1
|
Sepehrnia N, Teshnizi FA, Hallett P, Coyne M, Shokri N, Peth S. Modeling bacterial transport and fate: Insight into the cascading consequences of soil water repellency and contrasting hydraulic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176196. [PMID: 39278475 DOI: 10.1016/j.scitotenv.2024.176196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
The mechanisms governing bacteria transport and fate rely on their hydrophobicity and the wettability of porous media across a wide range of soil moisture conditions, extending from extreme dryness to highly saturated states. However, it largely remains unknown how transport, retention, and release mechanisms change in natural soil systems in such conditions. We thus optimized our previously published unique transport data for hydrophilic Escherichia coli (E. coli) and hydrophobic Rhodococcus erythropolis (R. erythropolis) bacteria, and bromide (Br-) in two distinct wettable and water-repellent soils at column scale. The soils were initially dry, followed by injecting influents in two pulses followed by a flushing step under saturated flow conditions for six pore volumes. We conducted simulations for each pulse separately and simultaneously for soils. There were differences in hydraulic properties of the soils due to their contrasting wetting characteristic in separate and simultaneously modeling of each pulse affecting Br- and bacteria transport fate. Bacteria attachment was the dominant retention mechanism in both soils in these conditions. Notably, the 82.4 min-1 attachment rate in wettable soil was almost 10× greater than in the water-repellent soil and it governed optimization of bacteria die-off. Physicochemical detachment and physical release unraveled the effect of bacteria size and hydrophobicity interacting with soil wettability. The smaller and hydrophobic R. erythropolis detached more easily while hydrophilic E. coli released; the rates were enhanced by soil water repellency. Further research is needed to reveal the effects of surface wettability properties on bacteria survival especially at the nanoscale.
Collapse
Affiliation(s)
- Nasrollah Sepehrnia
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK; School of Biosciences, University of Nottingham, Nottingham, UK.
| | - Forough Abbasi Teshnizi
- Department of Water Engineering, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Paul Hallett
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Mark Coyne
- University of Kentucky, Department of Plant and Soil Sciences, United States(1)
| | - Nima Shokri
- Institute of Geo-Hydroinformatics, Hamburg University of Technology, Am Schwarzenberg-Campus 3 (E), 21073 Hamburg, Germany; United Nations University Hub on Engineering to Face Climate Change at the Hamburg University of Technology, United Nations University Institute for Water, Environment and Health (UNU-INWEH), Hamburg, Germany
| | - Stephan Peth
- Institute of Earth System Sciences, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
2
|
Pasquale V, Cuadros J, Dumontet S, Huertas FJ, Lettino A, Fiore S. Kaolinite bioformation at surface conditions: The role of fungi and bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177513. [PMID: 39536874 DOI: 10.1016/j.scitotenv.2024.177513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/02/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Experiments aimed at studying the role of microorganisms in the formation of kaolinite from aluminosilicate solutions (Si:Al = 1:1) are reported. The experiments were carried out at room temperature in presence of living microorganisms, Leonardite humic acid, bacterial debris, bacterial exopolysaccharides (EPS), and some organic ligands. The bacterial debris, EPS, Leonardite and organic ligands were chosen to stabilize Al in octahedral coordination for allowing the crystallization of kaolinite. A microbial population inherently contaminating a Leonardite standard, a bacterial population extracted from peat soil, and a strain of the fungus Paecilomyces inflatus were used. Microscopic observations on the precipitate collected from the reacting media were performed after 3 and 70 months of incubation. All the abiotic experiments failed to show any sign of kaolinite formation even in the long term. As far the biotic experiments are concerned, it was observed that i) the Leonardite standard, together with its inherent microbial population, was unable to play any role in precipitating kaolinite; ii) the bacterial population extracted from a peat soil favoured the formation of a few, small (<500 nm) and isolated pseudo-hexagonal kaolinite crystals; iii) the fungus P. inflatus contributed to the crystallization of large (even >2 μm) euhedral kaolinite crystals after 3 months of incubation. These findings confirm the hypothesis that bacteria and fungi are capable to produce or greatly accelerate kaolinite crystallization. The mechanism underpinning such a process is far from being fully understood.
Collapse
Affiliation(s)
- Vincenzo Pasquale
- Department of Science and Technology, Parthenope University of Naples, Centro Direzionale, Isola C4, Naples, Italy.
| | - Javier Cuadros
- Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | - Stefano Dumontet
- Department of Science and Technology, Parthenope University of Naples, Centro Direzionale, Isola C4, Naples, Italy
| | - F Javier Huertas
- Instituto Andaluz de Ciencias de la Tierra, (IACT-CSIC), Av. de las Palmeras, 4, Armilla, Granada, Spain.
| | - Antonio Lettino
- Institute of Methodologies for Environmental Analysis - CNR, C.da S. Loja, Tito Scalo, Potenza, Italy.
| | - Saverio Fiore
- Institute of Methodologies for Environmental Analysis - CNR, C.da S. Loja, Tito Scalo, Potenza, Italy; Italian Association for Clays (AISA - APS), Via Orabona 4, Bari, Italy.
| |
Collapse
|
3
|
Arriagada-Escamilla C, Alvarado R, Ortiz J, Campos-Vargas R, Cornejo P. Alginate-Bentonite Encapsulation of Extremophillic Bacterial Consortia Enhances Chenopodium quinoa Tolerance to Metal Stress. Microorganisms 2024; 12:2066. [PMID: 39458375 PMCID: PMC11509983 DOI: 10.3390/microorganisms12102066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
This study explores the encapsulation in alginate/bentonite beads of two metal(loid)-resistant bacterial consortia (consortium A: Pseudomonas sp. and Bacillus sp.; consortium B: Pseudomonas sp. and Bacillus sp.) from the Atacama Desert (northern Chile) and Antarctica, and their influence on physiological traits of Chenopodium quinoa growing in metal(loid)-contaminated soils. The metal(loid) sorption capacity of the consortia was determined. Bacteria were encapsulated using ionic gelation and were inoculated in soil of C. quinoa. The morphological variables, photosynthetic pigments, and lipid peroxidation in plants were evaluated. Consortium A showed a significantly higher biosorption capacity than consortium B, especially for As and Cu. The highest viability of consortia was achieved with matrices A1 (3% alginate and 2% bentonite) and A3 (3% alginate, 2% bentonite and 2.5% LB medium) at a drying temperature of 25 °C and storage at 4 °C. After 12 months, the highest viability was detected using matrix A1 with a concentration of 106 CFU g-1. Further, a greenhouse experiment using these consortia in C. quinoa plants showed that, 90 days after inoculation, the morphological traits of both consortia improved. Chemical analysis of metal(loid) contents in the leaves indicated that consortium B reduced the absorption of Cu to 32.1 mg kg-1 and that of Mn to 171.9 mg kg-1. Encapsulation resulted in a significant increase in bacterial survival. This highlights the benefits of using encapsulated microbial consortia from extreme environments, stimulating the growth of C. quinoa, especially in soils with metal(loid) levels that can be a serious constraint for plant growth.
Collapse
Affiliation(s)
- Cesar Arriagada-Escamilla
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (R.A.); (J.O.)
| | - Roxana Alvarado
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (R.A.); (J.O.)
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile
| | - Javier Ortiz
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (R.A.); (J.O.)
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Reinaldo Campos-Vargas
- Center for Postharvest Studies, Faculty of Agricultural Sciences, Universidad de Chile, Santiago 8820808, Chile;
| | - Pablo Cornejo
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales, CERES, Pontificia Universidad Católica de Valparaíso, La Palma, Quillota 2260000, Chile;
| |
Collapse
|
4
|
Xiao D, Peng S, He H, Xu X, Keita M, Gigena ML, Zhang Y. Mechanisms of microbial diversity modulation of mineral black clay to achieve ecological restoration of open-pit mine dump. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122708. [PMID: 39357439 DOI: 10.1016/j.jenvman.2024.122708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
The harsh climatic conditions and severe scarcity of surface soil present significant challenges to ecological restoration in open-pit mine dumps within China's type II plant cold resistance zone. To address the topsoil shortage, mineral black clay was used to create synthetic soil. This study explored the application of an ecological restoration bacteria (ERB) consortium to accelerate the ecological restoration of synthetic soil-covered areas by enhancing soil ecosystem construction. The results demonstrated that ERB significantly influenced the native bacterial community structure in mixed black clay. Specifically, ERB disrupted the inhibitory effects of the Actinobacterota phylum on the development of native bacterial diversity, leading to an increase in unclassified_o_Solirubrobacterales sp., norank_f_norank_o_norank_c_KD4-96 sp., Sphingomonas sp., Luteitalea sp., norank_f_Vicinamibacteraceae sp., and other aerobic and anaerobic bacteria. These alterations in soil microbial structure directly impacted soil composition and vegetation diversity. The plant diversity survey and metabolomics analysis revealed that the reduction of harmful substances, such as HPED, HODE, and HOME, in black clay soil improved the growth and distribution of Salsola collina Pall. and Medicago sativa L. This increase facilitated the cycling of key nutrients, such as nitrogen (N) and phosphorus (P), and promoted the establishment of symbiotic relationships between plants, microorganisms, and soil. Ultimately, the ecological remediation of the synthetic soil was achieved through the synergistic effects of ERB, which included the degradation of inhibitory soil components, enhanced nutrient consumption by microbiota and plants, and the overall promotion of ecosystem stability in the reclamation area.
Collapse
Affiliation(s)
- Dong Xiao
- CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology, Xuzhou, Jiangsu province, 221116, China; State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Suping Peng
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Hailun He
- School of Life Science, Central South University, Changsha, Hunan, 410083, China.
| | - Xingliang Xu
- CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology, Xuzhou, Jiangsu province, 221116, China.
| | - Mohamed Keita
- CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology, Xuzhou, Jiangsu province, 221116, China.
| | - María Laura Gigena
- CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, Universidad Católica de Salta, Salta, A4400EDD, Argentina.
| | - Yahong Zhang
- Jiangsu Jiuzhou Eco-Technology Co., Xuzhou, 221000, China.
| |
Collapse
|
5
|
Naz M, Afzal MR, Qi SS, Dai Z, Sun Q, Du D. Microbial-assistance and chelation-support techniques promoting phytoremediation under abiotic stresses. CHEMOSPHERE 2024; 365:143397. [PMID: 39313079 DOI: 10.1016/j.chemosphere.2024.143397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
Phytoremediation, the use of plants to remove heavy metals from polluted environments, has been extensively studied. However, abiotic stresses such as drought, salt, and high temperatures can limit plant growth and metal uptake, reducing phytoremediation efficiency. High levels of HMs are also toxic to plants, further decreasing phytoremediation efficacy. This manuscript explores the potential of microbial-assisted and chelation-supported approaches to improve phytoremediation under abiotic stress conditions. Microbial assistance involves the use of specific microbes, including fungi that can produce siderophores. Siderophores bind essential metal ions, increasing their solubility and bioavailability for plant uptake. Chelation-supported methods employ organic acids and amino acids to enhance soil absorption and supply of essential metal ions. These chelating agents bind HMs ions, reducing their toxicity to plants and enabling plants to better withstand abiotic stresses like drought and salinity. Managed microbial-assisted and chelation-supported approaches offer more efficient and sustainable phytoremediation by promoting plant growth, metal uptake, and mitigating the effects of heavy metal and abiotic stresses. Managed microbial-assisted and chelation-supported approaches offer more efficient and sustainable phytoremediation by promoting plant growth, metal uptake, and mitigating the effects of HMs and abiotic stresses.These strategies represent a significant advancement in phytoremediation technology, potentially expanding its applicability to more challenging environmental conditions. In this review, we examined how microbial-assisted and chelation-supported techniques can enhance phytoremediation a method that uses plants to remove heavy metals from contaminated sites. These approaches not only boost plant growth and metal uptake but also alleviate the toxic effects of HMs and abiotic stresses like drought and salinity. By doing so, they make phytoremediation a more viable and effective solution for environmental remediation.
Collapse
Affiliation(s)
- Misbah Naz
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Muhammad Rahil Afzal
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Shan Shan Qi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Zhicong Dai
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu Province, PR China.
| | - Qiuyang Sun
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Daolin Du
- Jingjiang College, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
6
|
Huang L, Zhou Y. Influence of thinning on carbon storage mediated by soil physicochemical properties and microbial community composition in large Chinese fir timber plantation. CARBON BALANCE AND MANAGEMENT 2024; 19:29. [PMID: 39225934 PMCID: PMC11373250 DOI: 10.1186/s13021-024-00269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Thinning practices are useful measures in forest management and play an essential role in maintaining ecological stability. However, the effects of thinning on the soil properties and microbial community in large Chinese fir timber plantations remain unknown. The purpose of this study was to investigate the changes in soil physicochemical properties and microbial community composition in topsoil (0-20 cm) under six different intensities (i.e., 300 (R300), 450 (R450), 600 (R600), 750 (R750) and 900 (R900) trees per hectare and 1650 (R1650) as a control) in a large Chinese fir timber plantation. RESULTS Compared with the CK treatment, thinning significantly altered the contents of soil organic carbon (SOC) and its fractions but not in a linear fashion; these indicators were highest in R900. In addition, thinning did not significantly affect the soil microbial community diversity indices but significantly affected the relative abundance of the core microbial community. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant bacterial phyla; the relative abundances of Proteobacteria and Acidobacteria were highest in R900, and that of Actinobacteria was lowest in R900. The dominant fungal phyla were Ascomycota, Basidiomycota and Mucoromycota; the relative abundance of Ascomycota was lowest in R900, and that of Mucoromycota was highest in R900. The fungal microbial community composition was more sensitive than the bacterial community composition. The activity of the carbon-cycling genes was not linearly correlated with thinning, and the abundance of C-cycle genes was highest in R900. CONCLUSIONS These findings are important because they show that SOC and its fractions and the abundance of the soil microorganism community in large Chinese fir timber plantations can be significantly altered by thinning, thus affecting the capacity for carbon storage. These results may advance our understanding of how the density of large timber plantations could be modified to promote soil carbon storage.
Collapse
Affiliation(s)
- Lei Huang
- College of Forestry, Guizhou University, Guiyang, 550025, China
- Guizhou Academy of Forestry, Guiyang, 550025, China
- Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, 550025, China
| | - Yunchao Zhou
- College of Forestry, Guizhou University, Guiyang, 550025, China.
- Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
7
|
Fomina M, Gromozova O, Gadd GM. Morphological responses of filamentous fungi to stressful environmental conditions. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:115-169. [PMID: 39389704 DOI: 10.1016/bs.aambs.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The filamentous growth mode of fungi, with its modular design, facilitates fungal adaptation to stresses they encounter in diverse terrestrial and anthropogenic environments. Surface growth conditions elicit diverse morphological responses in filamentous fungi, particularly demonstrating the remarkable adaptability of mycelial systems to metal- and mineral-rich environments. These responses are coupled with fungal biogeochemical activity and can ameliorate hostile conditions. A tessellated agar tile system, mimicking natural environmental heterogeneity, revealed negative chemotropism to toxic metals, distinct extreme growth strategies, such as phalanx and guerrilla movements and transitions between them, and the formation of aggregated re-allocation structures (strands, cords, synnemata). Other systems showed intrahyphal growth, intense biomineralization, and extracellular hair-like structures. Studies on submerged mycelial growth, using the thermophilic fungus Thielavia terrestris as an example, provided mechanistic insights into the morphogenesis of two extreme forms of fungal submerged culture-pelleted and dispersed growth. It was found that the development of fungal pellets was related to fungal adaptation to unfavorable stressful conditions. The two key elements affecting morphogenesis leading to the formation of either pelleted or dispersed growth were found to be (1) a lag phase (or conidia swelling stage) as a specific period of fungal morphogenesis when a certain growth form is programmed in response to morphogenic stressors, and (2) cAMP as a secondary messenger of cell signaling, defining the implementation of the particular growth strategy. These findings can contribute to knowledge of fungal-based biotechnologies, providing a means for controllable industrial processes at both morphological and physiological levels.
Collapse
Affiliation(s)
- Marina Fomina
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - Olena Gromozova
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom; State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, P.R. China
| |
Collapse
|
8
|
Al Disi ZA, Bontognali TRR, Sadooni F, Al-Kuwari HAS. Evaluating the role of dissolved silica for dolomite formation in evaporitic environments: Insights from prolonged laboratory experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174714. [PMID: 38997045 DOI: 10.1016/j.scitotenv.2024.174714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
The mineral Dolomite CaMg(CO3)2 is a common constituent of sedimentary rocks. Despite centuries of research, the mechanism of its formation remains elusive and debated. Recent studies have shown the presence of silica in solution promote the incorporation of Mg into the carbonate mineral, forming crystal phases that may be precursors to dolomite. The goal of this study was to evaluate with laboratory experiments whether dissolved silica may play a role for dolomite formation in sabkha (i.e., salt flats) environments. Several models for dolomite formation are based on the studies of sabkhas, which are often cited as modern analogue for ancient dolomite-rich sedimentary sequences. We performed long-incubation time (i.e., up to 600 days) laboratory precipitation experiments at 30 °C with solution mimicking the sabkha pore waters (characterized by a salinity of 23 % and Mg: Ca ratio of 15) to which we added different concentrations of Si. Our results revealed a positive of 24 h (p-value <0.001) between Si concentration in solution and the mol% Mg of the carbonate minerals forming in the experiment. With 2 mM of Si, the bulk precipitate was comprised of 90 % stoichiometric dolomite with possible signs or ordering. Moreover, the rhombohedral morphology of the crystals is analogue to that of natural dolomite previously described from sabkha sediments. Our results suggest that dissolved Si may play an important role for dolomite formation in evaporitic environments.
Collapse
Affiliation(s)
- Zulfa Ali Al Disi
- Environmental Science Centre, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Tomaso R R Bontognali
- Environmental Science Centre, Qatar University, P.O. Box 2713, Doha, Qatar; Space Exploration Institute (SPACE-X), 68 Faubourg de l'Hopital, 2000, Neuchatel, Switzerland; Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056 Basel, Switzerland
| | - Fadhil Sadooni
- Environmental Science Centre, Qatar University, P.O. Box 2713, Doha, Qatar
| | | |
Collapse
|
9
|
Xu J, Wang Y, Zhang Y, Li Q, Du B, Asitaiken JLHT, Liu Y, Niu D, Fu H, Yuan X. Effect of nitrogen addition on soil net nitrogen mineralization in topsoil and subsoil regulated by soil microbial properties and mineral protection: Evidence from a long-term grassland experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174686. [PMID: 38992360 DOI: 10.1016/j.scitotenv.2024.174686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Soil net nitrogen mineralization (Nmin), a microbial-mediated conversion of organic to inorganic N, is critical for grassland productivity and biogeochemical cycling. Enhanced atmospheric N deposition has been shown to substantially increase both plant and soil N content, leading to a major change in Nmin. However, the mechanisms underlying microbial properties, particularly microbial functional genes, which drive the response of Nmin to elevated N deposition are still being discussed. Besides, it is still uncertain whether the relative importance of plant carbon (C) input, microbial properties, and mineral protection in regulating Nmin under continuous N addition would vary with the soil depth. Here, based on a 13-year multi-level field N addition experiment conducted in a typical grassland on the Loess Plateau, we elucidated how N-induced changes in plant C input, soil physicochemical properties, mineral properties, soil microbial community, and the soil Nmin rate (Rmin)-related functional genes drove the responses of Rmin to N addition in the topsoil and subsoil. The results showed that Rmin increased significantly in both topsoil and subsoil with increasing rates of N addition. Such a response was mainly dominated by the rate of soil nitrification. Structural equation modeling (SEM) revealed that a combination of microbial properties (functional genes and diversity) and mineral properties regulated the response of Rmin to N addition at both soil depths, thus leading to changes in the soil N availability. More importantly, the regulatory impacts of microbial and mineral properties on Rmin were depth-dependent: the influences of microbial properties weakened with soil depth, whereas the effects of mineral protection enhanced with soil depth. Collectively, these results highlight the need to incorporate the effects of differential microbial and mineral properties on Rmin at different soil depths into the Earth system models to better predict soil N cycling under further scenarios of N deposition.
Collapse
Affiliation(s)
- Jingrun Xu
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Ying Wang
- Linze Desert Ecosystem Research Station, Gansu Desert Control Research Institute, Lanzhou 730070, PR China
| | - Yaodan Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Qingwei Li
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Baoming Du
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - J L H T Asitaiken
- College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Yubing Liu
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Decao Niu
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Hua Fu
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Xiaobo Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| |
Collapse
|
10
|
Chaiyarat A, Saejung C. Continuous valorization of food waste and oily food waste using bacteria-pumice and bacteria-smectite nanocomposites: Alternative cell immobilization and zooplankton lifespan impact. BIORESOURCE TECHNOLOGY 2024; 400:130694. [PMID: 38614149 DOI: 10.1016/j.biortech.2024.130694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Recycling waste into commercial products is a profitable strategy but the lifetime of immobilized cells for long-term waste treatment remains a problem. This study presents alternative cell immobilization methods for valorizing food waste (FW) and oily food waste (OFW) to microbial carotenoids and proteins. Carriers (pumice or smectite), magnetite nanoparticles, and isolated photosynthetic bacteria were integrated to obtain magnetically recoverable bacteria-pumice and bacteria-smectite nanocomposites. After recycling five batches (50 d), chemical oxygen demand removal from FW reached 76% and 78% with the bacteria-pumice and bacteria-smectite nanocomposite treatments, respectively, and oil degradation in OFW reached 71% and 62%, respectively. Destructive changes did not occur, suggesting the durability of nanocomposites. The used nanocomposites had no impact on the lifespan of Moina macrocopa or water quality as assessed by toxicity analysis. Bacteria-pumice and bacteria-smectite nanocomposites are efficient for food waste recycling and do not require secondary treatment before being discharged into the environment.
Collapse
Affiliation(s)
- Anuwat Chaiyarat
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chewapat Saejung
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
11
|
Xiao W, Zhang Y, Chen X, Sha A, Xiong Z, Luo Y, Peng L, Zou L, Zhao C, Li Q. The Diversity and Community Composition of Three Plants' Rhizosphere Fungi in Kaolin Mining Areas. J Fungi (Basel) 2024; 10:306. [PMID: 38786661 PMCID: PMC11121986 DOI: 10.3390/jof10050306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Mining activities in the kaolin mining area have led to the disruption of the ecological health of the mining area and nearby soils, but the effects on the fungal communities in the rhizosphere soils of the plants are not clear. Three common plants (Conyza bonariensis, Artemisia annua, and Dodonaea viscosa) in kaolin mining areas were selected and analyzed their rhizosphere soil fungal communities using ITS sequencing. The alpha diversity indices (Chao1, Shannon, Simpson, observed-species, pielou-e) of the fungal communities decreased to different extents in different plants compared to the non-kauri mining area. The β-diversity (PCoA, NMDS) analysis showed that the rhizosphere soil fungal communities of the three plants in the kaolin mine area were significantly differentiated from those of the control plants grown in the non-kaolin mine area, and the extent of this differentiation varied among the plants. The analysis of fungal community composition showed that the dominant fungi in the rhizosphere fungi of C. bonariensis and A. annua changed, with an increase in the proportion of Mycosphaerella (genus) by about 20% in C. bonariensis and A. annua. An increase in the proportion of Didymella (genus) by 40% in D. viscosa was observed. At the same time, three plant rhizosphere soils were affected by kaolin mining activities with the appearance of new fungal genera Ochrocladosporium and Plenodomus. Predictive functional potential analysis of the samples revealed that a significant decrease in the potential of functions such as biosynthesis and glycolysis occurred in the rhizosphere fungal communities of kaolin-mined plants compared to non-kaolin-mined areas. The results show that heavy metals and plant species are the key factors influencing these changes, which suggests that selecting plants that can bring more abundant fungi can adapt to heavy metal contamination to restore soil ecology in the kaolin mining area.
Collapse
Affiliation(s)
- Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yunfeng Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| |
Collapse
|
12
|
Gadd GM, Fomina M, Pinzari F. Fungal biodeterioration and preservation of cultural heritage, artwork, and historical artifacts: extremophily and adaptation. Microbiol Mol Biol Rev 2024; 88:e0020022. [PMID: 38179930 PMCID: PMC10966957 DOI: 10.1128/mmbr.00200-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/11/2023] [Indexed: 01/06/2024] Open
Abstract
SUMMARYFungi are ubiquitous and important biosphere inhabitants, and their abilities to decompose, degrade, and otherwise transform a massive range of organic and inorganic substances, including plant organic matter, rocks, and minerals, underpin their major significance as biodeteriogens in the built environment and of cultural heritage. Fungi are often the most obvious agents of cultural heritage biodeterioration with effects ranging from discoloration, staining, and biofouling to destruction of building components, historical artifacts, and artwork. Sporulation, morphological adaptations, and the explorative penetrative lifestyle of filamentous fungi enable efficient dispersal and colonization of solid substrates, while many species are able to withstand environmental stress factors such as desiccation, ultra-violet radiation, salinity, and potentially toxic organic and inorganic substances. Many can grow under nutrient-limited conditions, and many produce resistant cell forms that can survive through long periods of adverse conditions. The fungal lifestyle and chemoorganotrophic metabolism therefore enable adaptation and success in the frequently encountered extremophilic conditions that are associated with indoor and outdoor cultural heritage. Apart from free-living fungi, lichens are a fungal growth form and ubiquitous pioneer colonizers and biodeteriogens of outdoor materials, especially stone- and mineral-based building components. This article surveys the roles and significance of fungi in the biodeterioration of cultural heritage, with reference to the mechanisms involved and in relation to the range of substances encountered, as well as the methods by which fungal biodeterioration can be assessed and combated, and how certain fungal processes may be utilized in bioprotection.
Collapse
Affiliation(s)
- Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, China
| | - Marina Fomina
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- National Reserve “Sophia of Kyiv”, Kyiv, Ukraine
| | - Flavia Pinzari
- Institute for Biological Systems (ISB), Council of National Research of Italy (CNR), Monterotondo (RM), Italy
- Natural History Museum, London, United Kingdom
| |
Collapse
|
13
|
Sharma S, Kumari M, Vakhlu J. Metatranscriptomic insight into the possible role of clay microbiome in skin disease management. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:1803-1811. [PMID: 37584759 DOI: 10.1007/s00484-023-02540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023]
Abstract
Even though the scientific documentation is limited, microbiome of healing clay is gradually gaining attention of the scientific community, as a therapeutic force playing an indispensable role in skin disease management. The present study explores the metatranscriptome profile of the Chamliyal clay, widely known for its efficacy in managing various skin problems, using Illumina NextSeq sequencing technology. The gene expression profile of the clay microbial community was analyzed through SEED subsystems of the MG-RAST server. Due to the unavailability of metatranscriptomic data on other therapeutic clays, Chamliyal's profile was compared to non-therapeutic soils, as well as healthy and diseased human skin microbiomes. The study identified Firmicutes, Proteobacteria, and Actinobacteria as the primary active microbial phyla in Chamliyal clay. These resemble those abundant in a healthy human skin microbiome. This is significant as lower levels of these phyla in the skin are linked to inflammatory skin conditions like psoriasis. Interestingly, pathogenic microbes actively metabolizing in the clay were absent. Importantly, 6% of the transcripts annotated to sulfur and iron metabolism, which are known to play a major role in skin disease management. This study provides the most comprehensive and a novel overview of the metatranscriptome of any of the healing clay available worldwide. The findings offer valuable insights into the clay microbiome's potential in managing skin disorders, inspiring future endeavors to harness these insights for medical applications.
Collapse
Affiliation(s)
- Sakshi Sharma
- School of Biotechnology, University of Jammu, J&K, 180006, India
| | - Monika Kumari
- School of Biotechnology, University of Jammu, J&K, 180006, India
| | - Jyoti Vakhlu
- School of Biotechnology, University of Jammu, J&K, 180006, India.
| |
Collapse
|
14
|
Huaiquipán R, Quiñones J, Díaz R, Velásquez C, Sepúlveda G, Velázquez L, Paz EA, Tapia D, Cancino D, Sepúlveda N. Review: Effect of Experimental Diets on the Microbiome of Productive Animals. Microorganisms 2023; 11:2219. [PMID: 37764062 PMCID: PMC10536378 DOI: 10.3390/microorganisms11092219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 09/29/2023] Open
Abstract
The microorganisms that inhabit the gastrointestinal tract are responsible for multiple chains of reactions that affect their environment and modify the internal metabolism, their study receives the name of microbiome, which has become more relevant in recent years. In the near future, the challenges related to feeding are anticipated to escalate, encompassing the nutritional needs to sustain an overpopulated world. Therefore, it is expected that a better understanding of the interactions between microorganisms within the digestive tract will allow their modulation in order to provide an improvement in the immune system, feed efficiency or the promotion of nutritional characteristics in production animals, among others. In the present study, the main effects of experimental diets in production animals were described, emphasizing the diversity of the bacterial populations found in response to the diets, ordering them between polygastric and monogastric animals, and then describing the experimental diets used and their effect on the microorganisms. It is hoped that this study will help as a first general approach to the study of the role of the microbiome in production animals under different diets.
Collapse
Affiliation(s)
- Rodrigo Huaiquipán
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - John Quiñones
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Rommy Díaz
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Carla Velásquez
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Gastón Sepúlveda
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Lidiana Velázquez
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Erwin A. Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - Daniela Tapia
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - David Cancino
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
15
|
Mitzscherling J, Genderjahn S, Schleicher AM, Bartholomäus A, Kallmeyer J, Wagner D. Clay-associated microbial communities and their relevance for a nuclear waste repository in the Opalinus Clay rock formation. Microbiologyopen 2023; 12:e1370. [PMID: 37642485 PMCID: PMC10333725 DOI: 10.1002/mbo3.1370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 08/31/2023] Open
Abstract
Microorganisms are known to be natural agents of biocorrosion and mineral transformation, thereby potentially affecting the safety of deep geological repositories used for high-level nuclear waste storage. To better understand how resident microbial communities of the deep terrestrial biosphere may act on mineralogical and geochemical characteristics of insulating clays, we analyzed their structure and potential metabolic functions, as well as site-specific mineralogy and element composition from the dedicated Mont Terri underground research laboratory, Switzerland. We found that the Opalinus Clay formation is mainly colonized by Alphaproteobacteria, Firmicutes, and Bacteroidota, which are known for corrosive biofilm formation. Potential iron-reducing bacteria were predominant in comparison to methanogenic archaea and sulfate-reducing bacteria. Despite microbial communities in Opalinus Clay being in majority homogenous, site-specific mineralogy and geochemistry conditions have selected for subcommunities that display metabolic potential for mineral dissolution and transformation. Our findings indicate that the presence of a potentially low-active mineral-associated microbial community must be further studied to prevent effects on the repository's integrity over the long term.
Collapse
Affiliation(s)
- Julia Mitzscherling
- GFZ German Research Centre for Geosciences, Section GeomicrobiologyPotsdamGermany
| | - Steffi Genderjahn
- GFZ German Research Centre for Geosciences, Section GeomicrobiologyPotsdamGermany
| | - Anja M. Schleicher
- GFZ German Research Centre for Geosciences, Section Inorganic and Isotope GeochemistryPotsdamGermany
| | | | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Section GeomicrobiologyPotsdamGermany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section GeomicrobiologyPotsdamGermany
- Institute of GeosciencesUniversity of PotsdamPotsdamGermany
| |
Collapse
|
16
|
Naseem S, Rawal RS, Pandey D, Suman SK. Immobilized laccase: an effective biocatalyst for industrial dye degradation from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84898-84917. [PMID: 37369903 DOI: 10.1007/s11356-023-28275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
Environmental concerns due to the release of industrial wastewater contaminated with dyes are becoming more and more intense with the increasing industrialization. Decolorization of industrial effluents has become the top priority due to the continuous demand for color-free discharge into the receiving water bodies. Different dye removal techniques have been developed, among which biodegradation by laccase enzyme is competitive. Laccase, as a green catalyst, has a high catalytic activity, generates less toxic by-products, and has been extensively researched in the field of remediation of dyes. However, laccase's significant catalytic activity could only be achieved after an effective immobilization step. Immobilization helps strengthen and stabilize the protein structure of laccase, thus enhancing its functional properties. Additionally, the reusability of immobilized laccase makes it an attractive alternative to traditional dye degradation technologies and in the realistic applications of water treatment, compared with free laccase. This review has elucidated different methods and the carriers used to immobilize laccase. Furthermore, the role of immobilized laccase in dye remediation and the prospects have been discussed.
Collapse
Affiliation(s)
- Shifa Naseem
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
| | - Raja Singh Rawal
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun, 248005, Uttarakhand, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
17
|
Pinna D, Mazzotti V, Gualtieri S, Voyron S, Andreotti A, Favero-Longo SE. Damaging and protective interactions of lichens and biofilms on ceramic dolia and sculptures of the International Museum of Ceramics, Faenza, Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162607. [PMID: 36906030 DOI: 10.1016/j.scitotenv.2023.162607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 05/06/2023]
Abstract
Although ceramic objects are an important part of the worldwide cultural heritage, few investigations on the effects of lithobiontic growth on their outdoor conservation are available in the literature. Many aspects of the interaction between lithobionts and stones are still unknown or strongly debated, as in the case of equilibria between biodeterioration and bioprotection. This paper describes research on the colonization by lithobionts on outdoor ceramic Roman dolia and contemporary sculptures of the International Museum of Ceramics, Faenza (Italy). Accordingly, the study i) characterized the mineralogical composition and petrographic structure of the artworks, ii) performed porosimetric measurements, iii) identified lichen and microbial diversity, iv) elucidated the interaction of the lithobionts with the substrates. Moreover, v) the measurements of variability in stone surface hardness and in water absorption of colonized and uncolonized areas were collected to assess damaging and/or protective effects by the lithobionts. The investigation showed how the biological colonization depends on physical properties of the substrates as well on climatic conditions of environments in which the ceramic artworks are located. The results indicated that lichens Protoparmeliopsis muralis and Lecanora campestris may have a bioprotective effect on ceramics with high total porosity and pores with very small diameters, as they poorly penetrate the substrate, do not negatively affect surface hardness and are able to reduce the amount of absorbed water limiting the water ingress. By contrast, Verrucaria nigrescens, here widely found in association with rock-dwelling fungi, deeply penetrate terracotta causing substrate disaggregation, with negative consequences on surface hardness and water absorption. Accordingly, a careful evaluation of the negative and positive effects of lichens must be carried out before deciding their removal. Regarding biofilms, their barrier efficacy is related to their thickness and composition. Even if thin, they can impact negatively on substrates enhancing the water absorption in comparison to uncolonized parts.
Collapse
Affiliation(s)
- Daniela Pinna
- Chemistry Department, University of Bologna, Ravenna Campus, via Guaccimanni 42, Ravenna, Italy.
| | - Valentina Mazzotti
- Museo Internazionale delle Ceramiche in Faenza, Viale Baccarini 19, 48018 Faenza, RA, Italy.
| | - Sabrina Gualtieri
- Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, 48018 Faenza, RA, Italy.
| | - Samuele Voyron
- Dipartimento di Scienze della Vita e Biologia dei Sistemi (Life Sciences and Systems Biology), viale Mattioli 25, 10125 Torino, Italy.
| | - Alessia Andreotti
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, Pisa, Italy.
| | - Sergio Enrico Favero-Longo
- Dipartimento di Scienze della Vita e Biologia dei Sistemi (Life Sciences and Systems Biology), viale Mattioli 25, 10125 Torino, Italy.
| |
Collapse
|
18
|
Tan J, Wang X, Zhang M, Meng D, Hu Y, Li Y, Song S, Wu L, Sánchez RMT, Farías ME, Xia L. Chlorella sorokiniana FK-montmorillonite interaction enhanced remediation of heavy metals in tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:163208. [PMID: 37011695 DOI: 10.1016/j.scitotenv.2023.163208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Non-ferrous metal mining activities are known to cause ecological irreversible damage in the tailings and surrounding areas as well as heavy metal (HM) contamination. The enhancement of Chlorella-montmorillonite interaction on the remediation of HM contaminated tailings was verified from the lab to the tailings in Daye City, Hubei Province, China. The results showed a positive correlation between the quantity of montmorillonite and the transformation of Pb and Cu into residual and carbonate-binding states, which resulted in a considerable decrease in the leaching ratio. The buildup of tailings fertility throughout this process benefited from montmorillonite's ability to buffer environmental changes and store water. This further offers a required environmental foundation for the rebuilding of microbial community and the growth of herbaceous plants. The structural equation model demonstrated that the interaction between Chlorella and montmorillonite directly affected the stability of HM, and that this interaction also had an impact on the accumulation of organic carbon, total nitrogen, and available phosphorus, which improved the immobilization of Pb, Cu, Cd, and Zn. This work made the first attempt to apply Chlorella-montmorillonite composite to in-situ tailings remediation, and proposed that the combination of inorganic clay minerals and organic microorganisms was an eco-friendly, long-lasting, and efficient method for immobilizing multiple-HMs in mining areas.
Collapse
Affiliation(s)
- Jiaqi Tan
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Xizhuo Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yaxi Hu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Yinta Li
- Department of Food Engineering, Weihai Ocean Vocational College, Haiwan South Road 1000, Weihai, Shandong 264300, China
| | - Shaoxian Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | | | - María Eugenia Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), PROIMI Planta Piloto de Procesos Industriales Microbiológicos, Av. Belgrano y Pasaje Caseros, 4000 CONICET Consejo Nacional de Investigaciones Científicas y Técnicas, 4000 Tucumán, Argentina
| | - Ling Xia
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China.
| |
Collapse
|
19
|
Zhang W, Zheng L, Lang D, Zhang X, Ma X, Li X, Zhang X. Eco-friendly bio-encapsulation from sodium alginate-trehalose-kaolin and its performance evaluation in improving plant growth under salt or/and drought conditions. Int J Biol Macromol 2023; 225:123-134. [PMID: 36473533 DOI: 10.1016/j.ijbiomac.2022.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Plant growth-promoting bacterium plays a significant role in improving plant tolerance to abiotic stresses. However, there are low survival and poor effect in field application, especially in unfavorable environments. Our previous study suggested that encapsulation of Bacillus pumilus G5 from polyvinyl alcohol‑sodium alginate could improve plant growth and soil fertility under drought and salt soil conditions. However, in the G5 microbeads, the polyvinyl alcohol could not be degraded after entering the soil, and the loss of viable bacteria was severe during the drying process. Achieving a more eco-friendly and efficient formulation based on biodegradable polymers can have significant effects on increasing the quantity and quality of agricultural products. Herein, G5 has immobilized in the composite wall of sodium alginate-trehalose-kaolin microbeads and then evaluated the performance, and applied on the Pharbitis nil under salt or/and drought stress by pot experiment. A 2 % sodium alginate, 1 % trehalose, and 1 % kaolin formulation for the coating films resulted in optimal G5 microbeads embedding efficiency, viable bacteria, degradation rate, and sustained release. Also, the G5 microbeads exhibited longer storage life than that of the G5 suspension. Scanning electron microscopy revealed that the G5 microcapsules had a near-spherical structure with a particle size of around 1000 μm forming a continuous dense composite wall membrane with obvious protrusions and folds on the surface, which facilitated the release of the G5 strain. The interior of the G5 capsule was rough and suitable for bacterial attachment. Infrared spectroscopy showed that the G5 microcapsules are a simple physical mixture with no chemical reaction between the excipients, making the G5 microcapsules chemically stable. The inclusion of the G5 microcapsules considerably induced Pharbitis nil seedlings growth and biomass under drought and/or salt stress. In the rhizosphere soil of Pharbitis nil, the G5 microcapsules increased the total cultivable bacteria population, the activities of invertase, urease, phosphatase, and catalase, and the contents of available nitrogen and available phosphorus. We concluded that a suitable formulation by bio-encapsulation with eco-friendly excipients for alleviating drought and/or salt stress in plants will be advantageous in sustainable agriculture.
Collapse
Affiliation(s)
- Wenjin Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan 750004, China
| | - Lihao Zheng
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Duoyong Lang
- Laboratory Animal Center, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaojia Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xin Ma
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaokang Li
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xinhui Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan 750004, China.
| |
Collapse
|
20
|
Raza T, Abbas M, Amna, Imran S, Khan MY, Rebi A, Rafie-Rad Z, Eash NS. Impact of Silicon on Plant Nutrition and Significance of Silicon Mobilizing Bacteria in Agronomic Practices. SILICON 2023; 15:3797-3817. [PMCID: PMC9876760 DOI: 10.1007/s12633-023-02302-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 01/13/2023] [Indexed: 08/01/2023]
Abstract
Globally, rejuvenation of soil health is a major concern due to the continuous loss of soil fertility and productivity. Soil degradation decreases crop yields and threatens global food security. Improper use of chemical fertilizers coupled with intensive cultivation further reduces both soil health and crop yields. Plants require several nutrients in varying ratios that are essential for the plant to complete a healthy growth and development cycle. Soil, water, and air are the sources of these essential macro- and micro-nutrients needed to complete plant vegetative and reproductive cycles. Among the essential macro-nutrients, nitrogen (N) plays a significant in non-legume species and without sufficient plant access to N lower yields result. While silicon (Si) is the 2nd most abundant element in the Earth’s crust and is the backbone of soil silicate minerals, it is an essential micro-nutrient for some plants. Silicon is just beginning to be recognized as an important micronutrient to some plant species and, while it is quite abundant, Si is often not readily available for plant uptake. The manufacturing cost of synthetic silica-based fertilizers is high, while absorption of silica is quite slow in soil for many plants. Rhizosphere biological weathering processes includes microbial solubilization processes that increase the dissolution of minerals and increases Si availability for plant uptake. Therefore, an important strategy to improve plant silicon uptake could be field application of Si-solubilizing bacteria. In this review, we evaluate the role of Si in seed germination, growth, and morphological development and crop yield under various biotic and abiotic stresses, different pools and fluxes of silicon (Si) in soil, and the bacterial genera of the silicon solubilizing microorganisms. We also elaborate on the detailed mechanisms of Si-solubilizing/mobilizing bacteria involved in silicate dissolution and uptake by a plant in soil. Last, we discuss the potential of silicon and silicon solubilizing/mobilizing to achieve environmentally friendly and sustainable crop production.
Collapse
Affiliation(s)
- Taqi Raza
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, USA
| | | | - Amna
- Department of Plant Sciences, Quaid-I-Azam University Islamabad, Islamabad, Pakistan
| | - Shakeel Imran
- UAF Sub Campus Burewala, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Yahya Khan
- UAF Sub Campus Burewala, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ansa Rebi
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083 China
| | - Zeinab Rafie-Rad
- Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Neal S. Eash
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, USA
| |
Collapse
|
21
|
Keuschnig C, Martins JMF, Navel A, Simonet P, Larose C. Micro-fractionation shows microbial community changes in soil particles below 20 μm. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1091773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IntroductionMicro-scale analysis of microbes in soil is essential to the overall understanding of microbial organization, interactions, and ecosystem functioning. Soil fractionation according to its aggregated structure has been used to access microbial habitats. While bacterial communities have been extensively described, little is known about the fungal communities at scales relevant to microbial interactions.MethodsWe applied a gentle soil fractionation method to preserve stable aggregated structures within the range of micro-aggregates and studied fungal and bacterial communities as well as nitrogen cycling potentials in the pristine Rothamsted Park Grass soil (bulk soil) as well as in its particle size fractions (PSFs; >250 μm, 250–63 μm, 63–20 μm, 20–2 μm, <2 μm, and supernatant).ResultsOverall bacterial and fungal community structures changed in PSFs below 20 μm. The relative abundance of Basidiomycota decreased with decreasing particle size over the entire measure range, while Ascomycota showed an increase and Mucoromycota became more prominent in particles below 20 μm. Bacterial diversity was found highest in the < 2 μm fraction, but only a few taxa were washed-off during the procedure and found in supernatant samples. These taxa have been associated with exopolysaccharide production and biofilm formation (e.g., Pseudomonas, Massilia, Mucilaginibacter, Edaphobaculum, Duganella, Janthinobacterium, and Variovorax). The potential for nitrogen reduction was found elevated in bigger aggregates.DiscussionThe observed changes below 20 μm particle are in line with scales where microbes operate and interact, highlighting the potential to focus on little researched sub-fractions of micro-aggregates. The applied method shows potential for use in studies focusing on the role of microbial biofilms in soil and might also be adapted to research various other soil microbial functions. Technical advances in combination with micro-sampling methods in soil promise valuable output in soil studies when particles below 20 μm are included.
Collapse
|
22
|
Clays as Vehicles for Drug Photostability. Pharmaceutics 2022; 14:pharmaceutics14040796. [PMID: 35456630 PMCID: PMC9032270 DOI: 10.3390/pharmaceutics14040796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 01/17/2023] Open
Abstract
Clay minerals are often used due to their high adsorption capacity, which has sparked interest in their biological applications to stabilize drugs and pharmaceutical products. This research aims to summarize information about the stability of drugs, cosmetics, dermocosmetics, and pharmaceutical compounds incorporated in the structure of different clay minerals. The databases used to search the articles were Web of Science, Scopus, PubMed, and Science Direct. Photostabilization of these compounds is reviewed and its importance demonstrated. For biological applications, the increase in solubility and bioavailability of clay minerals has proven useful for them as drug carriers. While their natural abundance, low toxicity, and accessible cost have contributed to classical applications of clay minerals, a wide range of interesting new applications may be facilitated, mainly through incorporating different organic molecules. The search for new functional materials is promising to challenge research on clay minerals in biological or biotechnological approaches.
Collapse
|
23
|
Jian T, Xia Y, He R, Zhang J. The influence of planting Carex praeclara and Leymus secalinus on soil properties and microbial community in a Zoige desertified alpine grassland. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Tan J, Yi H, Zhang Z, Meng D, Li Y, Xia L, Song S, Wu L, Sáncheze RMT, Farías ME. Montmorillonite facilitated Pb(II) biomineralization by Chlorella sorokiniana FK in soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127007. [PMID: 34523473 DOI: 10.1016/j.jhazmat.2021.127007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/14/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
In this study, Chlorella sorokiniana FK, isolated from lead-zinc tailings, was employed for Pb(II) biomineralization with or without montmorillonite (MMT) addition in soil. Batch experiment results showed that montmorillonite facilitated Pb3(CO3)2(OH)2 formation on the surface of Chlorella-MMT composite, thus increasing algal cells' tolerance to Pb(II) poisoning. Surprisingly, Pb(II) adsorbed and biomineralized by Chlorella-MMT composite was 2.69 times and 3.76 times as much as that by Chlorella alone, respectively. The montmorillonite facilitated Chlorella-induced Pb biomineralization by promoting both photosynthesis and urea hydrolysis, mainly due to more hydroxyl functional groups generated during its binding with Chlorella and its high pH buffering capacity. Moreover, the SEM-EDS analysis indicated that the biomineral particles shifted from algal cell surface to montmorillonite surface in the composite during long-term Pb-detoxification. In-situ soil Pb(II) remediation experiments with Chlorella-MMT composites further showed that Pb was immobilized as carbonate form in the short term and as residue fraction in the long term. This study made the first attempt to explore the facilitating effects of montmorillonite on metal-carbonate precipitation mediated by microalgae and to develop a green, sustainable, and effective strategy for immobilization of heavy metal in soil by combining clay minerals and microalgae.
Collapse
Affiliation(s)
- Jiaqi Tan
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Hao Yi
- School of Artificial Intelligence, Wuchang University of Technology, Wuhan, Hubei, 430223, China
| | - Zijia Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; Instituto de Física de la Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, Mexico
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yinta Li
- Department of Food Engineering, Weihai Ocean Vocational College, Haiwan South Road 1000, Weihai, Shandong 264300, China
| | - Ling Xia
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China.
| | - Shaoxian Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | | | - María E Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), PROIMI Planta Piloto de Procesos Industriales Microbiológicos, Av. Belgrano y Pasaje Caseros, 4000 CONICET Consejo Nacional de Investigaciones Científicas y Técnicas, 4000 Tucumán, Argentina
| |
Collapse
|
25
|
Hameed M, Bhat RA, Pandit BA, Ramzan S, Dijoo ZK, Wani MA. Qualitative assessment of compost engendered from municipal solid waste and green waste by indexing method. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:210-219. [PMID: 34292860 DOI: 10.1080/10962247.2021.1959466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/10/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
The present study aims at quantification of the quality of three varieties of composts made from municipal solid waste, green waste and combined waste by critically evaluating their physicochemical attributes, effect on soil fertility and metal pollution risk. Each waste type was treated with effective micro-organisms to compare the compost quality using Quality Control Indices. The effect of microbial consortia on the wastes was prominent resulting in decreased pH levels and increased electrical conductivity. C/N ratio ranged between 14-24 for waste composts without microbial treatment, and 8-11 for microbial treated wastes. The fertility parameter was observed to be more in microbial treated waste composts. Also, heavy metals concentration in waste compost without effective microbial treatment was higher than the types given EM. Based on the fertility and clean indices, the treated and untreated municipal solid waste and combined waste compost belonged to class RU-1 and class D, respectively. Moreover, compost prepared from treated and untreated green waste belonged to classes B and C respectively. In general, the prepared CW and GW composts have medium to high fertilizing potential and are fit for domestic as well as commercial use. However, MSW compost is not fit for agricultural purposes as it didn't improve soil fertility to a greater extent but can be used as a soil conditioner in limited quantity as it can cause metal toxicity. For this reason, proper segregation of inputs at the start of a composting process is necessary to improve its quality before being put to agricultural use as any unbalanced or unchecked content of mixed waste will affect the overall compost quality.Implications: Significance of the work: The research dealt with different combinations of segregated wastes to analyze the best fit solid waste compost. Experiments were conducted on the actual landfill site area to simulate the conditions for the process. The manuscript provides evidence and other facts advocating the use of composting for waste management and ultimately reducing pollution caused by landfilling. It ought to cause a multiplier effect if the same is to be followed in other parts of the world, and thus working our way toward getting the Smart city project to fruition. The results of the study exhibit the differences in physiochemical nature of various types of composts. A treatment of microbial consortium with restrictions enabled a conducive atmosphere in the colonies to thrive faster and initiate the process of decomposition. We observed that treated samples converted faster into compost as compared to non-treated samples. We also observed the effect of treatment on fertility parameters of prepared compost samples. In general, it was found that the organic carbon and C/N ratio declined while the total nitrogen and total potassium was observed to increase with very little to no change in phosphorous content, with the inoculation of beneficial micro-organisms throughout the composting course. A reduction in the heavy metal levels was observed in samples treated with active micro-organisms. The compost classification into A, B, C, and D classes represents the quality of compost and further use in agricultural land on commercial levels. The quality index values were determined highest for green waste compost (GWC). The municipal solid waste compost (MSWC) exhibited lowest index values. Therefore, based on the quality index values, the utilization of GWC will aid in reutilizing the green waste and in boosting soil fertility and reduce the waste quantity generation rates. It's also necessary to make compost making widespread among the farmers for a sustainable environment. The GWC has been considered as a sustainable option of waste management, being economically and ecologically viable.
Collapse
Affiliation(s)
- Mehvish Hameed
- College of Agricultural Engineering, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Rouf Ahmad Bhat
- Division of Environmental Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Bashir Ahmad Pandit
- College of Agricultural Engineering, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Shazia Ramzan
- Division of Soil Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Zulaykha Khurshid Dijoo
- Department of Environmental Science/ Center of Research for Development, University of Kashmir, Jammu and Kashmir, India
| | - Mushtaq Ahmad Wani
- Division of Soil Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| |
Collapse
|
26
|
Aram SA, Saalidong BM, Osei Lartey P. Comparative assessment of the relationship between coliform bacteria and water geochemistry in surface and ground water systems. PLoS One 2021; 16:e0257715. [PMID: 34547049 PMCID: PMC8454968 DOI: 10.1371/journal.pone.0257715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022] Open
Abstract
The occurrence of pollution indicator bacteria (total and faecal coliform) has been used as a sanitary parameter for evaluating the quality of drinking water. It is known that these indicators are associated with disease causing organisms which are of great concern to public health. This study assessed the relationship between coliform bacteria and water geochemistry in surface and ground water systems in the Tarkwa mining area using logistic regression models. In surface water sources, higher values of chloride (OR = 0.891, p<005), phosphates (OR = 0.452, p<0.05), pH (OR = 0.174, p<0.05) and zinc (OR = 0.001, p<0.05) were associated with lower odds of faecal coliform contamination. In groundwater sources, higher values of phosphates (OR = 0.043, p<0.001), total dissolved solids (OR = 0.858, p<0.05), turbidity (OR = 0.996, p<0.05) and nickel (OR = 6.09E-07, p<0.05) implied non-contamination by faecal coliform. However, higher values of electrical conductivity (OR = 1.097, p<0.05), nitrates (OR = 1.191, p<0.05) and total suspended solids (OR = 1.023, p<0.05) were associated with higher odds of faecal coliform contamination of groundwater sources. Nitrates and total suspended solids, in this case, were completely mediated by the heavy metals. For total coliform in surface water systems, higher values of magnesium (OR = 1.070, p<0.05) was associated with higher odds of total coliform contamination while higher values of phosphates (OR = 0.968, p<0.05) was associated with lower odds of total coliform contamination although the presence of heavy metals completely mediated these relationships. For ground water systems, higher values of pH (OR = 0.083, p<0.05), phosphates (OR = 0.092, p<0.05), turbidity (OR = 0.950, p<0.05) and chloride (OR = 0.860, p<0.05) were associated with lower odds of total coliform contamination. However, higher values of total suspended solids (OR = 1.054, p<0.05) and nitrates (OR = 1.069, p<0.05) implied contamination of total coliform in ground water sources. The relationship between nitrates and total coliform were mediated by the heavy metals. This study establishes the need to monitor, manage and remediate surface and ground water sources for potential disease causing microbes in ways that takes into consideration the factors that create different conditions in the two water systems. This study validates the usefulness of statistical models as tools for preventing surface and ground water contamination.
Collapse
Affiliation(s)
- Simon Appah Aram
- Research Center for Smart Mine and Intelligent Equipment, Taiyuan University of Technology, Taiyuan, People’s Republic of China
- College of Safety and Emergency Management Engineering, Taiyuan University of Technology, Taiyuan, People’s Republic of China
| | - Benjamin M. Saalidong
- Department of Geosciences, Taiyuan University of Technology, Taiyuan, People’s Republic of China
| | - Patrick Osei Lartey
- Ministry of Education Key Laboratory of Interface and Engineering in Advanced Materials, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan, People’s Republic of China
| |
Collapse
|
27
|
Kudinova AG, Dolgih AV, Mergelov NS, Shorkunov IG, Maslova OA, Petrova MA. The Abundance and Taxonomic Diversity of Filterable Forms of Bacteria during Succession in the Soils of Antarctica (Bunger Hills). Microorganisms 2021; 9:1728. [PMID: 34442807 PMCID: PMC8400457 DOI: 10.3390/microorganisms9081728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
Previous studies have shown that a significant part of the bacterial communities of Antarctic soils is represented by cells passing through filters with pore sizes of 0.2 µm. These results raised new research questions about the composition and diversity of the filterable forms of bacteria (FFB) in Antarctic soils and their role in the adaptation of bacteria to the extreme living conditions. To answer such questions, we analyzed the succession of bacterial communities during incubation of Antarctic soil samples from the Bunger Hills at increased humidity and positive temperatures (5 °C and 20 °C). We determined the total number of viable cells by fluorescence microscopy in all samples and assessed the taxonomic diversity of bacteria by next-generation sequencing of the 16S rRNA gene region. Our results have shown that at those checkpoints where the total number of cells reached the maximum, the FFB fraction reached its minimum, and vice versa. We did not observe significant changes in taxonomic diversity in the soil bacterial communities during succession. During our study, we found that the soil bacterial communities as a whole and the FFB fraction consist of almost the same phylogenetic groups. We suppose rapid transition of the cells of the active part of the bacterial population to small dormant forms is one of the survival strategies in extreme conditions and contributes to the stable functioning of microbial communities in Antarctic soils.
Collapse
Affiliation(s)
- Alina G. Kudinova
- Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Akademika Kurchatova Square 2, 123182 Moscow, Russia;
| | - Andrey V. Dolgih
- Institute of Geography, Russian Academy of Sciences, Staromonetnyy Lane 29, 119017 Moscow, Russia; (A.V.D.); (N.S.M.); (I.G.S.)
| | - Nikita S. Mergelov
- Institute of Geography, Russian Academy of Sciences, Staromonetnyy Lane 29, 119017 Moscow, Russia; (A.V.D.); (N.S.M.); (I.G.S.)
| | - Ilya G. Shorkunov
- Institute of Geography, Russian Academy of Sciences, Staromonetnyy Lane 29, 119017 Moscow, Russia; (A.V.D.); (N.S.M.); (I.G.S.)
| | - Olga A. Maslova
- Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Akademika Kurchatova Square 2, 123182 Moscow, Russia;
| | - Mayya A. Petrova
- Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Akademika Kurchatova Square 2, 123182 Moscow, Russia;
| |
Collapse
|
28
|
Mohamed Zuki F, Edyvean RGJ, Pourzolfaghar H, Kasim N. Modeling of the Van Der Waals Forces during the Adhesion of Capsule-Shaped Bacteria to Flat Surfaces. Biomimetics (Basel) 2021; 6:5. [PMID: 33429852 PMCID: PMC7838935 DOI: 10.3390/biomimetics6010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
A novel model is developed to evaluate the van der Waals (vdW) interactions between a capsule shaped bacterium (P. putida) and flat minerals plates in different approach profiles: Vertically and horizontally. A comparison of the approaches to the well-developed spherical particle to mineral surface (semi-infinite wall and spherical) approach has been made in this investigation. The van der Waals (vdW) interaction potentials for a capsule-shaped bacterium are found using Hamaker's microscopic approach of sphere to plate and cylinder to plate either vertically or horizontally to the flat surface. The numerical results show that a horizontal orientated capsule shaped bacterium to mineral surface interaction was more attractive compared to a capsule shaped bacterium approaching vertically. The orientation of the bacterial approaching a surface as well as the type and topology of the mineral influence the adhesion of a bacteria to that surface. Furthermore, the density difference among each type of bacteria shape (capsule, cylinder, and sphere) require different amounts of energy to adhere to hematite and quartz surfaces.
Collapse
Affiliation(s)
- Fathiah Mohamed Zuki
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Robert G. J. Edyvean
- Department of Chemical and Biological Engineering, University of Sheffield, Newcastle Street, Sheffield S1 3JD, UK;
| | - Hamed Pourzolfaghar
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Norherdawati Kasim
- Department of Chemistry and Biology, Center for Foundation Studies, National Defence University of Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia;
| |
Collapse
|