1
|
Zhang M, Geng W, Guan X, Gao S, Mao J. Antioxidant and anti-inflammatory effects of different ratios and preparations of Angelica sinensis and chuanxiong rhizoma extracts. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118559. [PMID: 39002825 DOI: 10.1016/j.jep.2024.118559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica sinensis (AS) and Chuanxiong rhizoma (CR) are frequently prescribed in clinical settings for their ability to enrich blood, regulate menstrual cycles, and alleviate pain. Despite their widespread use, there is a relative dearth of studies exploring their anti-inflammatory properties. AIM OF THE STUDY To evaluate the antioxidant and anti-inflammatory effects of Angelica sinensis-Chuanxiong rhizoma (ASCR) extracts and investigate its anti-inflammatory mechanisms. MATERIALS AND METHODS AS and CR were combined in six ratios and extracted using five solvents. The quality of the resulting ASCR extracts was assessed by determining the content of ferulic acid (FA) using HPLC. The antioxidant effects of the ASCR extracts were evaluated in vitro using the DPPH and ABTS assays, as well as in HUVECs exposed to H2O2-induced oxidative damage. Additionally, the anti-inflammatory effects of the extracts were investigated in vivo through the assays of ear edema in mice and paw edema in rats. Biochemical markers including NO, MDA, and SOD in paw tissues, as well as PGE2, TNF-α, and COX-2 in rat serum, were measured to further elucidate the anti-inflammatory mechanisms of ASCR extracts. RESULTS The WA-2-1 was obtained by combining AS and CR in a 2:1 ratio through first water then ethanol extraction, and showed favorable antioxidant and anti-inflammatory activities. The extract demonstrated effective scavenging abilities against DPPH• and ABTS+• radicals while also protecting against H2O2-induced oxidative damage. Furthermore, in vivo studies revealed that WA-2-1 had significant inhibitory effects on ear and paw edema as well as the ability to decrease NO and MDA levels, enhance SOD activity, and downregulate the expression of COX-2, PGE2, and TNF-α. CONCLUSIONS The combination of AS and CR exhibits favorable anti-inflammatory effects, attributed to its dual actions of mitigating oxidative stress and suppressing the production of inflammatory mediators in serum or tissues during the inflammatory process.
Collapse
Affiliation(s)
- Mengtian Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Wei Geng
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
| | - Xiqin Guan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Yantai Dongcheng Biochemicals Co., Ltd, Yantai, 265500, China.
| | - Shijie Gao
- Experimental Center of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jinlong Mao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
2
|
Saleh-E-In MM, Choi YE. Anethum sowa Roxb. ex fleming: A review on traditional uses, phytochemistry, pharmacological and toxicological activities. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:113967. [PMID: 33640440 DOI: 10.1016/j.jep.2021.113967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anethum sowa Roxb. ex Fleming (Syn. Peucedanum sowa Roxb. ex Fleming, Family: Apiaceae) is a pharmacologically important as aromatic and medicinal plant. Various parts of this plant are used in traditional medicine systems for carminative, uterine and colic pain, digestion disorder, flatulence in babies, appetite-stimulating agent and used to treat mild flue and cough. The essential oil is used for aromatherapy. It is also used as a spice for food flavouring and culinary preparations in many Asian and European countries. AIM OF THE REVIEW This review aims to provide a comprehensive and critical assessment from the reported traditional and pharmaceutical uses and pharmacological activities of the extracts, essential oil and phytoconstituents with emphasis on its therapeutic potential as well as toxicological evaluation of A. sowa. MATERIALS AND METHODS Online search engines such as SciFinder®, GoogleScholar®, ResearchGate®, Web of Science®, Scopus®, PubMed and additional data from books, proceedings and local prints were searched using relevant keywords and terminologies related to A. sowa for critical analyses. RESULTS The literature studies demonstrated that A. sowa possesses several ethnopharmacological activities, including pharmaceutical prescriptions, traditional applications, and spice in food preparations. The phytochemical investigation conducted on crude extracts has been characterized and identified various classes of compounds, including coumarins, anthraquinone, terpenoids, alkaloid, benzodioxoles, phenolics, polyphenols, phenolic and polyphenols, fatty acids, phthalides and carotenoids. The extracts and compounds from the different parts of A. sowa showed diverse in vitro and in vivo biological activities including antioxidant, antiviral, antibacterial, analgesic and anti-inflammatory, Alzheimer associating neuromodulatory, cytotoxic, anticancer, antidiabetes, insecticidal and larvicidal. CONCLUSION A. sowa is a valuable medicinal plant which is especially used in food flavouring and culinary preparations. This review summarized the pertinent information on A. sowa and its traditional and culinary uses, as well as potential pharmacological properties of essential oils, extracts and isolated compounds. The traditional uses of A. sowa are supported by in vitro/vivo pharmacological studies; however, further investigation on A. sowa should be focused on isolation and identification of more active compounds and establish the links between the traditional uses and reported pharmacological activities with active compounds, as well as structure-activity relationship and in vivo mechanistic studies before integrated into the medicine. The toxicological report confirmed its safety. Nonetheless, pharmacokinetic evaluation tests to validate its bioavailability should be encouraged.
Collapse
Affiliation(s)
- Md Moshfekus Saleh-E-In
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Yong Eui Choi
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon, 200-701, Republic of Korea.
| |
Collapse
|
3
|
Quality Assessment of Insamyangpye Decoction by Liquid Chromatography Tandem Mass Spectrometry Multiple Reaction Monitoring. Processes (Basel) 2021. [DOI: 10.3390/pr9050831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Insamyangpye decoction (ISYPD) is an oriental herbal prescription used in Korea to treat lung-related diseases such as chronic obstructive pulmonary disease. ISYPD is a complex prescription consisting of 13 herbal medicines, and ISYPD sample was obtained by adding 50 L of distilled water to a mixture (5 kg) of 13 herbal medicines, extracting at 100 °C for 2 h using an electric extractor, and freeze-drying. In this study, an accurate and sensitive liquid chromatography tandem mass spectrometry (LC–MS/MS) method based on multiple reaction monitoring (MRM) was developed and verified for quality assessment of ISYPD using 10 marker components: mulberroside A (1), amygdalin (2), liquiritin apioside (3), naringin (4), poncirin (5), platycodin D (6), ginsenoside Rb1 (7), glycyrrhizin (8), saikosaponin A (9), and schizandrin (10). These marker compounds were separated using an Acquity UPLC BEH C18 column (2.1 mm × 50 mm, 1.7 μm) maintained at 30 °C with a mobile phase elution gradient of acetonitrile in distilled water, both containing 0.1% (v/v) trifluoroacetic acid. Marker components were quantified using the LC–MS/MS MRM method developed and validated, and found at 0.09–7.47 mg/g.
Collapse
|
4
|
Wu JZ, Li YJ, Huang GR, Xu B, Zhou F, Liu RP, Gao F, Ge JD, Cai YJ, Zheng Q, Li XJ. Mechanisms exploration of Angelicae Sinensis Radix and Ligusticum Chuanxiong Rhizoma herb-pair for liver fibrosis prevention based on network pharmacology and experimental pharmacologylogy. Chin J Nat Med 2021; 19:241-254. [PMID: 33875165 DOI: 10.1016/s1875-5364(21)60026-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 02/08/2023]
Abstract
Angelicae Sinensis Radix (Danggui) and Ligusticum Chuanxiong Rhizoma (Chuan Xiong) herb-pair (DC) have been frequently used in Traditional Chinese medicine (TCM) prescriptions for hundreds of years to prevent vascular diseases and alleviate pain. However, the mechanism of DC herb-pair in the prevention of liver fibrosis development was still unclear. In the present study, the effects and mechanisms of DC herb-pair on liver fibrosis were examined using network pharmacology and mouse fibrotic model. Based on the network pharmacological analysis of 13 bioactive ingredients found in DC, a total of 46 targets and 71 pathways related to anti-fibrosis effects were obtained, which was associated with mitogen-activated protein kinase (MAPK) signal pathway, hepatic inflammation and fibrotic response. Furthermore, this hypothesis was verified using carbon tetrachloride (CCl4)-induced fibrosis model. Measurement of liver functional enzyme activities and histopathological examination showed that DC dramatically reduced bile acid levels, inflammatory cell infiltration and collagen deposition caused by CCl4. The increased expression of liver fibrosis markers, such as collagen 1, fibronectin, α-smooth muscle actin (α-SMA) and transforming growth factor-β (TGF-β), and inflammatory factors, such as chemokine (C-C motif) ligand 2 (MCP-1), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-6 in fibrotic mice were significantly downregulated by DC herb-pair through regulation of extracellular signal-regulated kinase 1/2 (ERK1/2)-protein kinase B (AKT) signaling pathways. Collectively, these results suggest that DC prevents the development of liver fibrosis by inhibiting collagen deposition, decreasing inflammatory reactions and bile acid accumulation, which provides insights into the mechanisms of herb-pair in improving liver fibrosis.
Collapse
Affiliation(s)
- Jian-Zhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ya-Jing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guang-Rui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Bing Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fei Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Run-Ping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Feng Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun-De Ge
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ya-Jie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiao-Jiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
5
|
Lu C, Liu M, Shang W, Yuan Y, Li M, Deng X, Li H, Yang K. Knowledge Mapping of Angelica sinensis (Oliv.) Diels (Danggui) Research: A Scientometric Study. Front Pharmacol 2020; 11:294. [PMID: 32231572 PMCID: PMC7082756 DOI: 10.3389/fphar.2020.00294] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Traditional Chinese medicine (TCM) has been widely accepted and applied worldwide, and many publications related to Angelica sinensis (Oliv.) Diels (AS, Chinese name is "Danggui") have been published. However, to date, there has not been a scientometric study to systematically analyze the intellectual landscape and emerging research trends regarding AS. Therefore, we performed a scientometric study to address this gap. METHODS Publications related to AS published from 2009 to 2018 were identified and selected from the Web of Science (WoS) Core Collection on May 30, 2019 using relevant keywords. HistCite, CiteSpace, and Excel 2016 software tools were used to conduct this scientometric study. RESULTS Seven hundred and sixty-seven articles (including 717 primary articles and 60 review articles) and their cited references were included and analyzed. The majority of publications (N = 565, 73.7%) were published in mainland China, with Nanjing University of Chinese Medicine contributing the most publications (N = 42, 5.5%). The first core journal was Journal of Ethnopharmacology (N = 58, 7.6%; impact factor = 3.414). The identification and assessment of active components (like ferulic acid) of AS and their pharmacological actions (such as immunomodulatory effects) are the current research foci for AS research. CONCLUSION The present scientometric study provides an overview of the development of AS research over the previous decade using quantitative and qualitative methods, and this overview can provide references for researchers focusing on AS.
Collapse
Affiliation(s)
- Cuncun Lu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Center, School of Public Health, Lanzhou University, Lanzhou, China
| | - Ming Liu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Center, School of Public Health, Lanzhou University, Lanzhou, China
| | - Wenru Shang
- School of Public Health, Fudan University, Shanghai, China
| | - Yuan Yuan
- Clinical College of Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Meixuan Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Center, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiuxiu Deng
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huijuan Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Center, School of Public Health, Lanzhou University, Lanzhou, China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Center, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Ligustrazin increases lung cell autophagy and ameliorates paraquat-induced pulmonary fibrosis by inhibiting PI3K/Akt/mTOR and hedgehog signalling via increasing miR-193a expression. BMC Pulm Med 2019; 19:35. [PMID: 30744607 PMCID: PMC6371511 DOI: 10.1186/s12890-019-0799-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 02/04/2019] [Indexed: 02/07/2023] Open
Abstract
Background Reactive oxygen species (ROS) levels largely determine pulmonary fibrosis. Antioxidants have been found to ameliorate lung fibrosis after long-term paraquat (PQ) exposure. The effects of antioxidants, however, on the signalling pathways involved in PQ-induced lung fibrosis have not yet been investigated sufficiently. Here, we examined the impacts of ligustrazin on lung fibrosis, in particular ROS-related autophagy and pro-fibrotic signalling pathways, using a murine model of PQ-induced lung fibrosis. Methods We explored the effects of microRNA-193 (miR-193a) on Hedgehog (Hh) and PI3K/Akt/mTOR signalling and oxidative stress in lung tissues. Levels of miR-193a, protein kinase B (Akt), phosphoinositide 3-Kinase (PI3K), ceclin1, mammalian target of rapamycin (mTOR), sonic hedgehog (SHH), myosin-like Bcl2 interacting protein (LC3), smoothened (Smo), and glioma-associated oncogene-1 (Gli-1) mRNAs were determined with quantitative real-time PCR. Protein levels of PI3K, p-mTOR, p-Akt, SHH, beclin1, gGli-1, LC3, smo, transforming growth factor-β1 (TGF-β1), mothers against DPP homologue-2 (Smad2), connective tissue growth factor (CTGF), collagen I, collagen III, α-smooth muscle actin (α-SMA) nuclear factor erythroid 2p45-related factor-2 (Nrf2), and p-Smad2 were detected by western blotting. In addition, α-SMA, malondialdehyde, ROS, superoxide dismutase (SOD), oxidised and reduced glutathione, hydroxyproline, and overall collagen levels were identified in lung tissues using immunohistochemistry. Results Long-term PQ exposure blocked miR-193a expression, reduced PI3K/Akt/mTOR signalling, increased oxidative stress, inhibited autophagy, increased Hh signalling, and facilitated the formation of pulmonary fibrosis. Ligustrazin blocked PI3K/Akt/mTOR and Hh signalling as well as reduced oxidative stress via increasing miR-193a expression and autophagy, all of which reduced pulmonary fibrosis. These effects of ligustrazin were accompanied by reduced TGF-β1, CTGF, and Collagen I and III expression. Conclusions Ligustrazin blocked PQ-induced PI3K/Akt/mTOR and Hh signalling by increasing miR-193a expression, thereby attenuating PQ-induced lung fibrosis.
Collapse
|
7
|
Pannek J, Gach J, Boratyński F, Olejniczak T. Antimicrobial activity of extracts and phthalides occurring in Apiaceae plants. Phytother Res 2018; 32:1459-1487. [PMID: 29732627 DOI: 10.1002/ptr.6098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/07/2018] [Accepted: 03/24/2018] [Indexed: 12/26/2022]
Abstract
Apiaceae plants exhibit a broad spectrum of activities, for instance, antithrombotic, hypotensive, antioxidant, and insecticidal. They also provide a source of phthalides, which display antimicrobial activity. Considering the fact of rising resistance of both bacteria and fungi against commonly used antibiotics, developing of new naturally derived compounds is undeniably attractive approach. To our best knowledge, there are no other reviews concerning this subject in the literature. In view of above, an attempt to summarize an antimicrobial potential of isolated compounds and extracts from Apiaceae plants has been made, by specifying techniques of activity determination and methods of extraction. Techniques of antimicrobial activity evaluation are mainly based on bioautography, diffusion, and dilution methods. Therefore, we focused on in vitro data described in literature so far.
Collapse
Affiliation(s)
- Jakub Pannek
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, Wrocław, 50-375, Poland
| | - Joanna Gach
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, Wrocław, 50-375, Poland
| | - Filip Boratyński
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, Wrocław, 50-375, Poland
| | - Teresa Olejniczak
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, Wrocław, 50-375, Poland
| |
Collapse
|
8
|
A systematic review on the rhizome of Ligusticum chuanxiong Hort. (Chuanxiong). Food Chem Toxicol 2018; 119:309-325. [PMID: 29486278 DOI: 10.1016/j.fct.2018.02.050] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/17/2018] [Accepted: 02/22/2018] [Indexed: 11/23/2022]
Abstract
Chuanxiong Rhizome (called Chuanxiong, CX in Chinese), the dried rhizome of Ligusticum chuanxiong Hort, is an extremely common traditional edible-medicinal herb. As a widely used ethnomedicine in Asia including China, Japan and Korea, CX possesses ideal therapeutic effect on cardiovascular and cerebrovascular diseases, and is also used as a major ingredient in soups for regular consumption to benefit health. Based on the traditional perception, amounts of investigations on different aspects have been done for CX in the past decades. However, no literature systematic review about these achievements have been compiled. Herein, the aim of this review is to present the up-to-date information on the ethnobotany, ethnopharmacological uses, phytochemicals, pharmacological activities, toxicology of this plant to identify their therapeutic potential and directs future research opportunities. So far, about 174 compounds has been isolated and identified from CX, in which phthalides and alkaloids would be the main bioactive ingredients for its pharmacological properties, such as anti-cerebral ischemia, anti-myocardial ischemia, blood vessel protection, anti-thrombotic, anti-hypertensive, anti-atherosclerosis, anti-spasmodic, anti-inflammatory, anti-cancer, anti-oxidant, and anti-asthma effects. Even so, due to the incomplete standardized planting, unstable herbal quality, and outdated preparation techniques, the industrial progress of CX is still less developed.
Collapse
|
9
|
Zhou M, Hong Y, Lin X, Shen L, Feng Y. Recent pharmaceutical evidence on the compatibility rationality of traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:363-375. [PMID: 28606807 DOI: 10.1016/j.jep.2017.06.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese herbs have been used in China for thousands of years and are also becoming popular in Western medicine. Formulae of traditional Chinese medicine (TCM), which contain two or more herbs, can often obtain better curative efficacies and fewer side effects than single herbs. Though there are many reports on pharmaceutics, pharmacokinetics, and pharmacodynamics of TCM, there remains a serious lack of summarization and systemic analyses of these reported data to help uncover the compatibility rationale of TCM. This review therefore aims to provide such an overview mainly based on the reports published in the last decade. It could be served as an informative reference for researchers interested in compound prescriptions and holistic therapies. MATERIALS AND METHODS Relevant information was collected from various resources, including books on Chinese herbs, China Knowledge Resource Integrated (CNKI), and international databases, such as Web of Science, Scopus, and PubMed. RESULTS Thirty-six relevant TCM formulae were collected to illustrate the compatibility rationality of TCM from the perspective of pharmaceutics, pharmacokinetics, and/or pharmacodynamics. CONCLUSIONS Compatibility is a key characteristic of multi-herb prescriptions. It often results in the change of the therapeutic material basis and, thus, produces the effect of reducing toxicity and/or increasing curative efficacy.
Collapse
Affiliation(s)
- Miaomiao Zhou
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yanlong Hong
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Xiao Lin
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| |
Collapse
|
10
|
Zhu S, Guo S, Duan JA, Qian D, Yan H, Sha X, Zhu Z. UHPLC-TQ-MS Coupled with Multivariate Statistical Analysis to Characterize Nucleosides, Nucleobases and Amino Acids in Angelicae Sinensis Radix Obtained by Different Drying Methods. Molecules 2017; 22:molecules22060918. [PMID: 28587175 PMCID: PMC6152706 DOI: 10.3390/molecules22060918] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/21/2017] [Accepted: 05/30/2017] [Indexed: 11/26/2022] Open
Abstract
To explore the nutrients in roots of Angelica sinensis (Angelicae Sinensis Radix, ASR), a medicinal and edible plant, and evaluate its nutritional value, a rapid and reliable UHPLC-TQ-MS method was established and used to determine the potential nutritional compounds, including nucleosides, nucleobases and amino acids, in 50 batches of ASR samples obtained using two drying methods. The results showed that ASR is a healthy food rich in nucleosides, nucleobases and amino acids, especially arginine. The total average content of nucleosides and nucleobases in all ASR samples was 3.94 mg/g, while that of amino acids reached as high as 61.79 mg/g. Principle component analysis showed that chemical profile differences exist between the two groups of ASR samples prepared using different drying methods, and the contents of nutritional compounds in samples dried with the tempering-intermittent drying processing method (TIDM) were generally higher than those dried using the traditional solar processing method. The above results suggest that ASR should be considered an ideal healthy food and TIDM could be a suitable drying method for ASR when taking nucleosides, nucleobases and amino acids as the major consideration for their known human health benefits.
Collapse
Affiliation(s)
- Shaoqing Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xiuxiu Sha
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenhua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
11
|
Yue SJ, Xin LT, Fan YC, Li SJ, Tang YP, Duan JA, Guan HS, Wang CY. Herb pair Danggui-Honghua: mechanisms underlying blood stasis syndrome by system pharmacology approach. Sci Rep 2017; 7:40318. [PMID: 28074863 PMCID: PMC5225497 DOI: 10.1038/srep40318] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022] Open
Abstract
Herb pair Danggui-Honghua has been frequently used for treatment of blood stasis syndrome (BSS) in China, one of the most common clinical pathological syndromes in traditional Chinese medicine (TCM). However, its therapeutic mechanism has not been clearly elucidated. In the present study, a feasible system pharmacology model based on chemical, pharmacokinetic and pharmacological data was developed via network construction approach to clarify the mechanisms of this herb pair. Thirty-one active ingredients of Danggui-Honghua possessing favorable pharmacokinetic profiles and biological activities were selected, interacting with 42 BSS-related targets to provide potential synergistic therapeutic actions. Systematic analysis of the constructed networks revealed that these targets such as HMOX1, NOS2, NOS3, HIF1A and PTGS2 were mainly involved in TNF signaling pathway, HIF-1 signaling pathway, estrogen signaling pathway and neurotrophin signaling pathway. The contribution index of every active ingredient also indicated six compounds, including hydroxysafflor yellow A, safflor yellow A, safflor yellow B, Z-ligustilide, ferulic acid, and Z-butylidenephthalide, as the principal components of this herb pair. These results successfully explained the polypharmcological mechanisms underlying the efficiency of Danggui-Honghua for BSS treatment, and also probed into the potential novel therapeutic strategies for BSS in TCM.
Collapse
Affiliation(s)
- Shi-Jun Yue
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, P. R. China
| | - Lan-Ting Xin
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, P. R. China
| | - Ya-Chu Fan
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, P. R. China
| | - Shu-Jiao Li
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yu-Ping Tang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jin-Ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Hua-Shi Guan
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, P. R. China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, P. R. China
| |
Collapse
|
12
|
Phthalides: Distribution in Nature, Chemical Reactivity, Synthesis, and Biological Activity. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 104 2017; 104:127-246. [DOI: 10.1007/978-3-319-45618-8_2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Wei WL, Zeng R, Gu CM, Qu Y, Huang LF. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:116-141. [PMID: 27211015 DOI: 10.1016/j.jep.2016.05.023] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica sinensis (Oliv.) Diels, known as Dang Gui (in Chinese), is a traditional medicinal and edible plant that has long been used for tonifying, replenishing, and invigorating blood as well as relieving pain, lubricating the intestines, and treating female irregular menstruation and amenorrhea. A. sinensis has also been used as a health product and become increasingly popular in China, Japan, and Korea. AIM OF THE REVIEW This paper aims to provide a systemic review of traditional uses of A. sinensis and its recent advances in the fields of phytochemistry, analytical methods and toxicology. In addition, possible trends, therapeutic potentials, and perspectives for future research of this plant are also briefly discussed. MATERIALS AND METHODS An extensive review of the literature was conducted, and electronic databases including China National Knowledge Infrastructure, PubMed, Google Scholar, Science Direct, and Reaxys were used to assemble the data. Ethnopharmacological literature and digitalised sources of academic libraries were also systematically searched. In addition, information was obtained from local books and The Plant List (TPL, www.theplantlist.org). RESULT This study reviews the progress in chemical analysis of A. sinensis and its preparations. Previously and newly established methods, including spectroscopy, thin-layer chromatography (TLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), ultra-performance liquid chromatography(UPLC), and nuclear magnetic resonance analysis (NMR), are summarized. Moreover, identified bioactive components such as polysaccharides, ligustilide and ferulic acid were reviewed, along with analytical methods for quantitative and qualitative determination of target analytes, and fingerprinting authentication, quality evaluation of A. sinensis, and toxicology and pharmacodynamic studies. Scientific reports on crude extracts and pure compounds and formulations revealed a wide range of pharmacological activities, including anti-inflammatory activity, antifibrotic action, antispasmodic activity, antioxidant activities, and neuroprotective action, as well as cardio- and cerebrovascular effects. CONCLUSIONS Within the published scientific literature are numerous reports regarding analytical methods that use various chromatographic and spectrophotometric technologies to monitor various types of components with different physicochemical properties simultaneously. This review discusses the reasonable selection of marker compounds based on high concentrations, analytical methods, and commercial availabilities with the goal of developing quick, accurate, and applicable analytical approaches for quality evaluation and establishing harmonised criteria for the analysis of A. sinensis and its finished products. Compounds isolated from A. sinensis are abundant sources of chemical diversity, from which we can discover active molecules. Thus, more studies on the pharmacological mechanisms of the predominant active compounds of A. sinensis are needed. In addition, given that A. sinensis is one of the most popular traditional herbal medicines, its main therapeutic aspects, toxicity, and adverse effects warrant further investigation in the future.
Collapse
Affiliation(s)
- Wen-Long Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Rui Zeng
- College of Pharmacy, Southwest University for Nationalities, Chengdu 610041, China
| | - Cai-Mei Gu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Yan Qu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Lin-Fang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
14
|
Jin Y, Qu C, Tang Y, Pang H, Liu L, Zhu Z, Shang E, Huang S, Sun D, Duan JA. Herb pairs containing Angelicae Sinensis Radix (Danggui): A review of bio-active constituents and compatibility effects. JOURNAL OF ETHNOPHARMACOLOGY 2016; 181:158-71. [PMID: 26807913 DOI: 10.1016/j.jep.2016.01.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 01/17/2016] [Accepted: 01/21/2016] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herb compatibility is one of the most important characteristics of traditional Chinese medicine (TCM). Rather than being used singly, Chinese herbs are often used in formulae to obtain synergistic effects or to diminish possible adverse reactions. Herb pair, the most fundamental and simplest form of multi-herb formulae, is a centralized representative of herb compatibility. Danggui (Angelicae Sinensis Radix), a widely used Chinese medicine, is usually combined with another herb to treat women's diseases in the clinic. A series of herb pairs containing Danggui have gradually become a focus of modern research, and they exhibit encouraging prospects for development. MATERIALS AND METHODS A systematic search for studies related to herb pairs containing Danggui was performed via a library search (books, theses, reports, newspapers, magazines, and conference proceedings) and an electronic search (Web of Science, PubMed, and Google Scholar). These sources were scrutinized for information on Danggui herb pairs. RESULTS Based on a previous statistical analysis, a database containing 16,529 formulae of Danggui from the "Dictionary of Traditional Chinese Medicine Formulae" was reviewed. The results showed a high frequency of compatibility between Danggui and other 22 herbs. The most common ratio among these chosen herb pairs was 1:1, and a majority of the pairs were applied for the treatment of diseases in internal medicine. The present paper reviews ethnopharmacology and advances in variations of the bio-active components and compatibility effects of the herb pairs containing Danggui, especially Danggui-Huangqi, Danggui-Chuanxiong, and Danggui-Shaoyao, which are used at high frequency. It was also observed that there were fewer studies of Danggui-Fuzi, Danggui-Huanglian, Danggui-Gancao, Danggui-Fangfeng and Danggui-Ganjiang, although they have been recorded in classical books as commonly used herb pairs. Moreover, some herb pairs such as Danggui-Niuxi and Danggui-Chaihu have been used at high frequency according to the statistical analysis, however, they were not recognized as herb pairs in many relevant books. CONCLUSIONS Recently, several TCM researchers have become interested in investigating the bio-active constituents and compatibility effects of herb pairs. Thus, some methods for in-depth study of herb pairs are essential to be established. The in vitro or in vivo bio-active constituents of herb pairs may differ from those of the single herbs. Additionally, comparative methods should be applied to study not only the bio-active constituents but also the effects of herb pairs. Study of component compatibility may be considered when the bio-active constituents and effects of an herb pair have been definitively demonstrated. Overall, the goal of our basic study of herb pairs should be their clinical application and the development of new drugs.
Collapse
Affiliation(s)
- Yi Jin
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Cheng Qu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Yuping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| | - Hanqing Pang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Liling Liu
- Jiangsu Revolence Pharmaceutical Co., Ltd., Huaian 223200, Jiangsu Province, China
| | - Zhenhua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Shengliang Huang
- Jiangsu Revolence Pharmaceutical Co., Ltd., Huaian 223200, Jiangsu Province, China
| | - Dazheng Sun
- Jiangsu Revolence Pharmaceutical Co., Ltd., Huaian 223200, Jiangsu Province, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
15
|
Synthesis of phthalides from bis-propargyl ethers: use of Garratt–Braverman cyclization to construct the phthalans and IBX as a new reagent for subsequent oxidation. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.09.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Du LY, Qian DW, Shang EX, Liu P, Jiang S, Guo JM, Su SL, Duan JA, Xu J, Zhao M. UPLC-Q-TOF/MS-based screening and identification of the main flavonoids and their metabolites in rat bile, urine and feces after oral administration of Scutellaria baicalensis extract. JOURNAL OF ETHNOPHARMACOLOGY 2015; 169:156-162. [PMID: 25926286 DOI: 10.1016/j.jep.2015.04.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 03/17/2015] [Accepted: 04/18/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicines (TCMs) are increasingly used in combination with Western medicine. Scutellaria baicalensis Georgi (Lamiaceae) is a widely used TCM in treating various diseases. However, the in vivo metabolism of its main bioactive flavonoids, baicalin, baicalein, wogonoside and wogonin, needs further study. MATERIALS AND METHODS A systematic method based on ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) technique combined with Metabolynx(TM) software was developed to speculate the metabolites and excretion profiles of the main flavonoids in S. baicalensis extract in rats bile, urine and feces samples after oral administration of the extract. RESULTS Four parent components and a total of 15 metabolites were tentatively detected in vivo. All metabolites were detected including sulfate and glucuronide conjugates, hydroxylated, methylated, acetylated and deoxygenated products. Twelve metabolites were from the rat urine, five from the feces and two from the bile. Among them, several products were reported firstly. CONCLUSION The research provided useful information for further study of the pharmacology and mechanism of action of S. baicalensis extract in vivo and a proposed method which could develop an integrated template approach to analyze screening and identification of biological samples after oral administration of TCMs.
Collapse
Affiliation(s)
- Le-yue Du
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Da-wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Er-xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jian-ming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shu-lan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jin-ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jun Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Min Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| |
Collapse
|
17
|
Synthesis, recognition characteristics and properties of l-3-n-butylphthalide molecularly imprinted polymers as sorbent for solid-phase extraction through precipitation polymerization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 53:166-74. [PMID: 26042704 DOI: 10.1016/j.msec.2015.04.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/03/2015] [Accepted: 04/21/2015] [Indexed: 11/22/2022]
Abstract
L-3-n-butylphthalide molecularly imprinted polymers (MIPs) were synthesized using l-3-n-butylphthalide as template molecule, acrylamide as functional monomer, ethylene glycol dimethacrylate as cross-linking agent, and acetone as the porogenic solvent through precipitation polymerization. The non-imprinted polymers (NIPs) were prepared with the same procedure, but with the absence of template molecule. The optimum preparation conditions of the MIPs such as the functional monomer, the porogenic solvent, the molar ratio of the template to the functional monomer and the molar ratio of the template to the cross-linker were investigated in detail. Prior to the polymerization, the molecular simulation with the computer-aided design was used to help choose a suitable polymerization porogen for the molecularly imprinted pre-assembled system and study the interactions between l-NBP and the functional monomers. The synthesized polymers were characterized with FTIR and SEM to observe their structures as well as the morphologies, and their adsorption properties were respectively evaluated by static and dynamic adsorption as well as selectivity experiments. Scatchard analyses revealed that there were high and low affinity sites formed in the MIPs, which elucidated good affinity to l-NBP in the ethanol system. The adsorption capacity of the MIPs for l-NBP was 3.561 mg g(-1), with an imprinting factor (α) of 2.321 when compared with that of the NIPs. Scatchard analysis illustrated that the binding sites with affinity for l-3-n-butylphthalide molecules were formed in the prepared MIPs.
Collapse
|
18
|
Champakaew D, Junkum A, Chaithong U, Jitpakdi A, Riyong D, Sanghong R, Intirach J, Muangmoon R, Chansang A, Tuetun B, Pitasawat B. Angelica sinensis (Umbelliferae) with proven repellent properties against Aedes aegypti, the primary dengue fever vector in Thailand. Parasitol Res 2015; 114:2187-98. [PMID: 25773182 DOI: 10.1007/s00436-015-4409-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/02/2015] [Indexed: 11/24/2022]
Abstract
Botanical resources with great diversity in medicinal and aromatic plants are a rich and reliable source for finding insect repellents of plant origin, which are widely popular among today's consumers. Although some herbal-based repellents have been proven comparable to or even better than synthetics, commercially available natural repellents generally tend to be expensive, with short-lived effectiveness. This critical flaw leads to ongoing research for new and effective repellents, which provide longer protection against vector and nuisance-biting insects, while remaining safe, user friendly, and reasonably priced. This study aimed to evaluate the repellent activity of plant-derived products against the primary dengue vector, Aedes aegypti, by following the human bait technique of World Health Organization guidelines. Preliminary laboratory screening tests for repellency of 33 plant species clearly demonstrated Angelica sinensis as the most effective repellent from each kind of extracted product, with its essential oil and ethanolic extract having median complete protection times of 7.0 h (6.0-7.5) and 2.5 h (2.0-2.5), respectively. Due to its low yield (0.02 %), pungent smell, and little cause of irritation, A. sinensis essential oil did not qualify as a candidate for further repellent assessment. However, subsequent extractions of A. sinensis with different organic solvents of increasing polarity provided four extractants with varying degrees of repellency against A. aegypti. The hexane extract of A. sinensis provided excellent repellency, with a median complete protection time of 7.5 h (6.5-8.5), which was longer than that of ethanol (2.5, 2.0-2.5 h), acetone (1.75, 0.5-2.5 h), and methanol extracts (0.5, 0-1.0 h). By being the most effective product, A. sinensis hexane extract gave significant protection comparable to that of its essential oil and the standard synthetic repellent, N,N-diethyl-3-methylbenzamide (DEET: 6.25, 5.0-6.5 h). Qualitative gas chromatography/mass spectrometry analysis demonstrated the presence of phthalides and phthalates, including 3-N-butylphthalide, butylidenephthalide, ligustilide, and di-iso-octyl phthalate, as the principal constituents in A. sinensis products. The success of A. sinensis products, particularly that of hexane extract, has proved their potential as bioactive candidates in the next step for developing and producing alternative natural repellents with commercial aspirations.
Collapse
Affiliation(s)
- D Champakaew
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
He WQ, Lv WS, Zhang Y, Qu Z, Wei RR, Zhang L, Liu CH, Zhou XX, Li WR, Huang XT, Wang Q. Study on Pharmacokinetics of Three Preparations from Levistolide A by LC–MS-MS. J Chromatogr Sci 2015; 53:1265-73. [DOI: 10.1093/chromsci/bmu224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 11/13/2022]
|
20
|
Li JJ, Zhu Q, Lu YP, Zhao P, Feng ZB, Qian ZM, Zhu L. Ligustilide prevents cognitive impairment and attenuates neurotoxicity in d-galactose induced aging mice brain. Brain Res 2015; 1595:19-28. [DOI: 10.1016/j.brainres.2014.10.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 01/03/2023]
|
21
|
Geoherbalism evaluation of Radix Angelica sinensis based on electronic nose. J Pharm Biomed Anal 2014; 105:101-106. [PMID: 25543288 DOI: 10.1016/j.jpba.2014.10.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/11/2014] [Accepted: 10/31/2014] [Indexed: 11/21/2022]
Abstract
Radix Angelica sinensis (Danggui, DG), derived from the dry root of Angelicae sinensis, is popularly used for its antioxidant, hematinic and immuno-enhancement. However, DG from different origins possess different quality, and difficult to identity. In this study, we used electronic nose technique to investigate DG from different producing areas for monitoring the correlation of origin and quality. The electronic nose was employed to establish classification model of DG originated from four main producing areas of Gansu, Yunnan, Sichuan and Hubei in China. Principal component analysis (PCA) and discriminant function analysis (DFA) were performed to differentiate DG samples from four main producing areas. The content of phthalides of DG were determined to confirm the quality changes and investigate its correlation with the odor response values by Gas Chromatography-Mass Spectrometer (GC-MS). The results of PCA and DFA analysis showed that the electronic nose could accurately distinguish DG from four main producing areas. The method of electronic nose for identification could be verified by GC-MS technology, and the main ingredient content was consistent with its odor of DG. In conclusion, electronic nose could effectively identify different origins of DG, and could be applied for rapid identification and quality control of genuine Angelica herbs.
Collapse
|
22
|
Li W, Tang Y, Qian Y, Shang E, Wang L, Zhang L, Su S, Duan JA. Comparative analysis of main aromatic acids and phthalides in Angelicae Sinensis Radix, Chuanxiong Rhizoma, and Fo-Shou-San by a validated UHPLC–TQ-MS/MS. J Pharm Biomed Anal 2014; 99:45-50. [DOI: 10.1016/j.jpba.2014.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/03/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
|
23
|
Abstract
The roots of Angelica sinensis (RAS), are a Chinese herbal medicine traditionally used in prescriptions for replenishing blood, treating abnormal menstruation, and other women's diseases. It has also been widely marketed as health food for women's care in Asia, and as a dietary supplement in Europe and America. RAS is well-known for its hematopoietic, antioxidant, and immunoregulatory activities. RAS also possesses anti-cancer, memory, radioprotective, and neuroprotective effects. Phytochemical investigations on this plant led to organic acids, phthalides, polysaccharides, and other metabolites. Based on recent animal studies and clinical trials, RAS has been used in the treatment of gynecologic diseases, cardio-cerebrovascular disease, nervous system diseases, and nephrotic syndrome. In this review, the recent phytochemical and pharmacological studies, drug-drug interactions, clinical applications, and toxicity of RAS are summarized.
Collapse
|
24
|
Song XY, Li YD, Shi YP, Jin L, Chen J. Quality control of traditional Chinese medicines: a review. Chin J Nat Med 2014; 11:596-607. [PMID: 24345500 DOI: 10.1016/s1875-5364(13)60069-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Indexed: 11/17/2022]
Abstract
Traditional Chinese medicines (TCMs) are in great demand all over the world, especially in the developing world, for primary health care due to their superior merits such as low cost, minimal side effects, better cultural acceptability, and compatibility with humans. However, Chinese medicines consist of several herbs which may contain tens, hundreds, or even thousands of constituents. How these constituents interact with each other, and what the special active ones are, may be the biggest bottleneck for the modernization and globalization of TCMs. Valid methods to evaluate the quality of TCMs are therefore essential and should be promoted and be developed further through advanced separation and chromatography techniques. This paper reviews the strategies used to control the quality of TCMs in a progressive perspective, from selecting single or several ingredients as the evaluation marker, to using different kinds of chromatography fingerprint methods. In summary, the analysis and quality control of TCMs are developing in a more effective and comprehensive manner to better address the inherent holistic nature of TCMs.
Collapse
Affiliation(s)
- Xin-Yue Song
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ying-Dong Li
- Gansu College of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Yan-Ping Shi
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ling Jin
- Gansu College of Traditional Chinese Medicine, Lanzhou 730000, China.
| | - Juan Chen
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
25
|
Hwang YH, Cho WK, Jang D, Ha JH, Ma JY. High-performance liquid chromatography determination and pharmacokinetics of coumarin compounds after oral administration of Samul-Tang to rats. Pharmacogn Mag 2014; 10:34-9. [PMID: 24696544 PMCID: PMC3969656 DOI: 10.4103/0973-1296.126656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/01/2013] [Accepted: 02/07/2014] [Indexed: 11/16/2022] Open
Abstract
Background: Samul-tang has been traditionally used for the treatment of cardiovascular, gynecologic, cutaneous, and chronic inflammation disorders. Although coumarin compounds do have various pharmacological activities and the same may be present in Samul-tang, however there is little information about it. Objective: A simple and sensitive high-performance liquid chromatography (HPLC) method has been developed for the determination of nodakenin, nodakenetin, decursin, decursinol, and decursinol angelate in rat plasma. To obtain a better understanding for pharmacological properties of Samul-tang, pharmacokinetic study of coumarin compounds was performed after oral administration of Samul-tang in rats. Materials and Methods: Chromatographic separation of the analytes was successfully achieved on a Phenomenex Luna C18 column (4.6 mm×250 mm, 5 μm) using a mobile phase composed of acetonitrile water with a gradient elution at a flow rate of 1 mL/min. Noncompartmental analysis was performed. Results: Calibration curves for all analytes had good linearity (r2 <0.999) in a wide linear range. The lower limit of quantification (LLOQ) ranged from 0.05 to 0.1 μg/mL. The variation of intra- and interday assay was less than 15%. Nodakenin, nodakenetin, and decursinol were determined in rat plasma after oral administration of Samul-tang. Conclusion: This developed and validated HPLC method was successfully applied to the pharmacokinetic study of three coumarin compounds in rats, given as a single oral administration of Samul-tang. These pharmacokinetic data of the nodakenin, nodakenetin, and decursinol could offer a new point of view to evaluate the pharmacological effects of Samul-tang.
Collapse
Affiliation(s)
- Youn-Hwan Hwang
- Korean Medicine-Based Herbal Drug Development Group, Korea Institute of Oriental Medicine, South Korea
| | - Won-Kyung Cho
- Korean Medicine-Based Herbal Drug Development Group, Korea Institute of Oriental Medicine, South Korea
| | - Doorye Jang
- Korean Medicine-Based Herbal Drug Development Group, Korea Institute of Oriental Medicine, South Korea
| | - Jeong-Ho Ha
- Korean Medicine-Based Herbal Drug Development Group, Korea Institute of Oriental Medicine, South Korea
| | - Jin Yeul Ma
- Korean Medicine-Based Herbal Drug Development Group, Korea Institute of Oriental Medicine, South Korea
| |
Collapse
|
26
|
Hook ILI. Danggui to Angelica sinensis root: are potential benefits to European women lost in translation? A review. JOURNAL OF ETHNOPHARMACOLOGY 2014; 152:1-13. [PMID: 24365638 DOI: 10.1016/j.jep.2013.12.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/25/2013] [Accepted: 12/15/2013] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui (Chinese Angelica root; Dong quai; Angelica sinensis (Oliv.) Diels.) is a traditional Chinese herbal remedy with a long history of use in China, Korea and Japan. Even today it is still one of the herbs most commonly used by Traditional Chinese Medicine (TCM) practitioners in China, as well as Europe. It is mainly used for the treatment of women's reproductive problems, such as dysmenorrhea, amenorrhoea, menopause, among others. Using Angelica sinensis (Oliv.) Diels. root as the example, this Review examines the ease with which the use of a Traditional Chinese Herbal Remedy can be transposed from one culture to another. By examining the more recent literature, a number of aspects are considered by the author to be potentially lost in translation: (i) identity and quality (phytochemistry); (ii) tradition of use and processing (smoke-drying, stir-frying, with and without wine); (iii) method of use and traditional types of Chinese herbal medicines; (iv) ethnic differences (Caucasian vs. Asian); (v) efficacy, safety and potential for western drug-herb interactions. MATERIALS AND METHODS This review is based on evaluation of the literature available in scientific journals, textbooks, electronic sources such as ScienceDirect, PubMed, Scopus, etc., as well as other web-sites. RESULTS A vast amount of information concerning the use of Angelica sinensis exists in the public domain. Many aspects associated with the use of the root are deemed problematical, such as identity, processing, amount and types of constituents, tradition of use in combination with other Chinese herbs, ethnicity of users, etc. Numerous constituents have been isolated with phthalides, ferulic acid and polysaccharides showing biological activities. CONCLUSION In spite of the potential activities associated with the traditional use of danggui, and the many trials using the Chinese system of 'Zheng differentiation', well-designed western-style clinical trials carried out using the authenticated, chemically standardized crude drug material to confirm clinical efficacy are in short supply. However increasing research into Angelica sinensis extracts and constituents shows that many of the traditional uses are not without scientific basis.
Collapse
Affiliation(s)
- Ingrid L I Hook
- School of Pharmacy & Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
27
|
Optimization of high-pressure ultrasonic-assisted simultaneous extraction of six major constituents from Ligusticum chuanxiong rhizome using response surface methodology. Molecules 2014; 19:1887-911. [PMID: 24518807 PMCID: PMC6271119 DOI: 10.3390/molecules19021887] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/24/2014] [Accepted: 02/03/2014] [Indexed: 11/17/2022] Open
Abstract
High-pressure ultrasound-assisted extraction technology was applied to extract ferulic acid, senkyunolide I, senkyunolide H, senkyunolide A, ligustilide and levistolide A from Ligusticum chuanxiong rhizomes. Seven independent variables, including solvent type, pressure, particle size, liquid-to-solid ratio, extraction temperature, ultrasound power, and extraction time were examined. Response Surface Methodology (RSM) using a Central Composite Design (CCD) was employed to optimize the experimental conditions (extraction temperature, ultrasonic power, and extraction time) on the basis of the results of single factor tests for the extraction of these six major components in L. chuanxiong rhizomes. The experimental data were fitted to a second-order polynomial equation using multiple regression analysis and were also examined using appropriate statistical methods. The best extraction conditions were as follows: extraction solvent: 40% ethanol; pressure: 10 MPa; particle size: 80 mesh; liquid-to-solid ratio: 100:1; extraction temperature: 70 °C; ultrasonic power, 180 W; and extraction time, 74 min.
Collapse
|
28
|
Shen J, Mo X, Tang Y, Zhang L, Pang H, Qian Y, Chen Y, Tao W, Guo S, Shang E, Zhu S, Ding Y, Guo J, Liu P, Su S, Qian D, Duan JA. Analysis of herb–herb interaction when decocting together by using ultra-high-performance liquid chromatography–tandem mass spectrometry and fuzzy chemical identification strategy with poly-proportion design. J Chromatogr A 2013; 1297:168-78. [DOI: 10.1016/j.chroma.2013.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/12/2013] [Accepted: 05/01/2013] [Indexed: 11/26/2022]
|
29
|
Comparative analysis of the main bioactive components of San-ao decoction and its series of formulations. Molecules 2012; 17:12925-37. [PMID: 23117432 PMCID: PMC6268141 DOI: 10.3390/molecules171112925] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 10/27/2012] [Accepted: 10/29/2012] [Indexed: 11/30/2022] Open
Abstract
A high performance liquid chromatographic (HPLC) method with diode array detection (DAD) was established for simultaneous determination of seven main bioactive components in San-ao decoction and its series of formulae (San-ao decoction, Wu-ao decoction, Qi-ao decoction and Jia-wei San-ao decoction). Seven compounds were analyzed simultaneously with a XTerra C18 column (4.6 mm × 250 mm, 5 µm) using a linear gradient elution of a mobile phase containing acetonitrile (A) and a buffer solution (0.02 mol/L potassium dihydrogen phosphate and adjusted to pH 3 using phosphoric acid) (B); the flow rate was 1.0 mL/min. The sample was detected with DAD at 210, 254 and 360 nm and the column was maintained at 30 °C. All the compounds showed good linearity (r2 > 0.9984) in the tested concentration range. The precisions were evaluated by intra-day and inter-day tests, and relative standard deviation (R.S.D.) values within the range of 0.83%–2.53% and 0.64%–2.77% were reported, respectively. The recoveries of the quantified compounds were observed to cover a range from 95.34% and 104.82% with R.S.D. values less than 2.72%. The validated method was successfully applied for the simultaneous determination of seven main bioactive components including ephedrine (1), amygdalin (2), liquiritin (3), benzoic acid (4), isoliquiritin (5), formononetin (6) and glycyrrhizic acid (7) in San-ao decoction and its series of formulae. The results also showed a wide variation in the content of the identified active compounds in these samples, which could also be helpful to illustrate the drug interactions after some herbs combined in different formulations.
Collapse
|
30
|
Li W, Wang H, Tang Y, Guo J, Qian D, Ding A, Duan JA. THE QUANTITATIVE COMPARATIVE ANALYSIS FOR MAIN BIO-ACTIVE COMPONENTS IN ANGELICA SINENSIS, LIGUSTICUM CHUANXIONG, AND THE HERB PAIR GUI-XIONG. J LIQ CHROMATOGR R T 2012. [DOI: 10.1080/10826076.2011.633678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Weixia Li
- a Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| | - Huan Wang
- a Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| | - Yuping Tang
- a Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| | - Jianming Guo
- a Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| | - Dawei Qian
- a Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| | - Anwei Ding
- a Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| | - Jin-ao Duan
- a Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| |
Collapse
|
31
|
Li W, Tang Y, Chen Y, Duan JA. Advances in the chemical analysis and biological activities of chuanxiong. Molecules 2012; 17:10614-51. [PMID: 22955453 PMCID: PMC6268834 DOI: 10.3390/molecules170910614] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/19/2012] [Accepted: 08/20/2012] [Indexed: 12/26/2022] Open
Abstract
Chuanxiong Rhizoma (Chuan-Xiong, CX), the dried rhizome of Ligusticum chuanxiong Hort. (Umbelliferae), is one of the most popular plant medicines in the World. Modern research indicates that organic acids, phthalides, alkaloids, polysaccharides, ceramides and cerebrosides are main components responsible for the bioactivities and properties of CX. Because of its complex constituents, multidisciplinary techniques are needed to validate the analytical methods that support CX's use worldwide. In the past two decades, rapid development of technology has advanced many aspects of CX research. The aim of this review is to illustrate the recent advances in the chemical analysis and biological activities of CX, and to highlight new applications and challenges. Emphasis is placed on recent trends and emerging techniques.
Collapse
Affiliation(s)
| | - Yuping Tang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210046, Jiangsu, China
| | | | | |
Collapse
|
32
|
Li W, Guo J, Tang Y, Wang H, Huang M, Qian D, Duan JA. Pharmacokinetic comparison of ferulic acid in normal and blood deficiency rats after oral administration of Angelica sinensis, Ligusticum chuanxiong and their combination. Int J Mol Sci 2012; 13:3583-97. [PMID: 22489169 PMCID: PMC3317729 DOI: 10.3390/ijms13033583] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 02/28/2012] [Accepted: 03/02/2012] [Indexed: 11/16/2022] Open
Abstract
Radix Angelica Sinensis (RAS) and Rhizome Ligusticum (RLC) combination is a popular herb pair commonly used in clinics for treatment of blood deficiency syndrome in China. The aim of this study is to compare the pharmacokinetic properties of ferulic acid (FA), a main bioactive constituent in both RAS and RLC, between normal and blood deficiency syndrome animals, and to investigate the influence of compatibility of RAS and RLC on the pharmacokinetic of FA. The blood deficiency rats were induced by injecting 2% Acetyl phenylhydrazine (APH) on the first day, every other day, to a total of five times, at the dosage of 100, 50, 50, 30, 30 mg/kg body mass, respectively. Quantification of FA in rat plasma was achieved by using a simple and rapid HPLC method. Plasma samples were collected at different time points to construct pharmacokinetic profiles by plotting drug concentration versus time, and estimate pharmacokinetic parameters. Between normal and blood deficiency model groups, both AUC((0-) (t) ()) and C(max) of FA in blood deficiency rats after RAS-RLC extract administration increased significantly (P < 0.05), while clearance (CL) decreased significantly. Among three blood deficiency model groups, t(1/2α), V(d), AUC((0-) (t) ()) and AUC((0-∞)) all increased significantly in the RAS-RLC extract group compared with the RAS group. The results indicated that FA was absorbed better and eliminated slower in blood deficiency rats; RLC could significantly prolong the half-life of distribution, increase the volume of distribution and the absorption amount of FA of RAS in blood deficiency rats, which may be due to the synergic action when RAS and RLC were used together to treat blood deficiency syndrome.
Collapse
Affiliation(s)
- Weixia Li
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210046, China; E-Mails: (W.L.); (J.G.); (H.W.); (M.H.); (D.Q.)
| | - Jianming Guo
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210046, China; E-Mails: (W.L.); (J.G.); (H.W.); (M.H.); (D.Q.)
| | - Yuping Tang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210046, China; E-Mails: (W.L.); (J.G.); (H.W.); (M.H.); (D.Q.)
| | - Huan Wang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210046, China; E-Mails: (W.L.); (J.G.); (H.W.); (M.H.); (D.Q.)
| | - Meiyan Huang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210046, China; E-Mails: (W.L.); (J.G.); (H.W.); (M.H.); (D.Q.)
| | - Dawei Qian
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210046, China; E-Mails: (W.L.); (J.G.); (H.W.); (M.H.); (D.Q.)
| | - Jin-Ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210046, China; E-Mails: (W.L.); (J.G.); (H.W.); (M.H.); (D.Q.)
| |
Collapse
|
33
|
Yang B, Dong W, Zhang A, Sun H, Wu F, Wang P, Wang X. Ultra-performance liquid chromatography coupled with electrospray ionization/quadrupole-time-of-flight mass spectrometry for rapid analysis of constituents of Suanzaoren decoction. J Sep Sci 2011; 34:3208-15. [DOI: 10.1002/jssc.201100632] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/13/2011] [Accepted: 08/16/2011] [Indexed: 01/21/2023]
|
34
|
Guo J, Shang EX, Duan JA, Tang Y, Qian D. Determination of ligustilide in the brains of freely moving rats using microdialysis coupled with ultra performance liquid chromatography/mass spectrometry. Fitoterapia 2011; 82:441-5. [DOI: 10.1016/j.fitote.2010.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 11/22/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
|
35
|
Xia EQ, Song Y, Ai XX, Guo YJ, Xu XR, Li HB. A new high-performance liquid chromatographic method for the determination and distribution of linalool in Michelia alba. Molecules 2010; 15:4890-7. [PMID: 20657397 PMCID: PMC6257559 DOI: 10.3390/molecules15074890] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 11/16/2022] Open
Abstract
A new high-performance liquid chromatographic method with photodiode array detection was established for the determination of linalool in the plant Michelia alba. Linalool was extracted from the plant sample with the aid of ultrasound, and was analyzed on a Waters RP C(18) column (4.6 x 150 mm, 5 microm) using an acetonitrile and water (55:45, v/v) mobile phase at a flow rate of 1.0 mL/min. The column temperature was set at 25 degrees C, and the detection wavelength was 210 nm. The linear range of the method was 5-200 microg/mL with a correlation coefficient of 0.9975. The recovery was 92-112%, and the relative standard deviation was 1.85% (n = 9). The present method has been used to study the distribution of linalool in the plant Michelia alba. The plant samples include flowers, leaves and tender twigs. Furthermore, leaves included samples in their tender, grown-up and fallen phases, and flowers included samples in their juvenile, middle and whitening phases. The concentrations of linalool in different parts of the plant were 0.21-0.65%, 1.63-4.89% and 0.43% for leaves, flowers and tender twigs, respectively. The results showed that all the plant materials contained relative high concentration of linalool, and juvenile phase flowers contained the highest concentration of linalool. Notably, the fallen leaves also contained high concentrations of linalool, which could be a potential resource of this compound. The results obtained are very helpful for the potential full utilization of this plant.
Collapse
Affiliation(s)
- En-Qin Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; E-Mails: (E.X.); (Y.S.); (X.A.); (Y.G.)
| | - Yang Song
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; E-Mails: (E.X.); (Y.S.); (X.A.); (Y.G.)
| | - Xu-Xia Ai
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; E-Mails: (E.X.); (Y.S.); (X.A.); (Y.G.)
| | - Ya-Jun Guo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; E-Mails: (E.X.); (Y.S.); (X.A.); (Y.G.)
| | - Xiang-Rong Xu
- LMB, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; E-Mail: (X.X.)
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; E-Mails: (E.X.); (Y.S.); (X.A.); (Y.G.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-20-8733-2391; Fax: +86-20-8733-0446
| |
Collapse
|