1
|
Ardit M, Conte S, Belmonte D, Menescardi F, Pollastri S, Cruciani G, Dondi M. Structure Evolution of Ge-Doped CaTiO 3 (CTG) at High Pressure: Search for the First 2:4 Locked-Tilt Perovskite by Synchrotron X-ray Diffraction and DFT Calculations. Inorg Chem 2023; 62:16943-16953. [PMID: 37796534 PMCID: PMC10583197 DOI: 10.1021/acs.inorgchem.3c02645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Indexed: 10/06/2023]
Abstract
This research investigates the high-pressure behavior of the Ca(Ti0.95Ge0.05)O3 perovskite, a candidate of the locked-tilt perovskite family (orthorhombic compounds characterized by the absence of changes in the octahedral tilt and volume reduction under pressure controlled solely by isotropic compression). The study combines experimental high-pressure synchrotron diffraction data with density functional theory (DFT) calculations, complemented by the X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), to understand the structural evolution of the perovskite under pressure. The results show that CTG undergoes nearly isotropic compression with the same compressibility along all three unit-cell axes (i.e., Ka0 = Kb0 = Kc0, giving a normalized cell distortion factor with pressure dnorm(P) = 1). However, a modest increase in octahedral tilting with pressure is revealed by DFT calculations, qualifying CTG as a new type of GdFeO3-type perovskite that exhibits both isotropic compression and nonlocked tilting. This finding complements two existing types: perovskites with anisotropic compression and tilting changes and those with isotropic compression and locked tilting. The multimethod approach provides valuable insights into the structural evolution of locked-tilt perovskites under high pressure and establishes a protocol for the efficient study of complex high-pressure systems. The results have implications for the design of new functional materials with desirable properties.
Collapse
Affiliation(s)
- Matteo Ardit
- Department
of Physics and Earth Sciences, University
of Ferrara, via Saragat
1, I-44122 Ferrara, Italy
| | - Sonia Conte
- CNR-ISSMC,
Institute of Science, Technology and Sustainability
for the Development of Ceramic Materials, via Granarolo 64, I-48018 Faenza, Italy
| | - Donato Belmonte
- Department
of Earth Sciences, Environment and Life (DISTAV), University of Genova, corso Europa 26, I-16132 Genova, Italy
| | - Francesca Menescardi
- Department
of Earth Sciences, Environment and Life (DISTAV), University of Genova, corso Europa 26, I-16132 Genova, Italy
| | - Simone Pollastri
- ELETTRA
- Sincrotrone Trieste, ss 14, km 163.5, I-34149 Basovizza, Italy
| | - Giuseppe Cruciani
- Department
of Physics and Earth Sciences, University
of Ferrara, via Saragat
1, I-44122 Ferrara, Italy
| | - Michele Dondi
- CNR-ISSMC,
Institute of Science, Technology and Sustainability
for the Development of Ceramic Materials, via Granarolo 64, I-48018 Faenza, Italy
| |
Collapse
|
2
|
Ulian G, Valdrè G. The effect of long-range interactions on the infrared and Raman spectra of aragonite (CaCO 3, Pmcn) up to 25 GPa. Sci Rep 2023; 13:2725. [PMID: 36792773 PMCID: PMC9932076 DOI: 10.1038/s41598-023-29783-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Long-range interactions are relevant in the physical description of materials, even for those where other stronger bonds give the leading contributions. In this work, we demonstrate this assertion by simulating the infrared and Raman spectra of aragonite, an important calcium carbonate polymorph (space group Pmcn) in geological, biological and materials science fields. To this aim, we used Density Functional Theory methods and two corrections to include long-range interactions (DFT-D2 and DFT-D3). The results were correlated to IR spectroscopy and confocal Raman spectrometry data, finding a very good agreement between theory and experiments. Furthermore, the evolution of the IR/Raman modes up to 25 GPa was described in terms of mode-Grüneisen's parameters, which are useful for geological and materials science applications of aragonite. Our findings clearly show that weak interactions are of utmost importance when modelling minerals and materials, even when they are not the predominant forces.
Collapse
Affiliation(s)
- Gianfranco Ulian
- grid.6292.f0000 0004 1757 1758Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Centro di Ricerche Interdisciplinari di Biomineralogia, Cristallografia e Biomateriali, Università di Bologna “Alma Mater Studiorum” Piazza di Porta, San Donato 1, 40126 Bologna, Italy
| | - Giovanni Valdrè
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Centro di Ricerche Interdisciplinari di Biomineralogia, Cristallografia e Biomateriali, Università di Bologna "Alma Mater Studiorum" Piazza di Porta, San Donato 1, 40126, Bologna, Italy.
| |
Collapse
|
3
|
Ulian G, Valdrè G. QUANTAS: a Python software for the analysis of thermodynamics and elastic behavior of solids from ab initio quantum mechanical simulations and experimental data. J Appl Crystallogr 2022; 55:386-396. [PMID: 35497653 PMCID: PMC8985604 DOI: 10.1107/s1600576722000085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022] Open
Abstract
This paper presents QUANTAS, an open-source Python-based software aimed at providing a fast, flexible and easy-to-use framework to calculate the thermodynamics and elastic properties of crystalline solids. QUANTAS could be of use for researchers involved in various fields of solid-state chemistry, physics and mineralogy. Mineralogy, petrology and materials science are fundamental disciplines not only for the basic knowledge and classification of solid phases but also for their technological applications, which are becoming increasingly demanding and challenging. Characterization and design of materials are of utmost importance and usually need knowledge of the thermodynamics and mechanical stability of solids. Alongside well known experimental approaches, in recent years the advances in both quantum mechanical methods and computational power have placed theoretical investigations as a complementary useful and powerful tool in this kind of study. In order to aid both theoreticians and experimentalists, an open-source Python-based software, QUANTAS, has been developed. QUANTAS provides a fast, flexible, easy-to-use and extensible platform for calculating the thermodynamics and elastic behavior of crystalline solid phases, starting from both experimental and ab initio data.
Collapse
|
4
|
Ulian G, Moro D, Valdrè G. Hydroxylapatite and Related Minerals in Bone and Dental Tissues: Structural, Spectroscopic and Mechanical Properties from a Computational Perspective. Biomolecules 2021; 11:728. [PMID: 34068073 PMCID: PMC8152500 DOI: 10.3390/biom11050728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 01/07/2023] Open
Abstract
Hard tissues (e.g., bone, enamel, dentin) in vertebrates perform various and different functions, from sustaining the body to haematopoiesis. Such complex and hierarchal tissue is actually a material composite whose static and dynamic properties are controlled by the subtle physical and chemical interplay between its components, collagen (main organic part) and hydroxylapatite-like mineral. The knowledge needed to fully understand the properties of bony and dental tissues and to develop specific applicative biomaterials (e.g., fillers, prosthetics, scaffolds, implants, etc.) resides mostly at the atomic scale. Among the different methods to obtains such detailed information, atomistic computer simulations (in silico) have proven to be both corroborative and predictive tools in this subject. The authors have intensively worked on quantum mechanical simulations of bioapatite and the present work reports a detailed review addressed to the crystal-chemical, physical, spectroscopic, mechanical, and surface properties of the mineral phase of bone and dental tissues. The reviewed studies were conducted at different length and time scales, trying to understand the features of hydroxylapatite and biological apatite models alone and/or in interaction with simplified collagen-like models. The reported review shows the capability of the computational approach in dealing with complex biological physicochemical systems, providing accurate results that increase the overall knowledge of hard tissue science.
Collapse
Affiliation(s)
- Gianfranco Ulian
- Centro di Ricerca Interdisciplinare di Biomineralogia, Cristallografia e Biomateriali, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna Alma Mater Studiorum, P. Porta San Donato 1, 40126 Bologna, Italy;
| | | | - Giovanni Valdrè
- Centro di Ricerca Interdisciplinare di Biomineralogia, Cristallografia e Biomateriali, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna Alma Mater Studiorum, P. Porta San Donato 1, 40126 Bologna, Italy;
| |
Collapse
|
5
|
A Practical Review of the Laser-Heated Diamond Anvil Cell for University Laboratories and Synchrotron Applications. CRYSTALS 2020. [DOI: 10.3390/cryst10060459] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the past couple of decades, the laser-heated diamond anvil cell (combined with in situ techniques) has become an extensively used tool for studying pressure-temperature-induced evolution of various physical (and chemical) properties of materials. In this review, the general challenges associated with the use of the laser-heated diamond anvil cells are discussed together with the recent progress in the use of this tool combined with synchrotron X-ray diffraction and absorption spectroscopy.
Collapse
|
6
|
A Short Review of Current Computational Concepts for High-Pressure Phase Transition Studies in Molecular Crystals. CRYSTALS 2020. [DOI: 10.3390/cryst10020081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
High-pressure chemistry of organic compounds is a hot topic of modern chemistry. In this work, basic computational concepts for high-pressure phase transition studies in molecular crystals are described, showing their advantages and disadvantages. The interconnection of experimental and computational methods is highlighted, showing the importance of energy calculations in this field. Based on our deep understanding of methods’ limitations, we suggested the most convenient scheme for the computational study of high-pressure crystal structure changes. Finally, challenges and possible ways for progress in high-pressure phase transitions research of organic compounds are briefly discussed.
Collapse
|
7
|
An Equation of State for Metals at High Temperature and Pressure in Compressed and Expanded Volume Regions. CONDENSED MATTER 2019. [DOI: 10.3390/condmat4030071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A simple equation of state model for metals at high temperature and pressure is described. The model consists of zero-temperature isotherm, thermal ionic components, and thermal electronic components, and is applicable in compressed as well as expanded volume regions. The three components of the model, together with appropriate correction terms, are described in detail using Cu as a prototype example. Shock wave Hugoniot, critical point parameters, liquid–vapor phase diagram, isobaric expansion, etc., are evaluated and compared with experimental data for Cu. The semianalytical model is expected to be useful to prepare extended tables for use in hydrodynamics calculations in high-energy-density physics.
Collapse
|
8
|
Benisek A, Dachs E. The accuracy of standard enthalpies and entropies for phases of petrological interest derived from density-functional calculations. CONTRIBUTIONS TO MINERALOGY AND PETROLOGY. BEITRAGE ZUR MINERALOGIE UND PETROLOGIE 2018; 173:90. [PMID: 30416201 PMCID: PMC6208725 DOI: 10.1007/s00410-018-1514-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/12/2018] [Indexed: 06/01/2023]
Abstract
The internal energies and entropies of 21 well-known minerals were calculated using the density functional theory (DFT), viz. kyanite, sillimanite, andalusite, albite, microcline, forsterite, fayalite, diopside, jadeite, hedenbergite, pyrope, grossular, talc, pyrophyllite, phlogopite, annite, muscovite, brucite, portlandite, tremolite, and CaTiO3-perovskite. These thermodynamic quantities were then transformed into standard enthalpies of formation from the elements and standard entropies enabling a direct comparison with tabulated values. The deviations from reference enthalpy and entropy values are in the order of several kJ/mol and several J/mol/K, respectively, from which the former is more relevant. In the case of phase transitions, the DFT-computed thermodynamic data of involved phases turned out to be accurate and using them in phase diagram calculations yields reasonable results. This is shown for the Al2SiO5 polymorphs. The DFT-based phase boundaries are comparable to those derived from internally consistent thermodynamic data sets. They even suggest an improvement, because they agree with petrological observations concerning the coexistence of kyanite + quartz + corundum in high-grade metamorphic rocks, which are not reproduced correctly using internally consistent data sets. The DFT-derived thermodynamic data are also accurate enough for computing the P-T positions of reactions that are characterized by relatively large reaction enthalpies (> 100 kJ/mol), i.e., dehydration reactions. For reactions with small reaction enthalpies (a few kJ/mol), the DFT errors are too large. They, however, are still far better than enthalpy and entropy values obtained from estimation methods.
Collapse
Affiliation(s)
- Artur Benisek
- Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringerstr. 2a, 5020 Salzburg, Austria
| | - Edgar Dachs
- Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringerstr. 2a, 5020 Salzburg, Austria
| |
Collapse
|