1
|
VanderGiessen M, de Jager C, Leighton J, Xie H, Theus M, Johnson E, Kehn-Hall K. Neurological manifestations of encephalitic alphaviruses, traumatic brain injuries, and organophosphorus nerve agent exposure. Front Neurosci 2024; 18:1514940. [PMID: 39734493 PMCID: PMC11671522 DOI: 10.3389/fnins.2024.1514940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Encephalitic alphaviruses (EEVs), Traumatic Brain Injuries (TBI), and organophosphorus nerve agents (NAs) are three diverse biological, physical, and chemical injuries that can lead to long-term neurological deficits in humans. EEVs include Venezuelan, eastern, and western equine encephalitis viruses. This review describes the current understanding of neurological pathology during these three conditions, provides a comparative review of case studies vs. animal models, and summarizes current therapeutics. While epidemiological data on clinical and pathological manifestations of these conditions are known in humans, much of our current mechanistic understanding relies upon animal models. Here we review the animal models findings for EEVs, TBIs, and NAs and compare these with what is known from human case studies. Additionally, research on NAs and EEVs is limited due to their classification as high-risk pathogens (BSL-3) and/or select agents; therefore, we leverage commonalities with TBI to develop a further understanding of the mechanisms of neurological damage. Furthermore, we discuss overlapping neurological damage mechanisms between TBI, NAs, and EEVs that highlight novel medical countermeasure opportunities. We describe current treatment methods for reducing neurological damage induced by individual conditions and general neuroprotective treatment options. Finally, we discuss perspectives on the future of neuroprotective drug development against long-term neurological sequelae of EEVs, TBIs, and NAs.
Collapse
Affiliation(s)
- Morgen VanderGiessen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Caroline de Jager
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Julia Leighton
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michelle Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Erik Johnson
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
2
|
Bej E, Cesare P, d'Angelo M, Volpe AR, Castelli V. Neuronal Cell Rearrangement During Aging: Antioxidant Compounds as a Potential Therapeutic Approach. Cells 2024; 13:1945. [PMID: 39682694 DOI: 10.3390/cells13231945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/02/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Aging is a natural process that leads to time-related changes and a decrease in cognitive abilities, executive functions, and attention. In neuronal aging, brain cells struggle to respond to oxidative stress. The structure, function, and survival of neurons can be mediated by different pathways that are sensitive to oxidative stress and age-related low-energy states. Mitochondrial impairment is one of the most noticeable signs of brain aging. Damaged mitochondria are thought to be one of the main causes that feed the inflammation related to aging. Also, protein turnover is involved in age-related impairments. The brain, due to its high oxygen usage, is particularly susceptible to oxidative damage. This review explores the mechanisms underlying neuronal cell rearrangement during aging, focusing on morphological changes that contribute to cognitive decline and increased susceptibility to neurodegenerative diseases. Potential therapeutic approaches are discussed, including the use of antioxidants (e.g., Vitamin C, Vitamin E, glutathione, carotenoids, quercetin, resveratrol, and curcumin) to mitigate oxidative damage, enhance mitochondrial function, and maintain protein homeostasis. This comprehensive overview aims to provide insights into the cellular and molecular processes of neuronal aging and highlight promising therapeutic avenues to counteract age-related neuronal deterioration.
Collapse
Affiliation(s)
- Erjola Bej
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
- Department of the Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University Our Lady of Good Counsel, 1001 Tirana, Albania
| | - Patrizia Cesare
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Anna Rita Volpe
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
- Department of the Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University Our Lady of Good Counsel, 1001 Tirana, Albania
| |
Collapse
|
3
|
Kola A, Vigni G, Lamponi S, Valensin D. Protective Contribution of Rosmarinic Acid in Rosemary Extract Against Copper-Induced Oxidative Stress. Antioxidants (Basel) 2024; 13:1419. [PMID: 39594560 PMCID: PMC11590892 DOI: 10.3390/antiox13111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Rosemary extract (Rosmarinus officinalis) is a natural source of bioactive compounds with significant antioxidant properties. Among these, rosmarinic acid is celebrated for its potent antioxidant, anti-inflammatory, antimicrobial, and neuroprotective properties, making it a valuable component in both traditional medicine and modern therapeutic research. Neurodegenerative diseases like Alzheimer's and Parkinson's are closely linked to oxidative damage, and research indicates that rosmarinic acid may help protect neurons by mitigating this harmful process. Rosmarinic acid is able to bind cupric ions (Cu2+) and interfere with the production of reactive oxygen species (ROS) produced by copper through Fenton-like reactions. This study aims to further evaluate the contribution of rosmarinic acid within rosemary extract by comparing its activity to that of isolated rosmarinic acid. By using a detailed approach that includes chemical characterization, antioxidant capacity assessment, and neuroprotective activity testing, we have determined whether the combined components in rosemary extract enhance or differ from the effects of rosmarinic acid alone. This comparison is crucial for understanding whether the full extract offers added benefits beyond those of isolated rosmarinic acid in combating oxidative stress and Aβ-induced toxicity.
Collapse
Affiliation(s)
| | | | | | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.K.); (G.V.); (S.L.)
| |
Collapse
|
4
|
Claro-Cala CM, Rivero-Pino F, Torrecillas-López M, Jimenez-Gonzalez V, Montserrat-de la Paz S. Immunonutrition: future perspective in neurodegenerative disorders. Nutr Neurosci 2024:1-12. [PMID: 39561029 DOI: 10.1080/1028415x.2024.2425565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The relevance of lifestyle, including diet and exercise, has been associated with improved learning and memory capacity, delayed age-related cognitive decline, and a reduced risk of neurodegeneration. Most neurodegenerative diseases are defined as complex multifactorial disorders in which genetic and environmental factors greatly contribute to their onset. Although inflammatory cells produce reactive oxygen species (ROS), oxidative stress itself might exert pro-inflammatory effects and an uncontrolled response could lead to a state of chronic inflammation. Anti-inflammatory dietary approaches unify the disciplines of nutrition, immunity, and neurology. Personalized dietary interventions will be developed based on an individual's genetic makeup, metabolic profile, and gut microbiota composition, thanks to advances in genomics, metabolomics, and microbiome research. The relevance of dietary patterns in decreasing inflammation relies on the role of specific antioxidant nutrients, which might contribute to a decrease in the levels of ROS. This review aims to summarize recent advancements in neuroscience and immunology that have revealed the crucial role that diet and the immune system play in brain function and disease progression. Nutrition influences the immune system, and in turn, the immune system impacts neurological health. This bidirectional relationship suggests that targeted nutritional interventions could modulate immune responses to delay or mitigate the progression of neurodegenerative diseases potentially. This approach focuses on the use of specific nutrients and dietary components that influence the immune system and inflammatory pathway. Key elements of immunonutrition include omega-3 fatty acids, antioxidants, vitamins and various bioactive compounds found in foods.
Collapse
Affiliation(s)
- Carmen María Claro-Cala
- Department of Pharmacology, Pediatrics, and Radiology, School of Medicine, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Fernando Rivero-Pino
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
| | - María Torrecillas-López
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Víctor Jimenez-Gonzalez
- CITIUS (Centre for Research, Technology, and Innovation), University of Seville, Seville, Spain
| | - Sergio Montserrat-de la Paz
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
5
|
Hijam AC, Tongbram YC, Nongthombam PD, Meitei HN, Koijam AS, Rajashekar Y, Haobam R. Traditionally used edible medicinal plants protect against rotenone induced toxicity in SH-SY5Y cells-a prospect for the development of herbal nutraceuticals. Neurochem Int 2024; 180:105855. [PMID: 39244037 DOI: 10.1016/j.neuint.2024.105855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Plants are good sources of pharmacologically active compounds. The present study aimed to examine the neuroprotective potentials of the methanol extracts of Salix tetrasperma Roxb. leaf (STME) and Plantago asiatica L. (PAME), two edibles medicinal plants of Manipur, India against neurotoxicity induced by rotenone in SH-SY5Y cells. Free radical quenching activities were evaluated by ABTS and DPPH assays. The cytotoxicity of rotenone and the neuronal survival were assessed by MTT assay and MAP2 expression analysis. DCF-DA, Rhodamine 123 (Rh-123), and DAPI measured the intracellular reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP), and apoptotic nuclei, respectively. Superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities were also assessed. LC-QTOF-MS analysis was performed for the identification of the compounds present in STME and PAME. The study showed that both the plant extracts (STME and PAME) showed antioxidant and neuroprotective capabilities in rotenone-induced neurotoxicity by preventing oxidative stress through the reduction of intracellular ROS levels and reversing the activities of GPx, SOD, and CAT caused by rotenone. Further, both plants prevented apoptotic cell death by normalizing the steady state of MMP and protecting nuclear DNA condensation. LC-QTOF-MS analysis shows the presence of known neuroprotective compounds like uridine and gabapentin in STME and PAME respectively. The two plants might be an important source of natural antioxidants and nutraceuticals with neuroprotective abilities. This could be investigated further to formulate herbal nutraceuticals for the treatment of neurodegenerative disease like Parkinson's disease.
Collapse
Affiliation(s)
- Aruna Chanu Hijam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India
| | | | - Pooja Devi Nongthombam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India
| | | | - Arunkumar Singh Koijam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal, 795001, Manipur, India
| | - Yallapa Rajashekar
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal, 795001, Manipur, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India.
| |
Collapse
|
6
|
Gonçalves M, Costa M, Paiva-Martins F, Silva P. Olive Oil Industry By-Products as a Novel Source of Biophenols with a Promising Role in Alzheimer Disease Prevention. Molecules 2024; 29:4841. [PMID: 39459209 PMCID: PMC11510978 DOI: 10.3390/molecules29204841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This review explores the potential health benefits and applications of phenolic secoiridoids derived from olive oil by-products in the prevention of Alzheimer's disease (AD). As reviewed herein, polyphenols, such as epigallocatechin-3-gallate, epicatechin, and resveratrol, show in vitro and in vivo antioxidant, anti-inflammatory, and neuroprotective properties, and are particularly relevant in the context of AD, a leading cause of dementia globally. The olive oil industry, particularly in the Mediterranean region, produces significant amounts of waste, including leaves, pomace, and wastewater, which pose environmental challenges but also offer an untapped source of bioactive compounds. Despite promising in vitro and in vivo studies indicating that olive-derived polyphenols, such as oleuropein and hydroxytyrosol, may mitigate AD pathology, human clinical trials remain limited. The variability in extraction methods and the complex nature of AD further complicate research. Future studies should focus on standardizing the protocols and conducting robust clinical trials to fully assess the therapeutic potential of these compounds. This approach not only supports the development of new treatments for AD but also promotes environmental sustainability by valorizing olive oil industry waste.
Collapse
Affiliation(s)
- Marta Gonçalves
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Marlene Costa
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Fátima Paiva-Martins
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| |
Collapse
|
7
|
Flieger J, Forma A, Flieger W, Flieger M, Gawlik PJ, Dzierżyński E, Maciejewski R, Teresiński G, Baj J. Carotenoid Supplementation for Alleviating the Symptoms of Alzheimer's Disease. Int J Mol Sci 2024; 25:8982. [PMID: 39201668 PMCID: PMC11354426 DOI: 10.3390/ijms25168982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by, among other things, dementia and a decline in cognitive performance. In AD, dementia has neurodegenerative features and starts with mild cognitive impairment (MCI). Research indicates that apoptosis and neuronal loss occur in AD, in which oxidative stress plays an important role. Therefore, reducing oxidative stress with antioxidants is a natural strategy to prevent and slow down the progression of AD. Carotenoids are natural pigments commonly found in fruits and vegetables. They include lipophilic carotenes, such as lycopene, α- and β-carotenes, and more polar xanthophylls, for example, lutein, zeaxanthin, canthaxanthin, and β-cryptoxanthin. Carotenoids can cross the blood-brain barrier (BBB) and scavenge free radicals, especially singlet oxygen, which helps prevent the peroxidation of lipids abundant in the brain. As a result, carotenoids have neuroprotective potential. Numerous in vivo and in vitro studies, as well as randomized controlled trials, have mostly confirmed that carotenoids can help prevent neurodegeneration and alleviate cognitive impairment in AD. While carotenoids have not been officially approved as an AD therapy, they are indicated in the diet recommended for AD, including the consumption of products rich in carotenoids. This review summarizes the latest research findings supporting the potential use of carotenoids in preventing and alleviating AD symptoms. A literature review suggests that a diet rich in carotenoids should be promoted to avoid cognitive decline in AD. One of the goals of the food industry should be to encourage the enrichment of food products with functional substances, such as carotenoids, which may reduce the risk of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Wojciech Flieger
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Michał Flieger
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Piotr J. Gawlik
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Eliasz Dzierżyński
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Ryszard Maciejewski
- Institute of Health Sciences, John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
8
|
Moussa AY, Alanzi AR, Riaz M, Fayez S. Could Mushrooms' Secondary Metabolites Ameliorate Alzheimer Disease? A Computational Flexible Docking Investigation. J Med Food 2024; 27:775-796. [PMID: 39121021 DOI: 10.1089/jmf.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024] Open
Abstract
Herein, we highlight the significance of molecular modeling approaches prior to in vitro and in vivo studies; particularly, in diseases with no recognized treatments such as neurological abnormalities. Alzheimer disease is a neurodegenerative disorder that causes irreversible cognitive decline. Toxicity and ADMET studies were conducted using the Qikprop platform in Maestro software and Discovery Studio 2.0, respectively, to select the promising skeletons from more than 45 reviewed compounds isolated from mushrooms in the last decade. Using rigid and flexible molecular docking approaches such as induced fit docking (IFD) in the binding sites of β-secretase (BACE1) and acetylcholine esterase (ACHE), promising structures were screened through high precision molecular docking compared with standard drugs donepezil and (2E)-2-imino-3-methyl-5,5-diphenylimidazolidin-4-one (OKK) using Maestro and Cresset Flare platforms. Molecular interactions, binding distances, and RMSD values were measured to reveal key interactions at the binding sites of the two neurodegenerative enzymes. Analysis of IFD results revealed consistent bindings of dictyoquinazol A and gensetin I in the pocket of 4ey7 while inonophenol A, ganomycin, and fornicin fit quite well in 4dju demonstrating binding poses very close to native ligands at ACHE and BACE1. Respective key amino acid contacts manifested the least steric problems according to their Gibbs free binding energies, Glide XP scores, RMSD values, and molecular orientation respect to the key amino acids. Molecular dynamics simulations further confirmed our findings and prospected these compounds to show significant in vitro results in their future pharmacological studies.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Riaz
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
9
|
Ghosh S, Kumar V, Mukherjee H, Saini S, Gupta S, Chauhan S, Kushwaha K, Lahiri D, Sircar D, Roy P. Assessment of the mechanistic role of an Indian traditionally used ayurvedic herb Bacopa monnieri (L.)Wettst. for ameliorating oxidative stress in neuronal cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117899. [PMID: 38341111 DOI: 10.1016/j.jep.2024.117899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/23/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This study has important ethnopharmacological implications since it systematically investigated the therapeutic potential of Bacopa monnieri(L.) Wettst. (Brahmi) in treating neurological disorders characterized by oxidative stress-a growing issue in the aging population. Bacopa monnieri, which is strongly rooted in Ayurveda, has long been recognized for its neuroprotective and cognitive advantages. The study goes beyond conventional wisdom by delving into the molecular complexities of Bacopa monnieri, particularly its active ingredient, Bacoside-A, in countering oxidative stress. The study adds to the ethnopharmacological foundation for using this herbal remedy in the context of neurodegenerative disorders by unravelling the scientific underpinnings of Bacopa monnieri's effectiveness, particularly at the molecular level, against brain damage and related conditions influenced by oxidative stress. This dual approach, which bridges traditional wisdom and modern investigation, highlights Bacopa monnieri's potential as a helpful natural remedy for oxidative stress-related neurological diseases. AIM OF THE STUDY The aim of this study is to investigate the detailed molecular mechanism of action (in vitro, in silico and in vivo) of Bacopa monnieri (L.) Wettst. methanolic extract and its active compound, Bacoside-A, against oxidative stress in neurodegenerative disorders. MATERIALS AND METHODS ROS generation activity, mitochondrial membrane potential, calcium deposition and apoptosis were studied through DCFDA, Rhodamine-123, FURA-2 AM and AO/EtBr staining respectively. In silico study to check the effect of Bacoside-A on the Nrf-2 and Keap1 axis was performed through molecular docking study and validated experimentally through immunofluorescence co-localization study. In vivo antioxidant activity of Bacopa monnieri extract was assessed by screening the oxidative stress markers and stress-inducing hormone levels as well as through histopathological analysis of tissues. RESULTS The key outcome of this study is that the methanolic extract of Bacopa monnieri (BME) and its active component, Bacoside-A, protect against oxidative stress in neurodegenerative diseases. At 100 and 20 μg/ml, BME and Bacoside-A respectively quenched ROS, preserved mitochondrial membrane potential, decreased calcium deposition, and inhibited HT-22 mouse hippocampus cell death. BME and Bacoside-A regulated the Keap1 and Nrf-2 axis and their downstream antioxidant enzyme-specific genes to modify cellular antioxidant machinery. In vivo experiments utilizing rats subjected to restrained stress indicated that pre-treatment with BME (50 mg/kg) downregulated oxidative stress markers and stress-inducing hormones, and histological staining demonstrated that BME protected the neuronal cells of the Cornu Ammonis (CA1) area in the hippocampus. CONCLUSIONS Overall, the study suggests that Bacopa monnieri(L.) Wettst. has significant potential as a natural remedy for neurodegenerative disorders, and its active compounds could be developed as new drugs for the prevention and treatment of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Souvik Ghosh
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India; Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India; Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Viney Kumar
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Haimanti Mukherjee
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Saakshi Saini
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Sumeet Gupta
- Department of Pharmacy, Maharshi Markandeshwar University (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Komal Kushwaha
- Plant Molecular Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India; Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Debabrata Sircar
- Plant Molecular Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
10
|
Affrald R J, Narayan S. A review: oligodendrocytes in neuronal axonal conduction and methods for enhancing their performance. Int J Neurosci 2024:1-22. [PMID: 38850232 DOI: 10.1080/00207454.2024.2362200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVES This review explores the vital role of oligodendrocytes in axon myelination and efficient neuronal transmission and the impact of dysfunction resulting from neurotransmitter deficiencies related disorders. Furthermore, the review also provides insight into the potential of bionanotechnology for addressing neurodegenerative diseases by targeting oligodendrocytes. METHODS A review of literature in the field was conducted using Google scholar. Systematic searches were performed to identify relevant studies and reviews addressing the role of oligodendrocytes in neural function, the influence of neurotransmitters on oligodendrocyte differentiation, and the potential of nanotechnology-based strategies for targeted therapy of oligodendrocytes. RESULTS This review indicates the mechanisms underlying oligodendrocyte differentiation and the influence of neurotransmitters on this process. The importance of action potentials and neurotransmission in neural function and the susceptibility of damaged nerve axons to ischemic or toxic damage is provided in detail. The potential of bionanotechnology for targeting neurodegenerative diseases using nanotechnology-based strategies, including polymeric, lipid-based, inorganic, organic, and biomimetic nanoparticles, suggests better management of neurodegenerative disorders. CONCLUSION While nanotechnology-based biomaterials show promise for targeted oligodendrocyte therapy in addressing neurodegenerative disorders linked to oligodendrocyte dysfunction, encapsulating neuroprotective agents within nanoparticles offers additional advantages. Nano-based delivery systems effectively protect drugs from degradation and prolong their therapeutic effects, holding promise in overcoming the blood-brain barrier by facilitating drug transport. However, a multifaceted approach is essential to enhance oligodendrocyte differentiation, promote myelin repair, and facilitate myelin dynamics with reduced toxicity. Further research is needed to elucidate the optimal therapeutic approaches and enhance patient outcomes.
Collapse
Affiliation(s)
- Jino Affrald R
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, India
| | - Shoba Narayan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, India
| |
Collapse
|
11
|
Bleichman I, Hiram-Bab S, Gabet Y, Savion N. S-Allylmercapto-N-Acetylcysteine (ASSNAC) Attenuates Osteoporosis in Ovariectomized (OVX) Mice. Antioxidants (Basel) 2024; 13:474. [PMID: 38671921 PMCID: PMC11047400 DOI: 10.3390/antiox13040474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Osteoporosis is a bone-debilitating disease, demonstrating a higher prevalence in post-menopausal women due to estrogen deprivation. One of the main mechanisms underlying menopause-related bone loss is oxidative stress. S-allylmercapto-N-acetylcysteine (ASSNAC) is a nuclear factor erythroid 2-related factor 2 (Nrf2) activator and cysteine supplier, previously shown to have anti-oxidation protective effects in cultured cells and animal models. Here, we studied the therapeutic potential of ASSNAC with and without Alendronate in ovariectomized (OVX) female mice. The experimental outcome included (i) femur and L3 lumbar vertebra morphometry via Micro-Computed Tomography (μCT); (ii) bone remodeling (formation vs. resorption); and (iii) oxidative stress markers in bone marrow (BM) cells. Four weeks after OVX, there was a significant bone loss that remained evident after 8 weeks, as demonstrated via µCT in the femur (cortical and trabecular bone compartments) and vertebra (trabecular bone). ASSNAC at a dose of 50 mg/Kg/day prevented bone loss after the four-week treatment but had no significant effect after 8 weeks, while ASSNAC at a dose of 20 mg/Kg/day significantly protected against bone loss after 8 weeks of treatment. Alendronate prevented ovariectomy-induced bone loss, and combining it with ASSNAC further augmented this effect. OVX mice demonstrated high serum levels of both C-terminal cross-linked telopeptides of type I collagen (CTX) (bone resorption) and procollagen I N-terminal propeptide (P1NP) (bone formation) after 2 weeks, and these returned to control levels after 8 weeks. Alendronate, ASSNAC and their combination decreased CTX and increased P1NP. Alendronate induced oxidative stress as reflected by decreased glutathione and increased malondialdehyde (MDA) levels, and combining it with ASSNAC partially attenuated these changes. These results portray the therapeutic potential of ASSNAC for the management of post-menopausal osteoporosis. Furthermore, ASSNAC ameliorates the Alendronate-associated oxidative stress, suggesting its potential to prevent Alendronate side effects as well as improve its bone-protective effect.
Collapse
Affiliation(s)
- Itay Bleichman
- Department of Human Molecular Genetics and Biochemistry and Goldschleger Eye Research Institute, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel-Aviv 6997801, Israel;
| | - Sahar Hiram-Bab
- Department of Anatomy and Anthropology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel-Aviv 6997801, Israel; (S.H.-B.); (Y.G.)
| | - Yankel Gabet
- Department of Anatomy and Anthropology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel-Aviv 6997801, Israel; (S.H.-B.); (Y.G.)
| | - Naphtali Savion
- Department of Human Molecular Genetics and Biochemistry and Goldschleger Eye Research Institute, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel-Aviv 6997801, Israel;
| |
Collapse
|
12
|
Atuahene D, Zuniga-Chaves I, Martello E, Stefanon B, Suen G, Balouei F, Meineri G. The Canine Gut Health: The Impact of a New Feed Supplement on Microbiota Composition. Animals (Basel) 2024; 14:1189. [PMID: 38672336 PMCID: PMC11047554 DOI: 10.3390/ani14081189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to determine the impact of a novel formulation of a supplement composed of the natural ingredients, bromelain, quercetin, and Lentinula edodes, on the gut microbiota of healthy adult dogs. Adult healthy female dogs were administered either a placebo (CTR, n = 15) or the supplement (TRT, n = 15) over 28 days. Stool samples were collected for 16S rRNA sequencing before supplement administration (T0), at completion of supplement administration (T28), and one week after the end of supplement administration (T35) to characterize changes in the gut microbial communities. QIIME was used to determine both alpha- and beta-diversity, and ANCOM-BC was used to identify differences in taxonomic abundances before and after supplementation. We found a significant decrease in overall diversity in the CTR group but no significant differences in overall diversity in the TRT group over time. Furthermore, we found differences in the abundance of several taxa in both the CTR and TRT groups, but differences in the abundance of beneficial bacteria were more pronounced in the TRT group. Specifically, we found increases in the abundance of sequences belonging to the genera Bifidobacterium, Lactobacillus, and Pediococcus at T28 in the TRT group with significant increases in Bifidobacterium and Lactobacillus persisting at T35 when compared to T0. Importantly, members of these genera are considered important for their anti-inflammatory properties, vital for fostering a balanced and robust gut microbiota in dogs. The results of our study show the potential of our supplement to selectively enhance specific beneficial bacterial taxa, offering a targeted approach to modulating the gut microbiome without causing disruptions to the overall equilibrium.
Collapse
Affiliation(s)
- David Atuahene
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, 10095 Grugliasco, Italy;
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; (I.Z.-C.); (G.S.)
| | - Ibrahim Zuniga-Chaves
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; (I.Z.-C.); (G.S.)
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elisa Martello
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Bruno Stefanon
- Department of Agrifood, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (B.S.); (F.B.)
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; (I.Z.-C.); (G.S.)
| | - Fatemeh Balouei
- Department of Agrifood, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (B.S.); (F.B.)
| | - Giorgia Meineri
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, 10095 Grugliasco, Italy;
| |
Collapse
|
13
|
Rudrapal M, Rakshit G, Singh RP, Garse S, Khan J, Chakraborty S. Dietary Polyphenols: Review on Chemistry/Sources, Bioavailability/Metabolism, Antioxidant Effects, and Their Role in Disease Management. Antioxidants (Basel) 2024; 13:429. [PMID: 38671877 PMCID: PMC11047380 DOI: 10.3390/antiox13040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Polyphenols, as secondary metabolites ubiquitous in plant sources, have emerged as pivotal bioactive compounds with far-reaching implications for human health. Plant polyphenols exhibit direct or indirect associations with biomolecules capable of modulating diverse physiological pathways. Due to their inherent abundance and structural diversity, polyphenols have garnered substantial attention from both the scientific and clinical communities. The review begins by providing an in-depth analysis of the chemical intricacies of polyphenols, shedding light on their structural diversity and the implications of such diversity on their biological activities. Subsequently, an exploration of the dietary origins of polyphenols elucidates the natural plant-based sources that contribute to their global availability. The discussion extends to the bioavailability and metabolism of polyphenols within the human body, unraveling the complex journey from ingestion to systemic effects. A central focus of the review is dedicated to unravelling the antioxidant effects of polyphenols, highlighting their role in combating oxidative stress and associated health conditions. The comprehensive analysis encompasses their impact on diverse health concerns such as hypertension, allergies, aging, and chronic diseases like heart stroke and diabetes. Insights into the global beneficial effects of polyphenols further underscore their potential as preventive and therapeutic agents. This review article critically examines the multifaceted aspects of dietary polyphenols, encompassing their chemistry, dietary origins, bioavailability/metabolism dynamics, and profound antioxidant effects. The synthesis of information presented herein aims to provide a valuable resource for researchers, clinicians, and health enthusiasts, fostering a deeper understanding of the intricate relationship between polyphenols and human health.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur 522213, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Ravi Pratap Singh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Samiksha Garse
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai 400614, India;
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia;
| | - Soumi Chakraborty
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| |
Collapse
|
14
|
Eslami Farsani M, Razavi S, Rasoolijazi H, Esfandiari E, Seyedebrahimi R, Ababzadeh S. Neuroprotective effects of rosemary extract on white matter of prefrontal cortex in old rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:518-523. [PMID: 38419891 PMCID: PMC10897559 DOI: 10.22038/ijbms.2023.74168.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/19/2023] [Indexed: 03/02/2024]
Abstract
Objectives During aging, cerebral structures undergo changes due to oxidative stress. The consumption of some plants seems to improve neurological health. For example, rosemary extract (RE) which is widely used as a flavoring food has anti-inflammatory and anti-oxidant activities. Therefore, we aimed to study the effect of RE on the changes related to the aging process in the prefrontal cortex (PFC). Materials and Methods Twenty-four male Wistar rats including young and old were purchased. Each group was divided into two subgroups: vehicle and rosemary (old vehicle (OV), old rosemary (OR), young vehicle (YV), and young rosemary (YR) groups). Then, we examined the number of intact neurons, myelin base protein (MBP), white matter (WM), levels of malondialdehyde (MDA), and glutathione peroxidase (GPx) in the PFC. Results The results showed that in the old vehicle rats compared to the young group without treatment, except for the MDA level (which increased), other variables significantly decreased (P≤0.05). Additionally, RE consumption demonstrated a significant elevation of WMA, MBP intensity, number of intact neurons, and GPx activity level, while MDA levels significantly reduced in the treated old rats compared to the old vehicle group (P≤0.05). However, there was no significant difference between the OR and YV groups (P≥0.05). Conclusion Overall, it seems that RE can protect and improve aging damages in the PFC due to its anti-oxidant properties. So, the use of RE can be a suitable strategy to prevent aging complications in the brain.
Collapse
Affiliation(s)
- Mohsen Eslami Farsani
- Anatomy Department, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Shahnaz Razavi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Homa Rasoolijazi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reihaneh Seyedebrahimi
- Anatomy Department, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Shima Ababzadeh
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Tissue Engineering and Applied Cell Sciences Department, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
15
|
Chaves N, Nogales L, Montero-Fernández I, Blanco-Salas J, Alías JC. Mediterranean Shrub Species as a Source of Biomolecules against Neurodegenerative Diseases. Molecules 2023; 28:8133. [PMID: 38138621 PMCID: PMC10745362 DOI: 10.3390/molecules28248133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neurodegenerative diseases are associated with oxidative stress, due to an imbalance in the oxidation-reduction reactions at the cellular level. Various treatments are available to treat these diseases, although they often do not cure them and have many adverse effects. Therefore, it is necessary to find complementary and/or alternative drugs that replace current treatments with fewer side effects. It has been demonstrated that natural products derived from plants, specifically phenolic compounds, have a great capacity to suppress oxidative stress and neutralize free radicals thus, they may be used as alternative alternative pharmacological treatments for pathological conditions associated with an increase in oxidative stress. The plant species that dominate the Mediterranean ecosystems are characterized by having a wide variety of phenolic compound content. Therefore, these species might be important sources of neuroprotective biomolecules. To evaluate this potential, 24 typical plant species of the Mediterranean ecosystems were selected, identifying the most important compounds present in them. This set of plant species provides a total of 403 different compounds. Of these compounds, 35.7% are phenolic acids and 55.6% are flavonoids. The most relevant of these compounds are gallic, vanillic, caffeic, chlorogenic, p-coumaric, and ferulic acids, apigenin, kaempferol, myricitrin, quercetin, isoquercetin, quercetrin, rutin, catechin and epicatechin, which are widely distributed among the analyzed plant species (in over 10 species) and which have been involved in the literature in the prevention of different neurodegenerative pathologies. It is also important to mention that three of these plant species, Pistacea lentiscus, Lavandula stoechas and Thymus vulgaris, have most of the described compounds with protective properties against neurodegenerative diseases. The present work shows that the plant species that dominate the studied geographic area can provide an important source of phenolic compounds for the pharmacological and biotechnological industry to prepare extracts or isolated compounds for therapy against neurodegenerative diseases.
Collapse
Affiliation(s)
- Natividad Chaves
- Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, Universidad de Extremadura, 06080 Badajoz, Spain; (L.N.); (I.M.-F.); (J.B.-S.); (J.C.A.)
| | | | | | | | | |
Collapse
|
16
|
Gong Y, Kang P, Wang J, Chen Y, Wei Z. Neuroprotective potential of sevoflurane against isoflurane induced cognitive dysfunction in rats via anti-inflammatory and antioxidant effect. Acta Cir Bras 2023; 38:e385523. [PMID: 38055394 DOI: 10.1590/acb385523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/30/2023] [Indexed: 12/08/2023] Open
Abstract
PURPOSE Intravenous anesthetics have excellent analgesic activity without inducing the side effect in the respiratory system. The aim and objective of the current experimental study was to access the neuroprotective effect of sevoflurane against isoflurane induced cognitive dysfunction in rats. METHODS Isoflurane was used for induction the neurodysfunction in the rats, and rats received the oral administration of sevoflurane (2.5, 5 and 10 mg/kg). Morris water test was carried out for the estimation of cognitive function. Neurochemical parameters, antioxidant parameters and pro-inflammatory cytokines were also estimated. RESULTS Sevoflurane significantly (P < 0.001) altered the neurochemical parameters such as anti-choline acetyltransferase, acetylcholine esterase, acetylcholine, protein carbonyl, choline brain-derived neurotrophic factor, and amyloid β; antioxidant parameters such as glutathione, superoxide dismutase, and malondialdehyde; pro-inflammatory cytokines include interleukin (IL-2, IL-10, IL-4, IL-6, IL-10, IL-1β), and tumor necrosis factor-α. Sevoflurane significantly reduced the activity of caspase-3. CONCLUSIONS Sevoflurane exhibited the neuroprotection against the cognitive dysfunction in rats via anti-inflammatory and antioxidant mechanism.
Collapse
Affiliation(s)
- Yi Gong
- Xiamen University - School of Medicin - Department of Anesthesiology - Xiamen ( Fujian), China
| | - Peipei Kang
- Nantong Tumor Hospital - Department of Anesthesiology - Nantong (Jiangsu), China
| | - Junhui Wang
- Taizhou Bo-ai Hosptial - Department of Anesthesiology - Taizhou (Zhangjiang), China
| | - Yan Chen
- Xi'an Fourth Hospital - Department of Anesthesiology - Xi'an (Shaanxi), China
| | - Zhongliang Wei
- Affiliated Hospital of Youjiang Medical University for Nationalities - Department of Anesthesia - Baise (Guangxi), China
| |
Collapse
|
17
|
Horvat A, Vlašić I, Štefulj J, Oršolić N, Jazvinšćak Jembrek M. Flavonols as a Potential Pharmacological Intervention for Alleviating Cognitive Decline in Diabetes: Evidence from Preclinical Studies. Life (Basel) 2023; 13:2291. [PMID: 38137892 PMCID: PMC10744738 DOI: 10.3390/life13122291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes mellitus is a complex metabolic disease associated with reduced synaptic plasticity, atrophy of the hippocampus, and cognitive decline. Cognitive impairment results from several pathological mechanisms, including increased levels of advanced glycation end products (AGEs) and their receptors, prolonged oxidative stress and impaired activity of endogenous mechanisms of antioxidant defense, neuroinflammation driven by the nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), decreased expression of brain-derived neurotrophic factor (BDNF), and disturbance of signaling pathways involved in neuronal survival and cognitive functioning. There is increasing evidence that dietary interventions can reduce the risk of various diabetic complications. In this context, flavonols, a highly abundant class of flavonoids in the human diet, are appreciated as a potential pharmacological intervention against cognitive decline in diabetes. In preclinical studies, flavonols have shown neuroprotective, antioxidative, anti-inflammatory, and memory-enhancing properties based on their ability to regulate glucose levels, attenuate oxidative stress and inflammation, promote the expression of neurotrophic factors, and regulate signaling pathways. The present review gives an overview of the molecular mechanisms involved in diabetes-induced cognitive dysfunctions and the results of preclinical studies showing that flavonols have the ability to alleviate cognitive impairment. Although the results from animal studies are promising, clinical and epidemiological studies are still needed to advance our knowledge on the potential of flavonols to improve cognitive decline in diabetic patients.
Collapse
Affiliation(s)
- Anđela Horvat
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Ignacija Vlašić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Jasminka Štefulj
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- Department of Psychology, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- Department of Psychology, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| |
Collapse
|
18
|
Kim SB, Ryu HY, Nam W, Lee SM, Jang MR, Kwak YG, Kang GI, Song KS, Lee JW. The Neuroprotective Effects of Dendropanax morbifera Water Extract on Scopolamine-Induced Memory Impairment in Mice. Int J Mol Sci 2023; 24:16444. [PMID: 38003650 PMCID: PMC10671129 DOI: 10.3390/ijms242216444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
This study investigated the neuroprotective effects of Dendropanax morbifera leaves and stems (DMLS) water extract on scopolamine (SCO)-induced memory impairment in mice. First, we conducted experiments to determine the protective effect of DMLS on neuronal cells. Treatment with DMLS showed a significant protective effect against neurotoxicity induced by Aβ(25-35) or H2O2. After confirming the neuroprotective effects of DMLS, we conducted animal studies. We administered DMLS orally at concentrations of 125, 250, and 375 mg/kg for 3 weeks. In the Y-maze test, SCO decreased spontaneous alternation, but treatment with DMLS or donepezil increased spontaneous alternation. In the Morris water-maze test, the SCO-treated group showed increased platform reach time and decreased swim time on the target platform. The passive avoidance task found that DMLS ingestion increased the recognition index in short-term memory. Furthermore, memory impairment induced by SCO reduced the ability to recognize novel objects. In the Novel Object Recognition test, recognition improved with DMLS or donepezil treatment. In the mouse brain, except for the cerebellum, acetylcholinesterase activity increased in the SCO group and decreased in the DMLS and donepezil groups. We measured catalase and malondialdehyde, which are indicators of antioxidant effectiveness, and found that oxidative stress increased with SCO but was mitigated by DMLS or donepezil treatment. Thus, our findings suggest that ingestion of DMLS restored memory impairment by protecting neuronal cells from Aβ(25-35) or H2O2-induced neurotoxicity, and by reducing oxidative stress.
Collapse
Affiliation(s)
- Sung Bae Kim
- Korea Conformity Laboratories, Incheon 21999, Republic of Korea; (S.B.K.); (H.Y.R.); (W.N.); (S.M.L.); (G.I.K.); (K.S.S.)
| | - Hyun Yeoul Ryu
- Korea Conformity Laboratories, Incheon 21999, Republic of Korea; (S.B.K.); (H.Y.R.); (W.N.); (S.M.L.); (G.I.K.); (K.S.S.)
| | - Woo Nam
- Korea Conformity Laboratories, Incheon 21999, Republic of Korea; (S.B.K.); (H.Y.R.); (W.N.); (S.M.L.); (G.I.K.); (K.S.S.)
| | - So Min Lee
- Korea Conformity Laboratories, Incheon 21999, Republic of Korea; (S.B.K.); (H.Y.R.); (W.N.); (S.M.L.); (G.I.K.); (K.S.S.)
| | - Mi Ran Jang
- Huons Foodience Co., Ltd., Geumsan-gun 32724, Republic of Korea; (M.R.J.); (Y.G.K.)
| | - Youn Gil Kwak
- Huons Foodience Co., Ltd., Geumsan-gun 32724, Republic of Korea; (M.R.J.); (Y.G.K.)
| | - Gyoo Il Kang
- Korea Conformity Laboratories, Incheon 21999, Republic of Korea; (S.B.K.); (H.Y.R.); (W.N.); (S.M.L.); (G.I.K.); (K.S.S.)
| | - Kyung Seok Song
- Korea Conformity Laboratories, Incheon 21999, Republic of Korea; (S.B.K.); (H.Y.R.); (W.N.); (S.M.L.); (G.I.K.); (K.S.S.)
| | - Jae Won Lee
- Korea Conformity Laboratories, Incheon 21999, Republic of Korea; (S.B.K.); (H.Y.R.); (W.N.); (S.M.L.); (G.I.K.); (K.S.S.)
| |
Collapse
|
19
|
Amankwa CE, Kodati B, Donkor N, Acharya S. Therapeutic Potential of Antioxidants and Hybrid TEMPOL Derivatives in Ocular Neurodegenerative Diseases: A Glimpse into the Future. Biomedicines 2023; 11:2959. [PMID: 38001960 PMCID: PMC10669210 DOI: 10.3390/biomedicines11112959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Reactive oxygen species play a significant role in the pathogenesis of various ocular neurodegenerative diseases especially glaucoma, age-related macular degeneration (AMD), and ocular ischemic stroke. Increased oxidative stress and the accumulation of ROS have been implicated in the progression of these diseases. As a result, there has been growing interest in exploring potential therapeutic and prophylactic strategies involving exogenous antioxidants. In recent years, there have been significant advancements in the development of synthetic therapeutic antioxidants for targeting reactive oxygen species (ROS) in neurodegenerative diseases. One area of focus has been the development of hybrid TEMPOL derivatives. In the context of ocular diseases, the application of next-generation hybrid TEMPOL antioxidants may offer new avenues for neuroprotection. By targeting ROS and reducing oxidative stress in the retina and optic nerve, these compounds have the potential to preserve retinal ganglion cells and trabecular meshwork and protect against optic nerve damage, mitigating irreversible blindness associated with these diseases. This review seeks to highlight the potential impact of hybrid TEMPOL antioxidants and their derivatives on ocular neurodegenerative disorders.
Collapse
Affiliation(s)
- Charles E. Amankwa
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (B.K.); (N.D.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Bindu Kodati
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (B.K.); (N.D.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Nina Donkor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (B.K.); (N.D.)
- Department of Pharmaceutical Science, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Suchismita Acharya
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (B.K.); (N.D.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
20
|
Zhang J, Chen J, Jiang Q, Feng R, Zhao X, Li H, Yang C, Hua X. Resolvin D1 Attenuates Inflammation and Pelvic Pain Associated with EAP by Inhibiting Oxidative Stress and NLRP3 Inflammasome Activation via the Nrf2/HO-1 Pathway. J Inflamm Res 2023; 16:3365-3379. [PMID: 37576154 PMCID: PMC10422977 DOI: 10.2147/jir.s408111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Background Resolvin D1 (RvD1), a member of the specialized pro-resolving lipid mediators family, has a potent anti-inflammatory effect and alleviates tissue damage. The purpose of the current research was to study the effect of RvD1 on CP/CPPS and the underlying mechanisms using a mouse model of experimental autoimmune prostatitis (EAP) mice. Materials and Methods The EAP mouse model was successfully established, and was used to test the therapeutic effect of RvD1. Hematoxylin-eosin staining and dihydroethidium staining were used to evaluate the histological changes and oxidative stress levels of prostate tissues. Chronic pelvic pain was assessed by applying von Frey filaments to the lower abdomen. The superoxide dismutase enzyme and malondialdehyde levels were detected using enzyme-linked immunosorbent assay (ELISA). The levels of inflammation-related cytokines, including IL-1β, IL-6, and TNF-α were detected by ELISA. Results RvD1 treatment ameliorated prostatic inflammation and the pelvic pain of EAP mice. RvD1 treatment could inhibit activation of the NLRP3 inflammasome and oxidative stress. RvD1 treatment could activate Nrf2/HO-1 signaling in mice with EAP. Blockade of Nrf2/HO-1 signaling abolished the RvD1-mediated inhibition of oxidative stress, NLRP3 inflammasome activation and the anti-inflammatory effect of RvD1 in EAP. Conclusion RvD1 treatment can reduce inflammatory cell infiltration in prostate tissue and attenuate pelvic pain associated with EAP by inhibiting oxidative stress and NLRP3 inflammasome activation via the Nrf2/HO-1 pathway. These results provide new insights that RvD1 has the potential as an effective agent in the treatment of EAP.
Collapse
Affiliation(s)
- Jiong Zhang
- Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Juan Chen
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Qing Jiang
- Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Rui Feng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaohu Zhao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Haolin Li
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Cheng Yang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaoliang Hua
- Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
21
|
Zuhair Alshawwa S, Salah Labib G, Badr-Eldin SM, Ahmed Kassem A. Solid lipid Lyo-Nanosuspension: A promising stabilized oral delivery system for the antihyperglycemic extract of mistletoe Plicosepalus acacia. Saudi Pharm J 2023; 31:101689. [PMID: 37457370 PMCID: PMC10339052 DOI: 10.1016/j.jsps.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
The antihyperglycemic effect of Plicosepalus acaciae (P. acaciae) extract was proven, but it still needs to be formulated into a suitable dosage form. We aimed at preparing an oral stabilized SLNs for P. acaciae with high payload, to be used as powder for reconstitution, filled into capsule or compressed into tablet. SLNs were prepared by emulsion solvent evaporation technique. Preliminary characterization was performed followed by full assessment of the optimized SLNs suspension and/or its lyophilized form: particle size, zeta potential, surface morphology, percentage entrapment efficiency (% EE), DSC, FTIR and in vitro release studies. The optimized SLNs lyophilized formula (F3L) exhibited acceptable compressibility and flowability. The reconstituted F3L showed % sedimentation volume of 91.83 %, re-dispersibility of 95%, viscosity of 764.33 cp, uniform particle size of 30.28 nm as shown by TEM, polydispersity index (PDI) of 0.16, zeta potential of -36.4 mV, % EE of 89.64 % and drug content of 97.69 %. The physical mixture and F3L FTIR spectrum indicated compatibility of components. In vitro release study showed a burst release in lyophilized formulations followed by slow-release, calculated as total phenolic content. Our previously reported work revealed that the total extracts of P. acaciae and SLNs formulations with the greatest lipid content F3s, demonstrated a considerable blood glucose-lowering effect in diabetic rats. The obtained lyophilized SLNs is promising for preparation of a suitable stable dosage form for P. acaciae extract to be used in treatment of diabetes.
Collapse
Affiliation(s)
- Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Gihan Salah Labib
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, 21321 Alexandria, Egypt
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Abeer Ahmed Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, 21321 Alexandria, Egypt
| |
Collapse
|
22
|
Mairuae N, Palachai N, Noisa P. The neuroprotective effects of the combined extract of mulberry fruit and mulberry leaf against hydrogen peroxide-induced cytotoxicity in SH-SY5Y Cells. BMC Complement Med Ther 2023; 23:117. [PMID: 37055744 PMCID: PMC10100183 DOI: 10.1186/s12906-023-03930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/20/2023] [Indexed: 04/15/2023] Open
Abstract
The prevalence of dementia is increasing, and most of the causes are related to neuronal cell death. Unfortunately, no effective strategy is available for protecting against this condition. Based on the use of the synergistic concept together with the positive modulation effect of both mulberry fruit and mulberry leaf on dementia, we hypothesized that the combined extract of mulberry fruit and mulberry leaf (MFML) should mitigate neuronal cell death. Neuronal cell damage was induced in SH-SY5Y cells by exposure to hydrogen peroxide at a dose of 200 μM. SH-SY5Y cells were given MFML at doses of 62.5 and 125 μg/mL before induced cytotoxicity. Then, the cell viability was determined via MTT assay, and the possible underlying mechanisms were investigated via the alterations of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), nuclear factor-κB (NF-κB), and tumor necrosis factor-alpha (TNF-α), together with apoptotic factors including (B-cell lymphoma 2) BCL2, Casapase-3 and Caspase-9. The results showed that MFML significantly enhanced cell viability. It also significantly decreased MDA level, NF-κB, TNF-α, Casapase-3, Caspase-9, but increased SOD, GSH-Px and BCL2. These data demonstrated the neuroprotective effect of MFML. The possible underlying mechanisms might occur partly via the improvement of the inappropriate apoptotic mechanisms via BCL2, Casapase-3 and Caspase-9 together with the decrease in neurodegeneration induced by the reduction of inflammation and oxidative stress. In conclusion, MFML is a potential neuroprotectant candidate against neuronal cell injury. However, toxicity, animal studies, and clinical trials are essential to confirm these benefits.
Collapse
Affiliation(s)
- Nootchanat Mairuae
- Faculty of Medicine, Mahasarakham University, Mahasarakham, 44000, Thailand
| | - Nut Palachai
- Faculty of Medicine, Mahasarakham University, Mahasarakham, 44000, Thailand.
| | - Parinya Noisa
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| |
Collapse
|
23
|
Cho M, Kim Y, You S, Hwang DY, Jang M. Chlorogenic Acid of Cirsium japonicum Resists Oxidative Stress Caused by Aging and Prolongs Healthspan via SKN-1/Nrf2 and DAF-16/FOXO in Caenorhabditis elegans. Metabolites 2023; 13:metabo13020224. [PMID: 36837843 PMCID: PMC9959019 DOI: 10.3390/metabo13020224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
To evaluate the value of Cirsium japonicum (CJ; thistle) as a material for functional foods, we studied the functional composition of cultivated CJ and the in vitro and in vivo antioxidant activity of the functional substance. The detected phenolics in farmed CJ were chlorogenic acid (CA), linarin (LIN), and pectolinarin (PLIN) by HPLC analysis. As a result of the antioxidant activity of CJ and its phenolics by DPPH and ABTS method, CA had shown the greatest antioxidant activity. We employed Caenorhabditis elegans to validate that in vitro effects of CA are shown in vivo. CA delayed reduction in pumping rate and progeny production during aging of C. elegans. Under both normal and oxidative stress conditions, CA reduced the production of reactive oxygen species (ROS) in worms and increased their lifespan. In particular, CA showed the reducing effect of ROS accumulation due to aging in aged worms (8 days old). To gain insight into the mechanism, we used skn-1/Nrf2 and daf-16/FOXO transformed worms. The CA effects (on catalase activity and lifespan extension) in the wild-type (WT) decreased in skn-1 and daf-16 mutants. In particular, CA strongly relied on daf-16 under mild oxidative condition and skn-1 under overall (from mild to strong) oxidative stress to reduce ROS and extend healthspan. Thus, we conclude that CA, a key bioactive phenolic of CJ, reduces ROS production and ultimately extends healthspan, and this effect is the result of actions of daf-16 or skn-1 at different stages depending on the degree of oxidation or aging. Our results suggest that CJ containing CA can be used as an antiaging material due to its antioxidant properties.
Collapse
Affiliation(s)
- Myogyeong Cho
- Department of Food Technology and Nutrition, Inje University, Gimhae 50834, Republic of Korea
| | - Yebin Kim
- Department of Food Technology and Nutrition, Inje University, Gimhae 50834, Republic of Korea
| | - Sohyeon You
- Bio-Health Convergence, Duksung Women’s University, Seoul 01369, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Miran Jang
- Department of Food Technology and Nutrition, Inje University, Gimhae 50834, Republic of Korea
- Correspondence: ; Tel.: +82-55-320-3234
| |
Collapse
|
24
|
Thongrong S, Surapinit S, Promsrisuk T, Jittiwat J, Kongsui R. Pinostrobin alleviates chronic restraint stress‑induced cognitive impairment by modulating oxidative stress and the function of astrocytes in the hippocampus of rats. Biomed Rep 2023; 18:20. [PMID: 36798091 PMCID: PMC9922797 DOI: 10.3892/br.2023.1602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Chronic stress has been recognized to induce the alterations of neuronal and glial cells in the hippocampus, and is thus implicated in cognitive dysfunction. There is increasing evidence to indicate that natural compounds capable of exerting neuroprotective and antioxidant activities, may function as potential therapeutic agents for cognitive impairment. The present study examined the neuroprotective effects of pinostrobin from Boesenbergia rotunda (L.) against chronic restraint stress (CRS)-induced cognitive impairment associated with the alterations of oxidative stress, neuronal density and glial fibrillary acidic protein (GFAP) of astrocytes in the hippocampus. For this purpose, male Wistar rats were administered once daily with pinostrobin (20 and 40 mg/kg, per os) prior to exposure to CRS (6 h/day) for 21 days. The cognitive behaviors, the concentration of malondialdehyde, and the activities of superoxide dismutase and catalase were determined. Histologically, the alterations in astrocytic GFAP and excitatory amino acid transporter 2 (EAAT2) in the hippocampus were examined. The results revealed that pinostrobin potentially attenuated cognitive impairment in the Y-maze and in novel object recognition tests, with a reduction in oxidative stress. Furthermore, pinostrobin effectively increased neuronal density, as well as the immunoreactivities of GFAP and EAAT2 in the hippocampus. Taken together, these findings indicate that treatment with pinostrobin alleviates chronic stress-induced cognitive impairment by exerting antioxidant effects, reducing neuronal cell damage, and improving the function of astrocytic GFAP and EAAT2. Thus, pinostrobin may have potential for use as a neuroprotective agent to protect against chronic stress-induced brain dysfunction and cognitive deficits.
Collapse
Affiliation(s)
- Sitthisak Thongrong
- Division of Anatomy, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand,Unit of Excellence in Translational Neurosciences Initiative, University of Phayao, Phayao 56000, Thailand
| | - Serm Surapinit
- Unit of Excellence in Translational Neurosciences Initiative, University of Phayao, Phayao 56000, Thailand,Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| | - Tichanon Promsrisuk
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Jinatta Jittiwat
- Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand
| | - Ratchaniporn Kongsui
- Unit of Excellence in Translational Neurosciences Initiative, University of Phayao, Phayao 56000, Thailand,Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand,Correspondence to: Dr Ratchaniporn Kongsui, Division of Physiology, School of Medical Sciences, University of Phayao, 19 Moo 2 Phahonyothin Road, Maeka, Muang Phayao, Phayao 56000, Thailand
| |
Collapse
|
25
|
Bellavite P. Neuroprotective Potentials of Flavonoids: Experimental Studies and Mechanisms of Action. Antioxidants (Basel) 2023; 12:antiox12020280. [PMID: 36829840 PMCID: PMC9951959 DOI: 10.3390/antiox12020280] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Neurological and neurodegenerative diseases, particularly those related to aging, are on the rise, but drug therapies are rarely curative. Functional disorders and the organic degeneration of nervous tissue often have complex causes, in which phenomena of oxidative stress, inflammation and cytotoxicity are intertwined. For these reasons, the search for natural substances that can slow down or counteract these pathologies has increased rapidly over the last two decades. In this paper, studies on the neuroprotective effects of flavonoids (especially the two most widely used, hesperidin and quercetin) on animal models of depression, neurotoxicity, Alzheimer's disease (AD) and Parkinson's disease are reviewed. The literature on these topics amounts to a few hundred publications on in vitro and in vivo models (notably in rodents) and provides us with a very detailed picture of the action mechanisms and targets of these substances. These include the decrease in enzymes that produce reactive oxygen and ferroptosis, the inhibition of mono-amine oxidases, the stimulation of the Nrf2/ARE system, the induction of brain-derived neurotrophic factor production and, in the case of AD, the prevention of amyloid-beta aggregation. The inhibition of neuroinflammatory processes has been documented as a decrease in cytokine formation (mainly TNF-alpha and IL-1beta) by microglia and astrocytes, by modulating a number of regulatory proteins such as Nf-kB and NLRP3/inflammasome. Although clinical trials on humans are still scarce, preclinical studies allow us to consider hesperidin, quercetin, and other flavonoids as very interesting and safe dietary molecules to be further investigated as complementary treatments in order to prevent neurodegenerative diseases or to moderate their deleterious effects.
Collapse
|
26
|
Hashemy SI, Amiri H, Hosseini H, Sadeghzadeh F, Jaseem MMM, Tabrizi MH. PEGylated Lecithin-Chitosan-Folic Acid Nanoparticles as Nanocarriers of Allicin for In Vitro Controlled Release and Anticancer Effects. Appl Biochem Biotechnol 2023:10.1007/s12010-022-04310-y. [PMID: 36652093 DOI: 10.1007/s12010-022-04310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
In this study, chitosan-lecithin nanoparticles modified with polyethylene glycol (PEG) and folic acid (FA) were used to deliver allicin (AC) to colon cancer cells. AC-loaded polyethylene glycol (PEG) and folic acid (FA)-modified chitosan-lecithin nanoparticles (AC-PLCF-NPs) were fabricated via self-assembling procedure. HPLC for AC encapsulation and FA binding, MTT for viability assay, ABTS and DPPH for antioxidant capacity, disc diffusion, MIC and MBC for antibacterial assay, qPCR and AO/PI staining for apoptotic, and CAM assay for angiogenesis effects of AC-PLCF-NPs were used. AC-PLCF-NPs (113.55 nm) were synthesized as single dispersed (PDI: 0.28) and stable (ZP: + 33.18 mV) with 81% AC encapsulation and 48% FA binding. The antioxidant power of AC-PLCF-NPs was confirmed by inhibiting free radicals ABTS (74.25 µg/mL) and DPPH (366.214 µg/mL) and its antibacterial capacity with very high inhibitory effects against gram-negative bacterial strains. MTT results showed higher toxicity of AC-PLCF-NPs (68.06 µg/mL) compared to AC (171.45 µg/mL). Increased expression of caspase 3 and 9 genes showed activation of the intrinsic apoptosis pathway in treated cells, and on the other hand, reduction of vascular and embryonic growth factors in CAM model confirmed the anti-angiogenesis effects of AC-PLCF-NPs. AC-PLCF-NPs can be suggested as a promising therapeutic agent for studies in the field of colon cancer treatment.
Collapse
Affiliation(s)
- Seyed Isaac Hashemy
- Faculty of Medicine, Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Amiri
- Faculty of Medicine, Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseini
- Faculty of Medicine, Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Sadeghzadeh
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | | | | |
Collapse
|
27
|
Barber K, Mendonca P, Soliman KFA. The Neuroprotective Effects and Therapeutic Potential of the Chalcone Cardamonin for Alzheimer's Disease. Brain Sci 2023; 13:145. [PMID: 36672126 PMCID: PMC9856590 DOI: 10.3390/brainsci13010145] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases (ND) include a wide range of conditions that result from progressive damage to the neurons. Alzheimer's disease (AD) is one of the most common NDs, and neuroinflammation and oxidative stress (OS) are the major factors in the development and progression of the disease. Many naturally occurring phytochemical compounds exhibit antioxidant and anti-inflammatory activities with potential neuroprotective effects. Several plant species, including Alpinia katsumadai and Alpinia conchigera, contain cardamonin (CD). CD (2',4'-dihydroxy-6'methoxychalcone) has many therapeutic properties, including anticancer, anti-inflammatory, antioxidant, antiviral, and antibiotic activities. CD is a potent compound that can reduce OS and modulate the inflammatory processes that play a significant part in developing neurodegenerative diseases. CD has been shown to modulate a variety of signaling molecules involved in the development and progression of ND, including transcription factors (NF-kB and STAT3), cytokines (TNF-α, IL-1, and IL-6), enzymes (COX-2, MMP-9, and ALDH1), and other proteins and genes (Bcl-2, XIAP, and cyclin D1). Additionally, CD effectively modulates miRNA levels and autophagy-related CD-protective mechanisms against neurodegeneration. In summary, this review provides mechanistic insights into CD's ability to modify multiple oxidative stress-antioxidant system pathways, Nrf2, and neuroinflammation. Additionally, it points to the possible therapeutic potential and preventive utilization of CD in neurodegenerative diseases, most specifically AD.
Collapse
Affiliation(s)
- Kimberly Barber
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
28
|
Azlan UK, Khairul Annuar NA, Mediani A, Aizat WM, Damanhuri HA, Tong X, Yanagisawa D, Tooyama I, Wan Ngah WZ, Jantan I, Hamezah HS. An insight into the neuroprotective and anti-neuroinflammatory effects and mechanisms of Moringa oleifera. Front Pharmacol 2023; 13:1035220. [PMID: 36686668 PMCID: PMC9849397 DOI: 10.3389/fphar.2022.1035220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Neurodegenerative diseases (NDs) are sporadic maladies that affect patients' lives with progressive neurological disabilities and reduced quality of life. Neuroinflammation and oxidative reaction are among the pivotal factors for neurodegenerative conditions, contributing to the progression of NDs, such as Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS) and Huntington's disease (HD). Management of NDs is still less than optimum due to its wide range of causative factors and influences, such as lifestyle, genetic variants, and environmental aspects. The neuroprotective and anti-neuroinflammatory activities of Moringa oleifera have been documented in numerous studies due to its richness of phytochemicals with antioxidant and anti-inflammatory properties. This review highlights up-to-date research findings on the anti-neuroinflammatory and neuroprotective effects of M. oleifera, including mechanisms against NDs. The information was gathered from databases, which include Scopus, Science Direct, Ovid-MEDLINE, Springer, and Elsevier. Neuroprotective effects of M. oleifera were mainly assessed by using the crude extracts in vitro and in vivo experiments. Isolated compounds from M. oleifera such as moringin, astragalin, and isoquercitrin, and identified compounds of M. oleifera such as phenolic acids and flavonoids (chlorogenic acid, gallic acid, ferulic acid, caffeic acid, kaempferol, quercetin, myricetin, (-)-epicatechin, and isoquercitrin) have been reported to have neuropharmacological activities. Therefore, these compounds may potentially contribute to the neuroprotective and anti-neuroinflammatory effects. More in-depth studies using in vivo animal models of neurological-related disorders and extensive preclinical investigations, such as pharmacokinetics, toxicity, and bioavailability studies are necessary before clinical trials can be carried out to develop M. oleifera constituents into neuroprotective agents.
Collapse
Affiliation(s)
- Ummi Kalthum Azlan
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | | - Ahmed Mediani
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan Mohd Aizat
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Hanafi Ahmad Damanhuri
- 2Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Xiaohui Tong
- 3School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Daijiro Yanagisawa
- 4Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Ikuo Tooyama
- 5Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Wan Zurinah Wan Ngah
- 5Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Ibrahim Jantan
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Hamizah Shahirah Hamezah
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia,*Correspondence: Hamizah Shahirah Hamezah,
| |
Collapse
|
29
|
Dhankhar J, Shrivastava A, Agrawal N. Amendment of Altered Immune Response by Curcumin in Drosophila Model of Huntington's Disease. J Huntingtons Dis 2023; 12:335-354. [PMID: 37781812 DOI: 10.3233/jhd-230595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
BACKGROUND Though primarily classified as a brain disorder, surplus studies direct Huntington's disease (HD) to be a multi-system disorder affecting various tissues and organs, thus affecting overall physiology of host. Recently, we have reported that neuronal expression of mutant huntingtin induces immune dysregulation in Drosophila and may pose chronic threat to challenged individuals. Therefore, we tested the polyphenolic compound curcumin to circumvent the impact of immune dysregulation in Drosophila model of HD. OBJECTIVE The present study examined the molecular basis underlying immune derangements and immunomodulatory potential of curcumin in HD. METHODS UAS-GAL4 system was used to imitate the HD symptoms in Drosophila, and the desired female progenies (elav > Httex1pQ25; control and elav > Httex1pQ93; diseased) were cultured on food mixed without and with 10 μM concentration of curcumin since early development. Effect of curcumin supplementation was investigated by monitoring the hemocytes' count and their functional abilities in diseased condition. Reactive oxygen species (ROS) level in cells was assessed by DHE staining and mitochondrial dysfunction was assessed by CMXros red dye. In addition, transcript levels of pro-inflammatory cytokines and anti-microbial peptides were monitored by qRT-PCR. RESULTS We found that curcumin supplementation commendably reduced higher crystal cell count and phenoloxidase activity in diseased flies. Interestingly, curcumin significantly managed altered plasmatocytes count, improved their phagocytic activity by upregulating the expression of key phagocytic receptors in HD condition. Moreover, substantial alleviation of ROS levels and mitochondria dysfunction was observed in plasmatocytes of diseased flies upon curcumin supplementation. Furthermore, curcumin administration effectively attenuated transcriptional expression of pro-inflammatory cytokines and AMPs in diseased flies. CONCLUSIONS Our results indicate that curcumin efficiently attenuates immune derangements in HD flies and may prove beneficial in alleviating complexities associated with HD.
Collapse
Affiliation(s)
- Jyoti Dhankhar
- Department of Zoology, University of Delhi, Delhi, India
| | | | - Namita Agrawal
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
30
|
Calderaro A, Patanè GT, Tellone E, Barreca D, Ficarra S, Misiti F, Laganà G. The Neuroprotective Potentiality of Flavonoids on Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms232314835. [PMID: 36499159 PMCID: PMC9736131 DOI: 10.3390/ijms232314835] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Alzheimer's disease (AD), due to its spread, has become a global health priority, and is characterized by senile dementia and progressive disability. The main cause of AD and other neurodegenerations (Huntington, Parkinson, Amyotrophic Lateral Sclerosis) are aggregated protein accumulation and oxidative damage. Recent research on secondary metabolites of plants such as polyphenols demonstrated that they may slow the progression of AD. The flavonoids' mechanism of action in AD involved the inhibition of acetylcholinesterase, butyrylcholinesterase, Tau protein aggregation, β-secretase, oxidative stress, inflammation, and apoptosis through modulation of signaling pathways which are implicated in cognitive and neuroprotective functions, such as ERK, PI3-kinase/Akt, NFKB, MAPKs, and endogenous antioxidant enzymatic systems. This review focuses on flavonoids and their role in AD, in terms of therapeutic potentiality for human health, antioxidant potential, and specific AD molecular targets.
Collapse
Affiliation(s)
- Antonella Calderaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Giuseppe Tancredi Patanè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (E.T.); (D.B.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (E.T.); (D.B.)
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Francesco Misiti
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, V. S. Angelo, Loc. Folcara, 3043 Cassino, Italy
| | - Giuseppina Laganà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
31
|
Zhou R, Liu J, Shi X, Fu C, Jiang Y, Zhang R, Wu Y, Yang C. Garlic Powder Supplementation Improves Growth, Nonspecific Immunity, Antioxidant Capacity, and Intestinal Flora of Chinese Mitten Crabs ( Eriocheir sinensis). AQUACULTURE NUTRITION 2022; 2022:6531865. [PMID: 36860460 PMCID: PMC9973155 DOI: 10.1155/2022/6531865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/25/2022] [Accepted: 10/14/2022] [Indexed: 06/18/2023]
Abstract
This study was conducted to survey the effects of garlic powder on growth performance, nonspecific immunity, antioxidant capacity, and intestinal flora structure of Chinese mitten crabs. Altogether, 216 crabs which originally weigh 20.71 ± 0.13 g were randomly allocated into three treatment groups with 6 replicates of 12 crabs per replicate. The control group (CN) was fed a basal diet, while the other two groups were fed the basal diet supplemented with 1000 mg/kg (GP1000) and 2000 mg/kg (GP2000) garlic powder, respectively. This trial lasted 8 weeks. The results showed that the supplementation of garlic powder improved the final body weight, weight gain rate, and specific growth rate of the crabs (P < 0.05). Meanwhile, in serum, better nonspecific immune was confirmed by the enhancement of phenoloxidase and lysozyme levels, with the improvement of phosphatase activities in GP1000 and GP2000 (P < 0.05). On the other hand, the levels of total antioxidant capacity, glutathione peroxidases, and total superoxide dismutase in serum and hepatopancreas were increased (P < 0.05) while malondialdehyde content declined (P < 0.05) as the garlic powder was added to the basal diet. And, catalase in serum also shows an increase (P < 0.05). In both GP1000 and GP2000, genes related to antioxidant and immunity, for instance, Toll-like receptor 1, glutathione peroxidase, catalase, myeloid differentiation factor 88, TuBe, Dif, relish, crustins, antilipopolysaccharide factor, lysozyme, and prophenoloxidase mRNA expression levels, were increased (P < 0.05). The abundance of Rhizobium and Rhodobacter was reduced by adding garlic powder (P < 0.05). This study indicated that dietary addition of garlic powder promoted growth, enhanced nonspecific immunity and antioxidant capacity, activated Toll pathway, IMD pathway, and proPO system, increased antimicrobial peptide expression, while simultaneously improving the intestinal flora of Chinese mitten crabs.
Collapse
Affiliation(s)
- Ruoyu Zhou
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Jinsong Liu
- Key Agricultural Research Institute of Green Animal Health Products of Zhejiang Province, Zhejiang Vegamax Biotechnology Co., Ltd., Anji, Zhejiang 313300, China
| | - Xueyan Shi
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Chunsheng Fu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Ying Jiang
- Institute of Animal Nutrition, Huai'an Kangda Feed Co., Ltd., Xuyi, Jiangsu 211700, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Yanping Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
32
|
Khin Aung ZM, Jantaratnotai N, Piyachaturawat P, Sanvarinda P. A pure compound from Curcuma comosa Roxb. protects neurons against hydrogen peroxide-induced neurotoxicity via the activation of Nrf-2. Heliyon 2022; 8:e11228. [DOI: 10.1016/j.heliyon.2022.e11228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/12/2022] [Accepted: 10/20/2022] [Indexed: 10/31/2022] Open
|
33
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
34
|
Flavonoids as Promising Neuroprotectants and Their Therapeutic Potential against Alzheimer’s Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6038996. [PMID: 36071869 PMCID: PMC9441372 DOI: 10.1155/2022/6038996] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/10/2022] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is one of the serious and progressive neurodegenerative disorders in the elderly worldwide. Various genetic, environmental, and lifestyle factors are associated with its pathogenesis that affect neuronal cells to degenerate over the period of time. AD is characterized by cognitive dysfunctions, behavioural disability, and psychological impairments due to the accumulation of amyloid beta (Aβ) peptides and neurofibrillary tangles (NFT). Several research reports have shown that flavonoids are the polyphenolic compounds that significantly improve cognitive functions and inhibit or delay the amyloid beta aggregation or NFT formation in AD. Current research has uncovered that dietary use of flavonoid-rich food sources essentially increases intellectual abilities and postpones or hinders the senescence cycle and related neurodegenerative problems including AD. During AD pathogenesis, multiple signalling pathways are involved and to target a single pathway may relieve the symptoms but not provides the permanent cure. Flavonoids communicate with different signalling pathways and adjust their activities, accordingly prompting valuable neuroprotective impacts. Flavonoids likewise hamper the movement of obsessive indications of neurodegenerative disorders by hindering neuronal apoptosis incited by neurotoxic substances. In this short review, we briefly discussed about the classification of flavonoids and their neuroprotective properties that could be used as a potential source for the treatment of AD. In this review, we also highlight the structural features of flavonoids, their beneficial roles in human health, and significance in plants as well as their microbial production.
Collapse
|
35
|
Abu-Kheit R, Kotev-Emeth S, Hiram-Bab S, Gabet Y, Savion N. S-allylmercapto- N-acetylcysteine protects bone cells from oxidation and improves femur microarchitecture in healthy and diabetic mice. Exp Biol Med (Maywood) 2022; 247:1489-1500. [PMID: 35658550 PMCID: PMC9493761 DOI: 10.1177/15353702221095047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Oxidative stress is involved in the deterioration of bone quality and mechanical strength in both diabetic and aging adults. Therefore, we studied the ability of the antioxidant compound, S-allylmercapto-N-acetylcysteine (ASSNAC) to protect bone marrow stromal cells (BMSCs) from advanced glycation end-products (AGEs) cytotoxicity and improve bone microarchitecture of adult healthy and obese/diabetic (db/db) female mice. ASSNAC effect on AGEs-treated cultured rat BMSCs was evaluated by Neutral Red and XTT cell survival and reactive oxygen species (ROS) level assays. Its effect on healthy (C57BL/6) and obese/diabetic (C57BLKS/J Leprdb+/+; db/db) female mice femur parameters, such as (1) number of adherent BMSCs, (2) percentage of CD73+/CD45- cells in bone marrow (BM), (3) glutathione level in BM cells, and (4) femur microarchitecture parameters by microcomputed tomography, was studied. ASSNAC treatment protected BMSCs by significantly decreasing AGEs-induced ROS production and increasing their cellular resistance to the cytotoxic effect of AGEs. ASSNAC treatment of healthy female mice (50 mg/kg/day; i.p.; age 12-20 weeks) significantly increased the number of BMSCs (+60%), CD73+/CD45- cells (+134%), and glutathione level (+110%) in the femur bone marrow. Furthermore, it increased the femur length (+3%), cortical diameter (+3%), and cortical areal moment of inertia (Ct.MOI; +10%) a surrogate for biomechanical strength. In db/db mice that demonstrated a compromised trabecular bone and growth plate microarchitecture, ASSNAC treatment restored the trabecular number (Tb.N, +29%), bone volume fraction (Tb.BV/TV, +130%), and growth plate primary spongiosa volumetric bone mineral density (PS-vBMD, +7%) and thickness (PS-Th, +18%). In conclusion, this study demonstrates that ASSNAC protects bone marrow cells from oxidative stress and may improve bone microarchitecture in adult healthy and diabetic female mice.
Collapse
Affiliation(s)
- Reem Abu-Kheit
- Department of Human Molecular Genetics and
Biochemistry and Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Shlomo Kotev-Emeth
- Department of Human Molecular Genetics and
Biochemistry and Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Sahar Hiram-Bab
- Department of Anatomy and Anthropology,
Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology,
Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Naphtali Savion
- Department of Human Molecular Genetics and
Biochemistry and Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv
University, Tel Aviv 6997801, Israel;,Naphtali Savion.
| |
Collapse
|
36
|
Involvement of the Intestinal Microbiota in the Appearance of Multiple Sclerosis: Aloe vera and Citrus bergamia as Potential Candidates for Intestinal Health. Nutrients 2022; 14:nu14132711. [PMID: 35807891 PMCID: PMC9269320 DOI: 10.3390/nu14132711] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple sclerosis (MS) is a neurological and inflammatory autoimmune disease of the Central Nervous System in which selective activation of T and B lymphocytes prompts a reaction against myelin, inducing demyelination and axonal loss. Although MS is recognized to be an autoimmune pathology, the specific causes are many; thus, to date, it has been considered a disorder resulting from environmental factors in genetically susceptible individuals. Among the environmental factors hypothetically involved in MS, nutrition seems to be well related, although the role of nutritional factors is still unclear. The gut of mammals is home to a bacterial community of about 2000 species known as the “microbiota”, whose composition changes throughout the life of each individual. There are five bacterial phylas that make up the microbiota in healthy adults: Firmicutes (79.4%), Bacteroidetes (16.9%), Actinobacteria (2.5%), Proteobacteria (1%) and Verrucomicrobia (0.1%). The diversity and abundance of microbial populations justifies a condition known as eubiosis. On the contrary, the state of dysbiosis refers to altered diversity and abundance of the microbiota. Many studies carried out in the last few years have demonstrated that there is a relationship between the intestinal microflora and the progression of multiple sclerosis. This correlation was also demonstrated by the discovery that patients with MS, treated with specific prebiotics and probiotics, have greatly increased bacterial diversity in the intestinal microbiota, which might be otherwise reduced or absent. In particular, natural extracts of Aloe vera and bergamot fruits, rich in polyphenols and with a high percentage of polysaccharides (mostly found in indigestible and fermentable fibers), appear to be potential candidates to re-equilibrate the gut microbiota in MS patients. The present review article aims to assess the pathophysiological mechanisms that reveal the role of the microbiota in the development of MS. In addition, the potential for supplementing patients undergoing early stages of MS with Aloe vera as well as bergamot fibers, on top of conventional drug treatments, is discussed.
Collapse
|
37
|
Eltamany EE, Goda MS, Nafie MS, Abu-Elsaoud AM, Hareeri RH, Aldurdunji MM, Elhady SS, Badr JM, Eltahawy NA. Comparative Assessment of the Antioxidant and Anticancer Activities of Plicosepalus acacia and Plicosepalus curviflorus: Metabolomic Profiling and In Silico Studies. Antioxidants (Basel) 2022; 11:antiox11071249. [PMID: 35883740 PMCID: PMC9311546 DOI: 10.3390/antiox11071249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
This study presents a comparison between two mistletoe plants—P. acacia and P. curviflorus—regarding their total phenolic contents and antioxidant and anticancer activities. P. curviflorus exhibited a higher total phenolics content (340.62 ± 19.46 mg GAE/g extract), and demonstrated higher DPPH free radical scavenging activity (IC50 = 48.28 ± 3.41µg/mL), stronger reducing power (1.43 ± 0.54 mMol Fe+2/g) for ferric ions, and a greater total antioxidant capacity (41.89 ± 3.15 mg GAE/g) compared to P. acacia. The cytotoxic effects of P. acacia and P. curviflorus methanol extracts were examined on lung (A549), prostate (PC-3), ovarian (A2780) and breast (MDA-MB-231) cancer cells. The highest anticancer potential for the two extracts was observed on PC-3 prostate cancer cells, where P. curviflorus exhibited more pronounced antiproliferative activity (IC50 = 25.83 μg/mL) than P. acacia (IC50 = 34.12 μg/mL). In addition, both of the tested extracts arrested the cell cycle at the Pre-G1 and G1 phases, and induced apoptosis. However, P. curviflorus extract possessed the highest apoptotic effect, mediated by the upregulation of p53, Bax, and caspase-3, 8 and 9, and the downregulation of Bcl-2 expression. In the pursuit to link the chemical diversity of P. curviflorus with the exhibited bioactivities, its metabolomic profiling was achieved by the LC-ESI-TOF-MS/MS technique. This permitted the tentative identification of several phenolics—chiefly flavonoid derivatives, beside some triterpenes and sterols—in the P. curviflorus extract. Furthermore, all of the metabolites in P. curviflorus and P. acacia were inspected for their binding modes towards both CDK-2 and EGFR proteins using molecular docking studies in an attempt to understand the superiority of P. curviflorus over P. acacia regarding their antiproliferative effect on PC-3 cancer cells. Docking studies supported our experimental results; with all of this taken together, P. curviflorus could be regarded as a potential prospect for the development of chemotherapeutics for prostate cancer.
Collapse
Affiliation(s)
- Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (M.S.G.); (N.A.E.)
| | - Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (M.S.G.); (N.A.E.)
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Abdelghafar M. Abu-Elsaoud
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Rawan H. Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammed M. Aldurdunji
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia;
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.S.E.); (J.M.B.); Tel.: +966-544512552 (S.S.E.); +20-1091332451 (J.M.B.)
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (M.S.G.); (N.A.E.)
- Correspondence: (S.S.E.); (J.M.B.); Tel.: +966-544512552 (S.S.E.); +20-1091332451 (J.M.B.)
| | - Nermeen A. Eltahawy
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (M.S.G.); (N.A.E.)
| |
Collapse
|
38
|
Castro SL, Tapias V, Gathagan R, Emes A, Brandon TE, Smith AD. Blueberry juice augments exercise-induced neuroprotection in a Parkinson's disease model through modulation of GDNF levels. IBRO Neurosci Rep 2022; 12:217-227. [PMID: 35321527 PMCID: PMC8935512 DOI: 10.1016/j.ibneur.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/21/2022] Open
Abstract
Exercise and consumption of plant-based foods rich in polyphenols are attractive therapeutic approaches for the prevention and treatment of Parkinson's disease (PD). Few studies, however, have examined the neuroprotective efficacy of combining these treatment modalities against PD. Therefore we investigated whether combining voluntary running and consumption of blueberry juice (BBJ) was more efficacious against 6-hydroxydopamine (6-OHDA) toxicity than either treatment alone. Four weeks of running before and after intrastriatal 6-OHDA reduced amphetamine-induced rotational behavior and loss of substantia nigra dopamine (DA) neurons. BBJ consumption alone had no ameliorative effects, but when combined with exercise, behavioral deficits and nigrostriatal DA neurodegeneration were reduced to a greater extent than exercise alone. The neuroprotection observed with exercise alone was associated with an increase in striatal glial cell-lined derived neurotrophic factor (GDNF), whereas combining exercise and BBJ was associated with an increase in nigral GDNF. These results suggest that polyphenols may potentiate the protective effects of exercise and that differential regulation of GDNF expression underlies protection observed with exercise alone versus combined treatment with consumption of BBJ.
Collapse
Affiliation(s)
- Sandra L Castro
- Pittsburgh Institute of Neurodegenerative Disease, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - Victor Tapias
- Pittsburgh Institute of Neurodegenerative Disease, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh, PA 15213, USA
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid - Consejo Superior de Investigaciones Científicas, Valladolid 47003, Spain
| | - Ronald Gathagan
- Pittsburgh Institute of Neurodegenerative Disease, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - Alexandra Emes
- Pittsburgh Institute of Neurodegenerative Disease, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | | | - Amanda D Smith
- Pittsburgh Institute of Neurodegenerative Disease, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh, PA 15213, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
39
|
Taheri F, Sattari E, Hormozi M, Ahmadvand H, Bigdeli MR, Kordestani-Moghadam P, Anbari K, Milanizadeh S, Moghaddasi M. Dose-Dependent Effects of Astaxanthin on Ischemia/Reperfusion Induced Brain Injury in MCAO Model Rat. Neurochem Res 2022; 47:1736-1750. [DOI: 10.1007/s11064-022-03565-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022]
|
40
|
Zhang X, Molsberry SA, Yeh TS, Cassidy A, Schwarzschild MA, Ascherio A, Gao X. Intake of Flavonoids and Flavonoid-Rich Foods and Mortality Risk Among Individuals With Parkinson Disease: A Prospective Cohort Study. Neurology 2022; 98:e1064-e1076. [PMID: 35082171 PMCID: PMC8967390 DOI: 10.1212/wnl.0000000000013275] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/21/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Although flavonoids have the potential to exert neuroprotective benefits, evidence of their role in improving survival rates among individuals with Parkinson disease (PD) remains lacking. We aimed to prospectively study the association between prediagnosis and postdiagnosis flavonoid intakes and risk of mortality among individuals with PD identified from 2 large ongoing cohorts of US men and women. METHODS Included in the current analysis were 599 women from the Nurses' Health Study and 652 men from the Health Professionals Follow-Up Study who were newly diagnosed with PD during follow-up. Dietary intakes of total flavonoid and its subclasses, together with major flavonoid-rich foods (tea, apples, berries, orange and orange juice, and red wine), were repeatedly assessed with a validated food frequency questionnaire every 4 years. Mortality was ascertained via the National Death Index and state vital statistics records. RESULTS We documented 944 deaths during 32 to 34 years of follow-up. A higher total flavonoid intake before PD diagnosis was associated with a lower future risk for all-cause mortality in men (hazard ratio [HR] comparing 2 extreme quartiles 0.53, 95% confidence interval [CI] 0.39, 0.71; p for trend < 0.001) but not in women (HR 0.93, 95% CI 0.68, 1.28; p for trend = 0.69) after adjustment for age, smoking status, total energy intake, and other covariates. The pooled HR comparing the extreme quartiles was 0.70 (95% CI 0.40, 1.22; p for trend = 0.25) with significant heterogeneity (p = 0.01). For flavonoid subclasses, the highest quartile of anthocyanins, flavones, and flavan-3-ols intakes before diagnosis had a lower mortality risk compared to the lowest quartile (pooled HR 0.66, 0.78, and 0.69, respectively; p < 0.05 for all); for berries and red wine, participants consuming ≥3 servings per week had a lower risk (pooled HR 0.77, 95% CI 0.58, 1.02; and pooled HR 0.68, 95% CI 0.51, 0.91, respectively) compared to <1 serving per month. After PD diagnosis, greater consumptions of total flavonoid, subclasses including flavonols, anthocyanins, flavan-3-ols, and polymers, and berries and red wine were associated with lower mortality risk (p < 0.05 for all). DISCUSSION Among individuals with PD, higher consumption of flavonoids, especially anthocyanins and flavan-3-ols, and flavonoid-rich food such as berries and red wine was likely to be associated with a lower risk of mortality.
Collapse
Affiliation(s)
- Xinyuan Zhang
- From the Department of Nutritional Sciences (X.Z., X.G.), Pennsylvania State University, University Park; Departments of Nutrition (S.A.M., T.-S.Y., A.A.) and Epidemiology (T.-S.Y., A.A.), Harvard T.H. Chan School of Public Health; Channing Division of Network Medicine (T.-S.Y., A.A.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Institute for Global Food Security (A.C.), Queen's University Belfast, Northern Ireland; and Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston. Dr. Yeh is currently with Nuffield Department of Population Health, Big Data Institute, University of Oxford, UK
| | - Samantha A Molsberry
- From the Department of Nutritional Sciences (X.Z., X.G.), Pennsylvania State University, University Park; Departments of Nutrition (S.A.M., T.-S.Y., A.A.) and Epidemiology (T.-S.Y., A.A.), Harvard T.H. Chan School of Public Health; Channing Division of Network Medicine (T.-S.Y., A.A.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Institute for Global Food Security (A.C.), Queen's University Belfast, Northern Ireland; and Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston. Dr. Yeh is currently with Nuffield Department of Population Health, Big Data Institute, University of Oxford, UK
| | - Tian-Shin Yeh
- From the Department of Nutritional Sciences (X.Z., X.G.), Pennsylvania State University, University Park; Departments of Nutrition (S.A.M., T.-S.Y., A.A.) and Epidemiology (T.-S.Y., A.A.), Harvard T.H. Chan School of Public Health; Channing Division of Network Medicine (T.-S.Y., A.A.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Institute for Global Food Security (A.C.), Queen's University Belfast, Northern Ireland; and Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston. Dr. Yeh is currently with Nuffield Department of Population Health, Big Data Institute, University of Oxford, UK
| | - Aedin Cassidy
- From the Department of Nutritional Sciences (X.Z., X.G.), Pennsylvania State University, University Park; Departments of Nutrition (S.A.M., T.-S.Y., A.A.) and Epidemiology (T.-S.Y., A.A.), Harvard T.H. Chan School of Public Health; Channing Division of Network Medicine (T.-S.Y., A.A.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Institute for Global Food Security (A.C.), Queen's University Belfast, Northern Ireland; and Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston. Dr. Yeh is currently with Nuffield Department of Population Health, Big Data Institute, University of Oxford, UK
| | - Michael A Schwarzschild
- From the Department of Nutritional Sciences (X.Z., X.G.), Pennsylvania State University, University Park; Departments of Nutrition (S.A.M., T.-S.Y., A.A.) and Epidemiology (T.-S.Y., A.A.), Harvard T.H. Chan School of Public Health; Channing Division of Network Medicine (T.-S.Y., A.A.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Institute for Global Food Security (A.C.), Queen's University Belfast, Northern Ireland; and Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston. Dr. Yeh is currently with Nuffield Department of Population Health, Big Data Institute, University of Oxford, UK
| | - Alberto Ascherio
- From the Department of Nutritional Sciences (X.Z., X.G.), Pennsylvania State University, University Park; Departments of Nutrition (S.A.M., T.-S.Y., A.A.) and Epidemiology (T.-S.Y., A.A.), Harvard T.H. Chan School of Public Health; Channing Division of Network Medicine (T.-S.Y., A.A.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Institute for Global Food Security (A.C.), Queen's University Belfast, Northern Ireland; and Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston. Dr. Yeh is currently with Nuffield Department of Population Health, Big Data Institute, University of Oxford, UK
| | - Xiang Gao
- From the Department of Nutritional Sciences (X.Z., X.G.), Pennsylvania State University, University Park; Departments of Nutrition (S.A.M., T.-S.Y., A.A.) and Epidemiology (T.-S.Y., A.A.), Harvard T.H. Chan School of Public Health; Channing Division of Network Medicine (T.-S.Y., A.A.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Institute for Global Food Security (A.C.), Queen's University Belfast, Northern Ireland; and Department of Neurology (M.A.S.), Massachusetts General Hospital, Boston. Dr. Yeh is currently with Nuffield Department of Population Health, Big Data Institute, University of Oxford, UK.
| |
Collapse
|
41
|
Hybertson BM, Gao B, McCord JM. Effects of the Phytochemical Combination PB123 on Nrf2 Activation, Gene Expression, and the Cholesterol Pathway in HepG2 Cells. OBM INTEGRATIVE AND COMPLIMENTARY MEDICINE 2022; 7. [PMID: 35252766 PMCID: PMC8896855 DOI: 10.21926/obm.icm.2201002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There has been a long history of human usage of the biologically-active phytochemicals in Salvia rosmarinus, Zingiber officinale, and Sophora japonica for health purposes, and we recently reported on a combination of those plant materials as the PB123 dietary supplement. In the present work we extended those studies to evaluate activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor and differential gene expression in cultured HepG2 (hepatocellular carcinoma) cells treated with PB123. We determined transcriptome changes using mRNA-seq methods, and analyzed the affected pathways using Ingenuity Pathway Analysis and BioJupies, indicating that primary effects included increasing the Nrf2 pathway and decreasing the cholesterol biosynthesis pathway. Pretreatment of cultured HepG2 cells with PB123 upregulated Nrf2-dependent cytoprotective genes and increased cellular defenses against cumene hydroperoxide-induced oxidative stress. In contrast, pretreatment of cultured HepG2 cells with PB123 downregulated cholesterol biosynthesis genes and decreased cellular cholesterol levels. These findings support the possible beneficial effects of PB123 as a healthspan-promoting dietary supplement.
Collapse
Affiliation(s)
- Brooks M Hybertson
- Pathways Bioscience, Aurora, CO 80045, USA.,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bifeng Gao
- Pathways Bioscience, Aurora, CO 80045, USA.,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joe M McCord
- Pathways Bioscience, Aurora, CO 80045, USA.,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
42
|
PEKMEZEKMEK A. MONOSODYUM GLUTAMAT, LEZZET ARTTIRICI MI, ÖLDÜREN LEZZET Mİ? KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNIVERSITESI TIP FAKÜLTESI DERGISI 2022. [DOI: 10.17517/ksutfd.1067018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Monosodium glutamat (MSG) 1800’lü yıllardan beri lezzet artırıcı katkı maddesi olarak, işlenmiş ve paketlenmiş tuzlu veya tatlı gıdalarda kullanılmaktadır. Yapılan birçok çalışma MSG kullanımının çok sayıda yapısal ve fonksiyonel bozukluklara yol açabileceğini ortaya çıkarmıştır. Son yıllarda MSG kullanımının çok artması gıda güvenliği konusunda endişelerinde artmasına neden olmuştur.
Collapse
|
43
|
Naeli MH, Fathi M, Taghdir M, Sepandi M, Abbaszadeh S, Parastouei K. Oxidative Stabilization, Pigmentation and Photosensitization Properties of Curcumin in Vanaspati Fat System under Accelerated Oxidation and Irradiation Photooxidation Conditions. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Mohammad Hossein Naeli
- Health Research Center Life Style Institute Baqiyatallah University of Medical Sciences Tehran Iran
| | - Morteza Fathi
- Health Research Center Life Style Institute Baqiyatallah University of Medical Sciences Tehran Iran
| | - Maryam Taghdir
- Health Research Center Life Style Institute Baqiyatallah University of Medical Sciences Tehran Iran
| | - Mojtaba Sepandi
- Health Research Center Life Style Institute Baqiyatallah University of Medical Sciences Tehran Iran
| | - Sepideh Abbaszadeh
- Health Research Center Life Style Institute Baqiyatallah University of Medical Sciences Tehran Iran
- Department of Nutrition and Food Hygiene Faculty of Health Baqiyatallah University of Medical Sciences Tehran Iran
| | - Karim Parastouei
- Health Research Center Life Style Institute Baqiyatallah University of Medical Sciences Tehran Iran
| |
Collapse
|
44
|
Xu X, Jia L, Ma X, Li H, Sun C. Application Potential of Plant-Derived Medicines in Prevention and Treatment of Platinum-Induced Peripheral Neurotoxicity. Front Pharmacol 2022; 12:792331. [PMID: 35095502 PMCID: PMC8793340 DOI: 10.3389/fphar.2021.792331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022] Open
Abstract
As observed with other chemotherapeutic agents, the clinical application of platinum agents is a double-edged sword. Platinum-induced peripheral neuropathy (PIPN) is a common adverse event that negatively affects clinical outcomes and patients’ quality of life. Considering the unavailability of effective established agents for preventing or treating PIPN and the increasing population of cancer survivors, the identification and development of novel, effective interventions are the need of the hour. Plant-derived medicines, recognized as ideal agents, can not only help improve PIPN without affecting chemotherapy efficacy, but may also produce synergy. In this review, we present a brief summary of the mechanisms of platinum agents and PIPN and then focus on exploring the preventive or curative effects and underlying mechanisms of plant-derived medicines, which have been evaluated under platinum-induced neurotoxicity conditions. We identified 11 plant extracts as well as 17 plant secondary metabolites, and four polyherbal preparations. Their effects against PIPN are focused on oxidative stress and mitochondrial dysfunction, glial activation and inflammation response, and ion channel dysfunction. Also, ten clinical trials have assessed the effect of herbal products in patients with PIPN. The understanding of the molecular mechanism is still limited, the quality of clinical trials need to be further improved, and in terms of their efficacy, safety, and cost effectiveness studies have not provided sufficient evidence to establish a standard practice. But plant-derived medicines have been found to be invaluable sources for the development of natural agents with beneficial effects in the prevention and treatment of PIPN.
Collapse
Affiliation(s)
- Xiaowei Xu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqun Jia
- Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoran Ma
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China.,College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
45
|
AITKEN RJ, GIBB Z. Sperm oxidative stress in the context of male infertility: current evidence, links with genetic and epigenetic factors and future clinical needs. Minerva Endocrinol (Torino) 2022; 47:38-57. [DOI: 10.23736/s2724-6507.21.03630-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Kohlmann T, Goez M. The radicals of quercetin-derived antioxidants in Triton X-100 micelles. Phys Chem Chem Phys 2022; 24:5868-5878. [DOI: 10.1039/d1cp04690j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have employed photoionization with a pulsed laser (5 ns, 355 nm) as a direct access to the radicals of quercetin, five of its monoethers and three of its diethers...
Collapse
|
47
|
Costas C, Faro LR. Do Naturally Occurring Antioxidants Protect Against Neurodegeneration of the Dopaminergic System? A Systematic Revision in Animal Models of Parkinson's Disease. Curr Neuropharmacol 2022; 20:432-459. [PMID: 33882808 PMCID: PMC9413795 DOI: 10.2174/1570159x19666210421092725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/18/2021] [Accepted: 04/16/2021] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and is characterized by a significant decrease in dopamine levels, caused by progressive degeneration of the dopaminergic neurons in the nigrostriatal pathway. Multiple mechanisms have been implicated in its pathogenesis, including oxidative stress, neuroinflammation, protein aggregation, mitochondrial dysfunction, insufficient support for neurotrophic factors and cell apoptosis. The absence of treatments capable of slowing or stopping the progression of PD has increased the interest in the natural antioxidant substances present in the diet, since they have multiple beneficial properties and it is possible that they can influence the mechanisms responsible for the dysfunction and death of dopaminergic neurons. Thus, the purpose of this systematic review is to analyze the results obtained in a set of studies carried out in the last years, which describe the neuroprotective, antioxidant and regenerative functions of some naturally occurring antioxidants in experimental models of PD. The results show that the exogenous no enzymatic antioxidants can significantly modify the biochemical and behavioral mechanisms that contribute to the pathophysiology of Parkinsonism in experimental animals. Therefore, it is possible that they may contribute to effective neuroprotection by providing a significant improvement in neuropathological markers. In conclusion, the results of this review suggest that exogenous antioxidants can be promising therapeutic candidates for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Carmen Costas
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Campus Lagoas-Marcosende, 36310, Vigo, Spain
| | - Lilian R.F. Faro
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Campus Lagoas-Marcosende, 36310, Vigo, Spain
| |
Collapse
|
48
|
Yun YJ, Park BH, Hou J, Oh JP, Han JH, Kim SC. Ginsenoside F1 Protects the Brain against Amyloid Beta-Induced Toxicity by Regulating IDE and NEP. Life (Basel) 2022; 12:58. [PMID: 35054451 PMCID: PMC8779788 DOI: 10.3390/life12010058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Ginsenoside F1, the metabolite of Rg1, is one of the most important constituents of Panax ginseng. Although the effects of ginsenosides on amyloid beta (Aβ) aggregation in the brain are known, the role of ginsenoside F1 remains unclear. Here, we investigated the protective effect of ginsenoside F1 against Aβ aggregation in vivo and in vitro. Treatment with 2.5 μM ginsenoside F1 reduced Aβ-induced cytotoxicity by decreasing Aβ aggregation in mouse neuroblastoma neuro-2a (N2a) and human neuroblastoma SH-SY5Y neuronal cell lines. Western blotting, real-time PCR, and siRNA analysis revealed an increased level of insulin-degrading enzyme (IDE) and neprilysin (NEP). Furthermore, liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis confirmed that ginsenoside F1 could pass the blood-brain barrier within 2 h after administration. Immunostaining results indicate that ginsenoside F1 reduces Aβ plaques in the hippocampus of APPswe/PSEN1dE9 (APP/PS1) double-transgenic Alzheimer's disease (AD) mice. Consistently, increased levels of IDE and NEP protein and mRNA were observed after the 8-week administration of 10 mg/kg/d ginsenoside F1. These data indicate that ginsenoside F1 is a promising therapeutic candidate for AD.
Collapse
Affiliation(s)
- Yee-Jin Yun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.-J.Y.); (J.-P.O.); (J.-H.H.)
| | - Bong-Hwan Park
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea; (B.-H.P.); (J.H.)
| | - Jingang Hou
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea; (B.-H.P.); (J.H.)
| | - Jung-Pyo Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.-J.Y.); (J.-P.O.); (J.-H.H.)
| | - Jin-Hee Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.-J.Y.); (J.-P.O.); (J.-H.H.)
| | - Sun-Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.-J.Y.); (J.-P.O.); (J.-H.H.)
- Intelligent Synthetic Biology Center, Daejeon 34141, Korea; (B.-H.P.); (J.H.)
| |
Collapse
|
49
|
Nadeem MS, Kazmi I, Ullah I, Muhammad K, Anwar F. Allicin, an Antioxidant and Neuroprotective Agent, Ameliorates Cognitive Impairment. Antioxidants (Basel) 2021; 11:87. [PMID: 35052591 PMCID: PMC8772758 DOI: 10.3390/antiox11010087] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023] Open
Abstract
Allicin (diallylthiosulfinate) is a defense molecule produced by cellular contents of garlic (Allium sativum L.). On tissue damage, the non-proteinogenic amino acid alliin (S-allylcysteine sulfoxide) is converted to allicin in an enzyme-mediated process catalysed by alliinase. Allicin is hydrophobic in nature, can efficiently cross the cellular membranes and behaves as a reactive sulfur species (RSS) inside the cells. It is physiologically active molecule with the ability to oxidise the thiol groups of glutathione and between cysteine residues in proteins. Allicin has shown anticancer, antimicrobial, antioxidant properties and also serves as an efficient therapeutic agent against cardiovascular diseases. In this context, the present review describes allicin as an antioxidant, and neuroprotective molecule that can ameliorate the cognitive abilities in case of neurodegenerative and neuropsychological disorders. As an antioxidant, allicin fights the reactive oxygen species (ROS) by downregulation of NOX (NADPH oxidizing) enzymes, it can directly interact to reduce the cellular levels of different types of ROS produced by a variety of peroxidases. Most of the neuroprotective actions of allicin are mediated via redox-dependent pathways. Allicin inhibits neuroinflammation by suppressing the ROS production, inhibition of TLR4/MyD88/NF-κB, P38 and JNK pathways. As an inhibitor of cholinesterase and (AChE) and butyrylcholinesterase (BuChE) it can be applied to manage the Alzheimer's disease, helps to maintain the balance of neurotransmitters in case of autism spectrum disorder (ASD) and attention deficit hyperactive syndrome (ADHD). In case of acute traumatic spinal cord injury (SCI) allicin protects neuron damage by regulating inflammation, apoptosis and promoting the expression levels of Nrf2 (nuclear factor erythroid 2-related factor 2). Metal induced neurodegeneration can also be attenuated and cognitive abilities of patients suffering from neurological diseases can be ameliorates by allicin administration.
Collapse
Affiliation(s)
- Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| | - Inam Ullah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan; (I.U.); (K.M.)
| | - Khushi Muhammad
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan; (I.U.); (K.M.)
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| |
Collapse
|
50
|
Kokošová V, Filip P, Kec D, Baláž M. Bidirectional Association Between Sleep and Brain Atrophy in Aging. Front Aging Neurosci 2021; 13:726662. [PMID: 34955805 PMCID: PMC8693777 DOI: 10.3389/fnagi.2021.726662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
Human brain aging is characterized by the gradual deterioration of its function and structure, affected by the interplay of a multitude of causal factors. The sleep, a periodically repeating state of reversible unconsciousness characterized by distinct electrical brain activity, is crucial for maintaining brain homeostasis. Indeed, insufficient sleep was associated with accelerated brain atrophy and impaired brain functional connectivity. Concurrently, alteration of sleep-related transient electrical events in senescence was correlated with structural and functional deterioration of brain regions responsible for their generation, implying the interconnectedness of sleep and brain structure. This review discusses currently available data on the link between human brain aging and sleep derived from various neuroimaging and neurophysiological methods. We advocate the notion of a mutual relationship between the sleep structure and age-related alterations of functional and structural brain integrity, pointing out the position of high-quality sleep as a potent preventive factor of early brain aging and neurodegeneration. However, further studies are needed to reveal the causality of the relationship between sleep and brain aging.
Collapse
Affiliation(s)
- Viktória Kokošová
- Department of Neurology, Faculty of Medicine, University Hospital Brno and Masaryk University, Brno, Czechia
| | - Pavel Filip
- Department of Neurology, First Faculty of Medicine, General University Hospital Prague and Charles University, Prague, Czechia.,Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - David Kec
- Department of Neurology, Faculty of Medicine, University Hospital Brno and Masaryk University, Brno, Czechia
| | - Marek Baláž
- First Department of Neurology, Faculty of Medicine, University Hospital of St. Anne and Masaryk University, Brno, Czechia
| |
Collapse
|