food Sci Nutr 2024; 12:6990-7003. [PMID: 39479617 PMCID: PMC11521749 DOI: 10.1002/fsn3.4372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 11/02/2024] Open
Abstract
Fermented milk products play a vital role in the diets of Ethiopians. They are produced from either spontaneous fermentation or back-slopping methods at the household level, in which lactic acid bacteria (LAB) and yeasts predominate. As a result, the processing steps are not standardized and overall safety is still of public health relevance. Therefore, quality and safety improvement, standardization of traditional manufacturing practices, and commercialization of products to a wider market are important. Hence, this systematic review aimed to provide a comprehensive overview of the microbiology of traditional Ethiopian fermented milk products, including ergo (spontaneously fermented whole milk), dhanaan (fermented camel milk), ititu (concentrated sour milk or spontaneously fermented milk curd), ayib (traditional cottage cheese), qibe (traditional butter), arrera (defatted buttermilk), and hazo (spiced fermented buttermilk). We followed the Preferred Reporting Items for Systematic Reviews and searched relevant databases and search engines, including the Web of Science, Google Scholar, Scopus, PubMed, ScienceDirect, and ResearchGate. Furthermore, the pertinent literature was checked individually and identified. Dairy fermentation provides shelf-life extension and improves the organoleptic quality of products. Nonetheless, the aforementioned Ethiopian fermented foods may be contaminated with Escherichia coli 0157: H7, Listeria monocytogenes, Salmonella spp., or Staphylococcus aureus due to inadequate processing and handling practices. This systematic review also revealed that these traditional milk products lack consistent quality and safety due to poor hygienic preparation techniques, non-controlled fermentation, and limited knowledge or awareness of small-holder dairy farmers. Therefore, the use of suitable procedures including good hygienic practices and controlled fermentation is recommended.
Collapse
Affiliation(s)
| | - Jamal B. Kussaga
- Department of Food Science and Agro‐ProcessingSokoine University of AgricultureMorogoroTanzania
| | - Teresa Semedo‐Lemsaddek
- CIISA – Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary MedicineUniversity of LisbonLisbonPortugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS)LisbonPortugal
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of LisbonLisbonPortugal
| | - Jovin K. Mugula
- Department of Food Science and Agro‐ProcessingSokoine University of AgricultureMorogoroTanzania
| |
Collapse
|
11
|
Pavalakumar D, Undugoda LJS, Gunathunga CJ, Manage PM, Nugara RN, Kannangara S, Lankasena BNS, Patabendige CNK. Evaluating the Probiotic Profile, Antioxidant Properties, and Safety of Indigenous Lactobacillus spp. Inhabiting Fermented Green Tender Coconut Water. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10352-x. [PMID: 39300004 DOI: 10.1007/s12602-024-10352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
This study isolated and characterized four indigenous lactic acid bacterial strains from naturally fermented green tender coconut water: Lactiplantibacillus plantarum CWJ3, Lacticaseibacillus casei CWM15, Lacticaseibacillus paracasei CWKu14, and Lacticaseibacillus rhamnosus CWKu-12. Notably, among the isolates, Lact. plantarum CWJ3 showed exceptional acid tolerance, with the highest survival rate of 37.34% at pH 2.0 after 1 h, indicating its higher resistance against acidic gastric conditions. However, all strains exhibited robust resistance to bile salts, phenols, and NaCl, with survival rates exceeding 80% at given concentrations. Their optimal growth at 37 °C and survival at 20 °C and 45 °C underscored adaptability to diverse environmental conditions. Additionally, all strains showed sustainable survival rates in artificial saliva and simulated gastrointestinal juices, with Lact. plantarum CWJ3 exhibiting significantly higher survival rate (70.66%) in simulated gastric juice compared to other strains. Adherence properties were particularly noteworthy, especially in Lact. rhamnosus CWKu-12, which demonstrated the highest hydrophobicity, coaggregation with pathogens and autoaggregation, among the strains. The production of exopolysaccharides, particularly by Lact. plantarum CWJ3, enhanced their potential for gut colonization and biofilm formation. Various in vitro antioxidative assays using spectrophotometric methods revealed the significant activity of Lact. plantarum CWJ3, while antimicrobial testing highlighted its efficacy against selected foodborne pathogens. Safety assessments confirmed the absence of biogenic amine production, hemolytic, DNase, and gelatinase activities, as well as the ability to hydrolase the bile salt. Furthermore, these non-dairy probiotics exhibited characteristics comparable to dairy derived probiotics, demonstrating their potential suitability in developing novel probiotic-rich foods and functional products.
Collapse
Affiliation(s)
- Dayani Pavalakumar
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
- Faculty of Graduate Studies, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | | | - Chathuri Jayamalie Gunathunga
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
- Faculty of Graduate Studies, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Pathmalal Marakkale Manage
- Centre for Water Quality and Algae Research, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Ruwani Nilushi Nugara
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | - Sagarika Kannangara
- Department of Plant and Molecular Biology, Faculty of Science, University of Kelaniya, Kelaniya, 11600, Sri Lanka
| | - Bentotage Nalaka Samantha Lankasena
- Department of Information and Communication Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, 10200, Sri Lanka
| | | |
Collapse
|
12
|
García-Márquez J, Díaz AG, Molina-Roque L, Domínguez-Maqueda M, de Las Heras V, Simó-Mirabet P, Vizcaíno AJ, Martos-Sitcha JA, Alarcón-López FJ, Moriñigo MÁ, Balebona MC. Microalgal and Cyanobacterial Biomasses Modified the Activity of Extracellular Products from Bacillus pumilus: An In Vitro and In Vivo Assessment. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10350-z. [PMID: 39259377 DOI: 10.1007/s12602-024-10350-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/13/2024]
Abstract
This study investigates the postbiotic potential of extracellular products (ECPs) from Bacillus pumilus strains cultivated on microalgae-supplemented media. We assessed enzymatic and antimicrobial activities to select ECPs that enhance the digestive processes in gilthead seabream. Additionally, we explored the in vitro enzymatic capacity of the chosen postbiotics to hydrolyze macromolecules in microalgae. Finally, a feeding trial was conducted to determine the in vivo effects of the ECPs on Sparus aurata. In vitro enzymatic assays demonstrated diverse hydrolytic capacities among ECPs. All conditions exhibited antimicrobial activity against Photobacterium damselae subsp. piscicida, with variation in inhibitory effects against Vibrio harveyi and Tenacibaculum maritimum. Furthermore, in vitro assays revealed differences in protein hydrolysis and soluble protein concentration, influencing amino acid and reducing sugar release from microalgal biomass. These analyses facilitated a selection to test ECPs in vivo. Lastly, the in vivo experiment revealed no differences in the growth performance, nutrient utilization, and general metabolism of S. aurata fed the experimental diets. Dietary inclusion of postbiotics increased the activity of key digestive enzymes in fish compared to the control group, and particularly, values increased significantly when the fish were fed with the ECP-nanoparticulate-supplemented diet. In conclusion, the inclusion of microalgae in the culture media significantly influences the activity of extracellular products from B. pumilus strains, as evidenced in both in vitro and in vivo assays.
Collapse
Affiliation(s)
- Jorge García-Márquez
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, CEI⋅MAR-Universidad de Málaga, 29071, Málaga, Spain
| | - Alba Galafat Díaz
- Departamento de Biología y Geología, Universidad de Almería, CEI⋅MAR-Universidad de Almería, 04120, Almería, Spain
| | - Luis Molina-Roque
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, CEI⋅MAR-Universidad de Cádiz, 11510, Cádiz, Spain
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35214, Telde, Las Palmas de Gran Canaria, Islas Canarias, Spain
| | - Marta Domínguez-Maqueda
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, CEI⋅MAR-Universidad de Málaga, 29071, Málaga, Spain
| | - Verónica de Las Heras
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, CEI⋅MAR-Universidad de Cádiz, 11510, Cádiz, Spain
| | - Paula Simó-Mirabet
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, CEI⋅MAR-Universidad de Cádiz, 11510, Cádiz, Spain
| | - Antonio J Vizcaíno
- Departamento de Biología y Geología, Universidad de Almería, CEI⋅MAR-Universidad de Almería, 04120, Almería, Spain
- LifeBioencapsulation S.L. El Alquián, 04131, Almería, Spain
| | - Juan Antonio Martos-Sitcha
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, CEI⋅MAR-Universidad de Cádiz, 11510, Cádiz, Spain
| | - Francisco Javier Alarcón-López
- Departamento de Biología y Geología, Universidad de Almería, CEI⋅MAR-Universidad de Almería, 04120, Almería, Spain
- LifeBioencapsulation S.L. El Alquián, 04131, Almería, Spain
| | - Miguel Ángel Moriñigo
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, CEI⋅MAR-Universidad de Málaga, 29071, Málaga, Spain.
| | - María Carmen Balebona
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, CEI⋅MAR-Universidad de Málaga, 29071, Málaga, Spain
| |
Collapse
|
13
|
Ansari F, Pourjafar H, Samakkhah SA, Mirzakhani E. An overview of probiotic camel milk as a nutritional beverage: Challenges and perspectives. Food Sci Nutr 2024; 12:6123-6141. [PMID: 39554333 PMCID: PMC11561798 DOI: 10.1002/fsn3.4298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 11/19/2024] Open
Abstract
There are challenges such as standardization for commercialization and guaranteeing sensory characteristics in camel milk processing. This review gathers a general view of the probiotic camel milk, its contents, its health aspects, and its industrial production. One of the potential candidates of a healthy food product is "probiotic camel milk" which contains several nutritional elements including Lactic acid bacteria and Bifidobacteria and postbiotics such as endopolysaccharides, exopolysaccharides, numerous beneficial enzymes, short-chain fatty acids, teichoic acids, peptides, peptidoglycan-derived neuropeptides, cell surface proteins, different vitamins, plasmalogens, and different kinds of organic acids. It should also be considered that camel milk generally has some advantages over cow milk like its health-beneficial antidiabetic, hypoallergenic, and anticancer properties. As a result, it is gaining much attention from both consumers and manufacturers, and the global probiotic market trend is growing. Although there are obstacles in standardizing processing techniques and maintaining sensory excellence, the health benefits, economic prospects, and adaptability of camel milk and its probiotic variations create a promising avenue for continued research and advancement. Therefore, developing standardized processing techniques and sensory evaluation methods for probiotic camel milk can unlock its full potential as a nutritious beverage, offering a promising solution for consumers seeking healthy and functional food products.
Collapse
Affiliation(s)
- Fereshteh Ansari
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO)TehranIran
- Research Center for Evidence‐Based MedicineHealth Management and Safety Promotion Research Institute, Tabriz University of Medical SciencesTabrizIran
- Iranian EBM Centre: A Joanna Briggs Institute Affiliated GroupTabrizIran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research CenterAlborz University of Medical SciencesKarajIran
| | - Shohreh Alian Samakkhah
- Department of Food Hygiene, Faculty of Veterinary MedicineAmol University of Special Modern TechnologiesAmolIran
| | - Esmaeel Mirzakhani
- Department of Food Science and Technology, Faculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
14
|
Layadi I, Laiche AT, Tlili ML, Messaoudi M, Ghemam Amara D, Mezghani‐Khemakhem M, Naccache C, Sawicka B, Atanassova M, Zahnit W, Ahmad SF. Effect of Juniperus communis extract on probiotic properties of Bacillus safensis isolated from camel milk in the region of El Oued (Algeria). Food Sci Nutr 2024; 12:6509-6520. [PMID: 39554354 PMCID: PMC11561853 DOI: 10.1002/fsn3.4262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 11/19/2024] Open
Abstract
The current study focuses on the effect of Juniperus communis extract on the probiotic properties of lactic acid bacteria isolated from camel milk in the region of El Oued (Algeria). Chromatographic analysis by HPLC was carried out to detect the most important compounds extracted from the plant. The total phenolic and flavonoid contents were determined using the colorimetric procedures Folin-Ciocalteu and aluminum chloride. The probiotic properties were studied and evaluated in vivo with Juniperus communis extracts after isolating strains from camel's milk and identifying them using 16S rRNA gene sequencing. Chromatographic profiles of the phenolic compounds revealed that Juniperus communis extract is rich in quercetin. After conducting chemical analyses of polyphenols and flavonoids, the results demonstrated a high content of phenolic compounds in Juniperus communis extracts (polyphenols: 103.80 ± 0.30 mg GAE/g E. flavonoids: 15.85 ± 0.80 mg QE/g E). Sequencing and phylogenetic analysis showed that the isolates belong to Bacillus pumilus and Bacillus safensis strains. The combination of Juniperus communis and Bacillus safensis restored the healthy intestine wall structure and returned the blood biochemical parameters to normal values. It was found that the mixture enhanced anti-inflammatory effectiveness by reducing erythrocyte sedimentation rate and C-reactive protein values. Juniperus communis has a high polyphenol and flavonoid content which can have a considerable impact on Bacillus safensis probiotic properties.
Collapse
Affiliation(s)
- Ikram Layadi
- Laboratory of Biodiversity and Application of Biotechnology in the Agricultural Field, Faculty of the Sciences of Nature and LifeUniversity of El OuedEl OuedAlgeria
- Department of Biology, Faculty of Sciences of Nature and LifeUniversity of El‐OuedEl OuedAlgeria
| | - Ammar Touhami Laiche
- Laboratory of Biodiversity and Application of Biotechnology in the Agricultural Field, Faculty of the Sciences of Nature and LifeUniversity of El OuedEl OuedAlgeria
- Department of Biology, Faculty of Sciences of Nature and LifeUniversity of El‐OuedEl OuedAlgeria
| | - Mohammed Laid Tlili
- Laboratory of Biogeochemistry of Desert Environments LaboratoryUniversity of OuarglaOuarglaAlgeria
- Department of Cellular and Molecular Biology, Faculty of Sciences of Nature and LifeUniversity of El‐OuedEl OuedAlgeria
| | | | - Djilani Ghemam Amara
- Department of Biology, Faculty of Sciences of Nature and LifeUniversity of El‐OuedEl OuedAlgeria
- Laboratory of Biology, Environment and Health, Department of Biology, Faculty of Life and Natural SciencesUniversity of El OuedEl OuedAlgeria
| | - Maha Mezghani‐Khemakhem
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Department of Biology, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| | - Chahnez Naccache
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Department of Biology, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodities ScienceUniversity of Life Sciences in LublinLublinPoland
| | - Maria Atanassova
- Scientific Consulting, Chemical EngineeringUniversity of Chemical Technology and MetallurgySofiaBulgaria
| | - Wafa Zahnit
- Laboratory of Valorization and Promotion of Saharan Resource (VPRS), Faculty of Mathematics and Matter SciencesUniversity of OuarglaOuarglaAlgeria
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| |
Collapse
|
15
|
Chegini P, Salimi F, Pirbodagh ZA, Zare EN. Antilisterial and antioxidant exopolysaccharide from Enterococcus faecium PCH.25 isolated from cow butter: characterization and probiotic potential. Arch Microbiol 2024; 206:389. [PMID: 39210205 DOI: 10.1007/s00203-024-04112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Exopolysaccharides produced by lactic acid bacteria have gained attention for their potential health benefits and applications in functional foods. This study explores the isolation and characterization of a novel exopolysaccharide-producing strain from dairy products. The aim was to evaluate its probiotic potential and investigate the properties of the produced exopolysaccharide. A strain identified as Enterococcus faecium PCH.25, isolated from cow butter, demonstrated exopolysaccharide production. The study's novelty lies in the comprehensive characterization of this strain and its exopolysaccharide, revealing unique properties with potential applications in food, cosmetic, and pharmaceutical industries. The E. faecium PCH.25 strain exhibited strong acid tolerance, with a 92.24% viability rate at pH 2 after 2 h of incubation. It also demonstrated notable auto-aggregation (85.27% after 24 h) and co-aggregation abilities, antibiotic sensitivity, and absence of hemolytic activity, suggesting its probiotic potential. The exopolysaccharide produced by this strain showed bactericidal activity (MIC and MBC = 1.8 mg/ml) against Listeria monocytogenes and antioxidant properties (22.8%). Chemical analysis revealed a heteropolysaccharide composed of glucose and fructose monomers, with various functional groups contributing to its bioactivities. Physical characterization of the exopolysaccharide indicated thermal stability up to 270 °C, a negative zeta-potential (-27 mV), and an average particle size of 235 nm. Scanning electron microscopy and energy dispersive X-ray analysis revealed a smooth, nonporous structure primarily composed of carbon and oxygen, with an amorphous nature. These findings suggest that the exopolysaccharide from E. faecium PCH.25 has potential as a natural antibacterial and antioxidant polymer for use in functional foods, cosmetics, and pharmaceuticals.
Collapse
Affiliation(s)
- Parvin Chegini
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, 36716-41167, Iran
| | - Fatemeh Salimi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, 36716-41167, Iran.
- Institute of Biological Sciences, Damghan University, Damghan, Iran.
| | | | | |
Collapse
|
16
|
Shruthi B, Adithi G, Deepa N, Divyashree S, Sreenivasa MY. Probiotic and Functional Attributes of Yeasts Isolated from Different Traditional Fermented Foods and Products. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10342-z. [PMID: 39180663 DOI: 10.1007/s12602-024-10342-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
Though numerous bacteria have been used as probiotics by industries, at present, Saccharomyces boulardii and Saccharomyces cerevesiae are the only yeast probiotics which are industrially exploited. In view of this, yeast probiotics were isolated from traditional fermented foods and products collected from different parts of Karnataka, India. In this work, we have studied the probiotic attributes of ten yeast isolates isolated from different traditionally fermented foods and products. About 73 yeast isolates were initially isolated by serially diluting the samples and plating on the Potato Dextrose Agar (PDA) plates. The spot assay was performed to screen the yeast isolates against test pathogens. Ten isolates were selected based on their significant antimicrobial activity. These isolates were subjected to biochemical characterization and then assessed for probiotic properties. The ability of probiotics to endure at pH 2.0 and tolerate bile conditions (0.3%) are crucial attributes for the survival in the gastrointestinal tract (GIT). The yeast isolates were also assessed for cell surface hydrophobicity and autoaggregation capabilities. All the ten isolates showed endurance in GIT tract and > 40% of adhesion. The study further examined cholesterol assimilation, antioxidant and antagonistic properties of the yeasts. Subsequently, the molecular characterization was performed by isolating the DNA of yeast isolates by phenol-chloroform method and identified molecularly through sequencing of D1/D2 regions. The isolates tested negative for gelatinase and DNase and were non-haemolytic indicating they are safe for consumption. Among ten isolates, Meyerozyma guillermondii (MYSY23), Meyerozyma caribbica (MYSY22) and Meyerozyma guillermondii (MYSY19) showed significant results for all probiotic and functional characteristics with greater than 65% survivability in GIT tract and > 50% of antagonistic activity against test pathogens and also proved non-cytotoxic and safe. These findings suggest that yeasts with significant probiotic attributes could be recommended for various probiotic application.
Collapse
Affiliation(s)
- B Shruthi
- Applied Mycology Lab, Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India
| | - G Adithi
- Applied Mycology Lab, Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India
| | - N Deepa
- Applied Mycology Lab, Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India
| | - S Divyashree
- Applied Mycology Lab, Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India
| | - M Y Sreenivasa
- Applied Mycology Lab, Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India.
| |
Collapse
|
17
|
Afshar N, Amini K, Mohajerani H, Saki S. Evaluation of probiotic bifidobacteria strains from Iranian traditional dairy products for their anti-hyperlipidemic potential. Folia Microbiol (Praha) 2024; 69:875-887. [PMID: 38198044 DOI: 10.1007/s12223-023-01124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
This study investigated the therapeutic potential of probiotic bifidobacteria, isolated from Iranian fermented dairy products, in a hyperlipidemic animal model. Bifidobacterium strains were extracted from traditional dairy samples and screened using physiological and phenotypic examinations, 16S rRNA analysis, and probiotic properties such as tolerance to gastrointestinal juice, antimicrobial activity, and antibiotic susceptibility. The ability of the screened bifidobacteria to reduce serum and liver lipids in vivo was tested using male Wistar rats. Six strains of bifidobacteria were isolated from traditional Iranian fermented dairy. These strains showed promising in vitro activity in lowering triglyceride and cholesterol, tolerance to simulated gastrointestinal juice, the ability to adhere to Caco-2 cells, acceptable antibiotic susceptibility, and a broad spectrum of antibacterial activity. The diet supplemented with isolated bifidobacteria significantly reduced serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), liver tissue lipid levels, and hepatic enzymes in animals when compared to a high-fat diet without strains (p < 0.01). Additionally, the potential probiotic-supplemented diet significantly increased bile acid excretion in the feces and upregulated hepatic CYP7A1 expression levels (p < 0.05), while NPC1L1, ACAT2, and MTP gene expressions in small intestinal cells were downregulated (p < 0.05). Bifidobacteria isolated from Iranian traditional dairy showed potential for use in the production of fermented foods that have hypolipemic activity in the host.
Collapse
Affiliation(s)
- Nasim Afshar
- Department of Microbiology, Faculty of Sciences, Arak Branch, Islamic Azad University, Arak, Iran
| | - Kumarss Amini
- Department of Microbiology, Faculty of Sciences, Saveh Branch, Islamic Azad University, Saveh, Iran.
| | | | - Sasan Saki
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
18
|
Jatoth BS, Rahman Z, Dandekar MP, Venkataraman R, Shivalingegowda RK, Manuel GG. Safety Assessment of Streptococcus salivarius UBSS-01 in Rats and Double-Blind Placebo-Controlled Study in Healthy Individuals. Int J Toxicol 2024; 43:387-406. [PMID: 38676502 DOI: 10.1177/10915818241247527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Streptococcus salivarius is a common, harmless, and prevalent member of the oral microbiota in humans. In the present study, the safety of S. salivarius UBSS-01 was evaluated using in silico methods and preclinical and clinical studies. In an acute toxicity study, rats were administered with 5 g/kg (500 × 109 CFU) S. salivarius UBSS-01. The changes in phenotypic behaviors and hematological, biochemical, electrolytes, and urine analyses were monitored. No toxicity was observed at 14 days post-treatment. The no observable effects limit (NOEL) of S. salivarius UBSS-01 was >5 g/kg in rats. In a 28-day repeat dose toxicity study, rats were administered S. salivarius UBSS-01 once daily at doses of 0.1, 0.5, and 1 g/kg (10, 50, and 100 billion CFU/kg, respectively) body weight. S. salivarius UBSS-01 did not influence any of the hematology parameters and clinical chemistry parameters in plasma and serum samples after 28-day repeated administration. No structural abnormality was observed in the histological examination of organs. Whole genome analysis revealed the absence of virulence factors or genes that may transmit antibiotic resistance. In the double-blind study with 60 human participants (aged 18-60 years), consumption of S. salivarius UBSS-01 for 30 days was found to be safe and results were comparable with placebo treatment These findings indicate that S. salivarius UBSS-01 may be safe for human consumption.
Collapse
Affiliation(s)
- Bindhu S Jatoth
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ziaur Rahman
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Manoj P Dandekar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajesh Venkataraman
- Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B. G. Nagara, India
| | - Ravi K Shivalingegowda
- Department of Otorhinolaryngology and Head & Neck Surgery, Adichunchanagiri Institute of Medical Sciences, B. G. Nagara, India
| | - Gloriya G Manuel
- Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B. G. Nagara, India
| |
Collapse
|
19
|
Kumari V. B. C, Huligere S, M. K. J, Goh KW, Desai SM, H. L. K, Ramu R. Characterization of Lactobacillus spp. as Probiotic and Antidiabetic Potential Isolated from Boza, Traditional Fermented Beverage in Turkey. Int J Microbiol 2024; 2024:2148676. [PMID: 38962395 PMCID: PMC11221989 DOI: 10.1155/2024/2148676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/16/2024] [Accepted: 05/07/2024] [Indexed: 07/05/2024] Open
Abstract
Boza, a cereal-based beverage popular in southeast Europe, is fortified with probiotics and is believed to positively impact the composition of the gut microflora. This investigation focused on fermented cereal-based beverage boza to identify strains of probiotic Lactobacillus spp. capable of inhibiting carbohydrate-hydrolysing enzymes α-glucosidase (AG) and α-amylase (AA). The isolated bacterial strains underwent a comprehensive assessment, including biochemical, molecular, and probiotic trait analyses such as tolerance survivability, adhesion, safety, and health-promoting attributes. We evaluated the inhibitory potential of the supernatant, cell lysate, and intact cells of Lactobacillus spp. Molecular analysis has revealed that isolates RAMULAB30 and RAMULAB29 exhibit a significant genetic similarity (>97%) to Lacticaseibacillus paracasei and Limosilactobacillus fermentum, respectively. These findings are documented in the NCBI database. They exhibited significant resistance to gastrointestinal and intestinal fluids, also indicating their potential for adhesion. Additionally, the isolates showed a significant antibacterial activity, particularly against Micrococcus luteus. They showed resistance to vancomycin and methicillin antibiotics but were more susceptible to streptomycin and ampicillin. Furthermore, the strains demonstrated antioxidant properties. To ensure their safety, a haemolytic assay was conducted despite their general recognition as safe (GRAS) status. The study primarily aimed to evaluate the inhibitory effects of the extract on enzymes AG and AA. Bacterial isolates demonstrated a significant inhibitory activity against both enzyme AG (32%-67% inhibition) and enzyme AA (18%-46% inhibition) in different forms, including supernatant (CS), lysed extract (CE), and intact cell (IC). These findings underscore the potential of bacterial isolates to inhibit the enzyme activity effectively. Furthermore, the L. fermentum RAMULAB29 and L. paracasei RAMULAB30 strains exhibit remarkable antidiabetic potential. Food products incorporating these strains have promising prospects as nutraceuticals, providing improved health benefits.
Collapse
Affiliation(s)
- Chandana Kumari V. B.
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| | - Sujay Huligere
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| | - Jayanthi M. K.
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Sudhanva M. Desai
- Department of Chemical Engineering, Dayananda Sagar College of Engineering, Bengaluru, Karnataka, India
| | - Kalabharthi H. L.
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| |
Collapse
|
20
|
Deng Y, Wang Y, Liu Y, Yang X, Zhang H, Xue X, Wan Y. Akkermansia muciniphila isolated from forest musk deer ameliorates diarrhea in mice via modification of gut microbiota. Animal Model Exp Med 2024. [PMID: 38828754 DOI: 10.1002/ame2.12441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND The forest musk deer, a rare fauna species found in China, is famous for its musk secretion which is used in selected Traditional Chinese medicines. However, over-hunting has led to musk deer becoming an endangered species, and their survival is also greatly challenged by various high incidence and high mortality respiratory and intestinal diseases such as septic pneumonia and enteritis. Accumulating evidence has demonstrated that Akkermannia muciniphila (AKK) is a promising probiotic, and we wondered whether AKK could be used as a food additive in animal breeding programmes to help prevent intestinal diseases. METHODS We isolated one AKK strain from musk deer feces (AKK-D) using an improved enrichment medium combined with real-time PCR. After confirmation by 16S rRNA gene sequencing, a series of in vitro tests was conducted to evaluate the probiotic effects of AKK-D by assessing its reproductive capability, simulated gastrointestinal fluid tolerance, acid and bile salt resistance, self-aggregation ability, hydrophobicity, antibiotic sensitivity, hemolysis, harmful metabolite production, biofilm formation ability, and bacterial adhesion to gastrointestinal mucosa. RESULTS The AKK-D strain has a probiotic function similar to that of the standard strain in humans (AKK-H). An in vivo study found that AKK-D significantly ameliorated symptoms in the enterotoxigenic Escherichia coli (ETEC)-induced murine diarrhea model. AKK-D improved organ damage, inhibited inflammatory responses, and improved intestinal barrier permeability. Additionally, AKK-D promoted the reconstitution and maintenance of the homeostasis of gut microflora, as indicated by the fact that AKK-D-treated mice showed a decrease in Bacteroidetes and an increase in the proportion of other beneficial bacteria like Muribaculaceae, Muribaculum, and unclassified f_Lachnospiaceae compared with the diarrhea model mice. CONCLUSION Taken together, our data show that this novel AKK-D strain might be a potential probiotic for use in musk deer breeding, although further extensive systematic research is still needed.
Collapse
Affiliation(s)
- Yan Deng
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yan Wang
- Shaanxi Institute of Microbiology, Xi'an, China
| | - Ying Liu
- Shaanxi Institute of Microbiology, Xi'an, China
| | - Xiaoli Yang
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shaanxi Institute for Food and Drug Control, Xi'an, China
| | - Hai Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiaochang Xue
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yi Wan
- Shaanxi Institute of Microbiology, Xi'an, China
| |
Collapse
|
21
|
Zhao D, Li MH, Pan T, Guo J, Li J, Shi C, Wang N, Huang H, Wang C, Yang G. Preventive and Therapeutic Potential of Streptococcus cristatus CA119 in Experimental Periodontitis in Rats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10254-y. [PMID: 38607584 DOI: 10.1007/s12602-024-10254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Periodontitis is an inflammatory condition of the oral cavity caused by a mixed infection of various bacteria, which not only severely affects the alveolar bone and connective tissues but also displays potential correlations with distal intestinal inflammation. In this study, we aimed to elucidate the therapeutic effects of Streptococcus cristatus CA119 on experimental periodontitis in rats and its impact on intestinal morphology. The results demonstrate that CA119 is capable of colonizing the oral cavity and exerting antagonistic effects on Porphyromonas gingivalis and Fusobacterium nucleatum, thus leading to a significant reduction in the oral pathogen load. Following CA119 intervention, there was a significant alleviation of weight loss in rats induced by periodontitis (P < 0.001). CA119 also regulated the expression of IL-6 (P < 0.05), IL-1β (P < 0.001), IL-18 (P < 0.001), COX-2 (P < 0.001), iNOS (P < 0.001), and MCP-1 (P < 0.01) in the gingival tissue. Additionally, CA119 reduced oxidative stress levels in rats and enhanced their antioxidant capacity. Microcomputed tomography (micro-CT) and histological analysis revealed that CA119 significantly reduced alveolar bone loss and reversed the downregulation of OPG/RANKL (P < 0.001). Furthermore, CA119 exhibited a significant protective effect against intestinal inflammation induced by periodontal disease and improved the colonic morphology in rats. In conclusion, this study demonstrates the role of CA119 as a potential oral probiotic in the prevention and treatment of experimental periodontitis, underscoring the potential of probiotics as a complementary approach to traditional periodontal care.
Collapse
Affiliation(s)
- Dongyu Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ming-Han Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tianxu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jialin Guo
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Junyi Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
22
|
Jingjing F, Weilin J, Shaochen S, Aman K, Ying W, Yanyi C, Pengya F, Byong-Hun J, El-Sayed S, Zhenmin L, Pu L, Xiangkai L. A Probiotic Targets Bile Acids Metabolism to Alleviate Ulcerative Colitis by Reducing Conjugated Bile Acids. Mol Nutr Food Res 2024; 68:e2300731. [PMID: 38480985 DOI: 10.1002/mnfr.202300731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/02/2024] [Indexed: 04/17/2024]
Abstract
SCOPE Gut microbiota (GM) dysbiosis and dysregulated bile acids (BAs) metabolism have been linked to ulcerative colitis (UC) pathogenesis. The possibility of utilizing live probiotics with a defined BAs-metabolizing capability to modify the composition BAs for UC treatment remains unexplored. METHODS AND RESULTS In this study, Strain GR-4 is sourced from traditional Chinese fermented food, "Jiangshui," and demonstrated the ability to deconjugate two common conjugated BAs by over 69% and 98.47%, respectively. It administers strain GR-4 to dextran sulfate sodium (DSS)-induced UC mice, and observes an overall alleviation of UC symptoms, as evidence by improved colon morphology, reduces inflammation and oxidative stress, and restores intestinal barrier function. Importantly, these effects are reliant on an intact commensal microbiota, as depletion of GM mitigated GR-4s efficacy. Metabolomics analysis unveils a decline in conjugated BAs and an increase in secondary BAs following GR-4 administration. GM analysis indicates that GR-4 selectively enriches bacterial taxa linked to BAs metabolism, enhancing GM's capacity to modify BAs. CONCLUSION This research demonstrates the potential for natural fermented foods and probiotics to effectively manipulate BAs composition, including conjugated and secondary BAs, to alleviate UC symptoms, underscoring the benefits of these approaches for gut health.
Collapse
Affiliation(s)
- Fan Jingjing
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Jin Weilin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China
| | - Su Shaochen
- Healthy Examination & Management Center, First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Khan Aman
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Wu Ying
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Chen Yanyi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Feng Pengya
- Department of Children Rehabilitation Medicine, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jeon Byong-Hun
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Salama El-Sayed
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Ling Zhenmin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Liu Pu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Li Xiangkai
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
23
|
Sun M, Shao W, Liu Z, Ma X, Chen H, Zheng N, Zhao Y. Microbial diversity in camel milk from Xinjiang, China as revealed by metataxonomic analysis. Front Microbiol 2024; 15:1367116. [PMID: 38533337 PMCID: PMC10964795 DOI: 10.3389/fmicb.2024.1367116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
The quality of raw camel milk is affected by its bacterial composition and diversity. However, few studies have investigated the bacterial composition and diversity of raw camel milk. In this study, we obtained 20 samples of camel milk during spring and summer in Urumqi and Hami, Xinjiang, China. Single-molecule real-time sequencing technology was used to analyze the bacterial community composition. The results revealed that there were significant seasonal differences in the bacterial composition and diversity of camel milk. Overall, Epilithonimonas was the most abundant bacterial genus in our samples. Through the annotated genes inferred by PICRUSt2 were mapped against KEGG database. Non-parametric analysis of the bacterial community prediction function revealed a strong bacterial interdependence with metabolic pathways (81.83%). There were clear regional and seasonal differences in level 3 metabolic pathways such as fat, vitamins, and amino acids in camel milk. In addition, we identified lactic acid bacteria in camel milk with antibacterial and anti-tumor activities. Our findings revealed that camel milk from Xinjiang had serious risk of contamination by psychrophilic and pathogenic bacteria. Our research established a crucial theoretical foundation for ensuring the quality and safety of camel milk, thereby contributing significantly to the robust growth of China's camel milk industry.
Collapse
Affiliation(s)
- Miao Sun
- Institute of Quality Standards and Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Laboratory of Quality and Safety Risk Assessment for Agro-products, Ministry of Agriculture, Urumqi, China
- College of Animal Science Xinjiang Agriculture University, Urumqi, China
| | - Wei Shao
- College of Animal Science Xinjiang Agriculture University, Urumqi, China
| | - Zhengyu Liu
- Institute of Quality Standards and Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Laboratory of Quality and Safety Risk Assessment for Agro-products, Ministry of Agriculture, Urumqi, China
- College of Animal Science Xinjiang Agriculture University, Urumqi, China
| | - Xianlan Ma
- Institute of Quality Standards and Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Laboratory of Quality and Safety Risk Assessment for Agro-products, Ministry of Agriculture, Urumqi, China
| | - He Chen
- Institute of Quality Standards and Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Laboratory of Quality and Safety Risk Assessment for Agro-products, Ministry of Agriculture, Urumqi, China
| | - Nan Zheng
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yankun Zhao
- Institute of Quality Standards and Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Laboratory of Quality and Safety Risk Assessment for Agro-products, Ministry of Agriculture, Urumqi, China
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
24
|
Khan WA, Butt MS, Yasmin I, Wadood SA, Mahmood A, Gad HA. Protein-polysaccharide based double network microbeads improves stability of Bifidobacterium infantis ATCC 15697 in a gastro-Intestinal tract model (TIM-1). Int J Pharm 2024; 652:123804. [PMID: 38220120 DOI: 10.1016/j.ijpharm.2024.123804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Microencapsulation of probiotics is a main technique employed to improve cell survival in gastrointestinal tract (GIT). The present study investigated the impact of utilizing proteins i.e. Whey Protein Isolates (WPI), Pea Protein Isolates (PPI) or (WPI + PPI) complex based microbeads as encapsulating agents on the encapsulation efficiency (EE), diameter, morphology along with the survival and viability of Bifidobacterium infantis ATCC 15697. Results revealed that WPI + PPI combination had the highest EE% of the probiotics up to 94.09 % and the smoothest surface with less visible holes. WPI based beads revealed lower EE% and smaller size than PPI based ones. In addition, WPI based beads showed rough surface with visible signs of cracks, while PPI beads showed dense surfaces with pores and depressions. In contrast, the combination of the two proteins resulted in compact and smooth beads with less visible pores/wrinkles. The survival in gastrointestinal tract (GIT) was observed through TNO in-vitro gastrointestinal model (TIM-1) and results illustrated that all microbeads shrank in gastric phase while swelled in intestinal phase. In addition, in-vitro survival rate of free cells was very low in gastric phase (18.2 %) and intestinal phase (27.5 %). The free cells lost their viability after 28 days of storage (2.66 CFU/mL) with a maximum log reduction of 6.76, while all the encapsulated probiotic showed more than 106-7 log CFU/g viable cell. It was concluded that encapsulation improved the viability of probiotics in GIT and utilization of WPI + PPI in combination provided better protection to probiotics.
Collapse
Affiliation(s)
- Wahab Ali Khan
- Department of Food Science and Technology, University of Home Economics Lahore, 54660 Pakistan.
| | - Masood Sadiq Butt
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture Faisalabad, 38040 Pakistan.
| | - Iqra Yasmin
- Department of Human Nutrition and Dietetics, University of Chakwal, Chakwal, 48800 Pakistan.
| | - Syed Abdul Wadood
- Department of Food Science and Technology, University of Home Economics Lahore, 54660 Pakistan; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China.
| | - Asif Mahmood
- Department of Pharmacy, University of Chakwal, Chakwal 48800, Pakistan.
| | - Heba A Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia.
| |
Collapse
|
25
|
Lee MG, Kang MJ, Kim S, Jeong H, Kang DK, Paik HD, Park YS. Safety Assessment of Levilactobacillus brevis KU15006: A Comprehensive Analysis of its Phenotypic and Genotypic Properties. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10237-z. [PMID: 38430332 DOI: 10.1007/s12602-024-10237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Levilactobacillus brevis KU15006, isolated from kimchi, exhibits pathogen-antagonistic and anti-diabetic activities; however, the safety of this strain has not been assessed. In the present study, L. brevis KU15006 was evaluated to elucidate its safety as a probiotic strain using phenotypic and genotypic analyses. Its safety was assessed using a minimum inhibitory concentration test comprising nine antibiotics, 26 antibiotic resistance genes, a single conjugative element, virulence gene analysis, hemolysis, cell cytotoxicity, mucin degradation, and toxic metabolite production. L. brevis KU15006 exhibited equal or lower minimum inhibitory concentration for the nine antibiotics than the cut-off value established by the European Food Safety Authority. It did not harbor antibiotic resistance and virulence genes. L. brevis KU15006 lacked β-hemolysis, mucin degradation, cytotoxicity against Caco-2 cells, gelatin liquefaction, bile salt deconjugation, and toxic metabolite production abilities. Based on the results, L. brevis KU15006, which has antagonistic and anti-diabetic effects, could be marketed as a probiotic in the future.
Collapse
Affiliation(s)
- Min-Gyu Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Min-Joo Kang
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Suin Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Huijin Jeong
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
26
|
Dishan A, Gönülalan Z. Lacticaseibacillus paracasei AD22 Stress Response in Brined White Cheese Matrix: In Vitro Probiotic Profiles and Molecular Characterization. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10216-4. [PMID: 38421575 DOI: 10.1007/s12602-024-10216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 03/02/2024]
Abstract
Functionalizing foods involve discovering and integrating new candidate health-promoting bacteria into the food matrix. This study aimed (i) to reveal the probiotic potential of autochthonous Lacticaseibacillus paracasei AD22 by a series of in vitro tests and molecular characterization and (ii) to evaluate its application to the matrix of brined white cheese, which is the most common cheese in Türkiye, in terms of survival and stress response. To evaluate in vitro probiotic characteristics, L. paracasei AD22 was exposed to functional, technological, and safety tests. Pilot scale production was conducted to integrate L. paracasei AD22 into the brined white cheese matrix. The expression levels of stress-related genes (dnaK, groES, ftsH, argH, and hsp20) were detected by reverse-transcriptase polymerase chain reaction to determine the transcriptional stress response during ripening. The presence of genes encoding stress-related proteins was determined by whole-genome sequence analysis using a subsystem approach; the presence of antibiotic resistance and virulence genes was determined by ResFinder4.1 and VirulenceFinder 2.0 databases. The BAGEL4 database determined the presence of bacteriocin clusters. L. paracasei AD22 was found to survive in pH 2 and medium with 12% NaCl and did not cause hemolysis. Adhesion of the strain to Caco2 cells was 76.26 ± 4.81% and it had coaggregation/autoaggregation properties. It was determined that L. paracasei AD22 exceeded 7 log cfu/g in the cheese matrix at the end of the ripening period. Total mesophilic aerobes decreased in the cheese inoculated with L. paracasei AD22 after the 45th day of ripening. While hsp20 and groES genes were downregulated during ripening, argH was upregulated. Both downregulation and upregulation were observed in dnaK and ftsH. Fold changes indicating the expression levels of dnaK, groES, ftsH, argH, and hsp20 genes were not statistically significant during ripening (p > 0.05). Whole-genome sequence profiles revealed that the strain did not contain antibiotic and virulence genes but bacteriocin clusters encoding Enterolysin A (Class III bacteriocin), Carnosine CP52 (class II bacteriocin), Enterocin X beta chain (Class IIc bacteriocin), and the LanT region. Subsystems approach manifested that the most functional part of the genomic distribution belonged to metabolism, protein processing, and stress response functions. The study findings highlight that L. paracasei AD22 will provide biotechnological innovation as a probiotic adjunct because it contains tolerance factors and probiotic characteristics to produce new functional foods.
Collapse
Affiliation(s)
- Adalet Dishan
- Faculty of Veterinary Medicine, Dept. of Food Hygiene and Technology, Yozgat Bozok University, Yozgat, Türkiye.
| | - Zafer Gönülalan
- Faculty of Veterinary Medicine, Dept. of Veterinary Public Health, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
27
|
Argentini C, Lugli GA, Tarracchini C, Fontana F, Mancabelli L, Viappiani A, Anzalone R, Angelini L, Alessandri G, Bianchi MG, Taurino G, Bussolati O, Milani C, van Sinderen D, Turroni F, Ventura M. Ecology- and genome-based identification of the Bifidobacterium adolescentis prototype of the healthy human gut microbiota. Appl Environ Microbiol 2024; 90:e0201423. [PMID: 38294252 PMCID: PMC10880601 DOI: 10.1128/aem.02014-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 02/01/2024] Open
Abstract
Bifidobacteria are among the first microbial colonizers of the human gut, being frequently associated with human health-promoting activities. In the current study, an in silico methodology based on an ecological and phylogenomic-driven approach allowed the selection of a Bifidobacterium adolescentis prototype strain, i.e., B. adolescentis PRL2023, which best represents the overall genetic content and functional features of the B. adolescentis taxon. Such features were confirmed by in vitro experiments aimed at evaluating the ability of this strain to survive in the gastrointestinal tract of the host and its ability to interact with human intestinal cells and other microbial gut commensals. In this context, co-cultivation of B. adolescentis PRL2023 and several gut commensals revealed various microbe-microbe interactions and indicated co-metabolism of particular plant-derived glycans, such as xylan.IMPORTANCEThe use of appropriate bacterial strains in experimental research becomes imperative in order to investigate bacterial behavior while mimicking the natural environment. In the current study, through in silico and in vitro methodologies, we were able to identify the most representative strain of the Bifidobacterium adolescentis species. The ability of this strain, B. adolescentis PRL2023, to cope with the environmental challenges imposed by the gastrointestinal tract, together with its ability to switch its carbohydrate metabolism to compete with other gut microorganisms, makes it an ideal choice as a B. adolescentis prototype and a member of the healthy microbiota of adults. This strain possesses a genetic blueprint appropriate for its exploitation as a candidate for next-generation probiotics.
Collapse
Affiliation(s)
- Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio srl, Parma, Italy
| | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | | | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Massimiliano G. Bianchi
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, Laboratory of General Pathology, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, Laboratory of General Pathology, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, Laboratory of General Pathology, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
28
|
He Y, Li F, Zhang W, An M, Li A, Wang Y, Zhang Y, Fakhar-E-Alam Kulyar M, Iqbal M, Li J. Probiotic Potential of Bacillus amyloliquefaciens Isolated from Tibetan Yaks. Probiotics Antimicrob Proteins 2024; 16:212-223. [PMID: 36536234 DOI: 10.1007/s12602-022-10027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
The Tibetan livestock sector is now ailing from many infectious ailments brought on by harmful microorganisms. Therefore, this research aimed to assess the probiotic potential and safety of Bacillus amyloliquefaciens isolated from yaks in the Tibet area to provide upper-edge strain resources for probiotics development. The four strains isolated from the intestine of yaks had been identified as Bacillus amyloliquefaciens after the 16S rRNA sequence. The ethanol, bile salt, and acid tolerance revealed that the isolates had significant tolerance levels. The antibiotics susceptibility assay showed that the strains were sensitive to commonly used antibiotics, while the antibacterial assay prevented the isolates from outperforming five harmful bacteria in terms of antibacterial potency. Moreover, it was evident that strain BA5 had the strongest activity to scavenge hydroxyl radical and reduce power. According to the animal experiment, no apparent pathological change was observed in intestinal tissue sections. Furthermore, the strain had a positive effect on promoting the development of jejunal villi referred to its safety. Therefore, more research is required into the bacteriostatic and antioxidant capabilities of isolates in animal production.
Collapse
Affiliation(s)
- Yuanyuan He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Feiran Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wenqian Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Miao An
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Muhammad Fakhar-E-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, People's Republic of China.
| |
Collapse
|
29
|
Angal A, Shidture S, Syed J, Tiwari DP, Dubey AK, Bhaduri A, Pujari R. In vitro adhesion and anti-inflammatory properties of Limosilactobacillus fermentum FS-10 isolated from infant fecal sample. Int Microbiol 2024; 27:227-238. [PMID: 37269431 DOI: 10.1007/s10123-023-00383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
In this study, seven strains of Limosilactobacillus fermentum were isolated from an infant fecal sample and characterized using in vitro studies. Lactobacillus rhamnosus GG was used as a comparison because it is a well-documented commercial probiotic. The isolates were tested for attributes such as acid and phenol tolerance, bile salt hydrolase (BSH) activity, and antibiotic sensitivity. One isolate, L. fermentum FS-10, displayed enhanced cell surface hydrophobicity (> 85%) and mucin adhesion. Mucin-binding helps colonization in the gut. The immunomodulatory property of L. fermentum FS-10 was evaluated by determining the modulation of pro- and anti-inflammatory factors such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-10, and nitric oxide (NO) in human acute monocytic leukemia (THP-1) cells under inflammatory conditions induced by lipopolysaccharide (LPS). L. fermentum FS-10 potently downregulated the expression of TNF-α and nitric oxide and upregulated IL-10 levels, indicating an anti-inflammatory response. Safety assessment of the strain revealed the absence of genes for virulence factors, toxin production, and antibiotic resistance, potentiating application as a probiotic strain.
Collapse
Affiliation(s)
- Ashvini Angal
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Shubham Shidture
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Jaserah Syed
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Deepika Pandey Tiwari
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Ashok Kumar Dubey
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Anirban Bhaduri
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Radha Pujari
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India.
| |
Collapse
|
30
|
Mazhar S, Simon A, Khokhlova E, Colom J, Leeuwendaal N, Deaton J, Rea K. In vitro safety and functional characterization of the novel Bacillus coagulans strain CGI314. Front Microbiol 2024; 14:1302480. [PMID: 38274758 PMCID: PMC10809412 DOI: 10.3389/fmicb.2023.1302480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Bacillus coagulans species have garnered much interest in health-related functional food research owing to their desirable probiotic properties, including pathogen exclusion, antioxidant, antimicrobial, immunomodulatory and food fermentation capabilities coupled with their tolerance of extreme environments (pH, temperature, gastric and bile acid resistance) and stability due to their endosporulation ability. Methods In this study, the novel strain Bacillus coagulans CGI314 was assessed for safety, and functional probiotic attributes including resistance to heat, gastric acid and bile salts, the ability to adhere to intestinal cells, aggregation properties, the ability to suppress the growth of human pathogens, enzymatic profile, antioxidant capacity using biochemical and cell-based methods, cholesterol assimilation, anti-inflammatory activity, and attenuation of hydrogen peroxide (H2O2)-induced disruption of the intestinal-epithelial barrier. Results B. coagulans CGI314 spores display resistance to high temperatures (40°C, 70°C, and 90°C), and gastric and bile acids [pH 3.0 and bile salt (0.3%)], demonstrating its ability to survive and remain viable under gastrointestinal conditions. Spores and the vegetative form of this strain were able to adhere to a mucous-producing intestinal cell line, demonstrated moderate auto-aggregation properties, and could co-aggregate with potentially pathogenic bacteria. Vegetative cells attenuated LPS-induced pro-inflammatory cytokine gene expression in HT-29 intestinal cell lines and demonstrated broad antagonistic activity toward numerous urinary tract, intestinal, oral, and skin pathogens. Metabolomic profiling demonstrated its ability to synthesize several amino acids, vitamins and short-chain fatty acids from the breakdown of complex molecules or by de novo synthesis. Additionally, B. coagulans CGI314's strong antioxidant capacity was demonstrated using enzyme-based methods and was further supported by its cytoprotective and antioxidant effects in HepG2 and HT-29 cell lines. Furthermore, B. coagulans CGI314 significantly increased the expression of tight junction proteins and partially ameliorated the detrimental effects of H2O2 induced intestinal-epithelial barrier integrity. Discussion Taken together these beneficial functional properties provide strong evidence for B. coagulans CGI314 as a promising potential probiotic candidate in food products.
Collapse
Affiliation(s)
- Shahneela Mazhar
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| | - Annie Simon
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| | - Ekaterina Khokhlova
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| | - Joan Colom
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| | - Natasha Leeuwendaal
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| | - John Deaton
- ADM Deerland Probiotics and Enzymes, Kennesaw, GA, United States
| | - Kieran Rea
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| |
Collapse
|
31
|
Ahn J, Park JY. Potential of γ-Aminobutyric Acid-Producing Leuconostoc mesenteroides Strains Isolated from Kimchi as a Starter for High-γ-Aminobutyric Acid Kimchi Fermentation. Prev Nutr Food Sci 2023; 28:492-501. [PMID: 38188089 PMCID: PMC10764228 DOI: 10.3746/pnf.2023.28.4.492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024] Open
Abstract
γ-Aminobutyric acid (GABA)-producing Leuconostoc mesenteroides K1501 and K1627, isolated from kimchi, exhibited the highest GABA production in 1% monosodium glutamic acid. Both strains showed high survival rates of approximately 87% in artificial gastric juice (pH 3.0) and >80% in 0.1% artificial bile salt fluid. The survival rate was approximately 28% in 0.3% artificial bile salt fluid and 0% in 0.5% artificial bile salts. Both strains showed excellent adhesion to intestinal epithelial cells (>99%). Furthermore, it was observed that growth was not inhibited at 2% salt concentration; however, it was slightly retarded at salt concentrations of 3% and 4%. Moreover, L. mesenteroides K1501 and K1627 inhibited the growth of certain species of Lactobacillus, whose presence in kimchi fermentation is undesirable. Therefore, L. mesenteroides K1501 and K1627 have the potential to be used as starter organisms for functional GABA-rich kimchi.
Collapse
Affiliation(s)
- Jihyun Ahn
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongbuk 38430, Korea
| | - Jae-Yong Park
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongbuk 38430, Korea
| |
Collapse
|
32
|
Russo P, Diez-Ozaeta I, Mangieri N, Tamame M, Spano G, Dueñas MT, López P, Mohedano ML. Biotechnological Potential and Safety Evaluation of Dextran- and Riboflavin-Producing Weisella cibaria Strains for Gluten-Free Baking. Foods 2023; 13:69. [PMID: 38201097 PMCID: PMC10778100 DOI: 10.3390/foods13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Gluten consumption causes several immunological and non-immunological intolerances in susceptible individuals. In this study, the dextran-producing Weissella cibaria BAL3C-5 and its derivative, the riboflavin-overproducing strain BAL3C-5 C120T, together with a commercial bakery yeast, were used to ferment gluten-free (GF)-doughs obtained from corn and rice flours at two different concentrations and supplemented with either quinoa, buckwheat, or chickpea to obtain laboratory-scale GF bread. The levels of dextran, riboflavin, and total flavins were determined in the fermented and breads. Both strains grew in fermented doughs and contributed dextran, especially to those made with corn plus quinoa (~1 g/100 g). The highest riboflavin (350-150 µg/100 g) and total flavin (2.3-1.75 mg/100 g) levels were observed with BAL3C-5 C120T, though some differences were detected between the various doughs or breads, suggesting an impact of the type of flour used. The safety assessment confirmed the lack of pathogenic factors in the bacterial strains, such as hemolysin and gelatinase activity, as well as the genetic determinants for biogenic amine production. Some intrinsic resistance to antibiotics, including vancomycin and kanamycin, was found. These results indicated the microbiological safety of both W. cibaria strains and indicated their potential application in baking to produce GF bread.
Collapse
Affiliation(s)
- Pasquale Russo
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy; (P.R.); (N.M.)
| | - Iñaki Diez-Ozaeta
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (I.D.-O.); (P.L.)
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 San Sebastián, Spain;
| | - Nicola Mangieri
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy; (P.R.); (N.M.)
| | - Mercedes Tamame
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Giuseppe Spano
- DAFNE Department, University of Foggia, 71122 Foggia, Italy;
| | - Maria Teresa Dueñas
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco (UPV/EHU), 20018 San Sebastián, Spain;
| | - Paloma López
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (I.D.-O.); (P.L.)
| | - Mari Luz Mohedano
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (I.D.-O.); (P.L.)
| |
Collapse
|
33
|
Lee SW, Lim JM, Lee GM, Park JH, Seralathan KK, Oh BT. Evaluation of Lentilactobacillus parafarraginis A6-2 strain for aluminum removal and anti-inflammatory effects: implications for alleviating Al toxicity. J Appl Microbiol 2023; 134:lxad271. [PMID: 37989872 DOI: 10.1093/jambio/lxad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/30/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
AIM To assess the effectiveness of Lentilactobacillus parafarraginis A6-2 cell lysate for the removal of aluminum (Al), which induces neurotoxicity, and its protective effect at cellular level. METHODS AND RESULTS The cell lysate of the selected L. parafarraginis A6-2 strain demonstrated superior Al removal compared to live or dead cells. The Al removal efficiency of L. parafarraginis A6-2 cell lysate increased with decreasing pH and increasing temperature, primarily through adsorption onto peptidoglycan. Neurotoxicity mitigation potential of L. parafarraginis A6-2 was evaluated using C6 glioma cells. C6 cells exposed with increasing concentration of Al led to elevated toxicity and inflammation, which were gradually alleviated upon treatment with L. parafarraginis A6-2. Moreover, Al-induced oxidative stress in C6 cells showed a concentration-dependent reduction upon treatment with L. parafarraginis A6-2. CONCLUSIONS This study demonstrated that L. parafarraginis A6-2 strain, particularly in its lysate form, exhibited enhanced capability for Al removal. Furthermore, it effectively mitigated Al-induced toxicity, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Se-Won Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Jeong-Muk Lim
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Gwang-Min Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Jung-Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea
| |
Collapse
|
34
|
Lin X, Wu C. Identification and evaluation of probiotic potential of Bifidobacterium breve AHC3 isolated from chicken intestines and its effect on necrotizing enterocolitis (NEC) in newborn SD rats. PLoS One 2023; 18:e0287799. [PMID: 37917716 PMCID: PMC10621988 DOI: 10.1371/journal.pone.0287799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/13/2023] [Indexed: 11/04/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe intestinal disease of the newborn infants, associated with high morbidity and mortality. It has been reported that Bifidobacterium could protect the intestinal barrier function and reduce the risk of NEC. This study aimed to evaluate the probiotic potential of Bifidobacterium strains isolated from the chicken intestines and its effect on necrotizing enterocolitis in newborn SD rats. Out of 32 isolates, B. breve AHC3 not only exhibited excellent probiotic potential, including tolerance to artificial simulated gastric conditions, adhesion to HT-29 cells, antioxidant capacity and antibacterial activity, but also possessed reliable safety. Additionally, NEC model was established to further investigate the effect of B. breve AHC3 on necrotizing enterocolitis in newborn SD rats. It was illustrated that administration of B. breve AHC3 significantly not only reduced the incidence of NEC (from 81.25% to 34.38%) (P< 0.05), but also alleviated the severity of ileal injury (P< 0.05). Compared with NEC model, B. breve AHC3 could significantly decrease the level of proinflammatory factor TNF-α (P< 0.05) and increase the level of antiinflammatory factor IL-10 (P< 0.05) in the ileum of NEC rats. Through the intervention of B. breve AHC3, the gray value of inducible nitric oxide synthase (iNOS) in intestinal tissue of NEC rats was significantly reduced (P< 0.05). It was indicated that B. breve AHC3 exhibited prominent probiotic potential and reliable safety. In the neonatal SD rat model of NEC, B. breve AHC3 had an available protective effect on the intestinal injury of NEC, which might be related to reducing the inflammatory reaction in the ileum and inhibiting the expression of iNOS in intestinal tissue cells. B. breve AHC3 could be used as a potential treatment for human NEC.
Collapse
Affiliation(s)
- Xiaopei Lin
- Department of Pediatrics, Maternity and Child Health Care Hospital Affiliated to Anhui Medical University (Anhui Maternity and Child Health Care Hospital), Hefei, Anhui, China
| | - Changjun Wu
- Institute of Microbiology, Anhui Academy of Medical Sciences, Hefei, Anhui, China
| |
Collapse
|
35
|
Liu Y, Zhong W, Feng S, Tang Z, Zhang Y, Ai L, Xiong Z. Identification of new reference genes for colony counting by reverse-transcription quantitative PCR in Bifidobacterium animalis. J Dairy Sci 2023; 106:7477-7485. [PMID: 37641239 DOI: 10.3168/jds.2022-23000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/12/2023] [Indexed: 08/31/2023]
Abstract
Bifidobacterium animalis, one of the predominant bacteria in the intestines of humans and other mammals, is widely added to dairy products. We employed RNA sequencing to analyze gene expression variance on a genome-wide scale and found stable reference genes (RG) in B. animalis. A total of 1,665 genes were identified by analyzing the data from the transcriptome under 4 different conditions, and 13 probable candidate RG with variation coefficient values <0.1 were validated using reverse-transcription quantitative PCR (RT-qPCR). The amplification efficiency of candidate RG were ranging from 94.16% to 126.25%. We integrated the analysis results of BestKeeper, geNorm, NormFinder, and RefFinder algorithms and revealed that rplD and atpA comprehensive ranked 1.68 and 2.82, respectively, which were more stable than traditional RG. Compared with plate count (1.58 × 106 cfu/mL), the concentrations of B. animalis AR668 by RT-qPCR using rplD, atpA, and 16S rRNA as RG were 2.27 × 106, 2.24 × 106, and 6.66 × 106 cfu/mL, respectively, after 10 h of fermentation in fermented skim milk. It suggested that rplD and atpA as RG can be accurate for colony counting of B. animalis. Our study provides the foundation for more accurate analysis of colony counting by RT-qPCR of B. animalis in dairy foods.
Collapse
Affiliation(s)
- Yaping Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wanting Zhong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuo Feng
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ziteng Tang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yingzhi Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
36
|
Kaewarsar E, Chaiyasut C, Lailerd N, Makhamrueang N, Peerajan S, Sirilun S. Effects of Synbiotic Lacticaseibacillus paracasei, Bifidobacterium breve, and Prebiotics on the Growth Stimulation of Beneficial Gut Microbiota. Foods 2023; 12:3847. [PMID: 37893739 PMCID: PMC10606279 DOI: 10.3390/foods12203847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The gut microbiota is a complex community of microorganisms that plays a vital role in maintaining overall health, and is comprised of Lactobacillus and Bifidobacterium. The probiotic efficacy and safety of Lacticaseibacillus paracasei and Bifidobacterium breve for consumption were confirmed by in vitro experiments. The survival rate of the probiotics showed a significant decline in in vitro gut tract simulation; however, the survival rate was more than 50%. Also, the probiotics could adhere to Caco-2 cell lines by more than 90%, inhibit the pathogenic growths, deconjugate glycocholic acid and taurodeoxycholic acid through activity of bile salt hydrolase (BSH) proteins, and lower cholesterol levels by over 46%. Regarding safety assessment, L. paracasei and B. breve showed susceptibility to some antibiotics but resistance to vancomycin and were examined as γ-hemolytic strains. Anti-inflammatory properties of B. breve with Caco-2 epithelial cell lines showed the significantly highest value (p < 0.05) for interleukin-10. Furthermore, probiotics and prebiotics (inulin, fructooligosaccharides, and galactooligosaccharides) comprise synbiotics, which have potential effects on the increased abundance of beneficial microbiota, but do not affect the growth of harmful bacteria in feces samples. Moreover, the highest concentration of short chain fatty acid was of acetic acid, followed by propionic and butyric acid.
Collapse
Affiliation(s)
- Ekkachai Kaewarsar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (E.K.); (C.C.); (N.M.)
| | - Chaiyavat Chaiyasut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (E.K.); (C.C.); (N.M.)
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Narissara Lailerd
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Netnapa Makhamrueang
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (E.K.); (C.C.); (N.M.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (E.K.); (C.C.); (N.M.)
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
37
|
Lee JY, Jeong, Park Y, Jeong Y, Chang, Kang H. Anti-Inflammatory Response in TNFα/IFNγ-Induced HaCaT Keratinocytes and Probiotic Properties of Lacticaseibacillus rhamnosus MG4644, Lacticaseibacillus paracasei MG4693, and Lactococcus lactis MG5474. J Microbiol Biotechnol 2023; 33:1039-1049. [PMID: 37280776 PMCID: PMC10468673 DOI: 10.4014/jmb.2301.01028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 06/08/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory disease caused by immune dysregulation. Meanwhile, the supernatant of lactic acid bacteria (SL) was recently reported to have anti-inflammatory effects. In addition, HaCaT keratinocytes stimulated by tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) are widely used for studying AD-like responses. In this study, we evaluated the anti-inflammatory effects of SL from lactic acid bacteria (LAB) on TNF-α/IFN-γ-induced HaCaT keratinocytes, and then we investigated the strains' probiotic properties. SL was noncytotoxic and regulated chemokines (macrophage-derived chemokine (MDC) and thymus and activation-regulated chemokine (TARC)) and cytokines (interleukin (IL)-4, IL-5, IL-25, and IL-33) in TNF-α/IFN-γ-induced HaCaT keratinocytes. SL from Lacticaseibacillus rhamnosus MG4644, Lacticaseibacillus paracasei MG4693, and Lactococcus lactis MG5474 decreased the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK). Furthermore, the safety of the three strains was demonstrated via hemolysis, bile salt hydrolase (BSH) activity, and toxicity tests, and the stability was confirmed under simulated gastrointestinal conditions. Therefore, L. rhamnosus MG4644, L. paracasei MG4693, and Lc. lactis MG5474 have potential applications in functional food as they are stable and safe for intestinal epithelial cells and could improve atopic inflammation.
Collapse
Affiliation(s)
- Ji Yeon Lee
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Jeong
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Yong Park
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Yulah Jeong
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Chang
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Ho Kang
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| |
Collapse
|
38
|
Icer MA, Özbay S, Ağagündüz D, Kelle B, Bartkiene E, Rocha JMF, Ozogul F. The Impacts of Acidophilic Lactic Acid Bacteria on Food and Human Health: A Review of the Current Knowledge. Foods 2023; 12:2965. [PMID: 37569234 PMCID: PMC10418883 DOI: 10.3390/foods12152965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The need to improve the safety/quality of food and the health of the hosts has resulted in increasing worldwide interest in acidophilic lactic acid bacteria (LAB) for the food, livestock as well as health industries. In addition to the use of acidophilic LAB with probiotic potential for food fermentation and preservation, their application in the natural disposal of acidic wastes polluting the environment is also being investigated. Considering this new benefit that has been assigned to probiotic microorganisms in recent years, the acceleration in efforts to identify new, efficient, promising probiotic acidophilic LAB is not surprising. One of these effots is to determine both the beneficial and harmful compounds synthesized by acidophilic LAB. Moreover, microorganisms are of concern due to their possible hemolytic, DNase, gelatinase and mucinolytic activities, and the presence of virulence/antibiotic genes. Hence, it is argued that acidophilic LAB should be evaluated for these parameters before their use in the health/food/livestock industry. However, this issue has not yet been fully discussed in the literature. Thus, this review pays attention to the less-known aspects of acidophilic LAB and the compounds they release, clarifying critical unanswered questions, and discussing their health benefits and safety.
Collapse
Affiliation(s)
- Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya 05100, Turkey;
| | - Sena Özbay
- Department of Food Technology, Kaman Vocational School, Kırşehir Ahi Evran University, Kırşehir 40360, Turkey;
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey
| | - Bayram Kelle
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Cukurova University, Adana 01330, Turkey;
| | - Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences Tilzes 18, LT-47181 Kaunas, Lithuania;
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
| | - João Miguel F. Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Cukurova University, Balcalı, Adana 01330, Turkey;
- Biotechnology Research and Application Center, Cukurova University, Adana 01330, Turkey
| |
Collapse
|
39
|
Abdul Hakim BN, Xuan NJ, Oslan SNH. A Comprehensive Review of Bioactive Compounds from Lactic Acid Bacteria: Potential Functions as Functional Food in Dietetics and the Food Industry. Foods 2023; 12:2850. [PMID: 37569118 PMCID: PMC10417365 DOI: 10.3390/foods12152850] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 08/13/2023] Open
Abstract
Lactic acid bacteria (LAB) are beneficial microbes known for their health-promoting properties. LAB are well known for their ability to produce substantial amounts of bioactive compounds during fermentation. Peptides, exopolysaccharides (EPS), bacteriocins, some amylase, protease, lipase enzymes, and lactic acid are the most important bioactive compounds generated by LAB activity during fermentation. Additionally, the product produced by LAB is dependent on the type of fermentation used. LAB derived from the genera Lactobacillus and Enterococcus are the most popular probiotics at present. Consuming fermented foods has been previously connected to a number of health-promoting benefits such as antibacterial activity and immune system modulation. Furthermore, functional food implementations lead to the application of LAB in therapeutic nutrition such as prebiotic, immunomodulatory, antioxidant, anti-tumor, blood glucose lowering actions. Understanding the characteristics of LAB in diverse sources and its potential as a functional food is crucial for therapeutic applications. This review presents an overview of functional food knowledge regarding interactions between LAB isolated from dairy products (dairy LAB) and fermented foods, as well as the prospect of functioning LAB in human health. Finally, the health advantages of LAB bioactive compounds are emphasized.
Collapse
Affiliation(s)
- Bibi Nabihah Abdul Hakim
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (B.N.A.H.); (N.J.X.)
| | - Ng Jia Xuan
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (B.N.A.H.); (N.J.X.)
| | - Siti Nur Hazwani Oslan
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (B.N.A.H.); (N.J.X.)
- Innovative Food Processing and Ingredients Research Group, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
40
|
Haghshenas B, Kiani A, Mansoori S, Mohammadi-Noori E, Nami Y. Probiotic properties and antimicrobial evaluation of silymarin-enriched Lactobacillus bacteria isolated from traditional curd. Sci Rep 2023; 13:10916. [PMID: 37407617 DOI: 10.1038/s41598-023-37350-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Nowadays, the increasing use of medicinal plants in the treatment and prevention of diseases has attracted the attention of researchers. The aim of this work was to investigate the probiotic properties and antibacterial and antifungal activity of silymarin-enriched Lactobacillus bacteria against several important pathogenic bacteria and also Aspergillus flavus as one of the harmful molds in the food and health industries. For this purpose, 52 g-positive and catalase-negative bacteria were isolated from 60 traditional curd samples from Ilam province. Five of the 52 bacterial strains had more than 90% viability in high bile salt and acidic conditions and were selected for further investigation. The five strains with positive results showed good hydrophobicity (≥ 50.30%), auto-aggregation (≥ 53.70%), coaggregation (≥ 28.20%), and high cholesterol removal ability (from 09.20 to 67.20%) and therefore can be considered potential probiotics. The tested strains displayed acceptable antibacterial and antifungal activity against all 12 pathogenic bacteria and A. flavus. Also, the results of the simultaneous antifungal activity of probiotic strains and silymarin showed that the combination of silymarin and probiotics has a significantly better (P < 0.05) antifungal effect than the control group or the probiotic groups alone. Interestingly, in addition to the Limosilactobacillus fermentum C3 strain, the Limosilactobacillus fermentum C18 and Lactiplantibacillus pentosus C20 strains also had significant inhibitory effects against A. flavus when used with silymarin extract in methanol. Meanwhile, silymarin extract in DMSO and PEG increased the antagonistic activity of all five potential probiotic strains.
Collapse
Affiliation(s)
- Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Saeideh Mansoori
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran.
| |
Collapse
|
41
|
Dhanya Raj CT, Suryavanshi MV, Kandaswamy S, Ramasamy KP, James RA. Whole genome sequence analysis and in-vitro probiotic characterization of Bacillus velezensis FCW2 MCC4686 from spontaneously fermented coconut water. Genomics 2023; 115:110637. [PMID: 37150228 DOI: 10.1016/j.ygeno.2023.110637] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
In this study, the probiotic potential of B. velezensis FCW2, isolated from naturally fermented coconut water, was investigated by in vitro and genomic characterization. Our findings highlight key features of the bacterium which includes, antibacterial activity, high adhesive potential, aggregation capacity, production of nutrient secondary metabolites. In vivo safety assessment revealed no adverse effects on zebrafish. WGS data of B. velezensis FCW2 revealed a complete circular genome of 4,147,426 nucleotides and a GC content of 45.87%. We have identified 4059 coding sequence (CDS) genes that encode proteins involved in stress resistance, adhesion and micronutrient production. The genes responsible for producing secondary metabolites, exopolysaccharides, and other beneficial nutrients were identified. The KEGG and COG databases revealed that genes mainly involved amino acid metabolism, carbohydrate utilization, vitamin and cofactor metabolism, and biological adhesion. These findings suggest that B. velezensis FCW2 could be a putative probiotic in the development of fermented foods.
Collapse
Affiliation(s)
- C T Dhanya Raj
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Mangesh V Suryavanshi
- Cardiovascular and Metabolic Sciences Department, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| | - Surabhi Kandaswamy
- Manchester Centre for Genomic Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, 6th Floor, St Mary's Hospital, Oxford Road, Manchester M13 9WL, UK; School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK..
| | | | - Rathinam Arthur James
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India.
| |
Collapse
|
42
|
Reyes-Castillo PA, González-Vázquez R, Torres-Maravilla E, Bautista-Hernández JI, Zúñiga-León E, Leyte-Lugo M, Mateos-Sánchez L, Mendoza-Pérez F, Gutiérrez-Nava MA, Reyes-Pavón D, Azaola-Espinosa A, Mayorga-Reyes L. Bifidobacterium longum LBUX23 Isolated from Feces of a Newborn; Potential Probiotic Properties and Genomic Characterization. Microorganisms 2023; 11:1648. [PMID: 37512821 PMCID: PMC10385183 DOI: 10.3390/microorganisms11071648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Bifidobacterium longum is considered a microorganism with probiotic potential, which has been extensively studied, but these probiotic effects are strain dependent. This work aims to characterize the probiotic potential, based on the biochemical and genomic functionality, of B. longum LBUX23, isolated from neonates' feces. B. longum LBUX23 contains one circular genome of 2,287,838 bp with a G+C content of 60.05%, no plasmids, no CRISPR-Cas operon, possesses 56 tRNAs, 9 rRNAs, 1 tmRNA and 1776 coding sequences (CDSs). It has chromosomally encoded resistance genes to ampicillin and dicloxacillin, non-hemolytic activity, and moderate inhibition of Escherichia coli ATCC 25922 and to some emergent pathogen's clinical strains. B. longum LBUX23 was able to utilize lactose, sucrose, fructooligosaccharides (FOS), and lactulose. The maximum peak of bacterial growth was observed in sucrose and FOS at 6 h; in lactose and lactulose, it was shown at 8 h. B. longum LBUX23 can survive in gastrointestinal conditions (pH 4 to 7). A decrease in survival (96.5 and 93.8%) was observed at pH 3 and 3.5 during 120 min. argC, argH, and dapA genes could be involved in this tolerance. B. longum LBUX23 can also survive under primary and secondary glyco- or tauro-conjugated bile salts, and a mixture of bile salts due to the high extracellular bile salt hydrolase (BSH) activity (67.3 %), in taurocholic acid followed by taurodeoxycholic acid (48.5%), glycocholic acid (47.1%), oxgall (44.3%), and glycodeoxycholic acid (29.7%) probably due to the presence of the cbh and gnlE genes which form an operon (start: 119573 and end: 123812). Low BSH activity was determined intracellularly (<7%), particularly in glycocholic acid; no intracellular activity was shown. B. longum LBUX23 showed antioxidant effects in DPPH radical, mainly in intact cells (27.4%). In the case of hydroxyl radical scavenging capacity, cell debris showed the highest reduction (72.5%). In the cell-free extract, superoxide anion radical scavenging capacity was higher (90.5%). The genome of B. longum LBUX23 contains PNPOx, AhpC, Bcp, trxA, and trxB genes, which could be involved in this activity. Regarding adherence, it showed adherence up to 5% to Caco-2 cells. B. longum LBUX23 showed in vitro potential probiotic properties, mainly in BSH activity and antioxidant capacity, which indicates that it could be a good candidate for antioxidant or anti-cholesterol tests using in vivo models.
Collapse
Affiliation(s)
- Pedro A Reyes-Castillo
- Doctorado en Ciencias Biologicas y de la Salud, Universidad Autonoma Metropolitana, Unidad Xochimilco, Ciudad de Mexico 04960, Mexico
| | - Raquel González-Vázquez
- Laboratorio de Biotecnologia, Departamento de Sistemas Biologicos, CONAHCYT-Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de Mexico 04960, Mexico
| | - Edgar Torres-Maravilla
- Facultad de Medicina Mexicali, Universidad Autonoma de Baja California, Mexicali 21000, Mexico
| | - Jessica I Bautista-Hernández
- Laboratorio de Biotecnologia, Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana, Unidad Xochimilco, Ciudad de Mexico 04960, Mexico
| | - Eduardo Zúñiga-León
- Centro de Investigación en Recursos Bioticos, Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Carretera Toluca-Ixtlahuaca Km 14.5, San Cayetano, Toluca 50295, Mexico
| | - Martha Leyte-Lugo
- Laboratorio de Biotecnologia, Departamento de Sistemas Biologicos, CONAHCYT-Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de Mexico 04960, Mexico
| | - Leovigildo Mateos-Sánchez
- Unidad de Cuidados Intensivos de Neonatos, Unidad Medica de Alta Especialidad, Hospital Gineco Obstetricia No. 4 "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social, Ciudad de Mexico 01090, Mexico
| | - Felipe Mendoza-Pérez
- Laboratorio de Biotecnologia, Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana, Unidad Xochimilco, Ciudad de Mexico 04960, Mexico
| | - María Angélica Gutiérrez-Nava
- Laboratorio de Ecologia Microbiana, Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana, Unidad Xochimilco, Ciudad de Mexico 04960, Mexico
| | - Diana Reyes-Pavón
- Facultad de Medicina Mexicali, Universidad Autonoma de Baja California, Mexicali 21000, Mexico
| | - Alejandro Azaola-Espinosa
- Laboratorio de Biotecnologia, Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana, Unidad Xochimilco, Ciudad de Mexico 04960, Mexico
| | - Lino Mayorga-Reyes
- Laboratorio de Biotecnologia, Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana, Unidad Xochimilco, Ciudad de Mexico 04960, Mexico
| |
Collapse
|
43
|
Sreepathi N, Kumari VBC, Huligere SS, Al-Odayni AB, Lasehinde V, Jayanthi MK, Ramu R. Screening for potential novel probiotic Levilactobacillus brevis RAMULAB52 with antihyperglycemic property from fermented Carica papaya L. Front Microbiol 2023; 14:1168102. [PMID: 37408641 PMCID: PMC10318367 DOI: 10.3389/fmicb.2023.1168102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/25/2023] [Indexed: 07/07/2023] Open
Abstract
Probiotics are live microorganisms with various health benefits when consumed in appropriate amounts. Fermented foods are a rich source of these beneficial organisms. This study aimed to investigate the probiotic potential of lactic acid bacteria (LAB) isolated from fermented papaya (Carica papaya L.) through in vitro methods. The LAB strains were thoroughly characterized, considering their morphological, physiological, fermentative, biochemical, and molecular properties. The LAB strain's adherence and resistance to gastrointestinal conditions, as well as its antibacterial and antioxidant capabilities, were examined. Moreover, the strains were tested for susceptibility against specific antibiotics, and safety evaluations encompassed the hemolytic assay and DNase activity. The supernatant of the LAB isolate underwent organic acid profiling (LCMS). The primary objective of this study was to assess the inhibitory activity of α-amylase and α-glucosidase enzymes, both in vitro and in silico. Gram-positive strains that were catalase-negative and carbohydrate fermenting were selected for further analysis. The LAB isolate exhibited resistance to acid bile (0.3% and 1%), phenol (0.1% and 0.4%), and simulated gastrointestinal juice (pH 3-8). It demonstrated potent antibacterial and antioxidant abilities and resistance to kanamycin, vancomycin, and methicillin. The LAB strain showed autoaggregation (83%) and adhesion to chicken crop epithelial cells, buccal epithelial cells, and HT-29 cells. Safety assessments indicated no evidence of hemolysis or DNA degradation, confirming the safety of the LAB isolates. The isolate's identity was confirmed using the 16S rRNA sequence. The LAB strain Levilactobacillus brevis RAMULAB52, derived from fermented papaya, exhibited promising probiotic properties. Moreover, the isolate demonstrated significant inhibition of α-amylase (86.97%) and α-glucosidase (75.87%) enzymes. In silico studies uncovered that hydroxycitric acid, one of the organic acids derived from the isolate, interacted with crucial amino acid residues of the target enzymes. Specifically, hydroxycitric acid formed hydrogen bonds with key amino acid residues, such as GLU233 and ASP197 in α-amylase, and ASN241, ARG312, GLU304, SER308, HIS279, PRO309, and PHE311 in α-glucosidase. In conclusion, Levilactobacillus brevis RAMULAB52, isolated from fermented papaya, possesses promising probiotic properties and exhibits potential as an effective remedy for diabetes. Its resistance to gastrointestinal conditions, antibacterial and antioxidant abilities, adhesion to different cell types, and significant inhibition of target enzymes make it a valuable candidate for further research and potential application in the field of probiotics and diabetes management.
Collapse
Affiliation(s)
- Navya Sreepathi
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - V. B. Chandana Kumari
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Abdel-Basit Al-Odayni
- Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Victor Lasehinde
- Department of Biology, Washington University, St. Louis, MO, United States
| | - M. K. Jayanthi
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
44
|
Coulibaly WH, Kouadio NR, Camara F, Diguță C, Matei F. Functional properties of lactic acid bacteria isolated from Tilapia (Oreochromis niloticus) in Ivory Coast. BMC Microbiol 2023; 23:152. [PMID: 37231432 DOI: 10.1186/s12866-023-02899-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Probiotics have recently been applied in aquaculture as eco-friendly alternatives to antibiotics to improve fish health, simultaneously with the increase of production parameters. The present study aimed to investigate the functional potential of lactic acid bacteria (LAB) isolated from the gut of Tilapia (Oreochromis niloticus) originating from the aquaculture farm of Oceanologic Research Center in Ivory Coast. RESULTS Twelve LAB strains were identified by 16 S rDNA gene sequence homology analysis belonging to two genera Pediococcus (P. acidilactici and P. pentosaceus) and Lactobacillus (L. plantarum) with a predominance of P. acidilactici. Several aspects including functional, storage, and safety characteristics were taken into consideration in the selection process of the native LAB isolates as potential probiotics. All LAB isolates showed high antagonistic activity against bacterial pathogens like Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, and Staphylococcus aureus. In addition, the LAB isolates exhibited different degrees of cell surface hydrophobicity in the presence of hexane, xylene, and chloroform as solvents and a good ability to form biofilm. The strong antioxidant activity expressed through the DPPH scavenging capacity of LAB intact cells and their cell-free supernatants was detected. LAB strains survived between 34.18% and 49.9% when exposed to low pH (1.5) and pepsin for 3 h. In presence of 0.3% bile salts, the growth rate ranged from 0.92 to 21.46%. Antibiotic susceptibility pattern of LAB isolates showed sensitivity or intermediate resistance to amoxicillin, cephalothin, chloramphenicol, imipenem, kanamycin, penicillin, rifampicin, streptomycin, tetracycline and resistance to oxacillin, gentamicin, and ciprofloxacin. No significant difference in antibiotic susceptibility pattern was observed between P. acidilactici and P. pentosaceus strains. The non-hemolytic activity was detected. Following the analysis of the enzyme profile, the ability of LAB isolates to produce either lipase or β-galactosidase or both enzymes was highlighted. Furthermore, the efficacy of cryoprotective agents was proved to be isolate-dependent, with LAB isolates having a high affinity for D-sorbitol and sucrose. CONCLUSION The explored LAB strains inhibited the growth of pathogens and survived after exposure to simulated gastrointestinal tract conditions. The safety and preservative properties are desirable attributes of these new probiotic strains hence recommended for future food and feed applications.
Collapse
Affiliation(s)
- Wahauwouélé Hermann Coulibaly
- Biotechnology and Food Microbiology Laboratory, Food Science and Technology, Formation and Research Unit, University Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
- Applied Microbiology Laboratory, Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, 59 Mărăsti Blvd, Bucharest, 011464, Romania
| | - N'goran Richard Kouadio
- Nutrition and Food Safety Laboratory, Food Science and Technology, Formation and Research Unit, University Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
| | - Fatoumata Camara
- Nutrition and Food Safety Laboratory, Food Science and Technology, Formation and Research Unit, University Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
| | - Camelia Diguță
- Applied Microbiology Laboratory, Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, 59 Mărăsti Blvd, Bucharest, 011464, Romania.
| | - Florentina Matei
- Applied Microbiology Laboratory, Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, 59 Mărăsti Blvd, Bucharest, 011464, Romania
| |
Collapse
|
45
|
Ben-Miled H, Benoit-Biancamano MO, Ben-Mahrez K, Réjiba S. Alpha-amylase and alphaglucosidase inhibitory properties, beta-galactosidase activity, and probiotic potential of lactic acid bacteria and bifidobacteria from Apis mellifera intermissa and its products. World J Microbiol Biotechnol 2023; 39:205. [PMID: 37221413 DOI: 10.1007/s11274-023-03648-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
The present study aimed to evaluate the probiotic potential, α-amylase and α-glucosidase inhibitory effects, and β-galactosidase production of 19 non haemolytic lactic acid bacteria and bifidobacteria previously identified and isolated from honey bee gastrointestinal tract (BGIT) of Apis mellifera intermissa, honey, propolis and bee bread. The isolates were screened according to their high resistance to lysozyme and potent antibacterial activity. Our results indicated that among the 19 isolates, Limosilactobacillus fermentum BGITE12.2, Lactiplantibacillus plantarum BGITEC13, Limosilactobacillus fermentum BGITEC5.1 and Bifidobacterium asteroides BGITOB8, isolated from BGIT exhibited a good tolerance to 100 mg/mL lysozyme (> 82%), excellent tolerance to 0.5% bile salt [survival rate (SR) ≥ 83.19% ± 0.01], and a high SR (≥ 80.0%) under gastrointestinal tract conditions. The auto-aggregation ability was high (auto-aggregation index ranging from 67.14 ± 0.16 to 92.8% ± 0.03) for L. fermentum BGITE12.2, L. plantarum BGITEC13, and B. asteroides BGITOB8, and moderate for L. fermentum BGITEC5.1 (39.08% ± 0.11). Overall, the four isolates showed moderate co-aggregation capacity with pathogenic bacteria. They exhibited from moderate to high hydrophobicity towards toluene and xylene. The safety assessment revealed that the four isolates lacked gelatinase and mucinolytic activities. Also, they were susceptible to ampicillin, clindamycin, erythromycin, and chloramphenicol. Interestingly, the four isolates showed α-glucosidase and α-amylase inhibitory activities ranging from 37.08 ± 0.12 to 57.57% ± 0.1 and from 68.30 ± 0.09 to 79.42% ± 0.09, respectively. Moreover, L. fermentum BGITE12.2, L. plantarum BGITEC13, L. fermentum BGITEC5.1 isolates exhibited β-galactosidase activity over a wide range of 52.49 ± 0.24-746.54 ± 0.25 Miller Units. In conclusion, our findings suggest that the four isolates could be potential candidates for probiotics with interesting functional properties.
Collapse
Affiliation(s)
- Houda Ben-Miled
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar II, 2092, Tunis, Tunisia
| | - Marie-Odile Benoit-Biancamano
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Kamel Ben-Mahrez
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar II, 2092, Tunis, Tunisia
| | - Samia Réjiba
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar II, 2092, Tunis, Tunisia.
- Higher Institute of Biotechnology, Biotechpole of Sidi Thabet, BP-66, 2020, Sidi Thabet, Ariana-Tunis, University of Manouba, Manouba, 2010, Tunis, Tunisia.
| |
Collapse
|
46
|
Gohil P, Nanavati B, Patel K, Suthar V, Joshi M, Patil DB, Joshi CG. Assessing the efficacy of probiotics in augmenting bovine reproductive health: an integrated in vitro, in silico, and in vivo study. Front Microbiol 2023; 14:1137611. [PMID: 37275132 PMCID: PMC10232901 DOI: 10.3389/fmicb.2023.1137611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
The aim of this study was to isolate and characterize bovine-vaginal probiotics genotypically and phenotypically using in silico and evaluate their in vivo performance in buffaloes with endometritis. For the in vitro isolation and characterization, vaginal swabs were collected from 34 cows and 17 buffaloes, and 709 primary bacterial isolates with probiotic activity were obtained using MRS agar media. Two isolates Lactiplantibacillus plantarum KUGBRC (LPKUGBRC) and Pediococcus pentosaceus GBRCKU (PPGBRCKU) demonstrated optimum in vitro probiotic activities as compared to Lacticaseibacillus rhamnosus GG including, acid production, secretion of fatty acids and exopolysaccharide, cell surface hydrophobicity, self-aggregating and co-aggregating capacity with pathogens, anti-microbial activity and bacteriocin-like compounds against pathogens Escherichia coli and Staphylococcus aureus in cell-free supernatant and absence of hemolytic activity. Their phenotypic capacity was confirmed by analyzing the whole genome sequencing data and identifying genes and pathways associated with probiotic properties. These probiotic isolates have shown no virulence genes were discovered in their genomic study. In vivo study of 92 buffaloes suffering from clinical endometritis with purulent cervico-vaginal mucus (CVM) were randomly allocated 40 × 108 CFU/ml LPKUGBRC and PPGBRCKU and 40 ml Normal saline. The LPKUGBRC reduced the duration between administration of probiotic to induction of healthy estrus significantly. However, no effect was observed on pregnancy rate. These results suggest that LPKUGBRC and PPGBRCKU probiotic bacteria demonstrate probiotic efficiency and adaptability. Further sourced from the same niche as the targeted infection, they offer a distinct advantage in targeting the specific microbial population associated with endometritis. The findings of this study highlight the potential of LPKUGBRC and PPGBRCKU probiotics in treating endometritis and suggest further exploration of their clinical applications.
Collapse
Affiliation(s)
- Purva Gohil
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Bhavya Nanavati
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Kajal Patel
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Vishal Suthar
- Directorate of Research, Kamdhenu University, Gandhinagar, Gujarat, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Deepak B. Patil
- Directorate of Research, Kamdhenu University, Gandhinagar, Gujarat, India
| | | |
Collapse
|
47
|
Di Giácomo AL, Azcurra LN, García GR, Dogi CA, González Pereyra ML. Safety assessment of surfactin-producing Bacillus strains and their lipopeptides extracts in vitro and in vivo. J Basic Microbiol 2023. [PMID: 37154196 DOI: 10.1002/jobm.202300008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Beneficial Bacillus strains can be administered to livestock as probiotics to improve animal health. Cyclic lipopeptides produced by Bacillus such as surfactins may be responsible for some of the beneficial effects due to their anti-inflammatory and immunomodulatory activity. The aim of the present study was to isolate and evaluate the biocompatibility of native Bacillus spp. strains and their surfactin-like lipopeptides in vitro and in vivo to determine their potential to be used on animals. Biocompatibility of endospore suspensions (108 UFC/mL), and different dilutions (1:10; 1:50; 1:100; 1:500, and 1:1000) of Bacillus lipopeptide extracts containing surfactin was tested on Caco-2 cells by microculture tetrazolium-based colorimetric assay. Genotoxicity was tested on BALB/c mice (n = 6) administered 0.2 mL of endospore suspensions by the bone marrow erythrocyte micronuclei assay. All the isolates tested produced between 26.96 and 239.97 µg mL- 1 of surfactin. The lipopeptide extract (LPE) from isolate MFF1.11 demonstrated significant cytotoxicity in vitro. In contrast, LPE from MFF 2.2; MFF 2.7, TL1.11, TL 2.5, and TC12 had no cytotoxic effect (V% > 70%) on Caco-2 cells, not affecting cell viability signifficantly in most treatments. Similarly, none of the endospore suspensions affected cell viability (V% > 80%). Likewise, endospores did not cause genotoxicity on BALB/c mice. This study was elementary as a first step for a new line of research, since it allowed us to choose the safest isolates to keep working on the search of new potentially probiotic strains destined to production animals to improve their performance and health.
Collapse
Affiliation(s)
- Ana L Di Giácomo
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Departamento de Microbiología e Inmunología, Instituto de Ciencias Veterinarias (INCIVET-CONICET-UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Córdoba, Argentina
| | - Lorena N Azcurra
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Gisela R García
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Departamento de Microbiología e Inmunología, Instituto de Ciencias Veterinarias (INCIVET-CONICET-UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Córdoba, Argentina
| | - Cecilia A Dogi
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Departamento de Microbiología e Inmunología, Instituto de Ciencias Veterinarias (INCIVET-CONICET-UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Córdoba, Argentina
| | - María L González Pereyra
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Departamento de Microbiología e Inmunología, Instituto de Ciencias Veterinarias (INCIVET-CONICET-UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Córdoba, Argentina
| |
Collapse
|
48
|
Yoo Y, Lee J, Cho J, Yoon Y. Antimicrobial properties of Limosilactobacillus reuteri strains for control of Escherichia coli and Salmonella strains, diarrhoea cause in weaning pigs. VET MED-CZECH 2023; 68:191-199. [PMID: 37982025 PMCID: PMC10581512 DOI: 10.17221/112/2022-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/10/2023] [Indexed: 11/21/2023] Open
Abstract
This study aimed to use lactic acid bacteria isolated from piglet faeces to develop probiotics, allowing for the effective control of Escherichia coli and Salmonella. Lactic acid bacteria were isolated from the faeces of suckling piglets and identified by 16S rRNA sequencing, then examined for haemolysis; gelatinase activity; and resistance to acid, bile, and pancreatin. The antimicrobial activity of selected lactic acid bacteria isolates was examined for 8 E. coli and 7 Salmonella strains. One-hundred and sixty-four lactic acid bacteria isolates were identified from 118 piglet faecal samples, and 13 lactic acid bacteria isolates were selected from analyses of haemolysis; gelatinase activity; and resistance to acid, bile, and pancreatin. Of the selected 13 lactic acid bacteria isolates, Limosilactobacillus reuteri PF20-3 and PF30-3 strains had the highest antibacterial activity against E. coli and Salmonella.
Collapse
Affiliation(s)
- Yoonjeong Yoo
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Jihwan Lee
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Jinho Cho
- Department of Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Yohan Yoon
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, Republic of Korea
- Risk Analysis Research Center, Sookmyung Women’s University, Seoul, Republic of Korea
| |
Collapse
|
49
|
Kumari V B C, Huligere SS, Alotaibi G, Al Mouslem AK, Bahauddin AA, Shivanandappa TB, Ramu R. Antidiabetic Activity of Potential Probiotics Limosilactobacillus spp., Levilactobacillus spp., and Lacticaseibacillus spp. Isolated from Fermented Sugarcane Juice: A Comprehensive In Vitro and In Silico Study. Nutrients 2023; 15:nu15081882. [PMID: 37111101 PMCID: PMC10144524 DOI: 10.3390/nu15081882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Probiotics are regarded as a potential source of functional foods for improving the microbiota in human gut. When consumed, these bacteria can control the metabolism of biomolecules, which has numerous positive effects on health. Our objective was to identify a probiotic putative Lactobacillus spp. from fermented sugarcane juice that can prevent α-glucosidase and α-amylase from hydrolyzing carbohydrates. Isolates from fermented sugarcane juice were subjected to biochemical, molecular characterization (16S rRNA) and assessed for probiotic traits. Cell-free supernatant (CS) and extract (CE) and also intact cells (IC) were examined for the inhibitory effect on α-glucosidase and α-amylase. CS of the strain showed the highest inhibition and was subjected to a liquid chromatography-mass spectrometry (LCMS) analysis to determine the organic acid profile. The in silico approach was employed to assess organic acid stability and comprehend enzyme inhibitors' impact. Nine isolates were retained for further investigation based on the preliminary biochemical evaluation. Limosilactobacillus spp., Levilactobacillus spp., and Lacticaseibacillus spp. were identified based on similarity > 95% in homology search (NCBI database). The strains had a higher survival rate (>98%) than gastric and intestinal fluids, also a high capacity for adhesion (hydrophobicity > 56%; aggregation > 80%; HT-29 cells > 54%; buccal epithelial cells > 54%). The hemolytic assay indicated that the isolates could be considered safe. The isolates' derivatives inhibited enzymes to varying degrees, with α-glucosidase inhibition ranging from 21 to 85% and α-amylase inhibition from 18 to 75%, respectively. The CS of RAMULAB54 was profiled for organic acid that showed the abundance of hydroxycitric acid, citric acid, and lactic acid indicating their role in the observed inhibitory effects. The in silico approach has led us to understand that hydroxycitric acid has the ability to inhibit both the enzymes (α-glucosidase and α-amylase) effectively. Inhibiting these enzymes helps moderate postprandial hyperglycemia and regulates blood glucose levels. Due to their promising antidiabetic potential, these isolates can be used to enhance intestinal health.
Collapse
Affiliation(s)
- Chandana Kumari V B
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Sujay S Huligere
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Shaqra 11961, Saudi Arabia
| | - Abdulaziz K Al Mouslem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Ammar Abdulraheem Bahauddin
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 42535, Saudi Arabia
| | | | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
50
|
Jiang J, Li K, Wang Y, Wu Z, Ma H, Zheng S, Li Z. Screening, Identification and Physiological Characteristics of Lactobacillus rhamnosus M3 (1) against Intestinal Inflammation. Foods 2023; 12:foods12081628. [PMID: 37107423 PMCID: PMC10138118 DOI: 10.3390/foods12081628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The probiotic role of lactic acid bacteria (LAB) in regulating intestinal microbiota to promote human health has been widely reported. However, the types and quantities of probiotics used in practice are still limited. Therefore, isolating and screening LAB with potential probiotic functions from various habitats has become a hot topic. In this study, 104 strains of LAB were isolated from and identified in traditionally fermented vegetables, fresh milk, healthy infant feces, and other environments. The antibacterial properties-resistance to acid, bile salts, and digestive enzymes-and adhesion ability of the strains were determined, and the biological safety of LAB with better performance was studied. Three LAB with good comprehensive performance were obtained. These bacteria had broad-spectrum antibacterial properties and good acid resistance and adhesion ability. They exhibited some tolerance to pig bile salt, pepsin, and trypsin and showed no hemolysis. They were sensitive to the selected antibiotics, which met the required characteristics and safety evaluation criteria for probiotics. An in vitro fermentation experiment and milk fermentation performance test of Lactobacillus rhamnosus (L. rhamnosus) M3 (1) were carried out to study its effect on the intestinal flora and fermentation performance in patients with inflammatory bowel disease (IBD). Studies have shown that this strain can effectively inhibit the growth of harmful microorganisms and produce a classic, pleasant flavor. It has probiotic potential and is expected to be used as a microecological agent to regulate intestinal flora and promote intestinal health. It can also be used as an auxiliary starter to enhance the probiotic value of fermented milk.
Collapse
Affiliation(s)
- Jiayan Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ke Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhongqin Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Huiqin Ma
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shilin Zheng
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|