1
|
Kostovova I, Kavanova K, Moravkova M, Gebauer J, Leva L, Vicenova M, Babak V, Faldyna M, Crhanova M. Probiotic bacteria of wild boar origin intended for piglets - An in vitro study. VET MED-CZECH 2024; 69:281-296. [PMID: 39296628 PMCID: PMC11406499 DOI: 10.17221/35/2024-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/26/2024] [Indexed: 09/21/2024] Open
Abstract
Using probiotics represents a potential solution to post-weaning diarrheal diseases in piglets on commercial farms. The gastrointestinal tract of wild boars serves as a promising reservoir of novel lactic acid bacteria with suitable probiotic characteristics. In this study, we isolated eight bacterial strains from the intestinal content of wild boars identified as representatives of the species Bifidobacterium apri, Lactobacillus amylovorus, and Ligilactobacillus salivarius. These isolates underwent in vitro analysis and characterisation to assess their biological safety and probiotic properties. Analysis of their full genome sequences revealed the absence of horizontally transferrable genes for antibiotic resistance. However, seven out of eight isolates harboured genes encoding various types of bacteriocins in their genomes, and bacteriocin production was further confirmed by mass spectrometry analysis. Most of the tested strains demonstrated the ability to inhibit the growth of selected pathogenic bacteria, produce exopolysaccharides, and stimulate the expression of interleukin-10 in porcine macrophages. These characteristics deem the isolates characterised in this study as potential candidates for use as probiotics for piglets during the post-weaning period.
Collapse
Affiliation(s)
- Iveta Kostovova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czech Republic
| | - Katerina Kavanova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czech Republic
| | - Monika Moravkova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czech Republic
| | - Jan Gebauer
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Lenka Leva
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Monika Vicenova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Vladimir Babak
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czech Republic
| | - Martin Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Magdalena Crhanova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
2
|
Jena R, Choudhury PK. Bifidobacteria in Fermented Dairy Foods: A Health Beneficial Outlook. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10189-w. [PMID: 37979040 DOI: 10.1007/s12602-023-10189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Bifidobacteria, frequently present in the human gastrointestinal tract, play a crucial role in preserving gut health and are mostly recognized as beneficial probiotic microorganisms. They are associated with fermenting complex carbohydrates, resulting in the production of short-chain fatty acids, bioactive peptides, exopolysaccharides, and vitamins, which provide energy and contribute to gut homeostasis. In light of these findings, research in food processing technologies has harnessed probiotic bacteria such as lactobacilli and bifidobacteria for the formulation of a wide range of fermented dairy products, ensuring their maximum survival and contributing to the development of distinctive quality characteristics and therapeutic benefits. Despite the increased interest in probiotic dairy products, introducing bifidobacteria into the dairy food chain has proved to be complicated. However, survival of Bifidobacterium species is conditioned by strain of bacteria used, metabolic interactions with lactic acid bacteria (LAB), fermentation parameters, and the temperature of storage and preservation of the dairy products. Furthermore, fortification of dairy foods and whey beverages with bifidobacteria have ability to change physicochemical and rheological properties beyond economic value of dairy products. In summary, this review underscores the significance of bifidobacteria as probiotics in diverse fermented dairy foods and accentuates their positive impact on human health. By enhancing our comprehension of the beneficial repercussions associated with the consumption of bifidobacteria-rich products, we aim to encourage individuals to embrace these probiotics as a means of promoting holistic health.
Collapse
Affiliation(s)
- Rajashree Jena
- Department of Dairy Technology, School of Agricultural and Bioengineering, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India
| | - Prasanta Kumar Choudhury
- Department of Dairy Technology, School of Agricultural and Bioengineering, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India.
| |
Collapse
|
3
|
Dinić M, Jakovljević S, Popović N, Radojević D, Veljović K, Golić N, Terzić-Vidojević A. Assessment of stability and bioactive compounds in yogurt containing novel natural starter cultures with the ability to promote longevity in Caenorhabditis elegans. J Dairy Sci 2023; 106:7447-7460. [PMID: 37641316 DOI: 10.3168/jds.2023-23342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/26/2023] [Indexed: 08/31/2023]
Abstract
Yogurt represent one of the oldest fermented foods containing viable lactic acid bacteria and many bioactive compounds that could exhibit beneficial effects on human health and train our immune system to better respond to invading pathogens. Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus are commonly used for yogurt preparation under controlled temperature and environmental conditions. In this study, we investigated probiotic features of S. thermophilus BGKMJ1-36 and L. bulgaricus BGVLJ1-21 strains isolated from artisanal sour milk and yogurt by using Caenorhabditis elegans as an in vivo model system. Further, we evaluated content of total fat, saturated fatty acids, proteins, and lactose, as well as vitamins and AA of yogurt prepared from above-mentioned starter cultures during 21 d of storage at 4°C to get insights of final product stability. We showed that S. thermophilus BGKMJ1-36 and L. bulgaricus BGVLJ1-21 strains applied in combination upregulated the expression of autophagy-related genes in C. elegans. Beside autophagy, we observed activation of TIR-1-dependent transcription of lysozyme-like antimicrobial genes involved in the immune defense of C. elegans. Upregulation of these genes strongly correlates with an increase in the longevity of the worms fed with yogurt culture bacteria. Further, we showed that yogurt prepared with S. thermophilus BGKMJ1-36 and L. bulgaricus BGVLJ1-21, as a final product, is rich with vitamin B2 and dominant AA known by their prolongevity properties. Taken together, our study pointed to the beneficial features of the tested starter cultures and yogurt and highlighted their potential to be used as a fermented food with added-value properties.
Collapse
Affiliation(s)
- Miroslav Dinić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia.
| | - Stefan Jakovljević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Nikola Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Dušan Radojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Katarina Veljović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Nataša Golić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Amarela Terzić-Vidojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia.
| |
Collapse
|
4
|
Hu A, Huang W, Shu X, Ma S, Yang C, Zhang R, Xiao X, Wu Y. Lactiplantibacillus plantarum Postbiotics Suppress Salmonella Infection via Modulating Bacterial Pathogenicity, Autophagy and Inflammasome in Mice. Animals (Basel) 2023; 13:3215. [PMID: 37893938 PMCID: PMC10603688 DOI: 10.3390/ani13203215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Our study aimed to explore the effects of postbiotics on protecting against Salmonella infection in mice and clarify the underlying mechanisms. Eighty 5-week-old C57BL/6 mice were gavaged daily with Lactiplantibacillus plantarum (LP)-derived postbiotics (heat-killed bacteria, LPBinactive; culture supernatant, LPC) or the active bacteria (LPBactive), and gavaged with Salmonella enterica Typhimurium (ST). The Turbidimetry test and agar diffusion assay indicated that LPC directly inhibited Salmonella growth. Real-time PCR and biofilm inhibition assay showed that LPC had a strong ability in suppressing Salmonella pathogenicity by reducing virulence genes (SopE, SopB, InvA, InvF, SipB, HilA, SipA and SopD2), pili genes (FilF, SefA, LpfA, FimF), flagellum genes (FlhD, FliC, FliD) and biofilm formation. LP postbiotics were more effective than LP on attenuating ST-induced intestinal damage in mice, as indicated by increasing villus/crypt ratio and increasing the expression levels of tight junction proteins (Occludin and Claudin-1). Elisa assay showed that LP postbiotics significantly reduced ST-induced inflammation by regulating the levels of inflammatory cytokines (the increased IL-4 and IL-10 and the decreased TNF-α) in serum and ileum (p < 0.05). Furthermore, LP postbiotics inhibited the activation of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome by decreasing the protein expression of NLRP3 and Caspase-1, and the gene expression of Caspase-1, IL-1β and IL-18. Meanwhile, both LPC and LPB observably activated autophagy under ST infection, as indicated by the up-regulated expression of LC3 and Beclin1 and the downregulated p62 level (p < 0.05). Finally, we found that LP postbiotics could trigger an AMP-activated protein kinase (AMPK) signaling pathway to induce autophagy. In summary, Lactiplantibacillus plantarum-derived postbiotics alleviated Salmonella infection via modulating bacterial pathogenicity, autophagy and NLRP3 inflammasome in mice. Our results confirmed the effectiveness of postbiotics agents in the control of Salmonella infection.
Collapse
Affiliation(s)
- Aixin Hu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Wenxia Huang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xin Shu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Shiyue Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Ruiqiang Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xiao Xiao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| |
Collapse
|
5
|
Ali AH, Bamigbade G, Tarique M, Esposito G, Obaid R, Abu-Jdayil B, Ayyash M. Physicochemical, rheological, and bioactive properties of exopolysaccharide produced by a potential probiotic Enterococcus faecalis 84B. Int J Biol Macromol 2023; 240:124425. [PMID: 37076064 DOI: 10.1016/j.ijbiomac.2023.124425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/25/2023] [Accepted: 04/08/2023] [Indexed: 04/21/2023]
Abstract
Exopolysaccharides (EPS) have attracted a great interest due to their potential health-promoting properties and industrial applications. This study aimed to investigate the physicochemical, rheological, and biological properties of an EPS produced by a potential probiotic strain Enterococcus faecalis 84B. The results show that the extracted EPS, designated EPS-84B, had an average molecular weight of 604.8 kDa, particles size diameter of 322.0 nm, and mainly composed of arabinose and glucose with a molar ratio of 1:2. Furthermore, EPS-84B exhibited a shear-thinning behavior and had a high melting point. The rheological properties of EPS-84B were strongly influenced by the type of salt than by the pH value. EPS-84B displayed ideal viscoelastic properties, with both viscous and storage moduli increasing with frequency. The antioxidant activity of EPS-84B at a concentration of 5 mg/mL was 81.1 % against DPPH and 35.2 % against ABTS. At 5 mg/mL, the antitumor activity of EPS-84B against Caco-2 and MCF-7 cell lines was 74.6 and 38.6 %, respectively. In addition, the antidiabetic activity of EPS-84B towards α-amylase and α-glucosidase was 89.6 and 90.0 %, respectively at 100 μg/mL. The inhibition of foodborne pathogens by EPS-84B was up to 32.6 %. Overall, EPS-84B has promising properties that could be utilized in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Abdelmoneim H Ali
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Gafar Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, P.O. Box 15551, United Arab Emirates
| | - Mohammed Tarique
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, P.O. Box 15551, United Arab Emirates
| | - Gennaro Esposito
- Science Division - New York University Abu Dhabi, NYUAD Campus, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates; Istituto Nazionale Biostrutture e Biosistemi, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| | - Reyad Obaid
- Department: Clinical Nutrition and Dietetics, University of Sharjah, Sharjah, United Arab Emirates
| | - Basim Abu-Jdayil
- Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University (UAEU), Al Ain, P.O. Box 15551, United Arab Emirates.
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, P.O. Box 15551, United Arab Emirates.
| |
Collapse
|
6
|
Li Y, Hu MX, Yan M, Guo YX, Ma XK, Han JZ, Qin YM. Intestinal models based on biomimetic scaffolds with an ECM micro-architecture and intestinal macro-elasticity: close to intestinal tissue and immune response analysis. Biomater Sci 2023; 11:567-582. [PMID: 36484321 DOI: 10.1039/d2bm01051h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synergetic biological effect of scaffolds with biomimetic properties including the ECM micro-architecture and intestinal macro-mechanical properties on intestinal models in vitro remains unclear. Here, we investigate the profitable role of biomimetic scaffolds on 3D intestinal epithelium models. Gelatin/bacterial cellulose nanofiber composite scaffolds crosslinked by the Maillard reaction are tuned to mimic the chemical component, nanofibrous network, and crypt architecture of intestinal ECM collagen and the stability and mechanical properties of intestinal tissue. In particular, scaffolds with comparable elasticity and viscoelasticity of intestinal tissue possess the highest biocompatibility and best cell proliferation and differentiation ability, which makes the intestinal epithelium models closest to their counterpart intestinal tissues. The constructed duodenal epithelium models and colon epithelium models are utilized to assess the immunobiotics-host interactions, and both of them can sensitively respond to foreign microorganisms, but the secretion levels of cytokines are intestinal cell specific. The results demonstrate that probiotics alleviate the inflammation and cell apoptosis induced by Escherichia coli, indicating that probiotics can protect the intestinal epithelium from damage by inhibiting the adhesion and invasion of E. coli to intestinal cells. The designed biomimetic scaffolds can serve as powerful tools to construct in vitro intestinal epithelium models, providing a convenient platform to screen intestinal anti-inflammatory components and even to assess other physiological functions of the intestine.
Collapse
Affiliation(s)
- Yue Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Meng-Xin Hu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Ming Yan
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Ya-Xin Guo
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Xue-Ke Ma
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Jian-Zhong Han
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Yu-Mei Qin
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
7
|
High-Molecular-Weight Dextran-Type Exopolysaccharide Produced by the Novel Apilactobacillus waqarii Improves Metabolic Syndrome: In Vitro and In Vivo Analyses. Int J Mol Sci 2022; 23:ijms232012692. [PMID: 36293544 PMCID: PMC9603972 DOI: 10.3390/ijms232012692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Metabolic syndrome is a leading medical concern that affects one billion people worldwide. Metabolic syndrome is defined by a clustering of risk factors that predispose an individual to cardiovascular disease, diabetes and stroke. In recent years, the apparent role of the gut microbiota in metabolic syndrome has drawn attention to microbiome-engineered therapeutics. Specifically, lactic acid bacteria (LAB) harbors beneficial metabolic characteristics, including the production of exopolysaccharides and other microbial byproducts. We recently isolated a novel fructophilic lactic acid bacterium (FLAB), Apilactobacillus waqarii strain HBW1, from honeybee gut and found it produces a dextran-type exopolysaccharide (EPS). The objective of this study was to explore the therapeutic potential of the new dextran in relation to metabolic syndrome. Findings revealed the dextran's ability to improve the viability of damaged HT-29 intestinal epithelial cells and exhibit antioxidant properties. In vivo analyses demonstrated reductions in body weight gain and serum cholesterol levels in mice supplemented with the dextran, compared to control (5% and 17.2%, respectively). Additionally, blood glucose levels decreased by 16.26% following dextran supplementation, while increasing by 15.2% in non-treated mice. Overall, this study displays biotherapeutic potential of a novel EPS to improve metabolic syndrome and its individual components, warranting further investigation.
Collapse
|
8
|
Bifidobacterium breve Alleviates DSS-Induced Colitis in Mice by Maintaining the Mucosal and Epithelial Barriers and Modulating Gut Microbes. Nutrients 2022; 14:nu14183671. [PMID: 36145047 PMCID: PMC9503522 DOI: 10.3390/nu14183671] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
This study was designed to explore the different intestinal barrier repair mechanisms of Bifidobacterium breve (B. breve) H4-2 and H9-3 with different exopolysaccharide (EPS) production in mice with colitis. The lipopolysaccharide (LPS)-induced IEC-6 cell inflammation model and dextran sulphate sodium (DSS)-induced mice colitis model were used. Histopathological changes, epithelial barrier integrity, short-chain fatty acid (SCFA) content, cytokine levels, NF-κB expression level, and intestinal flora were analyzed to evaluate the role of B. breve in alleviating colitis. Cell experiments indicated that both B. breve strains could regulate cytokine levels. In vivo experiments confirmed that oral administration of B. breve H4-2 and B. breve H9-3 significantly increased the expression of mucin, occludin, claudin-1, ZO-1, decreased the levels of IL-6, TNF-α, IL-1β and increased IL-10. Both strains of B. breve also inhibited the expression of the NF-κB signaling pathway. Moreover, B. breve H4-2 and H9-3 intervention significantly increased the levels of SCFAs, reduced the abundance of Proteobacteria and Bacteroidea, and increased the abundance of Muribaculaceae. These results demonstrate that EPS-producing B. breve strains H4-2 and H9-3 can regulate the physical, immune, and microbial barrier to repair the intestinal damage caused by DSS in mice. Of the two strains, H4-2 had a higher EPS output and was more effective at repair than H9-3. These results will provide insights useful for clinical applications and the development of probiotic products for the treatment of colitis.
Collapse
|
9
|
Zanetta P, Ormelli M, Amoruso A, Pane M, Azzimonti B, Squarzanti DF. Probiotics as Potential Biological Immunomodulators in the Management of Oral Lichen Planus: What's New? Int J Mol Sci 2022; 23:ijms23073489. [PMID: 35408849 PMCID: PMC8998608 DOI: 10.3390/ijms23073489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Oral lichen planus (OLP) is a T cell-mediated chronic inflammatory disorder with multifactorial aetiology and malignant transformation potential. Despite the treatments so far identified, new tailored and safe specific measures are needed. Recently, human microbiota imbalance has been linked to several immune-mediated diseases, opening new therapeutic perspectives for probiotics; besides their ability to directly interact with the host microbiota, they also display a strain-specific immune-modulatory effect. Thus, this non-systematic review aims to elucidate the molecular pathways underlying probiotic activity, mainly those of Lactobacilli and Bifidobacteria and their metabolites in OLP pathogenesis and malignant transformation, focusing on the most recent in vitro and in vivo research evidence. Findings related to their activity in other immune-mediated diseases are here included, suggesting a probiotic translational use in OLP. Probiotics show immune-modulatory and microbiota-balancing activities; they protect the host from pathogens, hamper an excessive effector T cell response, reduce nuclear factor-kappa B (NF-kB) signalling and basal keratinocytes abnormal apoptosis, shifting the mucosal response towards the production of anti-inflammatory cytokines, thus preventing uncontrolled damage. Therefore, probiotics could be a highly encouraging prevention and immunotherapeutic approach for a safer and more sustainable OLP management.
Collapse
Affiliation(s)
- Paola Zanetta
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (P.Z.); (M.O.)
| | - Margherita Ormelli
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (P.Z.); (M.O.)
| | - Angela Amoruso
- Probiotical Research Srl, Via Mattei 3, 28100 Novara, Italy; (A.A.); (M.P.)
| | - Marco Pane
- Probiotical Research Srl, Via Mattei 3, 28100 Novara, Italy; (A.A.); (M.P.)
| | - Barbara Azzimonti
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (P.Z.); (M.O.)
- Correspondence: (B.A.); (D.F.S.); Tel.: +39-0321-660-870 (B.A.)
| | - Diletta Francesca Squarzanti
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (P.Z.); (M.O.)
- Correspondence: (B.A.); (D.F.S.); Tel.: +39-0321-660-870 (B.A.)
| |
Collapse
|
10
|
Zhang R, Li Z, Gu X, Zhao J, Guo T, Kong J. Probiotic Bacillus subtilis LF11 Protects Intestinal Epithelium Against Salmonella Infection. Front Cell Infect Microbiol 2022; 12:837886. [PMID: 35252040 PMCID: PMC8889029 DOI: 10.3389/fcimb.2022.837886] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/24/2022] [Indexed: 01/14/2023] Open
Abstract
Enteric diseases caused by Salmonella are prevalent in poultry farming. With the forbiddance of antibiotics in feedstuff industry, Bacillus subtilis (B. subtilis) preparation as antibiotic alternatives against Salmonella infection has gained increasing attention recently. However, the protection modes of B. subtilis against Salmonella infection in broilers are strain-specific. In this study, probiotic B. subtilis LF11 significantly reduced diarrhea and mortality of broilers caused by Salmonella braenderup (S. braenderup) in spite of no inhibition effect on it in vitro. Here, the intestinal epithelial cells NCM460 were incubated to explore the protection of B. subtilis LF11 on intestinal epithelium against Salmonella. The results revealed that B. subtilis LF11 showed obvious exclusion activity with the decrease of adhesion and invasion of S. braenderup to NCM460 cells, accordingly with the increase of NCM460 cell survival compared with S. braenderup challenge alone. Meanwhile, RT-PCR and Western blot proved that the gene transcription and expression levels of four tight junction proteins in NCM 460 cells were upregulated, which was further confirmed by immunofluorescence observation. Besides, B. subtilis LF11 downregulated the gene transcription levels of the proinflammatory cytokines IL-6, IL-8, and TNF-α induced by S. braenderup H9812. ELISA analysis also verified that B. subtilis LF11 reduced the IL-8 production significantly. In general, B. subtilis LF11 has the ability to protect the intestinal epithelium against Salmonella infection by reducing the Salmonella adhesion and invasion, enhancing the intestinal barrier and attenuating the enterocyte inflammatory responses, and has the potential as probiotics to prevent enteric diseases in broilers.
Collapse
Affiliation(s)
- Rongling Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Research and Development Center, Jinan Scenk Sanfeng Bioengineering Co., Ltd, Jinan, China
| | - Zhengguang Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xinyi Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jiancun Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- *Correspondence: Jian Kong,
| |
Collapse
|
11
|
Gorreja F, Walker WA. The potential role of adherence factors in probiotic function in the gastrointestinal tract of adults and pediatrics: a narrative review of experimental and human studies. Gut Microbes 2022; 14:2149214. [PMID: 36469568 PMCID: PMC9728474 DOI: 10.1080/19490976.2022.2149214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Numerous studies point to the important role of probiotic bacteria in gastrointestinal health. Probiotics act through mechanisms affecting enteric pathogens, epithelial barrier function, immune signaling, and conditioning of indigenous microbiota. Once administered, probiotics reach the gastrointestinal tract and interact with the host through bacterial surface molecules, here called adhesion factors, which are either strain- or specie-specific. Probiotic adhesion, through structural adhesion factors, is a mechanism that facilitates persistence within the gastrointestinal tract and triggers the initial host responses. Thus, an understanding of specific probiotic adhesion mechanisms could predict how specific probiotic strains elicit benefits and the potential of adherence factors as a proxy to predict probiotic function. This review summarizes the present understanding of probiotic adherence in the gastrointestinal tract. It highlights the bacterial adhesion structure types, their molecular communication with the host and the consequent impact on intestinal diseases in both adult and pediatric populations. Finally, we discuss knockout/isolation studies as direct evidence for adhesion factors conferring anti-inflammatory and pathogen inhibition properties to a probiotic.What is known: Probiotics can be used to treat clinical conditions.Probiotics improve dysbiosis and symptoms.Clinical trials may not confirm in vitro and animal studies.What is new: Adhesion structures may be important for probiotic function.Need to systematically determine physical characteristics of probiotics before selecting for clinical trials.Probiotics may be genetically engineered to add to clinical efficacy.
Collapse
Affiliation(s)
- Frida Gorreja
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - W. Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|