1
|
Dutta S, Srivatsan SG. Enzymatic Functionalization of RNA Oligonucleotides by Terminal Uridylyl Transferase Using Fluorescent and Clickable Nucleotide Analogs. Chem Asian J 2024; 19:e202400475. [PMID: 38949615 DOI: 10.1002/asia.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
We report a systematic study on controlling the enzyme activity of a terminal uridylyl transferase (TUTase) called SpCID1, which provides methods to effect site-specific incorporation of a single modified nucleotide analog at the 3'-end of an RNA oligonucleotide (ON). Responsive heterocycle-modified fluorescent UTP probes that are useful in analyzing non-canonical nucleic acid structures and azide- and alkyne-modified UTP analogs that are compatible for chemoenzymatic functionalization were used as study systems. In the first strategy, we balanced the concentration of essential metal ion cofactors (Mg2+ and Mn2+ ions) to restrict the processivity of the enzyme, which gave a very good control on the incorporation of clickable nucleotide analogs. In the second approach, borate that complexes with 2' and 3' oxygen atoms of a ribose sugar was used as a reversibly binding chelator to block repeated addition of nucleotide analogs. Notably, in the presence of heterocycle-modified fluorescent UTPs, we obtained single-nucleotide incorporated RNA products in reasonable yields, while with clickable nucleotides yields were very good. Further, 3'-end azide- and alkyne-labeled RNA ONs were post-enzymatically functionalized by CuAAC and SPAAC reactions with fluorescent probes. These strategies broaden the scope of TUTase in site-specifically installing modifications of different types onto RNA for various applications.
Collapse
Affiliation(s)
- Swagata Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
2
|
Novgorodtseva AI, Lomzov AA, Vasilyeva SV. Synthesis and Properties of α-Phosphate-Modified Nucleoside Triphosphates. Molecules 2024; 29:4121. [PMID: 39274969 PMCID: PMC11397104 DOI: 10.3390/molecules29174121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
This review article is focused on the progress made in the synthesis of 5'-α-P-modified nucleoside triphosphates (α-phosphate mimetics). A variety of α-P-modified nucleoside triphosphates (NTPαXYs, Y = O, S; X = S, Se, BH3, alkyl, amine, N-alkyl, imido, or others) have been developed. There is a unique class of nucleoside triphosphate analogs with different properties. The main chemical approaches to the synthesis of NTPαXYs are analyzed and systematized here. Using the data presented here on the diversity of NTPαXYs and their synthesis protocols, it is possible to select an appropriate method for obtaining a desired α-phosphate mimetic. Triphosphates' substrate properties toward nucleic acid metabolism enzymes are highlighted too. We reviewed some of the most prominent applications of NTPαXYs including the use of modified dNTPs in studies on mechanisms of action of polymerases or in systematic evolution of ligands by exponential enrichment (SELEX). The presence of heteroatoms such as sulfur, selenium, or boron in α-phosphate makes modified triphosphates nuclease resistant. The most distinctive feature of NTPαXYs is that they can be recognized by polymerases. As a result, S-, Se-, or BH3-modified phosphate residues can be incorporated into DNA or RNA. This property has made NTPαXYs a multifunctional tool in molecular biology. This review will be of interest to synthetic chemists, biochemists, biotechnologists, or biologists engaged in basic or applied research.
Collapse
Affiliation(s)
- Alina I Novgorodtseva
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Alexander A Lomzov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Svetlana V Vasilyeva
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Frank PH, Hong M, Higgins B, Perkins S, Taylor T, Wall VE, Drew M, Waybright T, Gillette W, Esposito D, Messing S. Adapting recombinant bacterial alkaline phosphatase for nucleotide exchange of small GTPases. Protein Expr Purif 2024; 218:106446. [PMID: 38395209 PMCID: PMC11000209 DOI: 10.1016/j.pep.2024.106446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/05/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
The small GTPase Rat sarcoma virus proteins (RAS) are key regulators of cell growth and involved in 20-30% of cancers. RAS switches between its active state and inactive state via exchange of GTP (active) and GDP (inactive). Therefore, to study active protein, it needs to undergo nucleotide exchange to a non-hydrolysable GTP analog. Calf intestine alkaline phosphatase bound to agarose beads (CIP-agarose) is regularly used in a nucleotide exchange protocol to replace GDP with a non-hydrolysable analog. Due to pandemic supply problems and product shortages, we found the need for an alternative to this commercially available product. Here we describe how we generated a bacterial alkaline phosphatase (BAP) with an affinity tag bound to an agarose bead. This BAP completely exchanges the nucleotide in our samples, thereby demonstrating an alternative to the commercially available product using generally available laboratory equipment.
Collapse
Affiliation(s)
- Peter H Frank
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Min Hong
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Brianna Higgins
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Shelley Perkins
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Troy Taylor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Vanessa E Wall
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Matthew Drew
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Timothy Waybright
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - William Gillette
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| |
Collapse
|
4
|
Fleuti M, Sanchez-Quirante T, Poštová Slavětínská L, Tloušt'ová E, Tichý M, Gurská S, Džubák P, Hajdúch M, Hocek M. Synthesis and Biological Profiling of Quinolino-Fused 7-Deazapurine Nucleosides. ACS OMEGA 2024; 9:20557-20570. [PMID: 38737052 PMCID: PMC11080019 DOI: 10.1021/acsomega.4c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/14/2024]
Abstract
A series of quinolino-fused 7-deazapurine (pyrimido[5',4':4,5]pyrrolo[3,2-f]quinoline) ribonucleosides were designed and synthesized. The synthesis of the key 11-chloro-pyrimido[5',4':4,5]pyrrolo[3,2-f]quinoline was based on the Negishi cross-coupling of iodoquinoline with zincated 4,6-dichloropyrimidine followed by azidation and thermal or photochemical cyclization. Vorbrüggen glycosylation of the tetracyclic heterocycle followed by cross-coupling or substitution reactions at position 11 gave the desired set of final nucleosides that showed moderate to weak cytostatic activity and fluorescent properties. The corresponding fused adenosine derivative was converted to the triphosphate and successfully incorporated to RNA using in vitro transcription with T7 RNA polymerase.
Collapse
Affiliation(s)
- Marianne Fleuti
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague 2 CZ-12843, Czech Republic
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 CZ-16610, Czech Republic
| | - Tania Sanchez-Quirante
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague 2 CZ-12843, Czech Republic
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 CZ-16610, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 CZ-16610, Czech Republic
| | - Eva Tloušt'ová
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 CZ-16610, Czech Republic
| | - Michal Tichý
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 CZ-16610, Czech Republic
| | - Soňa Gurská
- Institute
of Molecular and Translational Medicine, Palacky University and University
Hospital in Olomouc, Faculty of Medicine and Dentistry, Hněvotínská
5, Olomouc CZ-77515, Czech Republic
| | - Petr Džubák
- Institute
of Molecular and Translational Medicine, Palacky University and University
Hospital in Olomouc, Faculty of Medicine and Dentistry, Hněvotínská
5, Olomouc CZ-77515, Czech Republic
| | - Marián Hajdúch
- Institute
of Molecular and Translational Medicine, Palacky University and University
Hospital in Olomouc, Faculty of Medicine and Dentistry, Hněvotínská
5, Olomouc CZ-77515, Czech Republic
| | - Michal Hocek
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague 2 CZ-12843, Czech Republic
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 CZ-16610, Czech Republic
| |
Collapse
|
5
|
Brunderová M, Havlíček V, Matyašovský J, Pohl R, Poštová Slavětínská L, Krömer M, Hocek M. Expedient production of site specifically nucleobase-labelled or hypermodified RNA with engineered thermophilic DNA polymerases. Nat Commun 2024; 15:3054. [PMID: 38594306 PMCID: PMC11004144 DOI: 10.1038/s41467-024-47444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Innovative approaches to controlled nucleobase-modified RNA synthesis are urgently needed to support RNA biology exploration and to synthesize potential RNA therapeutics. Here we present a strategy for enzymatic construction of nucleobase-modified RNA based on primer-dependent engineered thermophilic DNA polymerases - SFM4-3 and TGK. We demonstrate introduction of one or several different base-modified nucleotides in one strand including hypermodified RNA containing all four modified nucleotides bearing four different substituents, as well as strategy for primer segment removal. We also show facile site-specific or segmented introduction of fluorophores or other functional groups at defined positions in variety of RNA molecules, including structured or long mRNA. Intriguing translation efficacy of single-site modified mRNAs underscores the necessity to study isolated modifications placed at designer positions to disentangle their biological effects and enable development of improved mRNA therapeutics. Our toolbox paves the way for more precise dissecting RNA structures and functions, as well as for construction of diverse types of base-functionalized RNA for therapeutic applications and diagnostics.
Collapse
Affiliation(s)
- Mária Brunderová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843, Prague, 2, Czech Republic
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Vojtěch Havlíček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843, Prague, 2, Czech Republic
| | - Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
| | - Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic.
- The Rosalind Franklin Institute, Harwell Campus, Didcot, Oxfordshire, UK.
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic.
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843, Prague, 2, Czech Republic.
| |
Collapse
|
6
|
Xie R, Li W, Ge Y, Zhou Y, Xiao G, Zhao Q, Han Y, Li Y, Chen G. Late-stage guanine C8-H alkylation of nucleosides, nucleotides, and oligonucleotides via photo-mediated Minisci reaction. Nat Commun 2024; 15:2549. [PMID: 38514662 PMCID: PMC10957873 DOI: 10.1038/s41467-024-46671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Chemically modified nucleosi(ti)des and functional oligonucleotides (ONs, including therapeutic oligonucleotides, aptamer, nuclease, etc.) have been identified playing an essential role in the areas of medicinal chemistry, chemical biology, biotechnology, and nanotechnology. Introduction of functional groups into the nucleobases of ONs mostly relies on the laborious de novo chemical synthesis. Due to the importance of nucleosides modification and aforementioned limitations of functionalizing ONs, herein, we describe a highly efficient site-selective alkylation at the C8-position of guanines in guanosine (together with its analogues), GMP, GDP, and GTP, as well as late-stage functionalization of dinucleotides and single-strand ONs (including ssDNA and RNA) through photo-mediated Minisci reaction. Addition of catechol to assist the formation of alkyl radicals via in situ generated boronic acid catechol ester derivatives (BACED) markedly enhances the yields especially for the reaction of less stable primary alkyl radicals, and is the key to success for the post-synthetic alkylation of ONs. This method features excellent chemoselectivity, no necessity for pre-protection, wide range of substrate scope, various free radical precursors, and little strand lesion. Downstream applications in disease treatment and diagnosis, or as biochemical probes to study biological processes after linking with suitable fluorescent compounds are expected.
Collapse
Affiliation(s)
- Ruoqian Xie
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People's Republic of China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wanlu Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Yuhua Ge
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| | - Yutong Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Chinese Academy of Sciences, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, Qinghai, People's Republic of China
| | - Guolan Xiao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qin Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yunxi Han
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yangyan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Gang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Chinese Academy of Sciences, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, Qinghai, People's Republic of China.
| |
Collapse
|
7
|
Gupta P, Sharma A, Mittal V. Polymeric Vehicles for Nucleic Acid Delivery: Enhancing the Therapeutic Efficacy and Cellular Uptake. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:276-293. [PMID: 39356099 DOI: 10.2174/0126673878324536240805060143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Therapeutic gene delivery may be facilitated by the use of polymeric carriers. When combined with nucleic acids to form nanoparticles or polyplexes, a variety of polymers may shield the cargo from in vivo breakdown and clearance while also making it easier for it to enter intracellular compartments. AIM AND OBJECTIVES Polymer synthesis design choices result in a wide variety of compounds and vehicle compositions. Depending on the application, these characteristics may be changed to provide enhanced endosomal escape, longer-lasting distribution, or stronger connection with nucleic acid cargo and cells. Here, we outline current methods for delivering genes in preclinical and clinical settings using polymers. METHODOLOGY Significant therapeutic outcomes have previously been attained using genetic material- delivering polymer vehicles in both in-vitro and animal models. When combined with nucleic acids to form nanoparticles or polyplexes, a variety of polymers may shield the cargo from in vivo breakdown and clearance while also making it easier for it to enter intracellular compartments. Many innovative diagnoses for nucleic acids have been investigated and put through clinical assessment in the past 20 years. RESULTS Polymer-based carriers have additional delivery issues due to their changes in method and place of biological action, as well as variances in biophysical characteristics. We cover recent custom polymeric carrier architectures that were tuned for nucleic acid payloads such genomemodifying nucleic acids, siRNA, microRNA, and plasmid DNA. CONCLUSION In conclusion, the development of polymeric carriers for gene delivery holds promise for therapeutic applications. Through careful design and optimization, these carriers can overcome various challenges associated with nucleic acid delivery, offering new avenues for treating a wide range of diseases.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Pharmaceutics, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, 135001, India
| | - Anjali Sharma
- Department of Pharmaceutics, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, 135001, India
| | - Vishnu Mittal
- Department of Pharmaceutics, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, 135001, India
| |
Collapse
|
8
|
Benčić P, Keppler M, Kuge M, Qiu D, Schütte LM, Häner M, Strack K, Jessen HJ, Andexer JN, Loenarz C. Non-canonical nucleosides: Biomimetic triphosphorylation, incorporation into mRNA and effects on translation and structure. FEBS J 2023; 290:4899-4920. [PMID: 37329249 DOI: 10.1111/febs.16889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/24/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023]
Abstract
Recent advances in mRNA therapeutics demand efficient toolkits for the incorporation of nucleoside analogues into mRNA suitable for downstream applications. Herein, we report the application of a versatile enzyme cascade for the triphosphorylation of a broad range of nucleoside analogues, including unprotected nucleobases containing chemically labile moieties. Our biomimetic system was suitable for the preparation of nucleoside triphosphates containing adenosine, cytidine, guanosine, uridine and non-canonical core structures, as determined by capillary electrophoresis coupled to mass spectrometry. This enabled us to establish an efficient workflow for transcribing and purifying functional mRNA containing these nucleoside analogues, combined with mass spectrometric verification of analogue incorporation. Our combined methodology allows for analyses of how incorporation of nucleoside analogues that are commercially unavailable as triphosphates affect mRNA properties: The translational fidelity of the produced mRNA was demonstrated in analyses of how incorporated adenosine analogues impact translational recoding. For the SARS-CoV-2 frameshifting site, analyses of the mRNA pseudoknot structure using circular dichroism spectroscopy allowed insight into how the pharmacologically active 7-deazaadenosine destabilises RNA secondary structure, consistent with observed changes in recoding efficiency.
Collapse
Affiliation(s)
- Patricia Benčić
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | - Michael Keppler
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | - Marco Kuge
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Germany
| | - Lena M Schütte
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | - Markus Häner
- Institute of Organic Chemistry, University of Freiburg, Germany
| | - Katharina Strack
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | | | | | - Christoph Loenarz
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| |
Collapse
|
9
|
Zasedateleva OA, Surzhikov SA, Kuznetsova VE, Shershov VE, Barsky VE, Zasedatelev AS, Chudinov AV. Non-Covalent Interactions between dUTP C5-Substituents and DNA Polymerase Decrease PCR Efficiency. Int J Mol Sci 2023; 24:13643. [PMID: 37686447 PMCID: PMC10487964 DOI: 10.3390/ijms241713643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
The approach based on molecular modeling was developed to study dNTP derivatives characterized by new polymerase-specific properties. For this purpose, the relative efficiency of PCR amplification with modified dUTPs was studied using Taq, Tth, Pfu, Vent, Deep Vent, Vent (exo-), and Deep Vent (exo-) DNA polymerases. The efficiency of PCR amplification with modified dUTPs was compared with the results of molecular modeling using the known 3D structures of KlenTaq polymerase-DNA-dNTP complexes. The dUTPs were C5-modified with bulky functional groups (the Cy5 dye analogs) or lighter aromatic groups. Comparing the experimental data and the results of molecular modeling revealed the decrease in PCR efficiency in the presence of modified dUTPs with an increase in the number of non-covalent bonds between the substituents and the DNA polymerase (about 15% decrease per one extra non-covalent bond). Generalization of the revealed patterns to all the studied polymerases of the A and B families is discussed herein. The number of non-covalent bonds between the substituents and polymerase amino acid residues is proposed to be a potentially variable parameter for regulating enzyme activity.
Collapse
Affiliation(s)
- Olga A. Zasedateleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
10
|
An Efficient Synthesis of a Novel Broad-spectrum Nucleoside Analogue BCX4430 Triphosphate. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Mei H, Budow-Busse S, Kondhare D, Eickmeier H, Reuter H, Seela F. The 2'-deoxyribofuranoside of 3-phenyltetrahydropyrimido[4,5-c]pyridazin-7-one: a bicyclic nucleoside with sugar residues in N and S conformations, and its molecular recognition. Acta Crystallogr C Struct Chem 2022; 78:382-389. [PMID: 35788502 PMCID: PMC9255914 DOI: 10.1107/s2053229622005964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
The title compound 3-phenyltetrahydropyrimido[4,5-c]pyridazine 2'-deoxyribonucleoside [systematic name: 6-(2-deoxy-β-D-erythro-pentofuranosyl)-5,6,7,8-tetrahydro-3-phenylpyrimido[4,5-c]pyridazin-7-one monohydrate, C17H18N4O4·H2O, 1] shows two conformations in the crystalline state and the two conformers (1a and 1b) adopt different sugar puckers. The sugar residue of 1a shows a C2'-endo S-type conformation, while 1b displays a C3'-endo N-type sugar pucker. Both conformers adopt similar anti conformations around the N-glycosylic bonds, with χ = -97.5 (3)° for conformer 1a and χ = -103.8 (3)° for conformer 1b. The extended crystalline network is stabilized by several intermolecular hydrogen bonds involving nucleoside and water molecules. The nucleobases and phenyl substituents of the two conformers (1a and 1b) are stacked and display a reverse alignment. A Hirshfeld surface analysis supports the hydrogen-bonding pattern, while curvedness surfaces visualize the stacking interactions of neighbouring molecules. The recognition face of nucleoside 1 for base-pair formation mimics that of 2'-deoxythymidine. Nucleoside 1 shows two pKa values: 1.8 for protonation and 11.2 for deprotonation. DNA oligonucleotides containing nucleoside 1 were synthesized and hybridized with complementary DNA strands. Nucleoside 1 forms a stable base pair with dA which is as stable as the canonical dA-dT pair. The bidentate 1-dA base pair is strengthened by a third hydrogen bond provided by the dA analogue 3-bromopyrazolo[3,4-d]pyrimidine-4,6-diamine 2'-deoxyribofuranoside (4). By this, duplex stability is increased and the suggested base-pairing patterns are supported.
Collapse
Affiliation(s)
- Hui Mei
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Simone Budow-Busse
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Dasharath Kondhare
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Henning Eickmeier
- Anorganische Chemie II, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| | - Hans Reuter
- Anorganische Chemie II, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
- Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| |
Collapse
|
12
|
Lapa SA, Volkova OS, Kuznetsova VE, Zasedatelev AS, Chudinov AV. Study of Multiple Enzymatic Incorporation of Modified Nucleotides of Purine and Pyrimidine Nature in the Growing DNA Chain. Mol Biol 2022. [DOI: 10.1134/s0026893322010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Perrin D, Paul S, Wong AAWL, Liu LT. Selection of M2+-independent RNA-cleaving DNAzymes with Sidechains Mimicking Arginine and Lysine. Chembiochem 2021; 23:e202100600. [PMID: 34881502 DOI: 10.1002/cbic.202100600] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/04/2021] [Indexed: 11/07/2022]
Abstract
Sequence-specific cleavage of RNA by nucleic acid catalysts in the absence of a divalent metal cation (M 2+ ) has remained an important goal in biomimicry with potential therapeutic applications. Given the lack of functional group diversity in canonical nucleotides, modified nucleotides with amino acid-like side chains were used to enhance self-cleavage rates at a single embedded ribonucleoside site. Previous works relied on three functional groups: an amine, a guanidine and an imidazole ensconced on three different nucleosides. However, to date, few studies have systematically addressed the necessity of all three modifications, as the value of any single modified nucleoside is contextualized at the outset of selection. Herein, we report on the use of only two modified dNTPs, excluding an imidazole, i.e. 5-(3-guanidinoallyl)-2'-dUTP (dU ga TP) and 5-aminoallyl-2'-dCTP (dC aa TP), to select in-vitro self-cleaving DNAzymes that cleave in the absence of M 2+ in a pH-independent fashion. Cleavage shows biphasic kinetics with rate constants that are significantly higher than in unmodified DNAzymes and compare favorably to certain DNAzymes involving an imidazole. This work is the first report of a M2+-independent DNAzyme with two cationic modifications; as such it shows appreciable self-cleaving activity in the absence of an imidazole modification.
Collapse
Affiliation(s)
- David Perrin
- U. British Columbia, Chemistry, 2036 Main Mall, V6T-1Z1, Vancouver, CANADA
| | - Somdeb Paul
- The University of British Columbia, Chemistry, 2036 Main Mall, Vancouver, V6T1Z1, Vancouver, CANADA
| | - Antonio A W L Wong
- The University of British Columbia, Chemistry, 2036 Main Mall, Vancouver, V6T1Z1, Vancouver, CANADA
| | - Leo T Liu
- The University of British Columbia, Chemistry, 2036 Main Mall, UBC, Vancouver, V6T-1Z1, Vancouver, CANADA
| |
Collapse
|
14
|
Li Q, Maola VA, Chim N, Hussain J, Lozoya-Colinas A, Chaput JC. Synthesis and Polymerase Recognition of Threose Nucleic Acid Triphosphates Equipped with Diverse Chemical Functionalities. J Am Chem Soc 2021; 143:17761-17768. [PMID: 34637287 DOI: 10.1021/jacs.1c08649] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Expanding the chemical space of evolvable non-natural genetic polymers (XNAs) to include functional groups that enhance protein target binding affinity offers a promising route to therapeutic aptamers with high biological stability. Here we describe the chemical synthesis and polymerase recognition of 10 chemically diverse functional groups introduced at the C-5 position of α-l-threofuranosyl uridine nucleoside triphosphate (tUTP). We show that the set of tUTP substrates is universally recognized by the laboratory-evolved polymerase Kod-RSGA. Insights into the mechanism of TNA synthesis were obtained from a high-resolution X-ray crystal structure of the postcatalytic complex bound to the primer-template duplex. A structural analysis reveals a large cavity in the enzyme active site that can accommodate the side chain of C-5-modified tUTP substrates. Our findings expand the chemical space of evolvable nucleic acid systems by providing a synthetic route to artificial genetic polymers that are uniformly modified with diversity-enhancing functional groups.
Collapse
|
15
|
Chardet C, Payrastre C, Gerland B, Escudier JM. Convertible and Constrained Nucleotides: The 2'-Deoxyribose 5'-C-Functionalization Approach, a French Touch. Molecules 2021; 26:5925. [PMID: 34641475 PMCID: PMC8512084 DOI: 10.3390/molecules26195925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Many strategies have been developed to modulate the biological or biotechnical properties of oligonucleotides by introducing new chemical functionalities or by enhancing their affinity and specificity while restricting their conformational space. Among them, we review our approach consisting of modifications of the 5'-C-position of the nucleoside sugar. This allows the introduction of an additional chemical handle at any position on the nucleotide chain without disturbing the Watson-Crick base-pairing. We show that 5'-C bromo or propargyl convertible nucleotides (CvN) are accessible in pure diastereoisomeric form, either for nucleophilic displacement or for CuAAC conjugation. Alternatively, the 5'-carbon can be connected in a stereo-controlled manner to the phosphate moiety of the nucleotide chain to generate conformationally constrained nucleotides (CNA). These allow the precise control of the sugar/phosphate backbone torsional angles. The consequent modulation of the nucleic acid shape induces outstanding stabilization properties of duplex or hairpin structures in accordance with the preorganization concept. Some biological applications of these distorted oligonucleotides are also described. Effectively, the convertible and the constrained approaches have been merged to create constrained and convertible nucleotides (C2NA) providing unique tools to functionalize and stabilize nucleic acids.
Collapse
Affiliation(s)
| | | | - Béatrice Gerland
- Laboratoire de Synthèse et Physico-Chimie de Molécules d′Intérêt Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (C.C.); (C.P.)
| | - Jean-Marc Escudier
- Laboratoire de Synthèse et Physico-Chimie de Molécules d′Intérêt Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (C.C.); (C.P.)
| |
Collapse
|
16
|
Krömer M, Brunderová M, Ivancová I, Poštová Slavětínská L, Hocek M. 2-Formyl-dATP as Substrate for Polymerase Synthesis of Reactive DNA Bearing an Aldehyde Group in the Minor Groove. Chempluschem 2021; 85:1164-1170. [PMID: 32496002 DOI: 10.1002/cplu.202000287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/15/2020] [Indexed: 12/16/2022]
Abstract
2-Formyl-2'-deoxyadenosine triphosphate (dCHO ATP) was synthesized and tested as a substrate in enzymatic synthesis of DNA modified in the minor groove with a reactive aldehyde group. The multistep synthesis of dCHO ATP was based on the preparation of protected 2-dihydroxyethyl-2'-deoxyadenosine intemediate, which was triphosphorylated and converted to aldehyde through oxidative cleavage. The dCHO ATP triphosphate was a moderate substrate for KOD XL DNA polymerase, and was used for enzymatic synthesis of some sequences using primer extension (PEX). On the other hand, longer sequences (31-mer) with higher number of modifications, or sequences with modifications at adjacent positions did not give full extension. Single-nucleotide extension followed by PEX was used for site-specific incorporation of one aldehyde-linked adenosine into a longer 49-mer sequence. The reactive formyl group was used for cross-linking with peptides and proteins using reductive amination and for fluorescent labelling through oxime formation with an AlexaFluor647-linked hydroxylamine.
Collapse
Affiliation(s)
- Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Mária Brunderová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Ivana Ivancová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| |
Collapse
|
17
|
Ripp A, Singh J, Jessen HJ. Rapid Synthesis of Nucleoside Triphosphates and Analogues. ACTA ACUST UNITED AC 2021; 81:e108. [PMID: 32391982 DOI: 10.1002/cpnc.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nucleoside triphosphates (NTPs) are essential biomolecules involved in almost all biological processes, and their study is therefore critical to understanding cellular biology. Here, we describe a chemical synthesis suitable for obtaining both natural and highly modified NTPs, which can, for example, be used as surrogates to probe biological processes. The approach includes the preparation of a reagent that enables the facile introduction and modification of three phosphate units: cyclic pyrophosphoryl P-amidite (c-PyPA), derived from pyrophosphate (PV ) and a reactive phosphoramidite (PIII ). By using non-hydrolyzable analogues of pyrophosphate, the reagent can be readily modified to obtain a family of non-hydrolyzable analogues containing CH2 , CF2 , CCl2 , and NH that are stable in solution for several weeks if stored appropriately. They enable the synthesis of NTPs by reaction with nucleosides to give deoxycyclotriphosphate esters that are then oxidized to cyclotriphosphate (cyclo-TP) esters. The use of different oxidizing agents provides an opportunity for modification at P-α. Furthermore, terminal modifications at P-γ can be introduced by linearization of the cyclo-TP ester with various nucleophiles. © 2020 The Authors. Basic Protocol 1: Synthesis of cyclic pyrophosphoryl P-amidite (c-PyPA) and derivatives (c-PyNH PA, c-PyCH2 PA, c-PyCCl2 PA, c-PyCF2 PA) Basic Protocol 2: Synthesis of 3'-azidothymidine 5'-γ-P-propargylamido triphosphates and analogues Basic Protocol 3: Synthesis of 2'-deoxythymidine 5'-γ-P-propargylamido triphosphate (15) Basic Protocol 4: Synthesis of adenosine 5'-γ-P-amido triphosphate (19) and adenosine 5'-γ-P-propargylamido triphosphate (20) Basic Protocol 5: Synthesis of d4T 5'-γ-propargylamido β,γ-(difluoromethylene)triphosphate Support Protocol: Synthesis of diisopropylphosphoramidous dichloride.
Collapse
Affiliation(s)
- Alexander Ripp
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany.,Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Jyoti Singh
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany.,Freiburg Research Institute for Advanced Studies, University of Freiburg, Freiburg, Germany.,Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Abstract
Genomes can be viewed as constantly updated memory systems where information propagated in cells is refined over time by natural selection. This process, commonly known as heredity and evolution, has been the sole domain of DNA since the origin of prokaryotes. Now, some 3.5 billion years later, the pendulum of discovery has swung in a new direction, with carefully trained practitioners enabling the replication and evolution of "xeno-nucleic acids" or "XNAs"-synthetic genetic polymers in which the natural sugar found in DNA and RNA has been replaced with a different type of sugar moiety. XNAs have attracted significant attention as new polymers for synthetic biology, biotechnology, and medicine because of their unique physicochemical properties that may include increased biological stability, enhanced chemical stability, altered helical geometry, or even elevated thermodynamics of Watson-Crick base pairing.This Account describes our contribution to the field of synthetic biology, where chemical synthesis and polymerase engineering have allowed my lab and others to extend the concepts of heredity and evolution to synthetic genetic polymers with backbone structures that are distinct from those found in nature. I will begin with a discussion of α-l-threofuranosyl nucleic acid (TNA), a specific type of XNA that was chosen as a model system to represent any XNA system. I will then proceed to discuss advances in organic chemistry that were made to enable the synthesis of gram quantities of TNA phosphoramidites and nucleoside triphosphates, the monomers used for solid-phase and polymerase-mediated TNA synthesis, respectively. Next, I will recount our development of droplet-based optical sorting (DrOPS), a single-cell microfluidic technique that was established to evolve XNA polymerases in the laboratory. This section will conclude with structural insights that have been gained by solving X-ray crystal structures of a laboratory-evolved TNA polymerase and a natural DNA polymerase that functions with general reverse transcriptase activity on XNA templates.The final passage of this Account will examine the role that XNAs have played in synthetic biology by highlighting examples in which engineered polymerases have enabled the evolution of biologically stable affinity reagents (aptamers) and catalysts (XNAzymes) as well as the storage and retrieval of binary information encoded in electronic word and picture file formats. Because these examples provide only a glimpse of what the future may have in store for XNA, I will conclude the Account with my thoughts on how synthetic genetic polymers could help drive new innovations in synthetic biology and molecular medicine.
Collapse
Affiliation(s)
- John C. Chaput
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| |
Collapse
|
19
|
Nakama T, Takezawa Y, Shionoya M. Site-specific polymerase incorporation of consecutive ligand-containing nucleotides for multiple metal-mediated base pairing. Chem Commun (Camb) 2021; 57:1392-1395. [PMID: 33438690 DOI: 10.1039/d0cc07771b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enzymatic method has been developed for the synthesis of DNA oligomers containing consecutive artificial ligand-type nucleotides. Three hydroxypyridone ligand-containing nucleotides forming CuII-mediated unnatural base pairs were continuously incorporated at a pre-specified position by a lesion-bypass Dpo4 polymerase. This enzymatic synthesis was applied to the development of a CuII-responsive DNAzyme. Accordingly, this research will open new routes for the construction of metal-responsive DNA architectures that are manipulated by multiple metal-mediated base pairing.
Collapse
Affiliation(s)
- Takahiro Nakama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
20
|
Espinasse A, Lembke HK, Cao AA, Carlson EE. Modified nucleoside triphosphates in bacterial research for in vitro and live-cell applications. RSC Chem Biol 2020; 1:333-351. [PMID: 33928252 PMCID: PMC8081287 DOI: 10.1039/d0cb00078g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Modified nucleoside triphosphates (NTPs) are invaluable tools to probe bacterial enzymatic mechanisms, develop novel genetic material, and engineer drugs and proteins with new functionalities. Although the impact of nucleobase alterations has predominantly been studied due to their importance for protein recognition, sugar and phosphate modifications have also been investigated. However, NTPs are cell impermeable due to their negatively charged phosphate tail, a major hurdle to achieving live bacterial studies. Herein, we review the recent advances made to investigate and evolve bacteria and their processes with the use of modified NTPs by exploring alterations in one of the three moieties: the nucleobase, the sugar and the phosphate tail. We also present the innovative methods that have been devised to internalize NTPs into bacteria for in vivo applications.
Collapse
Affiliation(s)
- Adeline Espinasse
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Hannah K. Lembke
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Angela A. Cao
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Erin E. Carlson
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
- Department of Medicinal Chemistry, University of Minnesota208 Harvard Street SEMinneapolisMinnesota 55454USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota321 Church St SEMinneapolisMinnesota 55454USA
| |
Collapse
|
21
|
Kimoto M, Hirao I. Genetic alphabet expansion technology by creating unnatural base pairs. Chem Soc Rev 2020; 49:7602-7626. [PMID: 33015699 DOI: 10.1039/d0cs00457j] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advancements in the creation of artificial extra base pairs (unnatural base pairs, UBPs) are opening the door to a new research area, xenobiology, and genetic alphabet expansion technologies. UBPs that function as third base pairs in replication, transcription, and/or translation enable the site-specific incorporation of novel components into DNA, RNA, and proteins. Here, we describe the UBPs developed by three research teams and their application in PCR-based diagnostics, high-affinity DNA aptamer generation, site-specific labeling of RNAs, semi-synthetic organism creation, and unnatural-amino-acid-containing protein synthesis.
Collapse
Affiliation(s)
- Michiko Kimoto
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore.
| | | |
Collapse
|
22
|
Lapa SA, Guseinov TO, Pavlov AS, Shershov VE, Kuznetsova VE, Zasedatelev AS, Chudinov AV. A Simultaneous Use of Cy5-Modified Derivatives of Deoxyuridine and Deoxycytidine in PCR. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Kuba M, Kraus T, Pohl R, Hocek M. Nucleotide-Bearing Benzylidene-Tetrahydroxanthylium Near-IR Fluorophore for Sensing DNA Replication, Secondary Structures and Interactions. Chemistry 2020; 26:11950-11954. [PMID: 32633433 PMCID: PMC7361531 DOI: 10.1002/chem.202003192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Thymidine triphosphate bearing benzylidene-tetrahydroxanthylium near-IR fluorophore linked to the 5-methyl group via triazole was synthesized through the CuAAC reaction and was used for polymerase synthesis of labelled DNA probes. The fluorophore lights up upon incorporation to DNA (up to 348-times) presumably due to interactions in major groove and the fluorescence further increases in the single-stranded oligonucleotide. The labelled dsDNA senses binding of small molecules and proteins by a strong decrease of fluorescence. The nucleotide was used as a light-up building block in real-time PCR for detection of SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Miroslav Kuba
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| | - Tomáš Kraus
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| |
Collapse
|
24
|
Matyašovský J, Hocek M. 2-Substituted 2'-deoxyinosine 5'-triphosphates as substrates for polymerase synthesis of minor-groove-modified DNA and effects on restriction endonuclease cleavage. Org Biomol Chem 2020; 18:255-262. [PMID: 31815989 DOI: 10.1039/c9ob02502b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Five 2-substituted 2'-deoxyinosine triphosphates (dRITP) were synthesized and tested as substrates in enzymatic synthesis of minor-groove base-modified DNA. Only 2-methyl and 2-vinyl derivatives proved to be good substrates for Therminator DNA polymerase, whilst all other dRITPs and other tested DNA polymerases did not give full length products in primer extension. The DNA containing 2-vinylhypoxanthine was then further modified through thiol-ene reactions with thiols. Cross-linking reaction between cysteine-containing minor-groove binding dodecapeptide and DNA proceeded thanks to the proximity effect between thiol and vinyl groups inside the minor groove. 2-Substituted dIRTPs and also previously prepared 2-substituted 2'-deoxyadenosine triphosphates (dRATP) were then used for enzymatic synthesis of minor-groove modified DNA to study the effect of minor-groove modifications on cleavage of DNA by type II restriction endonucleases (REs). Although the REs should recognize the sequence through H-bonds in the major groove, some minor-groove modifications also had an inhibiting effect on the cleavage.
Collapse
Affiliation(s)
- Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic.
| | | |
Collapse
|
25
|
Abstract
DNA polymerases play a central role in biology by transferring genetic information from one generation to the next during cell division. Harnessing the power of these enzymes in the laboratory has fueled an increase in biomedical applications that involve the synthesis, amplification, and sequencing of DNA. However, the high substrate specificity exhibited by most naturally occurring DNA polymerases often precludes their use in practical applications that require modified substrates. Moving beyond natural genetic polymers requires sophisticated enzyme-engineering technologies that can be used to direct the evolution of engineered polymerases that function with tailor-made activities. Such efforts are expected to uniquely drive emerging applications in synthetic biology by enabling the synthesis, replication, and evolution of synthetic genetic polymers with new physicochemical properties.
Collapse
|
26
|
Chemical Modification of Aptamers for Increased Binding Affinity in Diagnostic Applications: Current Status and Future Prospects. Int J Mol Sci 2020; 21:ijms21124522. [PMID: 32630547 PMCID: PMC7350236 DOI: 10.3390/ijms21124522] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Aptamers are short single stranded DNA or RNA oligonucleotides that can recognize analytes with extraordinary target selectivity and affinity. Despite their promising properties and diagnostic potential, the number of commercial applications remains scarce. In order to endow them with novel recognition motifs and enhanced properties, chemical modification of aptamers has been pursued. This review focuses on chemical modifications, aimed at increasing the binding affinity for the aptamer's target either in a non-covalent or covalent fashion, hereby improving their application potential in a diagnostic context. An overview of current methodologies will be given, thereby distinguishing between pre- and post-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) modifications.
Collapse
|
27
|
Piotrowski-Daspit AS, Kauffman AC, Bracaglia LG, Saltzman WM. Polymeric vehicles for nucleic acid delivery. Adv Drug Deliv Rev 2020; 156:119-132. [PMID: 32585159 PMCID: PMC7736472 DOI: 10.1016/j.addr.2020.06.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022]
Abstract
Polymeric vehicles are versatile tools for therapeutic gene delivery. Many polymers-when assembled with nucleic acids into vehicles-can protect the cargo from degradation and clearance in vivo, and facilitate its transport into intracellular compartments. Design options in polymer synthesis yield a comprehensive range of molecules and resulting vehicle formulations. These properties can be manipulated to achieve stronger association with nucleic acid cargo and cells, improved endosomal escape, or sustained delivery depending on the application. Here, we describe current approaches for polymer use and related strategies for gene delivery in preclinical and clinical applications. Polymer vehicles delivering genetic material have already achieved significant therapeutic endpoints in vitro and in animal models. From our perspective, with preclincal assays that better mimic the in vivo environment, improved strategies for target specificity, and scalable techniques for polymer synthesis, the impact of this therapeutic approach will continue to expand.
Collapse
Affiliation(s)
| | - Amy C Kauffman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States of America; Corning Life Sciences, Kennebunk, ME 04043, United States of America
| | - Laura G Bracaglia
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States of America
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States of America; Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06511, United States of America; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, United States of America; Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, United States of America.
| |
Collapse
|
28
|
Yang C, Pohl R, Tichý M, Gurská S, Pavliš P, Džubák P, Hajdúch M, Hocek M. Synthesis, Photophysical Properties, and Biological Profiling of Benzothieno-Fused 7-Deazapurine Ribonucleosides. J Org Chem 2020; 85:8085-8101. [PMID: 32432875 DOI: 10.1021/acs.joc.0c00927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Two isomeric series of benzothieno-fused 7-deazapurine (benzo[4',5']thieno[3',2':4,5]- and benzo[4',5']thieno[2',3':4,5]pyrrolo[2,3-d]pyrimidine) ribonucleosides were designed and synthesized. Key steps of the synthesis included the Negishi coupling of zincated dichloropyrimidine with 2- or 3-iodobenzothiophene followed by azidation, thermal or photochemical cyclization, glycosylation, and final functionalization at position 6 through cross-couplings or nucleophilic substitutions. Deprotection gave the final nucleosides, some of which showed moderate cytotoxic and antiviral activity. Most of the free nucleosides showed moderate to strong fluorescence with emission maxima of 362-554 nm. 2'-Deoxyribonucleoside and its 5'-O-triphosphate were also prepared from benzothieno-fused 7-deazaadenine derivative, and the triphosphate was a good substrate for KOD XL DNA polymerase in primer extension synthesis of modified DNA which exerted a weak fluorescence which was slightly enhanced in double-stranded DNA as compared to single-stranded oligonucleotides.
Collapse
Affiliation(s)
- Chao Yang
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Michal Tichý
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry, Hněvotínská 5, CZ-77515 Olomouc, Czech Republic
| | - Petr Pavliš
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry, Hněvotínská 5, CZ-77515 Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry, Hněvotínská 5, CZ-77515 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry, Hněvotínská 5, CZ-77515 Olomouc, Czech Republic
| | - Michal Hocek
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
29
|
Bezold D, Dürr T, Singh J, Jessen HJ. Cyclotriphosphate: A Brief History, Recent Developments, and Perspectives in Synthesis. Chemistry 2020; 26:2298-2308. [PMID: 31637774 PMCID: PMC7065162 DOI: 10.1002/chem.201904433] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/21/2019] [Indexed: 01/08/2023]
Abstract
There has been a recent upsurge in the study and application of approaches utilizing cyclotriphosphate 1 (cyclo-TP, also known as trimetaphosphate, TMP) and/or proceeding through its analogues in synthetic chemistry to access modified oligo- and polyphosphates. This is especially useful in the area of chemical nucleotide synthesis, but by no means restricted to it. Enabled by new high yielding and easy-to-implement methodologies, these approaches promise to open up an area of research that has previously been underappreciated. Additionally, refinements of concepts of prebiotic phosphorylation chemistry have been disclosed that ultimately rely on cyclo-TP 1 as a precursor, placing it as a potentially central compound in the emergence of life. Given the importance of such concepts for our understanding of prebiotic chemistry in combination with the need to readily access modified polyphosphates for structural and biological studies, this paper will discuss selected recent developments in the field of cyclo-TP chemistry, briefly touch on ultraphosphate chemistry, and highlight areas in which further developments can be expected.
Collapse
Affiliation(s)
- Dominik Bezold
- Institute of Organic ChemistryUniversity of Freiburg79104FreiburgGermany
| | - Tobias Dürr
- Institute of Organic ChemistryUniversity of Freiburg79104FreiburgGermany
| | - Jyoti Singh
- Institute of Organic ChemistryUniversity of Freiburg79104FreiburgGermany
| | - Henning J. Jessen
- Institute of Organic ChemistryUniversity of Freiburg79104FreiburgGermany
- Freiburg Research Institute for Advanced Studies (FRIAS)University of Freiburg79104FreiburgGermany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for, Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|
30
|
Jackson LN, Chim N, Shi C, Chaput JC. Crystal structures of a natural DNA polymerase that functions as an XNA reverse transcriptase. Nucleic Acids Res 2020; 47:6973-6983. [PMID: 31170294 PMCID: PMC6649750 DOI: 10.1093/nar/gkz513] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 01/05/2023] Open
Abstract
Replicative DNA polymerases are highly efficient enzymes that maintain stringent geometric control over shape and orientation of the template and incoming nucleoside triphosphate. In a surprising twist to this paradigm, a naturally occurring bacterial DNA polymerase I member isolated from Geobacillus stearothermophilus (Bst) exhibits an innate ability to reverse transcribe RNA and other synthetic congeners (XNAs) into DNA. This observation raises the interesting question of how a replicative DNA polymerase is able to recognize templates of diverse chemical composition. Here, we present crystal structures of natural Bst DNA polymerase that capture the post-translocated product of DNA synthesis on templates composed entirely of 2′-deoxy-2′-fluoro-β-d-arabino nucleic acid (FANA) and α-l-threofuranosyl nucleic acid (TNA). Analysis of the enzyme active site reveals the importance of structural plasticity as a possible mechanism for XNA-dependent DNA synthesis and provides insights into the construction of variants with improved activity.
Collapse
Affiliation(s)
- Lynnette N Jackson
- Departments of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, USA
| | - Nicholas Chim
- Departments of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, USA
| | - Changhua Shi
- Departments of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, USA
| | - John C Chaput
- Departments of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, USA.,Department of Chemistry, University of California, Irvine, CA 92697-3958, USA.,Department of Molecular Biology and Biochemistry, University of California, CA 92697-3958, USA
| |
Collapse
|
31
|
Diafa S, Evéquoz D, Leumann CJ, Hollenstein M. Synthesis and Enzymatic Characterization of Sugar-Modified Nucleoside Triphosphate Analogs. Methods Mol Biol 2019; 1973:1-13. [PMID: 31016692 DOI: 10.1007/978-1-4939-9216-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemical modification of nucleic acids can be achieved by the enzymatic polymerization of modified nucleoside triphosphates (dN*TPs). This approach obviates some of the requirements and drawbacks imposed by the more traditional solid-phase synthesis of oligonucleotides. Here, we describe the protocol that is necessary to synthesize dN*TPs and evaluate their substrate acceptance by polymerases for their subsequent use in various applications including selection experiments to identify aptamers. The protocol is exemplified for a sugar-constrained nucleoside analog, 7',5'-bc-TTP.
Collapse
Affiliation(s)
- Stella Diafa
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Damien Evéquoz
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Marcel Hollenstein
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR 3523, Institut Pasteur, Paris, France.
| |
Collapse
|
32
|
Liao JY, Bala S, Ngor AK, Yik EJ, Chaput JC. P(V) Reagents for the Scalable Synthesis of Natural and Modified Nucleoside Triphosphates. J Am Chem Soc 2019; 141:13286-13289. [PMID: 31298849 DOI: 10.1021/jacs.9b04728] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural and modified nucleoside triphosphates impact nearly every major aspect of healthcare research from DNA sequencing to drug discovery. However, a scalable synthetic route to these molecules has long been hindered by the need for purification by high performance liquid chromatography (HPLC). Here, we describe a fundamentally different approach that uses a novel P(V) pyrene pyrophosphate reagent to generate derivatives that are purified by silica gel chromatography and converted to the desired compounds on scales vastly exceeding those achievable by HPLC. The power of this approach is demonstrated through the synthesis of a broad range of natural and unnatural nucleoside triphosphates (dNTPs and xNTPs) using protocols that are efficient, inexpensive, and operationally straightforward.
Collapse
Affiliation(s)
- Jen-Yu Liao
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry , University of California , Irvine , California 92697-3958 , United States
| | - Saikat Bala
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry , University of California , Irvine , California 92697-3958 , United States
| | - Arlene K Ngor
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry , University of California , Irvine , California 92697-3958 , United States
| | - Eric J Yik
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry , University of California , Irvine , California 92697-3958 , United States
| | - John C Chaput
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry , University of California , Irvine , California 92697-3958 , United States
| |
Collapse
|
33
|
Jakubovska J, Tauraite D, Birštonas L, Meškys R. N4-acyl-2'-deoxycytidine-5'-triphosphates for the enzymatic synthesis of modified DNA. Nucleic Acids Res 2019; 46:5911-5923. [PMID: 29846697 PMCID: PMC6158702 DOI: 10.1093/nar/gky435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023] Open
Abstract
A huge diversity of modified nucleobases is used as a tool for studying DNA and RNA. Due to practical reasons, the most suitable positions for modifications are C5 of pyrimidines and C7 of purines. Unfortunately, by using these two positions only, one cannot expand a repertoire of modified nucleotides to a maximum. Here, we demonstrate the synthesis and enzymatic incorporation of novel N4-acylated 2′-deoxycytidine nucleotides (dCAcyl). We find that a variety of family A and B DNA polymerases efficiently use dCAcylTPs as substrates. In addition to the formation of complementary CAcyl•G pair, a strong base-pairing between N4-acyl-cytosine and adenine takes place when Taq, Klenow fragment (exo–), Bsm and KOD XL DNA polymerases are used for the primer extension reactions. In contrast, a proofreading phi29 DNA polymerase successfully utilizes dCAcylTPs but is prone to form CAcyl•A base pair under the same conditions. Moreover, we show that terminal deoxynucleotidyl transferase is able to incorporate as many as several hundred N4-acylated-deoxycytidine nucleotides. These data reveal novel N4-acylated deoxycytidine nucleotides as beneficial substrates for the enzymatic synthesis of modified DNA, which can be further applied for specific labelling of DNA fragments, selection of aptamers or photoimmobilization.
Collapse
Affiliation(s)
- Jevgenija Jakubovska
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Daiva Tauraite
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Lukas Birštonas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
34
|
Verdonck L, Buyst D, de Vries AM, Gheerardijn V, Madder A, Martins JC. Tethered imidazole mediated duplex stabilization and its potential for aptamer stabilization. Nucleic Acids Res 2019; 46:11671-11686. [PMID: 30418582 PMCID: PMC6294506 DOI: 10.1093/nar/gky1062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/01/2018] [Indexed: 12/15/2022] Open
Abstract
Previous investigations of the impact of an imidazole-tethered thymidine in synthetic DNA duplexes, monitored using UV and NMR spectroscopy, revealed a base context dependent increase in thermal stability of these duplexes and a striking correlation with the imidazolium pKa. Unrestrained molecular dynamics (MD) simulations demonstrated the existence of a hydrogen bond between the imidazolium and the Hoogsteen side of a nearby guanosine which, together with electrostatic interactions, form the basis of the so-called pKa-motif responsible for these duplex-stabilizing and pKa-modulating properties. Here, the robustness and utility of this pKa-motif was explored by introducing multiple imidazole-tethered thymidines at different positions on the same dsDNA duplex. For all constructs, sequence based expectations as to pKa-motif formation were supported by MD simulations and experimentally validated using NOESY. Based on the analysis of the pKa values and melting temperatures, guidelines are formulated to assist in the rational design of oligonucleotides modified with imidazolium-tethered thymidines for increased thermal stability that should be generally applicable, as demonstrated through a triply modified construct. In addition, a proof-of-principle study demonstrating enhanced stability of the l-argininamide binding aptamer modified with an imidazole-tethered thymidine in the presence and absence of ligand, demonstrates its potential for the design of more stable aptamers.
Collapse
Affiliation(s)
- Lars Verdonck
- Department of Organic and Macromolecular Chemistry, Organic and Biomimetic Chemistry Research Group, Ghent University, Gent, Oost-Vlaanderen 9000, Belgium.,Department of Organic and Macromolecular Chemistry, NMR and Structure Analysis Research Group, Ghent University, Gent, Oost-Vlaanderen 9000, Belgium
| | - Dieter Buyst
- Department of Organic and Macromolecular Chemistry, NMR and Structure Analysis Research Group, Ghent University, Gent, Oost-Vlaanderen 9000, Belgium.,NMR Expertise Centre, Ghent University, Gent, Oost-Vlaanderen 9000, Belgium
| | - Anne-Mare de Vries
- Department of Organic and Macromolecular Chemistry, Organic and Biomimetic Chemistry Research Group, Ghent University, Gent, Oost-Vlaanderen 9000, Belgium.,Department of Organic and Macromolecular Chemistry, NMR and Structure Analysis Research Group, Ghent University, Gent, Oost-Vlaanderen 9000, Belgium
| | - Vicky Gheerardijn
- Department of Organic and Macromolecular Chemistry, Organic and Biomimetic Chemistry Research Group, Ghent University, Gent, Oost-Vlaanderen 9000, Belgium
| | - Annemieke Madder
- Department of Organic and Macromolecular Chemistry, Organic and Biomimetic Chemistry Research Group, Ghent University, Gent, Oost-Vlaanderen 9000, Belgium
| | - José C Martins
- Department of Organic and Macromolecular Chemistry, NMR and Structure Analysis Research Group, Ghent University, Gent, Oost-Vlaanderen 9000, Belgium
| |
Collapse
|
35
|
Hocek M. Enzymatic Synthesis of Base-Functionalized Nucleic Acids for Sensing, Cross-linking, and Modulation of Protein-DNA Binding and Transcription. Acc Chem Res 2019; 52:1730-1737. [PMID: 31181911 DOI: 10.1021/acs.accounts.9b00195] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-DNA interactions are important in replication, transcription, repair, as well as epigenetic modifications of DNA, which involve methylation and demethylation of DNA resulting in regulation of gene expression. Understanding of these processes and chemical tools for studying and perhaps even modulating them could be of great relevance and importance not only in chemical biology but also in real diagnostics and treatment of diseases. In the past decade, we have been working on development of synthesis of base-modified 2'-deoxyribo- or ribonucleoside triphosphates (dNTPs or NTPs) and their use in enzymatic synthesis of modified nucleic acids using DNA or RNA polymerases. These synthetic and enzymatic methods are briefly summarized with focus on recent development and outlining of scope, limitations, and further challenges. The main focus of this Account is on applications of base-modified nucleic acids in sensing of protein-DNA interactions, in covalent cross-linking to DNA-binding proteins ,and in modulation of protein-DNA binding and transcription. Several environment-sensitive fluorescent nucleotides were incorporated to DNA probes which responded to protein binding by light-up, changing of color, or lifetime of fluorescence. Using a cyclodextrin-peptide transporter, fluorescent nucleotides can be transported through the cell membrane and incorporated to genomic DNA. Several dNTPs bearing reactive groups (i.e., vinylsulfonamide or chloroacetamide) were used for polymerase synthesis of DNA reactive probes which cross-link to Cys, His, or Lys in peptides or proteins. An attractive challenge is to use DNA modifications and bioorthogonal reactions in the major groove of DNA for modulation and switching of protein-DNA interactions. We have systematically explored the influence of major-groove modifications on recognition and cleavage of DNA by restriction endonucleases and constructed simple chemical switches of DNA cleavage. Systematic study of the influence of major-groove modifications on transcription with bacterial RNA polymerases revealed not only that some modified bases are tolerated, but also that the presence of 5-hydroxymethyluracil or -cytosine can even enhance the transcription (350 or 250% compared to native DNA). Based on these results, we have constructed the first chemical switch of transcription based on photocaging of hydroxymethylpyrimidines in DNA by 2-nitrobenzyl protection (transcription off), photochemical deprotection of the DNA (transcription on), and enzymatic phosphorylation (only for 5-hydroxymethyluracil, transcription off). Although it has been so far demonstrated only in vitro, it is the proof-of-principle first step toward chemical epigenetics.
Collapse
Affiliation(s)
- Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
36
|
Flamme M, McKenzie LK, Sarac I, Hollenstein M. Chemical methods for the modification of RNA. Methods 2019; 161:64-82. [PMID: 30905751 DOI: 10.1016/j.ymeth.2019.03.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
RNA is often considered as being the vector for the transmission of genetic information from DNA to the protein synthesis machinery. However, besides translation RNA participates in a broad variety of fundamental biological roles such as gene expression and regulation, protein synthesis, and even catalysis of chemical reactions. This variety of function combined with intricate three-dimensional structures and the discovery of over 100 chemical modifications in natural RNAs require chemical methods for the modification of RNAs in order to investigate their mechanism, location, and exact biological roles. In addition, numerous RNA-based tools such as ribozymes, aptamers, or therapeutic oligonucleotides require the presence of additional chemical functionalities to strengthen the nucleosidic backbone against degradation or enhance the desired catalytic or binding properties. Herein, the two main methods for the chemical modification of RNA are presented: solid-phase synthesis using phosphoramidite precursors and the enzymatic polymerization of nucleoside triphosphates. The different synthetic and biochemical steps required for each method are carefully described and recent examples of practical applications based on these two methods are discussed.
Collapse
Affiliation(s)
- Marie Flamme
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France; Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Luke K McKenzie
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Ivo Sarac
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
37
|
Milisavljevič N, Perlíková P, Pohl R, Hocek M. Enzymatic synthesis of base-modified RNA by T7 RNA polymerase. A systematic study and comparison of 5-substituted pyrimidine and 7-substituted 7-deazapurine nucleoside triphosphates as substrates. Org Biomol Chem 2019; 16:5800-5807. [PMID: 30063056 DOI: 10.1039/c8ob01498a] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We synthesized a small library of eighteen 5-substituted pyrimidine or 7-substituted 7-deazapurine nucleoside triphosphates bearing methyl, ethynyl, phenyl, benzofuryl or dibenzofuryl groups through cross-coupling reactions of nucleosides followed by triphosphorylation or through direct cross-coupling reactions of halogenated nucleoside triphosphates. We systematically studied the influence of the modification on the efficiency of T7 RNA polymerase catalyzed synthesis of modified RNA and found that modified ATP, UTP and CTP analogues bearing smaller modifications were good substrates and building blocks for the RNA synthesis even in difficult sequences incorporating multiple modified nucleotides. Bulky dibenzofuryl derivatives of ATP and GTP were not substrates for the RNA polymerase. In the case of modified GTP analogues, a modified procedure using a special promoter and GMP as initiator needed to be used to obtain efficient RNA synthesis. The T7 RNA polymerase synthesis of modified RNA can be very efficiently used for synthesis of modified RNA but the method has constraints in the sequence of the first three nucleotides of the transcript, which must contain a non-modified G in the +1 position.
Collapse
Affiliation(s)
- Nemanja Milisavljevič
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610, Prague 6, Czech Republic.
| | | | | | | |
Collapse
|
38
|
Boháčová S, Ludvíková L, Poštová Slavětínská L, Vaníková Z, Klán P, Hocek M. Protected 5-(hydroxymethyl)uracil nucleotides bearing visible-light photocleavable groups as building blocks for polymerase synthesis of photocaged DNA. Org Biomol Chem 2019; 16:1527-1535. [PMID: 29431832 DOI: 10.1039/c8ob00160j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleosides, nucleotides and 2'-deoxyribonucleoside triphosphates (dNTPs) containing 5-(hydroxymethyl)uracil protected with photocleavable groups (2-nitrobenzyl-, 6-nitropiperonyl or 9-anthrylmethyl) were prepared and tested as building blocks for the polymerase synthesis of photocaged oligonucleotides and DNA. Photodeprotection (photorelease) reactions were studied in detail on model nucleoside monophosphates and their photoreaction quantum yields were determined. Photocaged dNTPs were then tested and used as substrates for DNA polymerases in primer extension or PCR. DNA probes containing photocaged or free 5-hydroxymethylU in the recognition sequence of restriction endonucleases were prepared and used for the study of photorelease of caged DNA by UV or visible light at different wavelengths. The nitropiperonyl-protected nucleotide was found to be a superior building block because the corresponding dNTP is a good substrate for DNA polymerases, and the protecting group is efficiently cleavable by irradiation by UV or visible light (up to 425 nm).
Collapse
Affiliation(s)
- Soňa Boháčová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic.
| | | | | | | | | | | |
Collapse
|
39
|
Vichier-Guerre S, Dugué L, Pochet S. 2'-Deoxyribonucleoside 5'-triphosphates bearing 4-phenyl and 4-pyrimidinyl imidazoles as DNA polymerase substrates. Org Biomol Chem 2019; 17:290-301. [PMID: 30543241 DOI: 10.1039/c8ob02464b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We developed a versatile access to a series of 4-substituted imidazole 2'-deoxynucleoside triphosphate bearing functionalized phenyl or pyrimidinyl rings. 4-Iodo-1H-imidazole was enzymatically converted into the corresponding 2'-deoxynucleoside, which was then chemically derived into its 5'-triphosphate, followed by 4-arylation via Suzuki-Miyaura coupling using (hetero)arylboronic acids. Both KF (exo-) and Deep Vent (exo-) DNA polymerases incorporated these modified nucleotides in primer-extension assays, adenine being the preferred pairing partner in the template. The 4-(3-aminophenyl)imidazole derivative (3APh) was the most efficiently inserted opposite A by KF (exo-) with only a 37-fold lower efficiency (Vmax/KM) than that of the correct dTTP. No further extension occurred after the incorporation of a single aryl-imidazole nucleotide. Interestingly, the aryl-imidazole dNTPs were found to undergo successive incorporation by calf thymus terminal deoxynucleotidyl transferase with different tailing efficiencies among this series and with a marked preference for 2APyr polymerization.
Collapse
Affiliation(s)
- Sophie Vichier-Guerre
- Unité de Chimie et Biocatalyse, Institut Pasteur, CNRS, UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
40
|
Sarac I, Hollenstein M. Terminal Deoxynucleotidyl Transferase in the Synthesis and Modification of Nucleic Acids. Chembiochem 2019; 20:860-871. [PMID: 30451377 DOI: 10.1002/cbic.201800658] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Indexed: 12/26/2022]
Abstract
The terminal deoxynucleotidyl transferase (TdT) belongs to the X family of DNA polymerases. This unusual polymerase catalyzes the template-independent addition of random nucleotides on 3'-overhangs during V(D)J recombination. The biological function and intrinsic biochemical properties of the TdT have spurred the development of numerous oligonucleotide-based tools and methods, especially if combined with modified nucleoside triphosphates. Herein, we summarize the different applications stemming from the incorporation of modified nucleotides by the TdT. The structural, mechanistic, and biochemical properties of this polymerase are also discussed.
Collapse
Affiliation(s)
- Ivo Sarac
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
41
|
Antipova OM, Zavyalova EG, Golovin AV, Pavlova GV, Kopylov AM, Reshetnikov RV. Advances in the Application of Modified Nucleotides in SELEX Technology. BIOCHEMISTRY (MOSCOW) 2018; 83:1161-1172. [PMID: 30472954 DOI: 10.1134/s0006297918100024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aptamers are widely used as molecular recognition elements for detecting and blocking functional biological molecules. Since the common "alphabet" of DNA and RNA consists of only four letters, the chemical diversity of aptamers is less than the diversity of protein recognition elements built of 20 amino acids. Chemical modification of nucleotides enlarges the potential of DNA/RNA aptamers. This review describes the latest achievements in a variety of approaches to aptamers selection with an extended genetic alphabet.
Collapse
Affiliation(s)
- O M Antipova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia. .,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - E G Zavyalova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - A V Golovin
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - G V Pavlova
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,Burdenko National Scientific and Practical Center for Neurosurgery, Ministry of Healthcare of the Russian Federation, Moscow, 125047, Russia
| | - A M Kopylov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - R V Reshetnikov
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
42
|
Güixens-Gallardo P, Zawada Z, Matyašovský J, Dziuba D, Pohl R, Kraus T, Hocek M. Brightly Fluorescent 2′-Deoxyribonucleoside Triphosphates Bearing Methylated Bodipy Fluorophore for in Cellulo Incorporation to DNA, Imaging, and Flow Cytometry. Bioconjug Chem 2018; 29:3906-3912. [DOI: 10.1021/acs.bioconjchem.8b00721] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Pedro Güixens-Gallardo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Zbigniew Zawada
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Dmytro Dziuba
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Tomáš Kraus
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
43
|
Matyašovský J, Pohl R, Hocek M. 2-Allyl- and Propargylamino-dATPs for Site-Specific Enzymatic Introduction of a Single Modification in the Minor Groove of DNA. Chemistry 2018; 24:14938-14941. [PMID: 30074286 PMCID: PMC6221035 DOI: 10.1002/chem.201803973] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 12/15/2022]
Abstract
A series of 2-alkylamino-2'-deoxyadenosine triphosphates (dATP) was prepared and found to be substrates for the Therminator DNA polymerase, which incorporated only one modified nucleotide into the primer. Using a template encoding for two consecutive adenines, conditions were found for incorporation of either one or two modified nucleotides. In all cases, addition of a mixture of natural dNTPs led to primer extension resulting in site-specific single modification of DNA in the minor groove. The allylamino-substituted DNA was used for the thiol-ene addition, whereas the propargylamino-DNA for the CuAAC click reaction was used to label the DNA with a fluorescent dye in the minor groove. The approach was used to construct FRET probes for detection of oligonucleotides.
Collapse
Affiliation(s)
- Ján Matyašovský
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| |
Collapse
|
44
|
Gu R, Oweida T, Yingling YG, Chilkoti A, Zauscher S. Enzymatic Synthesis of Nucleobase-Modified Single-Stranded DNA Offers Tunable Resistance to Nuclease Degradation. Biomacromolecules 2018; 19:3525-3535. [PMID: 30011192 DOI: 10.1021/acs.biomac.8b00816] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We synthesized long, nucleobase-modified, single-stranded DNA (ssDNA) using terminal deoxynucleotidyl transferase (TdT) enzymatic polymerization. Specifically, we investigated the effect of unnatural nucleobase size and incorporation density on ssDNA resistance to exo- and endonuclease degradation. We discovered that increasing the size and density of unnatural nucleobases enhances ssDNA resistance to degradation in the presence of exonuclease I, DNase I, and human serum. We also studied the mechanism of this resistance enhancement using molecular dynamics simulations. Our results show that the presence of unnatural nucleobases in ssDNA decreases local chain flexibility and hampers nuclease access to the ssDNA backbone, which hinders nuclease binding to ssDNA and slows its degradation. Our discoveries suggest that incorporating nucleobase-modified nucleotides into ssDNA, using enzymatic polymerization, is an easy and efficient strategy to prolong and tune the half-life of DNA-based materials in nucleases-containing environments.
Collapse
Affiliation(s)
| | - Thomas Oweida
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | | | | |
Collapse
|
45
|
Le BH, Seo YJ. Transcription of Unnatural Fluorescent Nucleotides and their Application with Graphene Oxide for the Simple and Direct Detection of miRNA. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Binh Huy Le
- Department of Bioactive Material Sciences; Chonbuk National University; Jeonju 561-756 South Korea
| | - Young Jun Seo
- Department of Bioactive Material Sciences; Chonbuk National University; Jeonju 561-756 South Korea
- Department of Chemistry; Chonbuk National University; Jeonju 561-756 South Korea
| |
Collapse
|
46
|
Bala S, Liao JY, Zhang L, Tran CN, Chim N, Chaput JC. Synthesis of 2′-Deoxy-α-l-threofuranosyl Nucleoside Triphosphates. J Org Chem 2018; 83:8840-8850. [DOI: 10.1021/acs.joc.8b00875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Saikat Bala
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| | - Jen-Yu Liao
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| | - Li Zhang
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| | - Chantel N. Tran
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| | - Nicholas Chim
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| | - John C. Chaput
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| |
Collapse
|
47
|
Flamme M, Clarke E, Gasser G, Hollenstein M. Applications of Ruthenium Complexes Covalently Linked to Nucleic Acid Derivatives. Molecules 2018; 23:E1515. [PMID: 29932443 PMCID: PMC6099586 DOI: 10.3390/molecules23071515] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022] Open
Abstract
Oligonucleotides are biopolymers that can be easily modified at various locations. Thereby, the attachment of metal complexes to nucleic acid derivatives has emerged as a common pathway to improve the understanding of biological processes or to steer oligonucleotides towards novel applications such as electron transfer or the construction of nanomaterials. Among the different metal complexes coupled to oligonucleotides, ruthenium complexes, have been extensively studied due to their remarkable properties. The resulting DNA-ruthenium bioconjugates have already demonstrated their potency in numerous applications. Consequently, this review focuses on the recent synthetic methods developed for the preparation of ruthenium complexes covalently linked to oligonucleotides. In addition, the usefulness of such conjugates will be highlighted and their applications from nanotechnologies to therapeutic purposes will be discussed.
Collapse
Affiliation(s)
- Marie Flamme
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, F-75005 Paris, France.
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institute Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | - Emma Clarke
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, F-75005 Paris, France.
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institute Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | - Gilles Gasser
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, F-75005 Paris, France.
| | - Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institute Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
48
|
Krömer M, Bártová K, Raindlová V, Hocek M. Synthesis of Dihydroxyalkynyl and Dihydroxyalkyl Nucleotides as Building Blocks or Precursors for Introduction of Diol or Aldehyde Groups to DNA for Bioconjugations. Chemistry 2018; 24:11890-11894. [PMID: 29790604 DOI: 10.1002/chem.201802282] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Indexed: 01/18/2023]
Abstract
(3,4-Dihydroxybut-1-ynyl)uracil, -cytosine and -7-deazaadenine 2'-deoxyribonucleoside triphosphates (dNTPs) were prepared by direct aqueous Sonogashira cross-coupling of halogenated dNTPs with dihydroxybut-1-yne and converted to 3,4-dihydroxybutyl dNTPs through catalytic hydrogenation. Sodium periodate oxidative cleavage of dihydroxybutyl-dUTP gave the desired aliphatic aldehyde-linked dUTP, whereas the oxidative cleavage of the corresponding deazaadenine dNTP gave a cyclic aminal. All dihydroxyalkyl or -alkynyl dNTPs and the formylethyl-dUTP were good substrates for DNA polymerases and were used for synthesis of diol- or aldehyde-linked DNA. The aldehyde linked DNA was used for the labelling or bioconjugations through hydrazone formation or reductive aminations.
Collapse
Affiliation(s)
- Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Kateřina Bártová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Veronika Raindlová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| |
Collapse
|
49
|
Olszewska A, Pohl R, Hocek M. Trifluoroacetophenone-Linked Nucleotides and DNA for Studying of DNA-Protein Interactions by 19F NMR Spectroscopy. J Org Chem 2018; 82:11431-11439. [PMID: 28991457 DOI: 10.1021/acs.joc.7b01920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of 7-[4-(trifluoroacetyl)phenyl]-7-deazaadenine and -7-deazaguanine as well as 5-substituted uracil and cytosine 2'-deoxyribonucleosides and mono- and triphosphates were synthesized through aqueous Suzuki-Miyaura crosscoupling of halogenated nucleosides or nucleotides with 4-(trifluoroacetyl)phenylboronic acid. The modified nucleoside triphosphates were good substrates for DNA polymerases applicable in primer extension or PCR synthesis of modified oligonucleotides or DNA. Attempted cross-linking with a serine-containing protein did not proceed, however the trifluoroacetophenone group was a sensitive probe for the study of DNA-protein interactions by 19F NMR.
Collapse
Affiliation(s)
- Agata Olszewska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo namesti 2, 160 00 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo namesti 2, 160 00 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo namesti 2, 160 00 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, 12843 Prague 2, Czech Republic
| |
Collapse
|
50
|
Panattoni A, Pohl R, Hocek M. Flexible Alkyne-Linked Thymidine Phosphoramidites and Triphosphates for Chemical or Polymerase Synthesis and Fast Postsynthetic DNA Functionalization through Copper-Catalyzed Alkyne–Azide 1,3-Dipolar Cycloaddition. Org Lett 2018; 20:3962-3965. [DOI: 10.1021/acs.orglett.8b01533] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alessandro Panattoni
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|