1
|
Lourenço LMO, Cunha Â, Sierra-Garcia IN. Light-Driven Tetra- and Octa-β-substituted Cationic Zinc(II) Phthalocyanines for Eradicating Fusarium oxysporum Conidia. Int J Mol Sci 2023; 24:16980. [PMID: 38069303 PMCID: PMC10706913 DOI: 10.3390/ijms242316980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Photodynamic inactivation (PDI) is an emerging therapeutic approach that can effectively inactivate diverse microbial forms, including vegetative forms and spores, while preserving host tissues and avoiding the development of resistance to the photosensitization procedure. This study evaluates the antifungal and sporicidal photodynamic activity of two water-soluble amphiphilic tetra- and octa-β-substituted zinc(II) phthalocyanine (ZnPc) dyes with dimethylaminopyridinium groups at the periphery (ZnPcs 1, 2) and their quaternized derivatives (ZnPcs 1a, 2a). Tetra(1, 1a)- and octa(2, 2a)-β-substituted zinc(II) phthalocyanines were prepared and assessed as photosensitizers (PSs) for their effects on Fusarium oxysporum conidia. Antimicrobial photoinactivation experiments were performed with each PS at 0.1, 1, 10, and 20 µM under white light irradiation at an irradiance of 135 mW·cm-2, for 60 min (light dose of 486 J·cm-2). High PDI efficiency was observed for PSs 1a, 2, and 2a (10 µM), corresponding to inactivation until the method's detection limit. PS 1 (20 µM) also achieved a considerable reduction of >5 log10 in the concentration of viable conidia. The quaternized PSs (1a, 2a) showed better PDI performance than the non-quaternized ones (1, 2), even at the low concentration of 1 µM, and a light dose of 486 J·cm-2. These cationic phthalocyanines are potent photodynamic drugs for antifungal applications due to their ability to effectively inactivate resistant forms, like conidia, with low concentrations and reasonable energy doses.
Collapse
Affiliation(s)
| | - Ângela Cunha
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (Â.C.); (I.N.S.-G.)
| | - Isabel N. Sierra-Garcia
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (Â.C.); (I.N.S.-G.)
| |
Collapse
|
2
|
Islam MT, Sain M, Stark C, Fefer M, Liu J, Hoare T, Ckurshumova W, Rosa C. Overview of methods and considerations for the photodynamic inactivation of microorganisms for agricultural applications. Photochem Photobiol Sci 2023; 22:2675-2686. [PMID: 37530937 DOI: 10.1007/s43630-023-00466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
Antimicrobial resistance in agriculture is a global concern and carries huge financial consequences. Despite that, practical solutions for growers that are sustainable, low cost and environmentally friendly have been sparse. This has created opportunities for the agrochemical industry to develop pesticides with novel modes of action. Recently the use of photodynamic inactivation (PDI), classically used in cancer treatments, has been explored in agriculture as an alternative to traditional chemistries, mainly as a promising new approach for the eradication of pesticide resistant strains. However, applications in the field pose unique challenges and call for new methods of evaluation to adequately address issues specific to PDI applications in plants and challenges faced in the field. The aim of this review is to summarize in vitro, ex vivo, and in vivo/in planta experimental strategies and methods used to test and evaluate photodynamic agents as photo-responsive pesticides for applications in agriculture. The review highlights some of the strategies that have been explored to overcome challenges in the field.
Collapse
Affiliation(s)
- Md Tariqul Islam
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Madeline Sain
- Department of Chemical Engineering, McMaster University, 1280 Main Street, Hamilton, ON, Canada
| | - Colin Stark
- Department of Chemical Engineering, McMaster University, 1280 Main Street, Hamilton, ON, Canada
| | - Michael Fefer
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, ON, L5K 1A8, Canada
| | - Jun Liu
- Suncor AgroScience, 2489 North Sheridan Way, Mississauga, ON, L5K 1A8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street, Hamilton, ON, Canada
| | | | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
3
|
Du M, Li F, Hu Y. A Uniform Design Method Can Optimize the Combinatorial Parameters of Antimicrobial Photodynamic Therapy, Including the Concentrations of Methylene Blue and Potassium Iodide, Light Dose, and Methylene Blue's Incubation Time, to Improve Fungicidal Effects on Candida Species. Microorganisms 2023; 11:2557. [PMID: 37894215 PMCID: PMC10609332 DOI: 10.3390/microorganisms11102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
The optimal combinatorial parameters of antimicrobial photodynamic therapy (aPDT) mediated by methylene blue (MB) with the addition of potassium iodide (KI) against Candida species have never been defined. This study aimed to optimize the combinatorial parameters of aPDT, including the concentrations of MB (X1, 0.1-1.0 mM) and KI (X2, 100-400 mM), light dose (X3, 10-70 J/cm2), and MB's incubation time (X4, 5-35 min) for three Candida species. The best MB + KI-aPDT fungicidal effects (Y) against Candida albicans ATCC 90028 (YCa), Candida parapsilosis ATCC 22019 (YCp), and Candida glabrata ATCC 2950 (YCg) were investigated using a uniform design method. The regression models deduced using this method were YCa = 7.126 + 1.199X1X3 - 1.742X12 + 0.206X22 - 0.361X32; YCp = 10.724 - 0.867X1 - 1.497X2 + 0.560X3 + 1.298X22; and YCg = 0.892 - 0.956X1 + 2.296X3 + 1.299X42 - 3.316X3X4. The optimal combinatorial parameters inferred from the regression equations were MB 0.1 mM, KI 400 mM, a light dose of 20 J/cm2, and a 5-minute incubation time of MB for Candida albicans; MB 0.1 mM, KI 400 mM, a light dose of 70 J/cm2, and a 5-minute incubation time of MB for Candida parapsilosis; MB 0.1 mM, KI 100 mM, a light dose of 10 J/cm2, and a 35-minute incubation time of MB for Candida glabrata. The uniform design method can optimize the combinatorial parameters of aPDT mediated by MB plus KI to obtain the best aPDT fungicidal effects on Candida species, providing a new method to optimize the combinatorial parameters of aPDT for different pathogens in the future.
Collapse
Affiliation(s)
- Meixia Du
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China;
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Yanwei Hu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China;
| |
Collapse
|
4
|
Sarabando SN, Dias CJ, Vieira C, Bartolomeu M, Neves MGPMS, Almeida A, Monteiro CJP, Faustino MAF. Sulfonamide Porphyrins as Potent Photosensitizers against Multidrug-Resistant Staphylococcus aureus (MRSA): The Role of Co-Adjuvants. Molecules 2023; 28:molecules28052067. [PMID: 36903314 PMCID: PMC10004250 DOI: 10.3390/molecules28052067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Sulfonamides are a conventional class of antibiotics that are well-suited to combat infections. However, their overuse leads to antimicrobial resistance. Porphyrins and analogs have demonstrated excellent photosensitizing properties and have been used as antimicrobial agents to photoinactivate microorganisms, including multiresistant Staphylococcus aureus (MRSA) strains. It is well recognized that the combination of different therapeutic agents might improve the biological outcome. In this present work, a novel meso-arylporphyrin and its Zn(II) complex functionalized with sulfonamide groups were synthesized and characterized and the antibacterial activity towards MRSA with and without the presence of the adjuvant KI was evaluated. For comparison, the studies were also extended to the corresponding sulfonated porphyrin TPP(SO3H)4. Photodynamic studies revealed that all porphyrin derivatives were effective in photoinactivating MRSA (>99.9% of reduction) at a concentration of 5.0 μM upon white light radiation with an irradiance of 25 mW cm-2 and a total light dose of 15 J cm-2. The combination of the porphyrin photosensitizers with the co-adjuvant KI during the photodynamic treatment proved to be very promising allowing a significant reduction in the treatment time and photosensitizer concentration by six times and at least five times, respectively. The combined effect observed for TPP(SO2NHEt)4 and ZnTPP(SO2NHEt)4 with KI seems to be due to the formation of reactive iodine radicals. In the photodynamic studies with TPP(SO3H)4 plus KI, the cooperative action was mainly due to the formation of free iodine (I2).
Collapse
Affiliation(s)
- Sofia N. Sarabando
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cristina J. Dias
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cátia Vieira
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Bartolomeu
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos J. P. Monteiro
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (C.J.P.M.); (M.A.F.F.)
| | - Maria Amparo F. Faustino
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (C.J.P.M.); (M.A.F.F.)
| |
Collapse
|
5
|
In Vitro Photoinactivation of Fusarium oxysporum Conidia with Light-Activated Ammonium Phthalocyanines. Int J Mol Sci 2023; 24:ijms24043922. [PMID: 36835333 PMCID: PMC9966838 DOI: 10.3390/ijms24043922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has been explored as an innovative therapeutic approach because it can be used to inactivate a variety of microbial forms (vegetative forms and spores) without causing significant damage to host tissues, and without the development of resistance to the photosensitization process. This study assesses the photodynamic antifungal/sporicidal activity of tetra- and octasubstituted phthalocyanine (Pc) dyes with ammonium groups. Tetra- and octasubstituted zinc(II) phthalocyanines (1 and 2) were prepared and tested as photosensitizers (PSs) on Fusarium oxysporum conidia. Photoinactivation (PDI) tests were conducted with photosensitizer (PS) concentrations of 20, 40, and 60 µM under white-light exposure at an irradiance of 135 mW·cm-2, applied during 30 and 60 min (light doses of 243 and 486 J·cm-2). High PDI efficiency corresponding to the inactivation process until the detection limit was observed for both PSs. The tetrasubstituted PS was the most effective, requiring the lowest concentration and the shortest irradiation time for the complete inactivation of conidia (40 µM, 30 min, 243 J·cm-2). Complete inactivation was also achieved with PS 2, but a longer irradiation time and a higher concentration (60 µM, 60 min, 486 J·cm-2) were necessary. Because of the low concentrations and moderate energy doses required to inactivate resistant biological forms such as fungal conidia, these phthalocyanines can be considered potent antifungal photodynamic drugs.
Collapse
|
6
|
Sierra-Garcia IN, Cunha Â, Lourenço LM. In vitro photodynamic treatment of Fusarium oxysporum conidia through the action of thiopyridinium and methoxypyridinium chlorins. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Breaking the Rebellion: Photodynamic Inactivation against Erwinia amylovora Resistant to Streptomycin. Antibiotics (Basel) 2022; 11:antibiotics11050544. [PMID: 35625188 PMCID: PMC9137749 DOI: 10.3390/antibiotics11050544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Global crop production depends on strategies to counteract the ever-increasing spread of plant pathogens. Antibiotics are often used for large-scale treatments. As a result, Erwinia amylovora, causal agent of the contagious fire blight disease, has already evolved resistance to streptomycin (Sm). Photodynamic Inactivation (PDI) of microorganisms has been introduced as innovative method for plant protection. The aim of this study is to demonstrate that E. amylovora resistant to Sm (E. amylovoraSmR) can be killed by PDI. Two photosensitizers, the synthetic B17-0024, and the natural derived anionic sodium magnesium chlorophyllin (Chl) with cell-wall-permeabilizing agents are compared in terms of their photo-killing efficiency in liquid culture with or without 100 µg/mL Sm. In vitro experiments were performed at photosensitizer concentrations of 1, 10 or 100 µM and 5 or 30 min incubation in the dark, followed by illumination at 395 nm (radiant exposure 26.6 J/cm2). The highest inactivation of seven log steps was achieved at 100 µM B17-0024 after 30 min incubation. Shorter incubation (5 min), likely to represent field conditions, reduced the photo-killing to 5 log steps. Chlorophyllin at 100 µM in combination with 1.2% polyaspartic acid (PASA) reduced the number of bacteria by 6 log steps. While PASA itself caused some light independent toxicity, an antibacterial effect (3 log reduction) was achieved only in combination with Chl, even at concentrations as low as 10 µM. Addition of 100 µg/mL Sm to media did not significantly increase the efficacy of the photodynamic treatment. This study proves principle that PDI can be used to treat plant diseases even if causative bacteria are resistant to conventional treatment. Therefore, PDI based on natural photosensitizers might represent an eco-friendly treatment strategy especially in organic farming.
Collapse
|
8
|
Tang J, Tang G, Niu J, Yang J, Zhou Z, Gao Y, Chen X, Tian Y, Li Y, Li J, Cao Y. Preparation of a Porphyrin Metal-Organic Framework with Desirable Photodynamic Antimicrobial Activity for Sustainable Plant Disease Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2382-2391. [PMID: 33605718 DOI: 10.1021/acs.jafc.0c06487] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Considering the severity of plant pathogen resistance toward commonly used agricultural microbicides, as well as the potential threats of agrichemicals to the eco-environment, there is a pressing need for antimicrobial approaches that are capable of inactivating pathogens efficiently without the risk of inducing resistances and harm. In this work, a porphyrin metal-organic framework (MOF) nanocomposite was constructed by incorporating 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP) as a photosensitizer (PS) in the cage of a variant MOF (HKUST-1) to efficiently produce singlet oxygen (1O2) to inactivate plant pathogens under light irradiation. The results showed that the prepared PS@MOF had a loading rate of PS about 12% (w/w) and excellent and broad-spectrum photodynamic antimicrobial activity in vitro against three plant pathogenic fungi and two pathogenic bacteria. Moreover, PS@MOF showed outstanding control efficacy against Sclerotinia sclerotiorum on cucumber in the pot experiment. Allium cepa chromosome aberration assays and safety evaluation on cucumber and Chinese cabbage indicated that PS@MOF had no genotoxicity and was safe to plants. Thus, porphyrin MOF demonstrated a great potential as an alternative and efficient new microbicide for sustainable plant disease management.
Collapse
Affiliation(s)
- Jingyue Tang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Gang Tang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Junfan Niu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jiale Yang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhiyuan Zhou
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yunhao Gao
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xi Chen
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuyang Tian
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yan Li
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jianqiang Li
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Pereira C, Costa P, Pinheiro L, Balcão VM, Almeida A. Kiwifruit bacterial canker: an integrative view focused on biocontrol strategies. PLANTA 2021; 253:49. [PMID: 33502587 DOI: 10.1007/s00425-020-03549-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Phage-based biocontrol strategies can be an effective alternative to control Psa-induced bacterial canker of kiwifruit. The global production of kiwifruit has been seriously affected by Pseudomonas syringae pv. actinidiae (Psa) over the last decade. Psa damages both Actinidia chinensis var. deliciosa (green kiwifruit) but specially the susceptible Actinidia chinensis var. chinensis (gold kiwifruit), resulting in severe economic losses. Treatments for Psa infections currently available are scarce, involving frequent spraying of the kiwifruit plant orchards with copper products. However, copper products should be avoided since they are highly toxic and lead to the development of bacterial resistance to this metal. Antibiotics are also used in some countries, but bacterial resistance to antibiotics is a serious worldwide problem. Therefore, it is essential to develop new approaches for sustainable agriculture production, avoiding the emergence of resistant Psa bacterial strains. Attempts to develop and establish highly accurate approaches to combat and prevent the occurrence of bacterial canker in kiwifruit plants are currently under study, using specific viruses of bacteria (bacteriophages, or phages) to eliminate the Psa. This review discusses the characteristics of Psa-induced kiwifruit canker, Psa transmission pathways, prevention and control, phage-based biocontrol strategies as a new approach to control Psa in kiwifruit orchards and its advantages over other therapies, together with potential ways to bypass phage inactivation by abiotic factors.
Collapse
Affiliation(s)
- Carla Pereira
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Pedro Costa
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Larindja Pinheiro
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Victor M Balcão
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- PhageLab - Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP, CEP 18023-000, Brazil.
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|