1
|
Sun Y, Alseekh S, Fernie AR. Plant secondary metabolic responses to global climate change: A meta-analysis in medicinal and aromatic plants. GLOBAL CHANGE BIOLOGY 2023; 29:477-504. [PMID: 36271675 DOI: 10.1111/gcb.16484] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Plant secondary metabolites (SMs) play crucial roles in plant-environment interactions and contribute greatly to human health. Global climate changes are expected to dramatically affect plant secondary metabolism, yet a systematic understanding of such influences is still lacking. Here, we employed medicinal and aromatic plants (MAAPs) as model plant taxa and performed a meta-analysis from 360 publications using 1828 paired observations to assess the responses of different SMs levels and the accompanying plant traits to elevated carbon dioxide (eCO2 ), elevated temperature (eT), elevated nitrogen deposition (eN) and decreased precipitation (dP). The overall results showed that phenolic and terpenoid levels generally respond positively to eCO2 but negatively to eN, while the total alkaloid concentration was increased remarkably by eN. By contrast, dP promotes the levels of all SMs, while eT exclusively exerts a positive influence on the levels of phenolic compounds. Further analysis highlighted the dependence of SM responses on different moderators such as plant functional types, climate change levels or exposure durations, mean annual temperature and mean annual precipitation. Moreover, plant phenolic and terpenoid responses to climate changes could be attributed to the variations of C/N ratio and total soluble sugar levels, while the trade-off supposition contributed to SM responses to climate changes other than eCO2 . Taken together, our results predicted the distinctive SM responses to diverse climate changes in MAAPs and allowed us to define potential moderators responsible for these variations. Further, linking SM responses to C-N metabolism and growth-defence balance provided biological understandings in terms of plant secondary metabolic regulation.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-Sen), Nanjing, China
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
2
|
Sasidharan H, Chembrakuniyil M, Krishnan S. Green root cultures for enhanced production of camptothecin in Pyrenacantha volubilis Hook. J Biotechnol 2022; 360:62-70. [PMID: 36272577 DOI: 10.1016/j.jbiotec.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
The roots of Pyrenacantha volubilis contain camptothecin (CPT), a high-value bioactive compound possessing anticancer and anti-HIV properties. Isolated root cultures of P. volubilis established in half MS media fortified with 0.3 mgL-1 indole-3-acetic acid and 0.2 mgL-1 indole-3-butyric acid and transferred to light conditions resulted in induction of green roots which obtained a maximum biomass content of 1.09 ± 0.03 g fresh weight with a growth index of 2.07 ± 0.02 in 60 days. The chlorophyll and camptothecin content of the roots was found to increase throughout the culture period attaining a maximum total chlorophyll content of 2.97 ± 0.004 mgg-1 fresh weight in 60 days and CPT content of 2.59 ± 0.02 mgg-1dry weight in 50 days. In the elicitation studies, the green roots treated with 200 mgL-1 yeast extract yielded a maximum camptothecin content of 5.3 ± 0.40 mgg-1 dry weight in 7 days of incubation, which was a 1.94 fold increase in camptothecin content than the control cultures. The thin layer chromatography, high performance liquid chromatography, and liquid chromatography-mass spectroscopy analysis further confirmed the presence of camptothecin (2.17 ± 0.04 mgg-1DW) in the 30 day old in vitro root samples. The overall results suggest the feasibility of green root cultures of P. volubilis as an efficient system for sustainable in vitro production of camptothecin provided further scaling up experiments in bio reactors are imperative.
Collapse
Affiliation(s)
- Hima Sasidharan
- Biotechnology and Bioinformatics Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, India
| | - Midhu Chembrakuniyil
- Biotechnology and Bioinformatics Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, India
| | - Satheeshkumar Krishnan
- Biotechnology and Bioinformatics Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, India.
| |
Collapse
|
3
|
Effect of enriched CO2 atmosphere on morphological and chemical characteristics of Alternanthera philoxeroides. ACTA OECOLOGICA 2021. [DOI: 10.1016/j.actao.2021.103761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Hazra A, Saha S, Dasgupta N, Kumar R, Sengupta C, Das S. Ecophysiological traits differentially modulate secondary metabolite accumulation and antioxidant properties of tea plant [Camellia sinensis (L.) O. Kuntze]. Sci Rep 2021; 11:2795. [PMID: 33531611 PMCID: PMC7854609 DOI: 10.1038/s41598-021-82454-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 01/20/2021] [Indexed: 01/28/2023] Open
Abstract
Owing to the diverse growing habitats, ecophysiology might have a regulatory impact on characteristic chemical components of tea plant. This study aimed to explore natural variations in the ecophysiological traits within seasons and the corresponding multifaceted biochemical responses given by the gene pool of 22 tea cultivars. Leaf temperature and intercellular carbon concentration (Ci), which varies as a function of transpiration and net photosynthesis respectively, have significant impact on the biochemical traits of the leaf. Occurrence of H2O2, in leaves, was associated to Ci that in turn influenced the lipid peroxidation. With the increment of Ci, total phenolics, epicatechin gallate (ECG), reducing power, and radical scavenging activity is lowered but total catechin and non-gallylated catechin derivatives (e.g. epicatechin or EC, epigallocatechin or EGC) are elevated. Leaf temperature is concomitantly associated (p ≤ 0.01) with phenolics, flavonoids, proanthocyanidin, tannin content, reducing power, iron chelation and free radical scavenging activities. Increased phenolic concentration in leaf cells, conceivably inhibit photosynthesis and moreover, gallic acid, thereafter conjugated to catechin derivatives. This study shed light on the fundamental information regarding ecophysiological impact on the quality determining biochemical characteristics of tea, which on further validation, might ascertain the genotype selection paradigm toward climate smart cultivation.
Collapse
Affiliation(s)
- Anjan Hazra
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
| | - Shrutakirti Saha
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
| | - Nirjhar Dasgupta
- Department of Life Sciences, Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, 700114, India
| | - Rakesh Kumar
- Darjeeling Tea Research and Development Center, Kurseong, West Bengal, 734203, India
| | - Chandan Sengupta
- Department of Botany, University of Kalyani, Nadia, 741235, India
| | - Sauren Das
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India.
| |
Collapse
|
5
|
Almuhayawi MS, Hassan AHA, Al Jaouni SK, Alkhalifah DHM, Hozzein WN, Selim S, AbdElgawad H, Khamis G. Influence of elevated CO 2 on nutritive value and health-promoting prospective of three genotypes of Alfalfa sprouts (Medicago Sativa). Food Chem 2020; 340:128147. [PMID: 33032148 DOI: 10.1016/j.foodchem.2020.128147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/09/2023]
Abstract
Alfalfa sprouts are well known for their nutritive values. Although there are several studies reported the positive impact of elevated CO2 (eCO2) on plants, there are no in-depth, comprehensive studies on how eCO2 could improve the sprouting of plant seeds. Herein, the production of health-promoting metabolites was determined in eCO2 (620 ppm)-treated Alfalfa sprout cultivars (Giza 1, Nubaria and Ismailia 1). eCO2 increased the photosynthetic process and pigment contents, which consequently induced carbohydrates, proteins, fats and fiber accumulation. eCO2 also boosted the levels of vitamins, phenolics, flavonoids and mineral individuals and enhanced the antioxidant capacity of alfalfa sprouts. Interestingly, eCO2 reduced the antinutritional factor l-canavanine content in Ismailia 1 cultivar and improved the anti-inflammatory activities through inhibiting cyclooxygenase-2 and lipoxygenase activity. Therefore, eCO2 is a promising approach to improve the health-promoting prospective of alfalfa sprouts to be a valuable source of nutritious and bioactive compounds in our daily diet.
Collapse
Affiliation(s)
- Mohammed S Almuhayawi
- Department of Clinical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Abdelrahim H A Hassan
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Soad K Al Jaouni
- Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Dalal Hussien M Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. 2014, Saudi Arabia; Botany Department, Faculty of Science, Suez Canal University, Ismailia, P.O. 41522, Egypt
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Galal Khamis
- Department of Laser Applications in Metrology, Photochemistry and Agriculture (LAMPA), National Institute of Laser Enhanced Sciences, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Chitosan and its oligosaccharides, a promising option for sustainable crop production- a review. Carbohydr Polym 2020; 227:115331. [DOI: 10.1016/j.carbpol.2019.115331] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/15/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
|
7
|
Faria APD, Marabesi MA, Gaspar M, França MGC. The increase of current atmospheric CO 2 and temperature can benefit leaf gas exchanges, carbohydrate content and growth in C4 grass invaders of the Cerrado biome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:608-616. [PMID: 29738989 DOI: 10.1016/j.plaphy.2018.04.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Leaf gas exchanges, carbohydrate metabolism and growth of three Brazilian Cerrado invasive African grasses were evaluated after growing for 75 days under doubled CO2 concentration and temperature elevated by 3 °C. Results showed that although the species presented photosynthetic C4 metabolism, they all had some kind of positive response to increased CO2. Urochloa brizantha and Megathyrsus maximus showed increased height for all induced environmental conditions. Urochloa decumbens showed only improvement in water use efficiency (WUE), while U. brizantha showed increased CO2 assimilation and M. maximus presented higher biomass accumulation under doubled CO2 concentration. The most significant improvement of increased CO2 in all three species appears to be the increase in WUE. This improvement probably explains the positive increase of photosynthesis and biomass accumulation presented by U. brizantha and M. maximus, respectively. The increase in temperature affected leaf carbohydrate content of M. maximus by reducing sucrose, glucose and fructose content. These reductions were not related to thermal stress since photosynthesis and growth were not harmed. Cellulose content was not affected in any of the three species, just the lignin content in U. decumbens and M. maximus. All treatments promoted lignin content reduction in U. brizantha, suggesting a delay in leaf maturation of this species. Together, the results indicate that climate change may differentially promote changes in leaf gas exchanges, carbohydrate content and growth in C4 plant species studied and all of them could benefit in some way from these changes, constituting a threat to the native Cerrado biodiversity.
Collapse
Affiliation(s)
- A P de Faria
- Departamento de Botânica, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil; Laboratório de Fisiologia Vegetal, Universidade Federal de Uberlândia, 38400-902, Uberlândia, MG, Brazil
| | - M A Marabesi
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, 04301-902, São Paulo, SP, Brazil
| | - M Gaspar
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, 04301-902, São Paulo, SP, Brazil
| | - M G C França
- Departamento de Botânica, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
8
|
Li X, Zhang L, Ahammed GJ, Li ZX, Wei JP, Shen C, Yan P, Zhang LP, Han WY. Stimulation in primary and secondary metabolism by elevated carbon dioxide alters green tea quality in Camellia sinensis L. Sci Rep 2017; 7:7937. [PMID: 28801632 PMCID: PMC5554289 DOI: 10.1038/s41598-017-08465-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 06/29/2017] [Indexed: 11/29/2022] Open
Abstract
Rising CO2 concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of elevated CO2 on primary and secondary metabolism in tea plants (Camellia sinensis L.) still remain largely unknown. Here we showed that exposure of tea plants to elevated CO2 (800 µmol mol−1 for 24 d) remarkably improved both photosynthesis and respiration in tea leaves. Furthermore, elevated CO2 increased the concentrations of soluble sugar, starch and total carbon, but decreased the total nitrogen concentration, resulting in an increased carbon to nitrogen ratio in tea leaves. Among the tea quality parameters, tea polyphenol, free amino acid and theanine concentrations increased, while the caffeine concentration decreased after CO2 enrichment. The concentrations of individual catechins were altered differentially resulting in an increased total catechins concentration under elevated CO2 condition. Real-time qPCR analysis revealed that the expression levels of catechins and theanine biosynthetic genes were up-regulated, while that of caffeine synthetic genes were down-regulated in tea leaves when grown under elevated CO2 condition. These results unveiled profound effects of CO2 enrichment on photosynthesis and respiration in tea plants, which eventually modulated the biosynthesis of key secondary metabolites towards production of a quality green tea.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou, 310008, P.R. China
| | - Lan Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou, 310008, P.R. China
| | - Golam Jalal Ahammed
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou, 310008, P.R. China.,Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, P.R. China
| | - Zhi-Xin Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou, 310008, P.R. China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Ji-Peng Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou, 310008, P.R. China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Chen Shen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou, 310008, P.R. China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Peng Yan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou, 310008, P.R. China
| | - Li-Ping Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou, 310008, P.R. China
| | - Wen-Yan Han
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou, 310008, P.R. China.
| |
Collapse
|
9
|
Mendes de Rezende F, Pereira de Souza A, Silveira Buckeridge M, Maria Furlan C. Is guava phenolic metabolism influenced by elevated atmospheric CO2? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 196:483-488. [PMID: 25129845 DOI: 10.1016/j.envpol.2014.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 07/17/2014] [Accepted: 07/24/2014] [Indexed: 06/03/2023]
Abstract
Seedlings of Psidium guajava cv. Pedro Sato were distributed into four open-top chambers: two with ambient CO(2) (∼390 ppm) and two with elevated CO(2) (∼780 ppm). Monthly, five individuals of each chamber were collected, separated into root, stem and leaves and immediately frozen in liquid nitrogen. Chemical parameters were analyzed to investigate how guava invests the surplus carbon. For all classes of phenolic compounds analyzed only tannins showed significant increase in plants at elevated CO(2) after 90 days. There was no significant difference in dry biomass, but the leaves showed high accumulation of starch under elevated CO(2). Results suggest that elevated CO(2) seems to be favorable to seedlings of P. guajava, due to accumulation of starch and tannins, the latter being an important anti-herbivore substance.
Collapse
Affiliation(s)
- Fernanda Mendes de Rezende
- Department of Botany, Institute of Bioscience, University of São Paulo, Rua do Matão, 277, CEP 05508-090, São Paulo, SP, Brazil.
| | - Amanda Pereira de Souza
- Department of Botany, Institute of Bioscience, University of São Paulo, Rua do Matão, 277, CEP 05508-090, São Paulo, SP, Brazil
| | - Marcos Silveira Buckeridge
- Department of Botany, Institute of Bioscience, University of São Paulo, Rua do Matão, 277, CEP 05508-090, São Paulo, SP, Brazil
| | - Cláudia Maria Furlan
- Department of Botany, Institute of Bioscience, University of São Paulo, Rua do Matão, 277, CEP 05508-090, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Ghasemzadeh A, Jaafar HZE, Karimi E, Ashkani S. Changes in nutritional metabolites of young ginger (Zingiber officinale Roscoe) in response to elevated carbon dioxide. Molecules 2014; 19:16693-706. [PMID: 25325154 PMCID: PMC6270952 DOI: 10.3390/molecules191016693] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/23/2014] [Accepted: 09/23/2014] [Indexed: 11/17/2022] Open
Abstract
The increase of atmospheric CO2 due to global climate change or horticultural practices has direct and indirect effects on food crop quality. One question that needs to be asked, is whether CO2 enrichment affects the nutritional quality of Malaysian young ginger plants. Responses of total carbohydrate, fructose, glucose, sucrose, protein, soluble amino acids and antinutrients to either ambient (400 μmol/mol) and elevated (800 μmol/mol) CO2 treatments were determined in the leaf and rhizome of two ginger varieties namely Halia Bentong and Halia Bara. Increasing of CO2 level from ambient to elevated resulted in increased content of total carbohydrate, sucrose, glucose, and fructose in the leaf and rhizome of ginger varieties. Sucrose was the major sugar followed by glucose and fructose in the leaf and rhizome extract of both varieties. Elevated CO2 resulted in a reduction of total protein content in the leaf (H. Bentong: 38.0%; H. Bara: 35.4%) and rhizome (H. Bentong: 29.0%; H. Bara: 46.2%). In addition, under CO2 enrichment, the concentration of amino acids increased by approximately 14.5% and 98.9% in H. Bentong and 12.0% and 110.3% in H. Bara leaf and rhizome, respectively. The antinutrient contents (cyanide and tannin) except phytic acid were influenced significantly (P ≤ 0.05) by CO2 concentration. Leaf extract of H. Bara exposed to elevated CO2 exhibited highest content of cyanide (336.1 mg HCN/kg DW), while, highest content of tannin (27.5 g/kg DW) and phytic acid (54.1 g/kg DW) were recorded from H.Bara rhizome grown under elevated CO2. These results demonstrate that the CO2 enrichment technique could improve content of some amino acids and antinutrients of ginger as a food crop by enhancing its nutritional and health-promoting properties.
Collapse
Affiliation(s)
- Ali Ghasemzadeh
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Hawa Z E Jaafar
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Ehsan Karimi
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Sadegh Ashkani
- Institute of Tropical Agriculture, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
11
|
Chinnababu B, Purushotham Reddy S, Venkatesham K, Chandra Rao D, Venkateswarlu Y. Stereoselective Total Synthesis of Phenolic Nonadecanediol. Helv Chim Acta 2014. [DOI: 10.1002/hlca.201300221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Allocation of secondary metabolites, photosynthetic capacity, and antioxidant activity of Kacip Fatimah (Labisia pumila Benth) in response to CO2 and light intensity. ScientificWorldJournal 2014; 2014:360290. [PMID: 24683336 PMCID: PMC3934534 DOI: 10.1155/2014/360290] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 12/26/2013] [Indexed: 12/23/2022] Open
Abstract
A split plot 3 by 4 experiment was designed to investigate and distinguish the relationships among production of secondary metabolites, soluble sugar, phenylalanine ammonia lyase (PAL; EC 4.3.1.5) activity, leaf gas exchange, chlorophyll content, antioxidant activity (DPPH), and lipid peroxidation under three levels of CO2 (400, 800, and 1200 μ mol/mol) and four levels of light intensity (225, 500, 625, and 900 μ mol/m(2)/s) over 15 weeks in Labisia pumila. The production of plant secondary metabolites, sugar, chlorophyll content, antioxidant activity, and malondialdehyde content was influenced by the interactions between CO2 and irradiance. The highest accumulation of secondary metabolites, sugar, maliondialdehyde, and DPPH activity was observed under CO2 at 1200 μ mol/mol + light intensity at 225 μ mol/m(2)/s. Meanwhile, at 400 μ mol/mol CO2 + 900 μ mol/m(2)/s light intensity the production of chlorophyll and maliondialdehyde content was the highest. As CO2 levels increased from 400 to 1200 μ mol/mol the photosynthesis, stomatal conductance, f v /f m (maximum efficiency of photosystem II), and PAL activity were enhanced. The production of secondary metabolites displayed a significant negative relationship with maliondialdehyde indicating lowered oxidative stress under high CO2 and low irradiance improved the production of plant secondary metabolites that simultaneously enhanced the antioxidant activity (DPPH), thus improving the medicinal value of Labisia pumila under this condition.
Collapse
|
13
|
Ibrahim MH, Jaafar HZE, Karimi E, Ghasemzadeh A. Impact of organic and inorganic fertilizers application on the phytochemical and antioxidant activity of Kacip Fatimah (Labisia pumila Benth). Molecules 2013; 18:10973-88. [PMID: 24013410 PMCID: PMC6270615 DOI: 10.3390/molecules180910973] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/29/2013] [Accepted: 09/02/2013] [Indexed: 12/30/2022] Open
Abstract
A study was conducted to compare secondary metabolites and antioxidant activity of Labisia pumila Benth (Kacip Fatimah) in response to two sources of fertilizer [i.e., organic (chicken dung; 10% N:10% P₂O₅:10% K₂O) and inorganic fertilizer (NPK green; 15% N, 15% P₂O₅, 15% K₂O)] under different N rates of 0, 90, 180 and 270 kg N/ha. The experiment was arranged in a randomized complete block design replicated three times. At the end of 15 weeks, it was observed that the application of organic fertilizer enhanced the production of total phenolics, flavonoids, ascorbic acid, saponin and gluthathione content in L. pumila, compared to the use of inorganic fertilizer. The nitrate content was also reduced under organic fertilization. The application of nitrogen at 90 kg N/ha improved the production of secondary metabolites in Labisia pumila. Higher rates in excess of 90 kg N/ha reduced the level of secondary metabolites and antioxidant activity of this herb. The DPPH and FRAP activity was also highest at 90 kg N/ha. The results indicated that the use of chicken dung can enhance the production of secondary metabolites and improve antioxidant activity of this herb.
Collapse
Affiliation(s)
- Mohd Hafiz Ibrahim
- Department of Biology, Faculty of Science, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Hawa Z. E. Jaafar
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Selangor, Malaysia; E-Mails: (H.Z.E.J.); (E.K.); (A.G.)
| | - Ehsan Karimi
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Selangor, Malaysia; E-Mails: (H.Z.E.J.); (E.K.); (A.G.)
| | - Ali Ghasemzadeh
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Selangor, Malaysia; E-Mails: (H.Z.E.J.); (E.K.); (A.G.)
| |
Collapse
|
14
|
Ibrahim MH, Jaafar HZE, Karimi E, Ghasemzadeh A. Primary, secondary metabolites, photosynthetic capacity and antioxidant activity of the Malaysian Herb Kacip Fatimah (Labisia Pumila Benth) exposed to potassium fertilization under greenhouse conditions. Int J Mol Sci 2012. [PMID: 23203128 PMCID: PMC3509644 DOI: 10.3390/ijms131115321] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A randomized complete block design was used to characterize the relationship between production of total phenolics, flavonoids, ascorbic acid, carbohydrate content, leaf gas exchange, phenylalanine ammonia-lyase (PAL), soluble protein, invertase and antioxidant enzyme activities (ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD) in Labisia pumila Benth var. alata under four levels of potassium fertilization experiments (0, 90, 180 and 270 kg K/ha) conducted for 12 weeks. It was found that the production of total phenolics, flavonoids, ascorbic acid and carbohydrate content was affected by the interaction between potassium fertilization and plant parts. As the potassium fertilization levels increased from 0 to 270 kg K/ha, the production of soluble protein and PAL activity increased steadily. At the highest potassium fertilization (270 kg K/ha) L. pumila exhibited significantly higher net photosynthesis (A), stomatal conductance (gs), intercellular CO2 (Ci), apparent quantum yield (ξ) and lower dark respiration rates (Rd), compared to the other treatments. It was found that the production of total phenolics, flavonoids and ascorbic acid are also higher under 270 kg K/ha compared to 180, 90 and 0 kg K/ha. Furthermore, from the present study, the invertase activity was also found to be higher in 270 kg K/ha treatment. The antioxidant enzyme activities (APX, CAT and SOD) were lower under high potassium fertilization (270 kg K/ha) and have a significant negative correlation with total phenolics and flavonoid production. From this study, it was observed that the up-regulation of leaf gas exchange and downregulation of APX, CAT and SOD activities under high supplementation of potassium fertilizer enhanced the carbohydrate content that simultaneously increased the production of L. pumila secondary metabolites, thus increasing the health promoting effects of this plant.
Collapse
Affiliation(s)
- Mohd Hafiz Ibrahim
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | | | | | | |
Collapse
|
15
|
Jaafar HZE, Ibrahim MH, Mohamad Fakri NF. Impact of soil field water capacity on secondary metabolites, phenylalanine ammonia-lyase (PAL), maliondialdehyde (MDA) and photosynthetic responses of Malaysian kacip fatimah (Labisia pumila Benth). Molecules 2012; 17:7305-22. [PMID: 22695235 PMCID: PMC6268701 DOI: 10.3390/molecules17067305] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/07/2012] [Accepted: 06/11/2012] [Indexed: 11/25/2022] Open
Abstract
A randomized complete block design 2 × 4 experiment was designed and conducted for 15 weeks to characterize the relationships between production of total phenolics, flavonoid, anthocyanin, leaf gas exchange, total chlorophyll, phenylalanine ammonia-lyase (PAL) and malondialdehyde (MDA) activity in two varieties of Labisia pumila Benth, namely the var. alata and pumila, under four levels of evapotranspiration replacement (ER) (100%; well watered), (75%, moderate water stress), (50%; high water stress) and (25%; severe water stress). The production of total phenolics, flavonoids, anthocyanin, soluble sugar and relative leaf water content was affected by the interaction between varieties and SWC. As the ER levels decreased from 100% to 25%, the production of PAL and MDA activity increased steadily. At the highest (100%) ER L. pumila exhibited significantly higher net photosynthesis, apparent quantum yield, maximum efficiency of photosystem II (f(v)/f(m)) and lower dark respiration rates compared to the other treatment. The production of total phenolics, flavonoids and anthocyanin was also found to be higher under high water stress (50% ER replacement) compared to severe water stress (25% ER). From this study, it was observed that as net photosynthesis, apparent quantum yield and chlorophyll content were downregulated under high water stress the production of total phenolics, flavonoids and anthocyanin were upregulated implying that the imposition of high water stress can enhance the medicinal properties of L. pumila Benth.
Collapse
Affiliation(s)
- Hawa Z E Jaafar
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | | | | |
Collapse
|
16
|
Lhotáková Z, Urban O, Dubánková M, Cvikrová M, Tomášková I, Kubínová L, Zvára K, Marek MV, Albrechtová J. The impact of long-term CO2 enrichment on sun and shade needles of Norway spruce (Picea abies): photosynthetic performance, needle anatomy and phenolics accumulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 188-189:60-70. [PMID: 22525245 DOI: 10.1016/j.plantsci.2012.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 02/20/2012] [Accepted: 02/25/2012] [Indexed: 05/31/2023]
Abstract
Norway spruce (Picea abies L. Karst) grown under ambient (365-377 μmol(CO(2)) mol(-1); AC) and elevated (700 μmol(CO(2)) mol(-1); EC) CO(2) concentrations within glass domes with automatically adjustable windows and on an open-air control site were studied after 8 years of treatment. The effect of EC on photosynthesis, mesophyll structure and phenolics accumulation in sun and shade needles was examined. Photosynthetic assimilation and dark respiration rates were measured gasometrically; the structural parameters of mesophyll were determined using confocal microscopy and stereological methods. The contents of total soluble phenolics and lignin were assessed spectrophotometrically, and localizations of different phenolic groups were detected histochemically on needle cross-sections. EC enhanced the light-saturated CO(2) assimilation rate and reduced dark respiration in the current-year needles. No effects of CO(2) enrichment on mesophyll structural parameters were observed. Similarly, the accumulation and localization of phenolics and lignin remained unaffected by EC treatment. Needles differentiated into sun and shade ecotypes in the same manner and to the same extent irrespective of CO(2) treatment. Based on these results, it is apparent that the EC-induced enhancement of photosynthesis is not related to changes in the examined structural parameters of mesophyll and accumulation of phenolic compounds.
Collapse
Affiliation(s)
- Zuzana Lhotáková
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44 Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jaafar HZE, Ibrahim MH, Karimi E. Phenolics and flavonoids compounds, phenylanine ammonia lyase and antioxidant activity responses to elevated CO₂ in Labisia pumila (Myrisinaceae). Molecules 2012; 17:6331-47. [PMID: 22634843 PMCID: PMC6268359 DOI: 10.3390/molecules17066331] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/17/2012] [Accepted: 05/21/2012] [Indexed: 11/19/2022] Open
Abstract
A split plot 3 × 3 experiment was designed to examine the impact of three concentrations of CO₂ (400, 800 and 1,200 μmol·mol⁻¹) on the phenolic and flavonoid compound profiles, phenylalanine ammonia lyase (PAL) and antioxidant activity in three varieties of Labisia pumila Benth. (var. alata, pumila and lanceolata) after 15 weeks of exposure. HPLC analysis revealed a strong influence of increased CO₂ concentration on the modification of phenolic and flavonoid profiles, whose intensity depended on the interaction between CO₂ levels and L. pumila varieties. Gallic acid and quercetin were the most abundant phenolics and flavonoids commonly present in all the varieties. With elevated CO₂ (1,200 μmol·mol⁻¹) exposure, gallic acid increased tremendously, especially in var. alata and pumila (101-111%), whilst a large quercetin increase was noted in var. lanceolata (260%), followed closely by alata (201%). Kaempferol, although detected under ambient CO₂ conditions, was undetected in all varieties after exposure. Instead, caffeic acid was enhanced tremendously in var. alata (338~1,100%) and pumila (298~433%). Meanwhile, pyragallol and rutin were only seen in var. alata (810 μg·g⁻¹ DW) and pumila (25 μg·g⁻¹ DW), respectively, under ambient conditions; but the former compound went undetected in all varieties while rutin continued to increase by 262% after CO₂ enrichment. Interestingly, naringenin that was present in all varieties under ambient conditions went undetected under enrichment, except for var. pumila where it was enhanced by 1,100%. PAL activity, DPPH and FRAP also increased with increasing CO₂ levels implying the possible improvement of health-promoting quality of Malaysian L. pumila under high CO₂ enrichment conditions.
Collapse
Affiliation(s)
- Hawa Z E Jaafar
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | | | | |
Collapse
|
18
|
Ibrahim MH, Jaafar HZ. Impact of elevated carbon dioxide on primary, secondary metabolites and antioxidant responses of Eleais guineensis Jacq. (oil palm) seedlings. Molecules 2012; 17:5195-211. [PMID: 22628041 PMCID: PMC6268660 DOI: 10.3390/molecules17055195] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/21/2012] [Accepted: 04/23/2012] [Indexed: 11/16/2022] Open
Abstract
A split plot 3 by 3 experiment was designed to investigate the relationships among production of primary metabolites (soluble sugar and starch), secondary metabolites (total flavonoids, TF; total phenolics, TP), phenylalanine lyase (PAL) activity (EC 4.3.1.5), protein and antioxidant activity (FRAP) of three progenies of oil palm seedlings, namely Deli AVROS, Deli Yangambi and Deli URT, under three levels of CO2 enrichment (400, 800 and 1,200 µmol·mol−1) for 15 weeks of exposure. During the study, the treatment effects were solely contributed by CO2 enrichment levels; no progenies and interaction effects were observed. As CO2 levels increased from 400 to 1,200 µmol·mol−1, the production of carbohydrate increased steadily, especially for starch more than soluble sugar. The production of total flavonoids and phenolics contents, were the highest under 1,200 and lowest at 400 µmol·mol−1. It was found that PAL activity was peaked under 1,200 µmol·mol−1 followed by 800 µmol·mol−1 and 400 µmol·mol−1. However, soluble protein was highest under 400 µmol·mol−1 and lowest under 1,200 µmol·mol−1. The sucrose/starch ratio, i.e., the indication of sucrose phosphate synthase actvity (EC 2.4.1.14) was found to be lowest as CO2 concentration increased from 400 > 800 > 1,200 µmol·mol−1. The antioxidant activity, as determined by the ferric reducing/antioxidant potential (FRAP) activity, increased with increasing CO2 levels, and was significantly lower than vitamin C and α-tocopherol but higher than butylated hydroxytoluene (BHT). Correlation analysis revealed that nitrogen has a significant negative correlation with carbohydrate, secondary metabolites and FRAP activity indicating up-regulation of production of carbohydrate, secondary metabolites and antioxidant activity of oil palm seedling under elevated CO2 was due to reduction in nitrogen content in oil palm seedling expose to high CO2 levels.
Collapse
Affiliation(s)
| | - Hawa Z.E. Jaafar
- Author to whom correspondence should be addressed; or ; Tel.: +6-03-8946-6922; Fax: +6-03-8943-5973
| |
Collapse
|
19
|
Ibrahim MH, Jaafar HZ. Reduced photoinhibition under low irradiance enhanced Kacip Fatimah (Labisia pumila Benth) secondary metabolites, phenyl alanine lyase and antioxidant activity. Int J Mol Sci 2012; 13:5290-5306. [PMID: 22754297 PMCID: PMC3382798 DOI: 10.3390/ijms13055290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/22/2012] [Accepted: 04/05/2012] [Indexed: 11/29/2022] Open
Abstract
A randomized complete block design experiment was designed to characterize the relationship between production of total flavonoids and phenolics, anthocyanin, photosynthesis, maximum efficiency of photosystem II (Fv/Fm), electron transfer rate (Fm/Fo), phenyl alanine lyase activity (PAL) and antioxidant (DPPH) in Labisia pumila var. alata, under four levels of irradiance (225, 500, 625 and 900 μmol/m(2)/s) for 16 weeks. As irradiance levels increased from 225 to 900 μmol/m(2)/s, the production of plant secondary metabolites (total flavonoids, phenolics and antocyanin) was found to decrease steadily. Production of total flavonoids and phenolics reached their peaks under 225 followed by 500, 625 and 900 μmol/m(2)/s irradiances. Significant positive correlation of production of total phenolics, flavonoids and antocyanin content with Fv/Fm, Fm/Fo and photosynthesis indicated up-regulation of carbon-based secondary metabolites (CBSM) under reduced photoinhibition on the under low light levels condition. At the lowest irradiance levels, Labisia pumila extracts also exhibited a significantly higher antioxidant activity (DPPH) than under high irradiance. The improved antioxidative activity under low light levels might be due to high availability of total flavonoids, phenolics and anthocyanin content in the plant extract. It was also found that an increase in the production of CBSM was due to high PAL activity under low light, probably signifying more availability of phenylalanine (Phe) under this condition.
Collapse
Affiliation(s)
- Mohd Hafiz Ibrahim
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia; E-Mail:
| | - Hawa Z.E. Jaafar
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia; E-Mail:
| |
Collapse
|
20
|
Phenolic compounds characterization and biological activities of Citrus aurantium bloom. Molecules 2012; 17:1203-18. [PMID: 23442980 PMCID: PMC6268598 DOI: 10.3390/molecules17021203] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 12/27/2022] Open
Abstract
Citrus plants are known to possess beneficial biological activities for human health. In addition, ethnopharmacological application of plants is a good tool to explore their bioactivities and active compounds. This research was carried out to evaluate the phenolic and flavonoid analysis, antioxidant properties, anti inflammatory and anti cancer activity of Citrus aurantium bloom. The total phenolics and flavonoids results revealed that methanolic extract contained high total phenolics and flavonoids compared to ethanolic and boiling water extracts. The obtained total phenolics value for methanolic Citrus aurantium bloom extract was 4.55 ± 0.05 mg gallic acid equivalent (GAE)/g dry weight (DW), and for total flavonoids it was 3.83 ± 0.05 mg rutin equivalent/g DW. In addition, the RP-HPLC analyses of phenolics and flavonoids indicated the presence of gallic acid, pyrogallol, syringic acid, caffeic acid, rutin, quercetin and naringin as bioactive compounds. The antioxidant activity of Citrus aurantium bloom were examined by the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay and the ferric reducing/antioxidant potential (FRAP). The free radical scavenging and ferric reducing power activities were higher for the methanolic extract of Citrus aurantium bloom at a concentration of 300 μg/mL, with values of 55.3% and 51.7%, respectively, as compared to the corresponding boiling water and ethanolic extracts, but the activities were lower than those of antioxidant standards such as BHT and α-tocopherol. Furthermore, the anti-inflammatory result of methanolic extract showed appreciable reduction in nitric oxide production of stimulated RAW 264.7 cells at the presence of plant extract. Apart from that, the anticancer activity of the methanolic extract was investigated in vitro against human cancer cell lines (MCF-7; MDA-MB-231), human colon adenocarcinoma (HT-29) and Chang cell as a normal human hepatocyte. The obtained result demonstrated the moderate to appreciable activities against all cell line tested and the compounds present in the extracts are non-toxic which make them suitable as potential therapeutics.
Collapse
|
21
|
Ibrahim MH, Jaafar HZE. Primary, secondary metabolites, H2O2, malondialdehyde and photosynthetic responses of Orthosiphon stimaneus Benth. to different irradiance levels. Molecules 2012; 17:1159-76. [PMID: 22286668 PMCID: PMC6268385 DOI: 10.3390/molecules17021159] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 11/30/2022] Open
Abstract
The resource availability hypothesis predicts an increase in the allocation to secondary metabolites when carbon gain is improved relative to nutrient availability, which normally occurs during periods of low irradiance. The present work was carried out to confirm this hypothesis by investigating the effects of decreasing irradiance on the production of plant secondary metabolites (flavonoids and phenolics) in the herbal plant Orthosiphon stamineus, and to characterize this production by carbohydrate, H2O2, and malondialdehyde (MDA) levels, net photosynthesis, leaf chlorophyll content and carbon to nitrogen ratio (C/N). Four levels of irradiance (225, 500, 625 and 900 µmol/m2/s) were imposed onto two-week old seedlings for 12 weeks in a randomized complete block design experiment. Peak production of total flavonoids, phenolics, soluble sugar, starch and total non-structural carbohydrate ocurred under low irradiance of 225 µmol/m2/s, and decreased with increasing irradiance. The up-regulation of secondary metabolites could be explained by the concomitant increases in H2O2 and MDA activities under low irradiance. This condition also resulted in enhanced C/N ratio signifying a reduction in nitrogen levels, which had established significant negative correlations with net photosynthesis, total biomass and total chlorophyll content, indicating the possible existence of a trade-off between growth and secondary metabolism under low irradiance with reduced nitrogen content. The competition between total chlorophyll and secondary metabolites production, as exhibited by the negative correlation coefficient under low irradiance, also suggests a sign of gradual switch of investment from chlorophyll to polyphenols production.
Collapse
Affiliation(s)
| | - Hawa Z. E. Jaafar
- Author to whom correspondence should be addressed; or ; Tel.: +60-12-372-3585; Fax: +60-38-943-5973
| |
Collapse
|
22
|
Involvement of nitrogen on flavonoids, glutathione, anthocyanin, ascorbic acid and antioxidant activities of Malaysian medicinal plant Labisia pumila Blume (Kacip Fatimah). Int J Mol Sci 2011; 13:393-408. [PMID: 22312260 PMCID: PMC3269694 DOI: 10.3390/ijms13010393] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 12/18/2011] [Accepted: 12/19/2011] [Indexed: 11/16/2022] Open
Abstract
A split plot 3 by 4 experiment was designed to characterize the relationship between production of gluthatione (GSH), oxidized gluthatione (GSSG), total flavonoid, anthocyanin, ascorbic acid and antioxidant activities (FRAP and DPPH) in three varieties of Labisia pumila Blume, namely the varieties alata, pumila and lanceolata, under four levels of nitrogen fertilization (0, 90, 180 and 270 kg N/ha) for 15 weeks. The treatment effects were solely contributed by nitrogen application; there was neither varietal nor interaction effects observed. As the nitrogen levels decreased from 270 to 0 kg N/ha, the production of GSH and GSSG, anthocyanin, total flavonoid and ascorbic acid increased steadily. At the highest nitrogen treatment level, L. pumila exhibited significantly lower antioxidant activities (DPPH and FRAP) than those exposed to limited nitrogen growing conditions. Significant positive correlation was obtained between antioxidant activities (DPPH and FRAP), total flavonoid, GSH, GSSG, anthocyanin and ascorbic acid suggesting that an increase in the antioxidative activities in L. pumila under low nitrogen fertilization could be attributed to higher contents of these compounds. From this observation, it could be concluded that in order to avoid negative effects on the quality of L. pumila, it is advisable to avoid excessive application of nitrogen fertilizer when cultivating the herb for its medicinal use.
Collapse
|
23
|
Ibrahim MH, Jaafar HZ, Rahmat A, Rahman ZA. Effects of nitrogen fertilization on synthesis of primary and secondary metabolites in three varieties of Kacip Fatimah (Labisia pumila Blume). Int J Mol Sci 2011; 12:5238-54. [PMID: 21954355 PMCID: PMC3179162 DOI: 10.3390/ijms12085238] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 07/28/2011] [Accepted: 08/04/2011] [Indexed: 11/16/2022] Open
Abstract
A split plot 3 by 4 experiment was designed to examine the impact of 15-week variable levels of nitrogen fertilization (0, 90, 180 and 270 kg N/ha) on the characteristics of total flavonoids (TF), total phenolics (TP), total non structurable carbohydrate (TNC), net assimilation rate, leaf chlorophyll content, carbon to nitrogen ratio (C/N), phenyl alanine lyase activity (PAL) and protein content, and their relationships, in three varieties of Labisia pumila Blume (alata, pumila and lanceolata). The treatment effects were solely contributed by nitrogen application; there was neither varietal nor interaction effect observed. As nitrogen levels increased from 0 to 270 kg N/ha, the production of TNC was found to decrease steadily. Production of TF and TP reached their peaks under 0 followed by 90, 180 and 270 kg N/ha treatment. However, net assimilation rate was enhanced as nitrogen fertilization increased from 0 to 270 kg N/ha. The increase in production of TP and TF under low nitrogen levels (0 and 90 kg N/ha) was found to be correlated with enhanced PAL activity. The enhancement in PAL activity was followed by reduction in production of soluble protein under low nitrogen fertilization indicating more availability of amino acid phenyl alanine (phe) under low nitrogen content that stimulate the production of carbon based secondary metabolites (CBSM). The latter was manifested by high C/N ratio in L. pumila plants.
Collapse
Affiliation(s)
- Mohd Hafiz Ibrahim
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, Serdang, Selangor 43400, Malaysia; E-Mail:
| | - Hawa Z.E. Jaafar
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, Serdang, Selangor 43400, Malaysia; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: or ; Tel.: +6-03-8946-6922 or +6-012-372-3585; Fax: +6-03-8943-5973
| | - Asmah Rahmat
- Department of Nutrition & Dietetics, Faculty of Medicine & Health Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia; E-Mail:
| | - Zaharah Abdul Rahman
- Department of Land Management, Faculty of Agriculture, University Putra Malaysia, Serdang, Selangor 43400, Malaysia; E-Mail:
| |
Collapse
|
24
|
Karimi E, Jaafar HZ. HPLC and GC-MS determination of bioactive compounds in microwave obtained extracts of three varieties of Labisia pumila Benth. Molecules 2011; 16:6791-805. [PMID: 21829154 PMCID: PMC6264234 DOI: 10.3390/molecules16086791] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 12/22/2022] Open
Abstract
Microwave extraction of phytochemicals from medicinal plant materials has generated tremendous research interest and shown great potential. This research highlights the importance of microwave extraction in the analysis of flavonoids, isoflavonoid and phenolics and the antioxidant properties of extracts from three varieties of the Malaysian medicinal herb, Labisia pumila Benth. High and fast extraction performance ability, equal or higher extraction efficiencies than other methods, and the need for small samples and reagent volumes are some of the attractive features of this new promising microwave assisted extraction (MAE) technique. The aims of the present research were to determine the foliar phenolics and flavonoids contents of extracts of three varieties of L. pumila obtained by a microwave extraction method while flavonoid, isoflavonoid and phenolic compounds were analyzed using RP-HPLC. Furthermore, the antioxidant activities were measured by the DPPH and FRAP methods and finally, the chemical composition of the crude methanolic extracts of the leaves of all three varieties were analyzed by GS-MS.
Collapse
Affiliation(s)
| | - Hawa Z.E. Jaafar
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
| |
Collapse
|