1
|
Yang Y, Tan J, Wang F, Sun W, Shi H, Cheng Z, Xie Y, Zhou X. Preconcentration and detection of SARS-CoV-2 in wastewater: A comprehensive review. Biosens Bioelectron 2024; 263:116617. [PMID: 39094290 DOI: 10.1016/j.bios.2024.116617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Severe acute respiratory syndrome coronaviruses 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) affected the health of human beings and the global economy. The patients with SARS-CoV-2 infection had viral RNA or live infectious viruses in feces. Thus, the possible transmission of SARS-CoV-2 through wastewater received great attentions. Moreover, SARS-CoV-2 in wastewater can serve as an early indicator of the infection within communities. We summarized the preconcentration and detection technology of SARS-CoV-2 in wastewater aiming at the complex matrices of wastewater and low virus concentration and compared their performance characteristics. We described the emerging tests that would be possible to realize the rapid detection of SARS-CoV-2 in fields and encourage academics to advance their technologies beyond conception. We concluded with a brief discussion on the outlook for integrating preconcentration and the detection of SARS-CoV-2 with emerging technologies.
Collapse
Affiliation(s)
- Yihan Yang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jisui Tan
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Fan Wang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Weiming Sun
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hanchang Shi
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhao Cheng
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yangcun Xie
- Chinese Academy of Environmental Planning, Beijing, 100043, China.
| | - Xiaohong Zhou
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Ayubov MS, Mirzakhmedov MK, Yusupov AN, Asrorov AM, Nosirov BV, Usmanov DE, Shermatov SE, Ubaydullaeva KA, Abdukarimov A, Buriev ZT, Abdurakhmonov IY. Most accurate mutations in SARS-CoV-2 genomes identified in Uzbek patients show novel amino acid changes. Front Med (Lausanne) 2024; 11:1401655. [PMID: 38882660 PMCID: PMC11176497 DOI: 10.3389/fmed.2024.1401655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
Purpose The rapid changes in the coronavirus genomes created new strains after the first variation was found in Wuhan in 2019. SARS-CoV-2 genotypes should periodically undergo whole genome sequencing to control it because it has been extremely helpful in combating the virus. Many diagnoses, treatments, and vaccinations have been developed against it based on genome sequencing. With its practical implications, this study aimed to determine changes in the delta variant of SARS-CoV-2 widespread in Uzbekistan during the pandemic by genome sequencing, thereby providing crucial insights for developing effective control strategies that can be directly applied in the field. Design We meticulously generated 17 high-quality whole-genome sequence data from 48 SARS-CoV-2 genotypes of COVID-19 patients who tested positive by PCR in Tashkent, Uzbekistan. Our rigorous approach, which includes stringent quality control measures and multiple rounds of verification, ensures the accuracy and reliability of our findings. Methods Our study employed a unique combination of genome sequencing and bioinformatics web tools to analyze amino acid (AA) changes in the virus genomes. This approach allowed us to understand the genetic changes in the delta variant of SARS-CoV-2 widespread in Uzbekistan during the pandemic. Results Our study revealed significant nucleotide polymorphisms, including non-synonymous (missense) and synonymous mutations in the coding regions of the sequenced sample genomes. These findings, categorized by phylogenetic analysis into the G clade (or GK sub-clade), contribute to our understanding of the delta variant of SARS-CoV-2 widespread in Uzbekistan during the pandemic. A total of 134 mutations were identified, consisting of 65 shared and 69 unique mutations. These nucleotide changes, including one frameshift mutation, one conservative and disruptive insertion-deletion, four upstream region mutations, four downstream region mutations, 39 synonymous mutations, and 84 missense mutations, are crucial in the ongoing battle against the virus. Conclusion The comprehensive whole-genome sequencing data presented in this study aids in tracing the origins and sources of circulating SARS-CoV-2 variants and analyzing emerging variations within Uzbekistan and globally. The genome sequencing of SARS-CoV-2 from samples collected in Uzbekistan in late 2021, during the peak of the pandemic's second wave nationwide, is detailed here. Following acquiring these sequences, research efforts have focused on developing DNA and plant-based edible vaccines utilizing prevalent SARS-CoV-2 strains in Uzbekistan, which are currently undergoing clinical trials.
Collapse
Affiliation(s)
- Mirzakamol S Ayubov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | | | - Abdurakhmon N Yusupov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Akmal M Asrorov
- Department of Chemistry for Natural Substances, National University of Uzbekistan, Tashkent, Uzbekistan
| | | | - Dilshod E Usmanov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Shukhrat E Shermatov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Khurshida A Ubaydullaeva
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Abdusattor Abdukarimov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Zabardast T Buriev
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Ibrokhim Y Abdurakhmonov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| |
Collapse
|
3
|
Lozano-Chamizo L, Márquez C, Marciello M, Galdon JC, de la Fuente-Zapico E, Martinez-Mazón P, Gonzalez-Rumayor V, Filice M, Gamiz F. High enhancement of sensitivity and reproducibility in label-free SARS-CoV-2 detection with graphene field-effect transistor sensors through precise surface biofunctionalization control. Biosens Bioelectron 2024; 250:116040. [PMID: 38290380 DOI: 10.1016/j.bios.2024.116040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/14/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024]
Abstract
The COVID-19 pandemic has taught us valuable lessons, especially the urgent need for a widespread, rapid and sensitive diagnostic tool. To this, the integration of bidimensional nanomaterials, particularly graphene, into point-of-care biomedical devices is a groundbreaking strategy able to potentially revolutionize the diagnostic landscape. Despite advancements in the fabrication of these biosensors, the relationship between their surface biofunctionalization and sensing performance remains unclear. Here, we demonstrate that the combination of careful sensor fabrication and its precise surface biofunctionalization is crucial for exalting the sensing performances of 2D biosensors. Specifically, we have biofunctionalized Graphene Field-Effect Transistor (GFET) sensors surface through different biochemical reactions to promote either random/heterogeneous or oriented/homogeneous immobilization of the Anti-SARS-CoV-2 spike protein antibody. Each strategy was thoroughly characterized by in-silico simulations, physicochemical and biochemical techniques and electrical characterization. Subsequently, both biosensors were tested in the label-free direct titration of SARS-CoV-2 virus in simulated clinical samples, avoiding sample preprocessing and within short timeframes. Remarkably, the oriented GFET biosensor exhibited significantly enhanced reproducibility and responsiveness, surpassing the detection sensitivity of conventional non-oriented GFET by more than twofold. This breakthrough not only involves direct implications for COVID-19 surveillance and next pandemic preparedness but also clarify an unexplored mechanistic dimension of biosensor research utilizing 2D-nanomaterials.
Collapse
Affiliation(s)
- Laura Lozano-Chamizo
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040, Madrid, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro 3, E-28029, Madrid, Spain; Atrys Health, E-28001, Madrid, Spain
| | - Carlos Márquez
- Nanoelectronics Research Group, Department of Electronics, CITIC-UGR (Research Center for Information and Communication Technologies), University of Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012, Granada, Spain
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040, Madrid, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - José Carlos Galdon
- Nanoelectronics Research Group, Department of Electronics, CITIC-UGR (Research Center for Information and Communication Technologies), University of Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012, Granada, Spain
| | - Elsa de la Fuente-Zapico
- Nanoelectronics Research Group, Department of Electronics, CITIC-UGR (Research Center for Information and Communication Technologies), University of Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012, Granada, Spain
| | - Paula Martinez-Mazón
- Nanoelectronics Research Group, Department of Electronics, CITIC-UGR (Research Center for Information and Communication Technologies), University of Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012, Granada, Spain
| | | | - Marco Filice
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040, Madrid, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernández Almagro 3, E-28029, Madrid, Spain.
| | - Francisco Gamiz
- Nanoelectronics Research Group, Department of Electronics, CITIC-UGR (Research Center for Information and Communication Technologies), University of Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012, Granada, Spain.
| |
Collapse
|
4
|
Joshi P, Decker C, Zeng X, Sathyavageeswaran A, Perry SL, Heldt CL. Design Rules for the Sequestration of Viruses into Polypeptide Complex Coacervates. Biomacromolecules 2024; 25:741-753. [PMID: 38103178 PMCID: PMC10866146 DOI: 10.1021/acs.biomac.3c00938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Encapsulation is a strategy that has been used to facilitate the delivery and increase the stability of proteins and viruses. Here, we investigate the encapsulation of viruses via complex coacervation, which is a liquid-liquid phase separation resulting from the complexation of oppositely charged polymers. In particular, we utilized polypeptide-based coacervates and explored the effects of peptide chemistry, chain length, charge patterning, and hydrophobicity to better understand the effects of the coacervating polypeptides on virus incorporation. Our study utilized two nonenveloped viruses, porcine parvovirus (PPV) and human rhinovirus (HRV). PPV has a higher charge density than HRV, and they both appear to be relatively hydrophobic. These viruses were compared to characterize how the charge, hydrophobicity, and patterning of chemistry on the surface of the virus capsid affects encapsulation. Consistent with the electrostatic nature of complex coacervation, our results suggest that electrostatic effects associated with the net charge of both the virus and polypeptide dominated the potential for incorporating the virus into a coacervate, with clustering of charges also playing a significant role. Additionally, the hydrophobicity of a virus appears to determine the degree to which increasing the hydrophobicity of the coacervating peptides can enhance virus uptake. Nonintuitive trends in uptake were observed with regard to both charge patterning and polypeptide chain length, with these parameters having a significant effect on the range of coacervate compositions over which virus incorporation was observed. These results provide insights into biophysical mechanisms, where sequence effects can control the uptake of proteins or viruses into biological condensates and provide insights for use in formulation strategies.
Collapse
Affiliation(s)
- Pratik
U. Joshi
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Claire Decker
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Xianci Zeng
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Arvind Sathyavageeswaran
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Sarah L. Perry
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Institute
for Applied Life Sciences, University of
Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Caryn L. Heldt
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United States
| |
Collapse
|
5
|
Papi M, De Spirito M, Palmieri V. Nanotechnology in the COVID-19 era: Carbon-based nanomaterials as a promising solution. CARBON 2023; 210:118058. [PMID: 37151958 PMCID: PMC10148660 DOI: 10.1016/j.carbon.2023.118058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has led to collaboration between nanotechnology scientists, industry stakeholders, and clinicians to develop solutions for diagnostics, prevention, and treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections. Nanomaterials, including carbon-based materials (CBM) such as graphene and carbon nanotubes, have been studied for their potential in viral research. CBM unique effects on microorganisms, immune interaction, and sensitivity in diagnostics have made them a promising subject of SARS-CoV-2 research. This review discusses the interaction of CBM with SARS-CoV-2 and their applicability, including CBM physical and chemical properties, the known interactions between CBM and viral components, and the proposed prevention, treatment, and diagnostics uses.
Collapse
Affiliation(s)
- Massimiliano Papi
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185, Rome, Italy
| |
Collapse
|
6
|
Reyes-Calderón A, Mindreau-Ganoza E, Pardo-Figueroa B, Garcia-Luquillas KR, Yufra SP, Romero PE, Antonini C, Renom JM, Mota CR, Santa-Maria MC. Evaluation of low-cost SARS-CoV-2 RNA purification methods for viral quantification by RT-qPCR and next-generation sequencing analysis: Implications for wider wastewater-based epidemiology adoption. Heliyon 2023; 9:e16130. [PMID: 37228686 PMCID: PMC10188194 DOI: 10.1016/j.heliyon.2023.e16130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/09/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Based Epidemiology (WBE) consists of quantifying biomarkers in sewerage systems to derive real-time information on the health and/or lifestyle of the contributing population. WBE usefulness was vastly demonstrated in the context of the COVID-19 pandemic. Many methods for SARS-CoV-2 RNA determination in wastewater were devised, which vary in cost, infrastructure requirements and sensitivity. For most developing countries, implementing WBE for viral outbreaks, such as that of SARS-CoV-2, proved challenging due to budget, reagent availability and infrastructure constraints. In this study, we assessed low-cost methods for SARS-CoV-2 RNA quantification by RT-qPCR, and performed variant identification by NGS in wastewater samples. Results showed that the effect of adjusting pH to 4 and/or adding MgCl2 (25 mM) was negligible when using the adsorption-elution method, as well as basal physicochemical parameters in the sample. In addition, results supported the standardized use of linear rather than plasmid DNA for a more accurate viral RT-qPCR estimation. The modified TRIzol-based purification method in this study yielded comparable RT-qPCR estimation to a column-based approach, but provided better NGS results, suggesting that column-based purification for viral analysis should be revised. Overall, this work provides evaluation of a robust, sensitive and cost-effective method for SARS-CoV-2 RNA analysis that could be implemented for other viruses, for a wider WEB adoption.
Collapse
Affiliation(s)
- Alonso Reyes-Calderón
- Centro de Investigación y Tecnología del Agua - CITA, Universidad de Ingenieria y Tecnologia – UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| | - Elías Mindreau-Ganoza
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Germán Amézaga s/n, Lima, 15081, Peru
| | - Braulio Pardo-Figueroa
- Centro de Investigación y Tecnología del Agua - CITA, Universidad de Ingenieria y Tecnologia – UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| | - Katherine R. Garcia-Luquillas
- Centro de Investigación y Tecnología del Agua - CITA, Universidad de Ingenieria y Tecnologia – UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| | - Sonia P. Yufra
- Departamento de Ingeniería Metalúrgica e Ingeniería Ambiental, Universidad Nacional de San Agustín, Av. Independencia s/n, Arequipa, 04001, Peru
| | - Pedro E. Romero
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Germán Amézaga s/n, Lima, 15081, Peru
| | - Claudia Antonini
- Departamento de Ingeniería Industrial, Universidad de Ingenieria y Tecnologia - UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| | - Jose-Miguel Renom
- Departamento de Ciencias, Universidad de Ingenieria y Tecnologia - UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| | - Cesar R. Mota
- Departamento de Engenharia Sanitária e Ambiental, Escola de Engenharia, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, Belo Horizonte, 6.627, 31270-901, Brazil
| | - Monica C. Santa-Maria
- Centro de Investigación y Tecnología del Agua - CITA, Universidad de Ingenieria y Tecnologia – UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| |
Collapse
|
7
|
Heldt CL, Areo O, Joshi PU, Mi X, Ivanova Y, Berrill A. Empty and Full AAV Capsid Charge and Hydrophobicity Differences Measured with Single-Particle AFM. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5641-5648. [PMID: 37040364 PMCID: PMC10135413 DOI: 10.1021/acs.langmuir.2c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/22/2023] [Indexed: 05/07/2023]
Abstract
Adeno-associated virus (AAV) is showing promise as a therapy for diseases that contain a single-gene deletion or mutation. One major scale-up challenge is the removal of empty or non-gene of interest containing AAV capsids. Analytically, the empty capsids can be separated from full capsids using anion exchange chromatography. However, when scaled up to manufacturing, the minute changes in conductivity are difficult to consistently obtain. To better understand the differences in the empty and full AAV capsids, we have developed a single-particle atomic force microscopy (AFM) method to measure the differences in the charge and hydrophobicity of AAV capsids at the single-particle level. The atomic force microscope tip was functionalized with either a charged or a hydrophobic molecule, and the adhesion force between the functionalized atomic force microscope tip and the virus was measured. We measured a change in the charge and hydrophobicity between empty and full AAV2 and AAV8 capsids. The charge and hydrophobicity differences between AAV2 and AAV8 are related to the distribution of charge on the surface and not the total charge. We propose that the presence of nucleic acids inside the capsid causes minor but measurable changes in the capsid structure that lead to measurable surface changes in charge and hydrophobicity.
Collapse
Affiliation(s)
- Caryn L. Heldt
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United
States
| | - Oluwatoyin Areo
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United
States
| | - Pratik U. Joshi
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United
States
| | - Xue Mi
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Yulia Ivanova
- Gene
Therapy Process Development, Bioprocess Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer, Chesterfield, Missouri 63017, United States
| | - Alex Berrill
- Gene
Therapy Process Development, Bioprocess Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer, Chesterfield, Missouri 63017, United States
| |
Collapse
|
8
|
Calistri P, Gill H, Lorusso A. Special Issue “SARS-CoV-2: Epidemiology and Pathogenesis”: Editorial. Microorganisms 2023; 11:microorganisms11040927. [PMID: 37110350 PMCID: PMC10141896 DOI: 10.3390/microorganisms11040927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Since its emergence in 2019 in Wuhan City, Hubei Province, China, SARS-CoV-2 has spread across hundreds of countries and all continents [...]
Collapse
Affiliation(s)
- Paolo Calistri
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy
| | - Harsharn Gill
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy
| |
Collapse
|
9
|
Du J, Wu G, Chen Q, Yu C, Xu G, Liu A, Wang L. Fingerprinting trimeric SARS-CoV-2 RBD by capillary isoelectric focusing with whole-column imaging detection. Anal Biochem 2023; 663:115034. [PMID: 36586502 PMCID: PMC9794521 DOI: 10.1016/j.ab.2022.115034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Because the spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) is the immunodominant antigen, the S protein and its receptor-binding domain (RBD) are both targets currently to be genetically engineered for designing the broad-spectrum vaccine. In theory, the expressed protein exists as a set of variants that are roughly the same but slightly different, which depends on the protein expression system. The variants can be phenotypically manifested as charge heterogeneity. Here, we attempted to depict the charge heterogeneity of the trimeric SARS-CoV-2 RBD by using capillary isoelectric focusing with whole-column imaging detection (cIEF-WCID). In its nature form, the electropherogram fingerprints of the trimeric RBD were presented under optimized experimental conditions. The peaks of matrix buffers can be fully distinguishable from peaks of trimeric RBD. The isoelectric point (pI) was determined to be within a range of 6.67-9.54 covering the theoretical pI of 9.02. The fingerprints of three batches of trimeric RBDs are completely the same, with the intra-batch and batch-to-batch relative standard deviations (RSDs) of both pI values and area percentage of each peak no more than 1.0%, indicating that the production process is stable and this method can be used to surveillance the batch-to-batch consistency. The fingerprint remained unchanged after incubating at 37 °C for 7 d and oxidizing by 0.015% H2O2. In addition, the fingerprint was destroyed when adjusting the pH value to higher than 10.0 but still stable when the pH was lower than 4.0. In summary, the cIEF-WCID fingerprint can be used for the identification, batch-to-batch consistency evaluation, and stability study of the trimeric SARS-CoV-2 RBD, as part of a quality control strategy during the potential vaccine production.
Collapse
Affiliation(s)
- Jialiang Du
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Gang Wu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Quanyao Chen
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, Beijing, 102629, China,School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Chuanfei Yu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Gangling Xu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Anhui Liu
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Lan Wang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, Beijing, 102629, China.
| |
Collapse
|
10
|
Kang J, Jang H, Kim TH, Cho U, Bang H, Jang J, Lee W, Joo H, Noh J, Lee GY, Shin DH, Kang CK, Choe PG, Kim NJ, Oh MD, Song M, Kwon S, Veas F, Park WB. Accurate Diagnosis of COVID-19 from Self-Collectable Biospecimens Using Synthetic Apolipoprotein H Peptide-Coated Nanoparticle Assay. Anal Chem 2022; 94:17186-17194. [PMID: 36399654 PMCID: PMC9718094 DOI: 10.1021/acs.analchem.2c03813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A high-throughput, accurate screening is crucial for the prevention and control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current methods, which involve sampling from the nasopharyngeal (NP) area by medical staffs, constitute a fundamental bottleneck in expanding the testing capacity. To meet the scales required for population-level surveillance, self-collectable specimens can be used; however, its low viral load has hindered its clinical adoption. Here, we describe a magnetic nanoparticle functionalized with synthetic apolipoprotein H (ApoH) peptides to capture, concentrate, and purify viruses. The ApoH assay demonstrates a viral enrichment efficiency of >90% for both SARS-CoV-2 and its variants, leading to an order of magnitude improvement in analytical sensitivity. For validation, we apply the assay to a total of 84 clinical specimens including nasal, oral, and mouth gargles obtained from COVID-19 patients. As a result, a 100% positivity rate is achieved from the patient-collected nasal and gargle samples, which exceeds that of the traditional NP swab method. The simple 12 min pre-enrichment assay enabling the use of self-collectable samples will be a practical solution to overcome the overwhelming diagnostic capacity. Furthermore, the methodology can easily be built on various clinical protocols, allowing its broad applicability to various disease diagnoses.
Collapse
Affiliation(s)
- Junwon Kang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul08826, Korea
- Integrated Major in Innovative Medical Science, Seoul National University, Seoul03080, Korea
| | - Haewook Jang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul08826, Korea
| | - Tae Hyun Kim
- Bio-MAX Institute, Seoul National University, Seoul08826, Korea
- Department of Electrical and Computer Engineering, Seoul National University, Seoul08826, Korea
| | - Untack Cho
- QuantaMatrix Inc., Seoul08506, Korea
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul03080, Korea
| | | | | | - Wooseok Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul08826, Korea
| | - Hyelyn Joo
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul08826, Korea
| | - Jinsung Noh
- Bio-MAX Institute, Seoul National University, Seoul08826, Korea
- Department of Electrical and Computer Engineering, Seoul National University, Seoul08826, Korea
| | - Gi Yoon Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul08826, Korea
| | - Dong Hoon Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul03080, Korea
| | - Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul03080, Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul03080, Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul03080, Korea
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul03080, Korea
| | - Manki Song
- International Vaccine Institute, Seoul08826, Korea
| | - Sunghoon Kwon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul08826, Korea
- Bio-MAX Institute, Seoul National University, Seoul08826, Korea
- Department of Electrical and Computer Engineering, Seoul National University, Seoul08826, Korea
- QuantaMatrix Inc., Seoul08506, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul03080, Korea
| | - Francisco Veas
- Copernicus Integrated Solutions for Biosafety Risks (CISBR), Mauguio34130, France
- ApoH-Technologies, 94 Allée des Fauvettes, La Grande Motte34280, France
- UMR5151/French Research Institute for Development (IRD), University of Montpellier (UM), Montpellier 34093, France
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul03080, Korea
| |
Collapse
|
11
|
Obrenovich ME, Tayahi MB, Heidt CL, Emancipator SN. Prophylaxis and Remediation for Future Pandemic Pathogens-(Lessons from a Post-COVID World). Microorganisms 2022; 10:microorganisms10122407. [PMID: 36557660 PMCID: PMC9783667 DOI: 10.3390/microorganisms10122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Since influenza and coronaviruses are currently deadly and emerging threats worldwide, better treatment, remediation and prevention options are needed. In that regard, a basic understanding of severe acute respiratory syndrome (SARS)-CoV-2/COVID-19 (Betacoronaviridae) and other viral pathogen mechanisms of transmission are expected. Unfortunately, unprecedented, and growing distrust of vaccines and even masks or personal protective equipment (PPE) in the United States and elsewhere presents itself as an added challenge. We postulate that development of improved and highly effective prophylactic measures, together with new life-saving therapies that do inhibit or otherwise treat infection of SARS-CoV-2, influenza and other viral pathogens, could be an adjunct measure to globally protect vulnerable individuals from pandemic threats. In this review, we share what we learned from the past COVID experience to offer a multifactorial and improved approach to current and future pandemic infections or threats using low-cost means.
Collapse
Affiliation(s)
- Mark E. Obrenovich
- Department of Veteran’s Affairs Medical Center, Research Service, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- The Gilgamesh Foundation for Medical Science and Research, Cleveland, OH 44116, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
- Department of Biological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
- Correspondence:
| | - Moncef B. Tayahi
- The Gilgamesh Foundation for Medical Science and Research, Cleveland, OH 44116, USA
- Department of Computer Science and Electrical Engineering, University of Cincinnati, Cincinnati, OH 43145, USA
| | - Caryn L. Heidt
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49931, USA
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | | |
Collapse
|
12
|
Fedorov V, Kholina E, Khruschev S, Kovalenko I, Rubin A, Strakhovskaya M. Electrostatic Map of the SARS-CoV-2 Virion Specifies Binding Sites of the Antiviral Cationic Photosensitizer. Int J Mol Sci 2022; 23:7304. [PMID: 35806316 PMCID: PMC9266743 DOI: 10.3390/ijms23137304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Electrostatics is an important part of virus life. Understanding the detailed distribution of charges over the surface of a virus is important to predict its interactions with host cells, antibodies, drugs, and different materials. Using a coarse-grained model of the entire viral envelope developed by D. Korkin and S.-J. Marrink's scientific groups, we created an electrostatic map of the external surface of SARS-CoV-2 and found a highly heterogeneous distribution of the electrostatic potential field of the viral envelope. Numerous negative patches originate mainly from negatively charged lipid domains in the viral membrane and negatively charged areas on the "stalks" of the spike (S) proteins. Membrane (M) and envelope (E) proteins with the total positive charge tend to colocalize with the negatively charged lipids. In the E protein pentamer exposed to the outer surface, negatively charged glutamate residues and surrounding lipids form a negative electrostatic potential ring around the channel entrance. We simulated the interaction of the antiviral octacationic photosensitizer octakis(cholinyl)zinc phthalocyanine with the surface structures of the entire model virion using the Brownian dynamics computational method implemented in ProKSim software (version r661). All mentioned negatively charged envelope components attracted the photosensitizer molecules and are thus potential targets for reactive oxygen generated in photosensitized reactions.
Collapse
Affiliation(s)
- Vladimir Fedorov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.K.); (S.K.); (I.K.); (A.R.); (M.S.)
| | - Ekaterina Kholina
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.K.); (S.K.); (I.K.); (A.R.); (M.S.)
| | - Sergei Khruschev
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.K.); (S.K.); (I.K.); (A.R.); (M.S.)
| | - Ilya Kovalenko
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.K.); (S.K.); (I.K.); (A.R.); (M.S.)
- Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Andrew Rubin
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.K.); (S.K.); (I.K.); (A.R.); (M.S.)
| | - Marina Strakhovskaya
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.K.); (S.K.); (I.K.); (A.R.); (M.S.)
- Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| |
Collapse
|
13
|
Math RK, Mudennavar N, Javaregowda PK, Savanur A. In Silico Comparative Analysis of the Functional, Structural, and Evolutionary Properties of SARS-CoV-2 Variant Spike Proteins. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2022; 3:e37391. [PMID: 35669291 PMCID: PMC9158474 DOI: 10.2196/37391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND A recent global outbreak of COVID-19 caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) created a pandemic and emerged as a potential threat to humanity. The analysis of virus genetic composition has revealed that the spike protein, one of the major structural proteins, facilitates the entry of the virus to host cells. OBJECTIVE The spike protein has become the main target for prophylactics and therapeutics studies. Here, we compared the spike proteins of SARS-CoV-2 variants using bioinformatics tools. METHODS The spike protein sequences of wild-type SARS-CoV-2 and its 6 variants-D614G, alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2), gamma (P.1), and omicron (B.1.1.529)-were retrieved from the NCBI database. The ClustalX program was used to sequence multiple alignment and perform mutational analysis. Several online bioinformatics tools were used to predict the physiological, immunological, and structural features of the spike proteins of SARS-CoV-2 variants. A phylogenetic tree was constructed using CLC software. Statistical analysis of the data was done using jamovi 2 software. RESULTS Multiple sequence analysis revealed that the P681R mutation in the delta variant, which changed an amino acid from histidine (H) to arginine (R), made the protein more alkaline due to arginine's high pKa value (12.5) compared to histidine's (6.0). Physicochemical properties revealed the relatively higher isoelectric point (7.34) and aliphatic index (84.65) of the delta variant compared to other variants. Statistical analysis of the isoelectric point, antigenicity, and immunogenicity of all the variants revealed significant correlation, with P values ranging from <.007 to .04. The generation of a 2D gel map showed the separation of the delta spike protein from a grouping of the other variants. The phylogenetic tree of the spike proteins showed that the delta variant was close to and a mix of the Rousettus bat coronavirus and MERS-CoV. CONCLUSIONS The comparative analysis of SARS-CoV-2 variants revealed that the delta variant is more aliphatic in nature, which provides more stability to it and subsequently influences virus behavior.
Collapse
Affiliation(s)
- Renukaradhya K Math
- SDM Research Institute for Biomedical Sciences Shri Dharmasthala Manjunatheshwara University Dharwad India
| | - Nayana Mudennavar
- SDM Research Institute for Biomedical Sciences Shri Dharmasthala Manjunatheshwara University Dharwad India
| | | | - Ambuja Savanur
- SDM Research Institute for Biomedical Sciences Shri Dharmasthala Manjunatheshwara University Dharwad India
| |
Collapse
|
14
|
Khandelwal N, Chander Y, Kumar R, Nagori H, Verma A, Mittal P, T R, Kamboj S, Verma SS, Khatreja S, Pal Y, Gulati BR, Tripathi BN, Barua S, Kumar N. Studies on Growth Characteristics and Cross-Neutralization of Wild-Type and Delta SARS-CoV-2 From Hisar (India). Front Cell Infect Microbiol 2021; 11:771524. [PMID: 34888260 PMCID: PMC8650692 DOI: 10.3389/fcimb.2021.771524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly evolved to generate several antigenic variants. These variants have raised concerns whether pre-existing immunity to vaccination or prior infection would be able to protect against the newly emerging SARS-CoV-2 variants or not. We isolated SARS-CoV-2 from the coronavirus disease 2019 (COVID-19)-confirmed patients in the beginning of the first (April/May 2020) and second (April/May 2021) waves of COVID-19 in India (Hisar, Haryana). Upon complete nucleotide sequencing, the viruses were found to be genetically related with wild-type (WT) and Delta variants of SARS-CoV-2, respectively. The Delta variant of SARS-CoV-2 produced a rapid cytopathic effect (24-36 h as compared to 48-72 h in WT) and had bigger plaque size but a shorter life cycle (~6 h as compared to the ~8 h in WT). Furthermore, the Delta variant achieved peak viral titers within 24 h as compared to the 48 h in WT. These evidence suggested that the Delta variant replicates significantly faster than the WT SARS-CoV-2. The virus neutralization experiments indicated that antibodies elicited by vaccination are more efficacious in neutralizing the WT virus but significantly less potent against the Delta variant. Our findings have implications in devising suitable vaccination, diagnostic and therapeutic strategies, besides providing insights into understanding virus replication and transmission.
Collapse
Affiliation(s)
- Nitin Khandelwal
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Yogesh Chander
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Ram Kumar
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Himanshu Nagori
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Assim Verma
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Priyasi Mittal
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Riyesh T
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | | | | | | | - Yash Pal
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Baldev R Gulati
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Bhupendra N Tripathi
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Sanjay Barua
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Naveen Kumar
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| |
Collapse
|