1
|
Hovan A, Gala M, Sedláková D, Bánó G, Lee OS, Žoldák G, Sedlák E. On the production of singlet oxygen by the isoalloxazine ring in free and protein-bound flavin cofactors. Biophys Chem 2024; 316:107333. [PMID: 39413722 DOI: 10.1016/j.bpc.2024.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Flavin cofactors, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), as a part of flavoenzymes play a critical role in the catalysis of multiple reactions predominantly of a redox nature. Question arises why nature developed two very similar cofactors with an identical functional part - isoalloxazine ring. We believe that an answer is related to the fact that the isoalloxazine ring belongs to endogenous photosensitizers able to produce reactive and potentially harmful singlet oxygen, 1O2, with high efficiency, ΦΔ,FMN ∼ 0.6. In fact, in contrast with one main conformation of FMN in water, the presence of the adenosine mononucleotide in FAD induces a dynamic equilibrium of two main conformations - closed (∼80 %) and open (∼20 %). The presence of predominant closed conformation of FAD in water has a significant impact on the ΦΔ,FAD value, which is nearly 10-fold lower, ΦΔ,FAD ∼ 0.07, than that of FMN. On the other hand, based on our analysis of a non-homologous dataset of FAD containing 105 proteins, ∼75 % enzyme-bound FAD exists predominantly in open conformations but the ΦΔ values are significantly decreased, ΦΔ < 0.03. We addressed these contradictory observations by analysis of: (i) dependence of ΦΔ,FAD value on opening the FAD conformation by urea and (ii) amino acid propensities for isoalloxazine binding site. We demonstrated that urea-induced destabilization, in 7 M vs 0 M urea, of the closed FAD conformation leads to a ∼ 3-fold increase of ΦΔ, proving the causative relation between ΦΔ value and the flavin cofactor conformation. Detailed examination of the flavoproteins dataset clearly indicated positive propensities of three amino acids: glycine, cysteine, and tryptophan for isoalloxazine ring binding site. We hypothesize that both the closed conformation of free FAD and the arrangement of the isoalloxazine binding site is important for prevention of potentially harmful 1O2 production in cells.
Collapse
Affiliation(s)
- Andrej Hovan
- Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Michal Gala
- Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Dagmar Sedláková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Gregor Bánó
- Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - One-Sun Lee
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Gabriel Žoldák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia.
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia; Department of Biochemistry, Faculty of Science, P.J. Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia.
| |
Collapse
|
2
|
Chen S, Huang B, Tian J, Zhang W. Advancements of Porphyrin-Derived Nanomaterials for Antibacterial Photodynamic Therapy and Biofilm Eradication. Adv Healthc Mater 2024; 13:e2401211. [PMID: 39073000 DOI: 10.1002/adhm.202401211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Indexed: 07/30/2024]
Abstract
The threat posed by antibiotic-resistant bacteria and the challenge of biofilm formation has highlighted the inadequacies of conventional antibacterial therapies, leading to increased interest in antibacterial photodynamic therapy (aPDT) in recent years. This approach offers advantages such as minimal invasiveness, low systemic toxicity, and notable effectiveness against drug-resistant bacterial strains. Porphyrins and their derivatives, known for their high molar extinction coefficients and singlet oxygen quantum yields, have emerged as crucial photosensitizers in aPDT. However, their practical application is hindered by challenges such as poor water solubility and aggregation-induced quenching. To address these limitations, extensive research has focused on the development of porphyrin-based nanomaterials for aPDT, enhancing the efficacy of photodynamic sterilization and broadening the range of antimicrobial activity. This review provides an overview of various porphyrin-based nanomaterials utilized in aPDT and biofilm eradication in recent years, including porphyrin-loaded inorganic nanoparticles, porphyrin-based polymer assemblies, supramolecular assemblies, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs). Additionally, insights into the prospects of aPDT is offered, highlighting its potential for practical implementation.
Collapse
Affiliation(s)
- Suwen Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
3
|
Gerile S, Shen Q, Kang J, Liu W, Dong A. Current advances in black phosphorus-based antibacterial nanoplatform for infection therpy. Colloids Surf B Biointerfaces 2024; 241:114037. [PMID: 38878660 DOI: 10.1016/j.colsurfb.2024.114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/01/2024] [Accepted: 06/12/2024] [Indexed: 07/29/2024]
Abstract
Black phosphorus (BP) has attracted much attention due to its excellent physiochemical properties. However, due to its biodegradability and simple antibacterial mechanism, using only BP nanomaterials to combat bacterial infections caused by drug-resistant pathogens remains a significant challenge. In order to improve the antibacterial efficiency and avoid the emergence of drug resistance, BP nanomaterials have been combined with other functional materials to form black phosphorus-based antibacterial nanoplatform (BPANP), which provides unprecedented opportunities for the treatment of drug-resistant infections. This article reviews the performance of BPANP and its multiple antibacterial mechanisms while emphatically introducing its design direction and latest application progress in antibacterial fields. Moreover, this paper additionally summarizes and discusses the current challenges and inadequacies of BPANP that need to be improved in future research. We believe that this review will provide researchers with an up-to-date and multifaceted reference, and provide new ideas for designing effective strategies against drug-resistant bacteria.
Collapse
Affiliation(s)
- Saren Gerile
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Qiudi Shen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| | - Wenxin Liu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, PR China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
4
|
Nagarajan T, Gayathri MP, Mack J, Nyokong T, Govindarajan S, Babu B. Blue-Light-Activated Water-Soluble Sn(IV)-Porphyrins for Antibacterial Photodynamic Therapy (aPDT) against Drug-Resistant Bacterial Pathogens. Mol Pharm 2024; 21:2365-2374. [PMID: 38620059 DOI: 10.1021/acs.molpharmaceut.3c01162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Antimicrobial resistance has emerged as a global threat to the treatment of infectious diseases. Antibacterial photodynamic therapy (aPDT) is a promising alternative approach and is highly suitable for the treatment of cutaneous bacterial infections through topical applications. aPDT relies on light-responsive compounds called photosensitizer (PS) dyes, which generate reactive oxygen species (ROS) when induced by light, thereby killing bacterial cells. Despite several previous studies in this area, the molecular details of targeting and cell death mediated by PS dyes are poorly understood. In this study, we further investigate the antibacterial properties of two water-soluble Sn(IV) tetrapyridylporphyrins that were quaternized with methyl and hexyl groups (1 and 2). In this follow-up study, we demonstrate that Sn(IV)-porphyrins can be photoexcited by blue light (a 427 nm LED) and exhibit various levels of bactericidal activity against both Gram-(+) and Gram-(-) strains of bacteria. Using localization studies through fluorescence microscopy, we show that 2 targets the bacterial membrane more effectively than 1 and exhibits comparatively higher aPDT activity. Using multiple fluorescence reporters, we demonstrate that photoactivation of 1 and 2 results in extensive collateral damage to the bacterial cells including DNA cleavage, membrane damage, and delocalization of central systems necessary for bacterial growth and division. In summary, this investigation provides deep insights into the mechanism of bacterial killing mediated by the Sn(IV)-porphyrins. Moreover, our approach offers a new method for evaluating the activity of PS, which may inspire the discovery of new PS with enhanced aPDT activity.
Collapse
Affiliation(s)
- T Nagarajan
- Department of Biological Sciences, SRM University-AP, Amaravati 522502, India
| | - M P Gayathri
- Department of Chemistry, SRM University-AP, Amaravati 522502, India
| | - John Mack
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | | | - Balaji Babu
- Department of Chemistry, SRM University-AP, Amaravati 522502, India
| |
Collapse
|
5
|
Felčíková K, Hovan A, Polák M, Loginov DS, Holotová V, Díaz C, Kožár T, Lee O, Varhač R, Novák P, Bánó G, Sedlák E. Design of AsLOV2 domain as a carrier of light-induced dissociable FMN photosensitizer. Protein Sci 2024; 33:e4921. [PMID: 38501448 PMCID: PMC10949324 DOI: 10.1002/pro.4921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 03/20/2024]
Abstract
Flavin mononucleotide (FMN) is a highly efficient photosensitizer (PS) yielding singlet oxygen (1 O2 ). However, its 1 O2 production efficiency significantly decreases upon isoalloxazine ring encapsulation into the protein matrix in genetically encoded photosensitizers (GEPS). Reducing isoalloxazine ring interactions with surrounding amino acids by protein engineering may increase 1 O2 production efficiency GEPS, but at the same time weakened native FMN-protein interactions may cause undesirable FMN dissociation. Here, in contrast, we intentionally induce the FMN release by light-triggered sulfur oxidation of strategically placed cysteines (oxidation-prone amino acids) in the isoalloxazine-binding site due to significantly increased volume of the cysteinyl side residue(s). As a proof of concept, in three variants of the LOV2 domain of Avena sativa (AsLOV2), namely V416C, T418C, and V416C/T418C, the effective 1 O2 production strongly correlated with the efficiency of irradiation-induced FMN dissociation (wild type (WT) < V416C < T418C < V416C/T418C). This alternative approach enables us: (i) to overcome the low 1 O2 production efficiency of flavin-based GEPSs without affecting native isoalloxazine ring-protein interactions and (ii) to utilize AsLOV2, due to its inherent binding propensity to FMN, as a PS vehicle, which is released at a target by light irradiation.
Collapse
Affiliation(s)
- Kristína Felčíková
- Department of Biophysics, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| | - Andrej Hovan
- Department of Biophysics, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| | - Marek Polák
- Institute of Microbiology ‐ BioCeV, Academy of Sciences of the Czech RepublicPragueCzech Republic
- Department of Biochemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Dmitry S. Loginov
- Institute of Microbiology ‐ BioCeV, Academy of Sciences of the Czech RepublicPragueCzech Republic
| | - Veronika Holotová
- Center for Interdisciplinary Biosciences, Technology and Innovation ParkP.J. Šafárik UniversityKošiceSlovakia
| | - Carlos Díaz
- Center for Interdisciplinary Biosciences, Technology and Innovation ParkP.J. Šafárik UniversityKošiceSlovakia
| | - Tibor Kožár
- Center for Interdisciplinary Biosciences, Technology and Innovation ParkP.J. Šafárik UniversityKošiceSlovakia
| | - One‐Sun Lee
- Center for Interdisciplinary Biosciences, Technology and Innovation ParkP.J. Šafárik UniversityKošiceSlovakia
| | - Rastislav Varhač
- Department of Biochemistry, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| | - Petr Novák
- Institute of Microbiology ‐ BioCeV, Academy of Sciences of the Czech RepublicPragueCzech Republic
| | - Gregor Bánó
- Department of Biophysics, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation ParkP.J. Šafárik UniversityKošiceSlovakia
- Department of Biochemistry, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| |
Collapse
|
6
|
Meerovich GA, Akhlyustina EV, Romanishkin ID, Makarova EA, Tiganova IG, Zhukhovitsky VG, Kholina EG, Kovalenko IB, Romanova YM, Loschenov VB, Strakhovskaya MG. Photodynamic inactivation of bacteria: Why it is not enough to excite a photosensitizer. Photodiagnosis Photodyn Ther 2023; 44:103853. [PMID: 37863377 DOI: 10.1016/j.pdpdt.2023.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND The development of multidrug resistance (MDR) in infectious agents is one of the most serious global problems facing humanity. Antimicrobial photodynamic therapy (APDT) shows encouraging results in the fight against MDR pathogens, including those in biofilms. METHODS Photosensitizers (PS), monocationic methylene blue, polycationic and polyanionic derivatives of phthalocyanines, electroneutral and polycationic derivatives of bacteriochlorin were used to study photodynamic inactivation of Gram-positive and Gram-negative planktonic bacteria and biofilms under LED irradiation. Zeta potential measurements, confocal fluorescence imaging, and coarse-grained modeling were used to evaluate the interactions of PS with bacteria. PS aggregation and photobleaching were studied using absorption and fluorescence spectroscopy. RESULTS The main approaches to ensure high efficiency of bacteria photosensitization are analyzed. CONCLUSIONS PS must maintain a delicate balance between binding to exocellular and external structures of bacterial cells and penetration through the cell wall so as not to get stuck on the way to photooxidation-sensitive structures of the bacterial cell.
Collapse
Affiliation(s)
- Gennady A Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; National Research Nuclear University "MEPhI", Moscow 115409, Russia
| | | | - Igor D Romanishkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia.
| | | | - Irina G Tiganova
- Gamaleya National Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| | - Vladimir G Zhukhovitsky
- Gamaleya National Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia; Ministry of Public Health of the Russian Federation, Russian Medical Academy of Continuing Professional Education (RMANPO), Moscow 125993, Russia
| | | | - Ilya B Kovalenko
- Lomonosov Moscow State University, Moscow 119234, Russia; Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, Moscow 115682, Russia
| | - Yulia M Romanova
- Gamaleya National Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| | - Victor B Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; National Research Nuclear University "MEPhI", Moscow 115409, Russia
| | | |
Collapse
|
7
|
Clinical Efficacy and Safety of Antimicrobial Photodynamic Therapy in Residual Periodontal Pockets during the Maintenance Phase. Pharmaceuticals (Basel) 2022; 15:ph15080924. [PMID: 35893748 PMCID: PMC9332381 DOI: 10.3390/ph15080924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 02/04/2023] Open
Abstract
Antimicrobial photodynamic therapy (a-PDT) in combination with scaling root planing (SRP) is more effective at improving periodontal status than SRP alone. However, the effectiveness of a-PDT in combination with irrigation for patients undergoing periodontal maintenance has not been clarified. This study evaluated the efficacy and safety of a-PDT in the maintenance phase. Patients who had multiple sites with bleeding on probing (BOP) and periodontal probing depth (PPD) of 4–6 mm in the maintenance phase were treated with a split-mouth design. These sites were randomly assigned to one of two groups: the a-PDT group and the irrigation group. In the a-PDT group, the periodontal pockets were treated with light-sensitive toluidine blue and a light irradiator. In the irrigation group, the periodontal pockets were simply irrigated using an ultrasonic scaler. After 7 days, the safety and efficacy of a-PDT were assessed. The mean PPD of the a-PDT group had reduced from 4.50 mm to 4.13 mm, whereas negligible change was observed in the irrigation group. BOP significantly improved from 100% to 33% in the PDT group, whereas it hardly changed in the irrigation group. No adverse events were observed in any patients. a-PDT may be useful as a noninvasive treatment in the maintenance phase, especially in patients with relatively deep periodontal pocket.
Collapse
|
8
|
do Nascimento Silva Leandro MK, Barbosa Moura JV, Justino de Araújo AC, Freitas PR, Roque Paulo CL, de Sousa AK, Rocha JE, Garcia Leandro LM, Macedo da Silva RO, Costa dos Santos C, Ribeiro-Filho J, da Luz Lima C, Siyadatpanah A, Seifi Z, Kim B, Coutinho HDM. Silver Trimolybdate (Ag 2Mo 3O 10.2H 2O) Nanorods: Synthesis, Characterization, and Photo-Induced Antibacterial Activity under Visible-Light Irradiation. Bioinorg Chem Appl 2022; 2022:2260083. [PMID: 35855788 PMCID: PMC9288309 DOI: 10.1155/2022/2260083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/11/2022] [Indexed: 12/01/2022] Open
Abstract
The present study reports the synthesis, characterization, and antibacterial properties of silver trimolybdate (Ag2Mo3O10.2H2O) nanorods. The synthesis was performed using a conventional hydrothermal method. The sample was characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-Vis-NIR diffuse reflectance, thermogravimetric analysis (TGA), and differential scanning calorimeter (DSC). The direct antibacterial activity was evaluated using the microdilution method to determine the minimum inhibitory concentration (MIC). To assess the ability of Ag2Mo3O10.2H2O nanorods to modulate antibacterial resistance, the MIC of aminoglycosides was established in the presence of a subinhibitory concentration of this substance alone and associated with LED light exposure. The characterization of the sample indicated that the synthesis of silver trimolybdate generated nanometric crystals with rod-like morphology, without secondary phases. The treatment with Ag2Mo3O10.2H2O nanorods alone or combined with visible LED lights exhibited clinically relevant antibacterial activity against both Gram-negative and Gram-positive bacteria. This nanostructure presented a variable antibiotic-modulating action, which was not improved by visible LED light exposure. Nevertheless, LED lights showed promising antibiotic-enhancing activities in the absence of Ag2Mo3O10.2H2O nanorods. In conclusion, silver trimolybdate dihydrate nanorods have antibacterial properties that can be photocatalysed by visible-light exposure. While showing the potential use to combat antibacterial resistance, the simultaneous combination of silver trimolybdate, visible LED lights, and antibacterial drugs should be carefully analysed to avoid antagonist effects that could impair the effectiveness of antibiotic therapy.
Collapse
Affiliation(s)
- Maria Karollyna do Nascimento Silva Leandro
- Laboratório de Microbiologia e Biologia Molecular-LMBM, Universidade Regional do Cariri—URCA, Crato, Ceará, Brazil
- Centro Universitário Dr. Leão Sampaio-Unileão Juazeiro do Norte, Juazeiro do Norte, Ceará, Brazil
| | - João Victor Barbosa Moura
- Departamento de Física, Centro de Ciências Exatas e Tecnologias, Universidade Federal do Maranhão—UFMA, São Luís, Maranhão, Brazil
| | | | - Priscilla Ramos Freitas
- Laboratório de Microbiologia e Biologia Molecular-LMBM, Universidade Regional do Cariri—URCA, Crato, Ceará, Brazil
| | - Cicera Laura Roque Paulo
- Laboratório de Microbiologia e Biologia Molecular-LMBM, Universidade Regional do Cariri—URCA, Crato, Ceará, Brazil
| | - Amanda Karine de Sousa
- Laboratório de Microbiologia e Biologia Molecular-LMBM, Universidade Regional do Cariri—URCA, Crato, Ceará, Brazil
- Centro Universitário Dr. Leão Sampaio-Unileão Juazeiro do Norte, Juazeiro do Norte, Ceará, Brazil
| | - Janaina Esmeraldo Rocha
- Laboratório de Microbiologia e Biologia Molecular-LMBM, Universidade Regional do Cariri—URCA, Crato, Ceará, Brazil
| | | | | | - Clenilton Costa dos Santos
- Departamento de Física, Centro de Ciências Exatas e Tecnologias, Universidade Federal do Maranhão—UFMA, São Luís, Maranhão, Brazil
| | - Jaime Ribeiro-Filho
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, IGM-FIOCRUZ/BA, Salvador, Bahia, Brazil
| | - Cleânio da Luz Lima
- Departamento de Física, Centro de Ciências da Natureza, Universidade Federal do Piauí—UFPI, Teresina, Piauí, Brazil
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Seifi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan 49189-36316, Iran
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | | |
Collapse
|
9
|
Sindelo A, Mafukidze DM, Nyokong T. Fabrication of asymmetrical morpholine phthalocyanines conjugated chitosan-polyacrylonitrile nanofibers for improved photodynamic antimicrobial chemotherapy activity. Photodiagnosis Photodyn Ther 2022; 38:102760. [DOI: 10.1016/j.pdpdt.2022.102760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022]
|
10
|
Hovan A, Sedláková D, Berta M, Bánó G, Sedlák E. Singlet oxygen quenching as a probe for cytochrome c molten globule state formation. Phys Chem Chem Phys 2022; 24:13317-13324. [PMID: 35608043 DOI: 10.1039/d2cp01281b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Singlet oxygen refers to the nonradical metastable excited state of molecular oxygen that readily oxidizes various cellular components. Its behavior in different biological systems has been studied for many years. Recently, we analyzed the effect of singlet oxygen quenching by heme cofactor in cytochrome c (cyt c). Here, we have exploited this effect in the investigation of conformational differences in the molten globule states of cyt c induced by different sodium anions, namely sulfate, chloride and perchlorate. The high efficiency of heme toward quenching singlet oxygen enabled us to use this property for the analysis of the otherwise experimentally difficult-to-determine parameter of heme upon exposure to solvents as highly similar conformational states of cyt c in the molten globule states are induced by different salts at acidic pH. Our results from singlet oxygen quenching experiments correlate well with other spectroscopic methods, such as circular dichroism and fluorescence measurements, and suggest increasing availability of heme in the order: perchlorate < chloride < sulfate. Based on our findings we propose that singlet oxygen phosphorescence measurements are useful in determining the differences in the protein conformation of their heme regions, particularly regarding the relative heme exposure to the solvent.
Collapse
Affiliation(s)
- Andrej Hovan
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Dagmar Sedláková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Martin Berta
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Gregor Bánó
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| |
Collapse
|
11
|
Evaluation of a Luminometric Cell Counting System in Context of Antimicrobial Photodynamic Inactivation. Microorganisms 2022; 10:microorganisms10050950. [PMID: 35630394 PMCID: PMC9147394 DOI: 10.3390/microorganisms10050950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial resistance belongs to the most demanding medical challenges, and antimicrobial photodynamic inactivation (aPDI) is considered a promising alternative to classical antibiotics. However, the pharmacologic characterization of novel compounds suitable for aPDI is a tedious and time-consuming task that usually requires preparation of bacterial cultures and counting of bacterial colonies. In this study, we established and utilized a luminescence-based microbial cell viability assay to analyze the aPDI effects of two porphyrin-based photosensitizers (TMPyP and THPTS) on several bacterial strains with antimicrobial resistance. We demonstrate that after adaptation of the protocol and initial calibration to every specific bacterial strain and photosensitizer, the luminometric method can be used to reliably quantify aPDI effects in most of the analyzed bacterial strains. The interference of photosensitizers with the luminometric readout and the bioluminescence of some bacterial strains were identified as possible confounders. Using this method, we could confirm the susceptibility of several bacterial strains to photodynamic treatment, including extensively drug-resistant pathogens (XDR). In contrast to the conventional culture-based determination of bacterial density, the luminometric assay allowed for a much more time-effective analysis of various treatment conditions. We recommend this luminometric method for high-throughput tasks requiring measurements of bacterial viability in the context of photodynamic treatment approaches.
Collapse
|
12
|
Promising Photocytotoxicity of Water-Soluble Phtalocyanine against Planktonic and Biofilm Pseudomonas aeruginosa Isolates from Lower Respiratory Tract and Chronic Wounds. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alternative methods of killing microbes have been extensively researched in connection with the widespread appearance of antibiotic resistance among pathogenic bacteria. In this study, we report on in vitro antimicrobial phototoxicity research of cationic phthalocyanine with 2-(4-N-methylmorpholin-4-ium-4-yl)ethoxy substituents against selected clinical strains of Pseudomonas aeruginosa isolated from the lower respiratory tract and chronic wounds. The microorganisms tested in the research were analyzed in terms of drug resistance and biofilm formation. The photocytotoxic effect of phthalocyanine was determined by the reduction factor of bacteria. The studied cationic phthalocyanine at a concentration of 1.0 × 10−4 M, when activated by light, revealed a significant reduction factor, ranging from nearly 4 to 6 log, of P. aeruginosa cells when compared to the untreated control group. After single irradiation, a decrease in the number of bacteria in biofilm ranging from 1.3 to 4.2 log was observed, whereas the second treatment significantly improved the bacterial reduction factor from 3.4 to 5.5 log. It is worth mentioning that a boosted cell-death response was observed after the third irradiation, with a bacterial reduction factor ranging from 4.6 to 6.4 log. According to the obtained results, the tested photosensitizer can be considered as a potential antimicrobial photodynamic therapy against multidrug-resistant P. aeruginosa.
Collapse
|
13
|
Pierau L, Elian C, Akimoto J, Ito Y, Caillol S, Versace DL. Bio-sourced Monomers and Cationic Photopolymerization: The Green combination towards Eco-Friendly and Non-Toxic Materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Rossi GG, Guterres KB, Moreira KS, Burgo TAL, de Campos MMA, Iglesias BA. Photo-damage promoted by tetra-cationic palladium(II) porphyrins in rapidly growing mycobacteria. Photodiagnosis Photodyn Ther 2021; 36:102514. [PMID: 34481062 DOI: 10.1016/j.pdpdt.2021.102514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022]
Abstract
Antimicrobial photodynamic therapy (aPDT) has gained prominence in microbiology, especially in treating non-invasive infections. Diseases such as mycobacteriosis, which causes localized infections and has a slow treatment, tend to be future targets for this type of technology. Therefore, this study aimed to explore the action of two isomeric Pd(II)-porphyrins on fast-growing mycobacterial strains (RGM). Tetra-cationic porphyrins (4-PdTPyP and 3-PdTPyP) were synthesized and applied against standard strains of Mycobacteroides abscessus subsp. abscessus (ATCC 19977), Mycolicibacterium fortuitum (ATCC 6841), Mycolicibacterium smegmatis (ATCC 700084), and Mycobacteroides abscessus subsp. massiliense (ATCC 48898). Reactive oxygen species (ROS) scavengers were used in an attempt to determine possible ROS produced by the photosensitizers (PS) under study. Moreover, the impact of porphyrin on the mycobacterial surface was further evaluated by atomic force microscopy (AFM), and we observed significant damage on cells walls and altered nanomechanical and electrostatic adhesion properties. The results presented herein show that the positively charged porphyrin at the meta position (3-PdTPyP) was the most efficient PS against the RGM strains, and its bactericidal activity was proven in two irradiation sessions, with singlet oxygen species being the main ROS involved in this process. This study demonstrated the therapeutic potential of porphyrins, especially the 3-PdTPyP derivative.
Collapse
Affiliation(s)
- Grazille Guidolin Rossi
- Laboratory of Mycobacteriology, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil
| | - Kevim Bordignon Guterres
- Laboratory of Mycobacteriology, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil
| | - Kelly Schneider Moreira
- Coulomb Electrostatic and Mechanochemistry Laboratory, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil
| | - Thiago Augusto Lima Burgo
- Coulomb Electrostatic and Mechanochemistry Laboratory, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil
| | - Marli Matiko Anraku de Campos
- Laboratory of Mycobacteriology, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil
| | - Bernardo Almeida Iglesias
- Bioinorganic and Porphyrinic Materials Laboratory, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Camobi, Santa Maria, RS, Brazil..
| |
Collapse
|
15
|
Hovan A, Berta M, Sedláková D, Miskovsky P, Bánó G, Sedlák E. Heme is responsible for enhanced singlet oxygen deactivation in cytochrome c. Phys Chem Chem Phys 2021; 23:15557-15563. [PMID: 34259248 DOI: 10.1039/d1cp01517f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The deactivation of singlet oxygen, the lowest electronic excited state of molecular oxygen, by proteins is usually described through the interaction of singlet oxygen with certain amino acids. Changes in accessibility of these amino acids influence the quenching rate and the phosphorescence kinetics of singlet oxygen. In the cellular environment, however, numerous proteins with covalently bound or encapsulated cofactors are present. These cofactors could also influence the deactivation of singlet oxygen, and these have received little attention. To confront this issue, we used cytochrome c (cyt c) and apocytochrome c (apocyt c) to illustrate how the heme prosthetic group influences the rate constant of singlet oxygen deactivation upon acidic pH-induced conformational change of cyt c. Photo-excited flavin mononucleotide (FMN) was used to produce singlet oxygen. Our data show that the heme group has a significant and measurable effect on singlet oxygen quenching when the heme is exposed to solvents and is therefore more accessible to singlet oxygen. The effect of amino acids and heme accessibility on the FMN triplet state deactivation was also investigated.
Collapse
Affiliation(s)
- Andrej Hovan
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia.
| | - Martin Berta
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia.
| | - Dagmar Sedláková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Pavol Miskovsky
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia. and SAFTRA Photonics Ltd., Moldavská cesta 51, 040 11 Košice, Slovakia
| | - Gregor Bánó
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia.
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia.
| |
Collapse
|
16
|
Higuchi N, Hayashi JI, Fujita M, Iwamura Y, Sasaki Y, Goto R, Ohno T, Nishida E, Yamamoto G, Kikuchi T, Mitani A, Fukuda M. Photodynamic Inactivation of an Endodontic Bacteria Using Diode Laser and Indocyanine Green-Loaded Nanosphere. Int J Mol Sci 2021; 22:ijms22168384. [PMID: 34445089 PMCID: PMC8395049 DOI: 10.3390/ijms22168384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022] Open
Abstract
Apical periodontitis, an inflammatory lesion causing bone resorption around the apex of teeth, is treated by eradicating infectious bacteria from the root canal. However, it has a high recurrence rate and often requires retreatment. We investigated the bactericidal effect of antimicrobial photodynamic therapy (aPDT)/photodynamic antimicrobial chemotherapy (PACT) using indocyanine green (ICG)-loaded nanospheres coated with chitosan and a diode laser on a biofilm of Enterococcus faecalis, a pathogen of refractory apical periodontitis. Biofilm of E. faecalis was cultured in a porcine infected root canal model. ICG solution was injected into the root canal, which was then irradiated with a laser (810 nm wavelength) from outside the root canal. The bactericidal effect was evaluated by colony counts and scanning electron microscopy. The result of the colony counts showed a maximum 1.89 log reduction after irradiation at 2.1 W for 5 min. The temperature rise during aPDT/PACT was confirmed to be within a safe range. Furthermore, the light energy transmittance through the root was at a peak approximately 1 min after the start of irradiation, indicating that most of the ICG in the root canal was consumed. This study shows that aPDT/PACT can suppress E. faecalis in infected root canals with high efficiency.
Collapse
Affiliation(s)
- Naoya Higuchi
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Aichi, Japan; (N.H.); (M.F.)
| | - Jun-ichiro Hayashi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Aichi, Japan; (Y.I.); (Y.S.); (R.G.); (T.O.); (E.N.); (G.Y.); (T.K.); (A.M.); (M.F.)
- Correspondence:
| | - Masanori Fujita
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Aichi, Japan; (N.H.); (M.F.)
| | - Yuki Iwamura
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Aichi, Japan; (Y.I.); (Y.S.); (R.G.); (T.O.); (E.N.); (G.Y.); (T.K.); (A.M.); (M.F.)
| | - Yasuyuki Sasaki
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Aichi, Japan; (Y.I.); (Y.S.); (R.G.); (T.O.); (E.N.); (G.Y.); (T.K.); (A.M.); (M.F.)
| | - Ryoma Goto
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Aichi, Japan; (Y.I.); (Y.S.); (R.G.); (T.O.); (E.N.); (G.Y.); (T.K.); (A.M.); (M.F.)
| | - Tasuku Ohno
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Aichi, Japan; (Y.I.); (Y.S.); (R.G.); (T.O.); (E.N.); (G.Y.); (T.K.); (A.M.); (M.F.)
| | - Eisaku Nishida
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Aichi, Japan; (Y.I.); (Y.S.); (R.G.); (T.O.); (E.N.); (G.Y.); (T.K.); (A.M.); (M.F.)
| | - Genta Yamamoto
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Aichi, Japan; (Y.I.); (Y.S.); (R.G.); (T.O.); (E.N.); (G.Y.); (T.K.); (A.M.); (M.F.)
| | - Takeshi Kikuchi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Aichi, Japan; (Y.I.); (Y.S.); (R.G.); (T.O.); (E.N.); (G.Y.); (T.K.); (A.M.); (M.F.)
| | - Akio Mitani
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Aichi, Japan; (Y.I.); (Y.S.); (R.G.); (T.O.); (E.N.); (G.Y.); (T.K.); (A.M.); (M.F.)
| | - Mitsuo Fukuda
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Aichi, Japan; (Y.I.); (Y.S.); (R.G.); (T.O.); (E.N.); (G.Y.); (T.K.); (A.M.); (M.F.)
| |
Collapse
|
17
|
Marcolino LMC, Pereira AHC, Pinto JG, Mamone LA, Strixino JF. CELLULAR AND METABOLIC CHANGES AFTER PHOTODYNAMIC THERAPY IN LEISHMANIA PROMASTIGOTES. Photodiagnosis Photodyn Ther 2021; 35:102403. [PMID: 34161856 DOI: 10.1016/j.pdpdt.2021.102403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/20/2021] [Accepted: 06/11/2021] [Indexed: 01/21/2023]
Abstract
Leishmaniasis is a zoonotic disease, regarded by WHO as a public health problem that has presented a significant increase in the recent years. Conventional treatment is toxic and leads to serious side effects. Photodynamic therapy has been studied as a treatment to cutaneous leishmaniasis. This study aimed to evaluate the cell viability, morphological changes, type of cell death, production of reactive oxygen species, and changes in the mitochondrial membrane and DNA fragmentation in Leishmania braziliensis and Leishmania major promastigotes. Confocal microscopy was used to quantify the fluorescence emitted by JC-1, Annexin V, and propidium iodide reagents. The trypan blue exclusion test was used to evaluate the viability of the cells, the mitochondrial activity was verified with MTT, and the morphological changes were analyzed for SEM and DNA damage using the comet assay. PDT using curcumin at 500, 125, and 31,25 μg/mL decreased the viability of the parasites and induced changes in the mitochondrial membrane potential. The production of reactive oxygen species was dose-dependent and was observed only in the groups submitted to PDT. DNA damage was also observed in the parasite cells. The morphology of the cells was affected mainly at the highest curcumin concentration, resulting in rounded cells with a shortened flagellum. When the type of cell death was analyzed, the prevalence of apoptosis was noted. The results support the use of curcumin as photosensitizer in PDT against Leishmania promastigotes in the treatment for cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Luciana Maria Cortez Marcolino
- Photobiology Applied to Health - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, S.P, Brazil.
| | - André Henrique Correia Pereira
- Photobiology Applied to Health - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, S.P, Brazil
| | - Juliana Guerra Pinto
- Photobiology Applied to Health - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, S.P, Brazil
| | - Leandro Ariel Mamone
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - Juliana Ferreira Strixino
- Photobiology Applied to Health - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, S.P, Brazil.
| |
Collapse
|
18
|
The antibacterial and antifungal properties of neutral, octacationic and hexadecacationic Zn phthalocyanines when conjugated to silver nanoparticles. Photodiagnosis Photodyn Ther 2021; 35:102361. [PMID: 34052420 DOI: 10.1016/j.pdpdt.2021.102361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/27/2022]
Abstract
The syntheses and characterization of novel octacationic and hexadecacationic Pcs is reported. With the aim of enhancing singlet oxygen generation efficiencies and hence antimicrobial activities, these Pcs (including their neutral counterpart) are conjugated to Ag nanoparticles (AgNPs). The obtained results show that the conjugate composed of the neutral Pc has a higher loading of Pcs as well as a greater singlet oxygen quantum yield enhancement (in the presence of AgNPs) in DMSO. The antimicrobial efficiencies of the Pcs and their conjugates were evaluated and compared on S. aureus, E. coli and C. albicans. The cationic Pcs possess better activity than the neutral Pc against all the microorganisms with the hexadecacationic Pc being the best. This work therefore demonstrates that increase in the number of cationic charges on the reported Pcs results in enhanced antimicrobial activities, which is maintained even when conjugated to Ag nanoparticles. The high activity and lack of selectivity of the cationic Pcs when conjugated to Ag NPs against different microorganisms make them good candidates for real life antimicrobial treatments.
Collapse
|
19
|
Sen P, Nyokong T. Promising photodynamic antimicrobial activity of polyimine substituted zinc phthalocyanine and its polycationic derivative when conjugated to nitrogen, sulfur, co-doped graphene quantum dots against Staphylococcus aureus. Photodiagnosis Photodyn Ther 2021; 34:102300. [PMID: 33894371 DOI: 10.1016/j.pdpdt.2021.102300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/04/2021] [Accepted: 04/16/2021] [Indexed: 01/15/2023]
Abstract
Antimicrobial resistance is a most important problem facing the treatment of infectious diseases. Antimicrobial photodynamic therapy is an alternative treatment strategy, considered to be cost-effective and feasible. For this purpose, octa-imine substituted ZnPc (3) have been prepared and conjugated to nitrogen, sulfur co-doped graphene quantum dots (N,S-GQDs) through π-π stacking. The photophysical and photochemical properties of Pc alone and and Pc-conjugated to the GQD nanomaterial such as absorption, fluorescence, fluorescence life time, singlet oxygen quantum yields, triplet state quantum yields and exited state lifetimes were investigated in solutions before in vitro cell studies. The PACT activity of prepared structures was investigated against Gram-positive (Staphylococcus aureus). Our results suggest that the in the case of conjugation of zinc Pc to N,S-GQDs, photodynamic inactivation increased with the 100 % reduction percentage.
Collapse
Affiliation(s)
- Pinar Sen
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa.
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa.
| |
Collapse
|
20
|
Revuelta‐Maza MÁ, Heras E, Agut M, Nonell S, Torres T, Torre G. Self‐Assembled Binaphthyl‐Bridged Amphiphilic AABB Phthalocyanines: Nanostructures for Efficient Antimicrobial Photodynamic Therapy. Chemistry 2021; 27:4955-4963. [DOI: 10.1002/chem.202005060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/02/2021] [Indexed: 12/17/2022]
Affiliation(s)
| | - Elena Heras
- Institut Químic de Sarrià Universitat Ramon Llull 08017 Barcelona Spain
| | - Montserrat Agut
- Institut Químic de Sarrià Universitat Ramon Llull 08017 Barcelona Spain
| | - Santi Nonell
- Institut Químic de Sarrià Universitat Ramon Llull 08017 Barcelona Spain
| | - Tomás Torres
- Universidad Autónoma de Madrid C/ Francisco Tomás y Valiente 7 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid 28049 Madrid Spain
- Instituto Madrileño de Estudios Avanzados (IMDEA)-Nanociencia C/ Faraday 9 Cantoblanco 28049, Madrid Spain
| | - Gema Torre
- Universidad Autónoma de Madrid C/ Francisco Tomás y Valiente 7 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
21
|
Zhang Y, Li D, Tan J, Chang Z, Liu X, Ma W, Xu Y. Near-Infrared Regulated Nanozymatic/Photothermal/Photodynamic Triple-Therapy for Combating Multidrug-Resistant Bacterial Infections via Oxygen-Vacancy Molybdenum Trioxide Nanodots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005739. [PMID: 33284509 DOI: 10.1002/smll.202005739] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/18/2020] [Indexed: 06/12/2023]
Abstract
Bacterial infections have become a major danger to public health because of the appearance of the antibiotic resistance. The synergistic combination of multiple therapies should be more effective compared with the respective one alone, but has been rarely demonstrated in combating bacterial infections till now. Herein, oxygen-vacancy molybdenum trioxide nanodots (MoO3-x NDs) are proposed as an efficient and safe bacteriostatic. The MoO3-x NDs alone possess triple-therapy synergistic efficiency based on the single near-infrared irradiation (808 nm) regulated combination of photodynamic, photothermal, and peroxidase-like enzymatic activities. Therein, photodynamic and photothermal therapies can be both achieved under the excitation of a single wavelength light source (808 nm). Both the photodynamic and nanozyme activity can result in the generation of reactive oxygen species (ROS) to reach the broad-spectrum sterilization. Interestingly, the photothermal effect can regulate the MoO3-x NDs to their optimum enzymatic temperature (50 °C) to give sufficient ROS generation in low concentration of H2 O2 (100 µm). The MoO3-x NDs show excellent antibacterial efficiency against drug-resistance extended spectrum β-lactamases producing Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). Animal experiments further indicate that the MoO3-x NDs can effectively treat wounds infected with MRSA in living systems.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Danxia Li
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
- Department of Urology, Key Laboratory of Urinary System Diseases, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Jinshan Tan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhishang Chang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Xiangyong Liu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Weishuai Ma
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
- Department of Urology, Key Laboratory of Urinary System Diseases, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| |
Collapse
|
22
|
Peterson JC, Arrieta E, Ruggeri M, Silgado JD, Mintz KJ, Weisson EH, Leblanc RM, Kochevar I, Manns F, Parel JM. Detection of singlet oxygen luminescence for experimental corneal rose bengal photodynamic antimicrobial therapy. BIOMEDICAL OPTICS EXPRESS 2021; 12:272-287. [PMID: 33520385 PMCID: PMC7818961 DOI: 10.1364/boe.405601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 05/03/2023]
Abstract
Rose bengal photodynamic antimicrobial therapy (RB-PDAT) treats corneal infection by activating rose bengal (RB) with green light to produce singlet oxygen (1O2). Singlet oxygen dosimetry can help optimize treatment parameters. We present a 1O2 dosimeter for detection of 1O2 generated during experimental RB-PDAT. The system uses a 520 nm laser and an InGaAs photoreceiver with bandpass filters to detect 1O2 luminescence during irradiation. The system was validated in RB solutions and ex vivo in human donor eyes. The results demonstrate the feasibility of 1O2 dosimetry in an experimental model of RB-PDAT in the cornea.
Collapse
Affiliation(s)
- Jeffrey C Peterson
- Ophthalmic Biophysics Center, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Ave, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Dr, Coral Gables, FL 33146, USA
- Miller School of Medicine, University of Miami, 1600 NW 10th Ave #1140, Miami, FL 33136, USA
| | - Esdras Arrieta
- Ophthalmic Biophysics Center, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Ave, Miami, FL 33136, USA
| | - Marco Ruggeri
- Ophthalmic Biophysics Center, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Ave, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Dr, Coral Gables, FL 33146, USA
| | - Juan D Silgado
- Ophthalmic Biophysics Center, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Ave, Miami, FL 33136, USA
| | - Keenan J Mintz
- Department of Chemistry, University of Miami, 1301 Memorial Dr, Coral Gables, FL 33146, USA
| | - Ernesto H Weisson
- Miller School of Medicine, University of Miami, 1600 NW 10th Ave #1140, Miami, FL 33136, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Dr, Coral Gables, FL 33146, USA
| | - Irene Kochevar
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, MA 02114, USA
| | - Fabrice Manns
- Ophthalmic Biophysics Center, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Ave, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Dr, Coral Gables, FL 33146, USA
- Miller School of Medicine, University of Miami, 1600 NW 10th Ave #1140, Miami, FL 33136, USA
| | - Jean-Marie Parel
- Ophthalmic Biophysics Center, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Ave, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Dr, Coral Gables, FL 33146, USA
- Anne Bates Leach Eye Center, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 900 NW 17th St, Miami, FL 33136, USA
| |
Collapse
|
23
|
Trousil V, Černý J, Kořínková R, Pummerová M, Mikulcová V, Herynková M. Degradation of a model dye with zinc phthalocyanine sulphonamide embedded in polymer matrices. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Thionine in the design of new photosensitizers: Bromination and vehiculization in polymeric nanoparticles. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Revuelta-Maza MÁ, González-Jiménez P, Hally C, Agut M, Nonell S, de la Torre G, Torres T. Fluorine-substituted tetracationic ABAB-phthalocyanines for efficient photodynamic inactivation of Gram-positive and Gram-negative bacteria. Eur J Med Chem 2019; 187:111957. [PMID: 31864170 DOI: 10.1016/j.ejmech.2019.111957] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/22/2019] [Accepted: 12/08/2019] [Indexed: 02/04/2023]
Abstract
Herein, we report the synthesis and characterization of new amphiphilic phthalocyanines (Pcs), the study of their singlet oxygen generation capabilities, and biological assays to determine their potential as photosensitizers for photodynamic inactivation of bacteria. In particular, Pcs with an ABAB geometry (where A and B refer to differently substituted isoindole constituents) have been synthesized. These molecules are endowed with bulky bis(trifluoromethylphenyl) groups in two facing isoindoles, which hinder aggregation and favour singlet oxygen generation, and pyridinium or alkylammonium moieties in the other two isoindoles. In particular, two water-soluble Pc derivatives (PS-1 and PS-2) have proved to be efficient in the photoinactivation of S. aureus and E. coli, selected as models of Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
| | | | - Cormac Hally
- Institut Químic de Sarrià, Universitat Ramon Llull, 08017, Barcelona, Spain
| | - Montserrat Agut
- Institut Químic de Sarrià, Universitat Ramon Llull, 08017, Barcelona, Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, 08017, Barcelona, Spain.
| | - Gema de la Torre
- Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Tomás Torres
- Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain; Instituto Madrileño de Estudios Avanzados (IMDEA)-Nanociencia, C/ Faraday 9, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
26
|
Macedo da Silva RO, Gonçalves Castro JW, de Menezes Dantas Junior O, Justino de Araújo AC, do Nascimento Silva Leandro MK, Oliveira Costa RJ, Leite Pinto L, Garcia Leandro LM, da Silva LE, do Amaral W, Parabocz LD, Ferriani AP, Garcia B, Sales Maia BHLN, Esmeraldo Rocha J, Fonseca Bezerra C, Sampaio de Freitas T, Socorro Costa M, Ferreira Campina F, Ferreira Matias EF, Iriti M, Coutinho HDM. Photoinduced Antibacterial Activity of the Essential Oils from Eugenia brasiliensis Lam and Piper mosenii C. DC. by Blue Led Light. Antibiotics (Basel) 2019; 8:antibiotics8040242. [PMID: 31795165 PMCID: PMC6963601 DOI: 10.3390/antibiotics8040242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 11/24/2022] Open
Abstract
The objective of this work was to evaluate the phytochemical composition and the antibacterial and antibiotic-modulating activities of the essential oils of Eugenia brasiliensis Lam (OEEb) and Piper mosenii C. DC (OEPm) singly or in association with blue LED (Light-emitting diode) light. The antibacterial and antibiotic-modulatory activities of the essential oils on the activity of aminoglycosides were evaluated to determine the minimum inhibitory concentration (MIC, μg/mL) in the presence or absence of exposure to blue LED light. The chemical analysis showed α-pinene and bicyclogermacrene as major constituents of OEPm, whereas α-muurolol was the main compound of OEEb. Both OEEb and OEPm showed MIC ≥ 512 μg/mL against the strains under study. However, the association of these oils with the blue LED light enhanced the action of the aminoglycosides amikacin and gentamicin. In conclusion, the association of aminoglycosides with the blue LED light and essential oils was effective against resistant bacteria.
Collapse
Affiliation(s)
- Rakel Olinda Macedo da Silva
- Department of Biomedicine, University Center Dr. Leão Sampaio, Juazeiro do Norte 63040-005, Brazil; (R.O.M.d.S.); (J.W.G.C.); (O.d.M.D.J.); (M.K.d.N.S.L.); (R.J.O.C.); (L.L.P.); (L.M.G.L.); (E.F.F.M.)
| | - José Walber Gonçalves Castro
- Department of Biomedicine, University Center Dr. Leão Sampaio, Juazeiro do Norte 63040-005, Brazil; (R.O.M.d.S.); (J.W.G.C.); (O.d.M.D.J.); (M.K.d.N.S.L.); (R.J.O.C.); (L.L.P.); (L.M.G.L.); (E.F.F.M.)
| | - Orlando de Menezes Dantas Junior
- Department of Biomedicine, University Center Dr. Leão Sampaio, Juazeiro do Norte 63040-005, Brazil; (R.O.M.d.S.); (J.W.G.C.); (O.d.M.D.J.); (M.K.d.N.S.L.); (R.J.O.C.); (L.L.P.); (L.M.G.L.); (E.F.F.M.)
| | - Ana Carolina Justino de Araújo
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (A.C.J.d.A.); (J.E.R.); (C.F.B.); (T.S.d.F.); (M.S.C.); (F.F.C.); (H.D.M.C.)
| | - Maria Karollyna do Nascimento Silva Leandro
- Department of Biomedicine, University Center Dr. Leão Sampaio, Juazeiro do Norte 63040-005, Brazil; (R.O.M.d.S.); (J.W.G.C.); (O.d.M.D.J.); (M.K.d.N.S.L.); (R.J.O.C.); (L.L.P.); (L.M.G.L.); (E.F.F.M.)
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (A.C.J.d.A.); (J.E.R.); (C.F.B.); (T.S.d.F.); (M.S.C.); (F.F.C.); (H.D.M.C.)
| | - Raíra Justino Oliveira Costa
- Department of Biomedicine, University Center Dr. Leão Sampaio, Juazeiro do Norte 63040-005, Brazil; (R.O.M.d.S.); (J.W.G.C.); (O.d.M.D.J.); (M.K.d.N.S.L.); (R.J.O.C.); (L.L.P.); (L.M.G.L.); (E.F.F.M.)
| | - Luciely Leite Pinto
- Department of Biomedicine, University Center Dr. Leão Sampaio, Juazeiro do Norte 63040-005, Brazil; (R.O.M.d.S.); (J.W.G.C.); (O.d.M.D.J.); (M.K.d.N.S.L.); (R.J.O.C.); (L.L.P.); (L.M.G.L.); (E.F.F.M.)
| | - Lívia Maria Garcia Leandro
- Department of Biomedicine, University Center Dr. Leão Sampaio, Juazeiro do Norte 63040-005, Brazil; (R.O.M.d.S.); (J.W.G.C.); (O.d.M.D.J.); (M.K.d.N.S.L.); (R.J.O.C.); (L.L.P.); (L.M.G.L.); (E.F.F.M.)
| | - Luiz E. da Silva
- Setor Litoral, Federal University of Paraná, Curitiba 80.060-000, Brazil; (L.E.d.S.); (W.d.A.); (L.D.P.); (A.P.F.); (B.G.); (B.H.L.N.S.M.)
| | - Wanderlei do Amaral
- Setor Litoral, Federal University of Paraná, Curitiba 80.060-000, Brazil; (L.E.d.S.); (W.d.A.); (L.D.P.); (A.P.F.); (B.G.); (B.H.L.N.S.M.)
| | - Lucas D. Parabocz
- Setor Litoral, Federal University of Paraná, Curitiba 80.060-000, Brazil; (L.E.d.S.); (W.d.A.); (L.D.P.); (A.P.F.); (B.G.); (B.H.L.N.S.M.)
| | - Aurea P. Ferriani
- Setor Litoral, Federal University of Paraná, Curitiba 80.060-000, Brazil; (L.E.d.S.); (W.d.A.); (L.D.P.); (A.P.F.); (B.G.); (B.H.L.N.S.M.)
| | - Bruna Garcia
- Setor Litoral, Federal University of Paraná, Curitiba 80.060-000, Brazil; (L.E.d.S.); (W.d.A.); (L.D.P.); (A.P.F.); (B.G.); (B.H.L.N.S.M.)
| | - Beatriz H. L. N. Sales Maia
- Setor Litoral, Federal University of Paraná, Curitiba 80.060-000, Brazil; (L.E.d.S.); (W.d.A.); (L.D.P.); (A.P.F.); (B.G.); (B.H.L.N.S.M.)
| | - Janaína Esmeraldo Rocha
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (A.C.J.d.A.); (J.E.R.); (C.F.B.); (T.S.d.F.); (M.S.C.); (F.F.C.); (H.D.M.C.)
| | - Camila Fonseca Bezerra
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (A.C.J.d.A.); (J.E.R.); (C.F.B.); (T.S.d.F.); (M.S.C.); (F.F.C.); (H.D.M.C.)
| | - Thiago Sampaio de Freitas
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (A.C.J.d.A.); (J.E.R.); (C.F.B.); (T.S.d.F.); (M.S.C.); (F.F.C.); (H.D.M.C.)
| | - Maria Socorro Costa
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (A.C.J.d.A.); (J.E.R.); (C.F.B.); (T.S.d.F.); (M.S.C.); (F.F.C.); (H.D.M.C.)
| | - Fábia Ferreira Campina
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (A.C.J.d.A.); (J.E.R.); (C.F.B.); (T.S.d.F.); (M.S.C.); (F.F.C.); (H.D.M.C.)
| | - Edinardo Fagner Ferreira Matias
- Department of Biomedicine, University Center Dr. Leão Sampaio, Juazeiro do Norte 63040-005, Brazil; (R.O.M.d.S.); (J.W.G.C.); (O.d.M.D.J.); (M.K.d.N.S.L.); (R.J.O.C.); (L.L.P.); (L.M.G.L.); (E.F.F.M.)
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy
- Correspondence:
| | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (A.C.J.d.A.); (J.E.R.); (C.F.B.); (T.S.d.F.); (M.S.C.); (F.F.C.); (H.D.M.C.)
| |
Collapse
|
27
|
Abstract
This year marks the 50th anniversary of the discovery of σ70 as a protein factor that was needed for bacterial RNA polymerase to accurately transcribe a promoter in vitro. It was 25 years later that the Group IV alternative σs were described as a distinct family of proteins related to σ70 . In the intervening time, there has been an ever-growing list of Group IV σs, numbers of genes they transcribe, insight into the diverse suite of processes they control, and appreciation for their impact on bacterial lifestyles. This work summarizes knowledge of the Rhodobacter sphaeroides σE -ChrR pair, a member of the ECF11 subfamily of Group IV alternative σs, in protecting cells from the reactive oxygen species, singlet oxygen. It describes lessons learned from analyzing ChrR, a zinc-dependent anti-σ factor, that are generally applicable to Group IV σs and relevant to the response to single oxygen. This MicroReview also illustrates insights into stress responses in this and other bacteria that have been acquired by analyzing or modeling the activity of the σE -ChrR across the bacterial phylogeny.
Collapse
Affiliation(s)
- Timothy J. Donohue
- Bacteriology Department, Great Lakes Bioenergy Research CenterWisconsin Energy Institute, University of Wisconsin‐MadisonMadisonWI53726USA
| |
Collapse
|
28
|
Amos-Tautua BM, Songca SP, Oluwafemi OS. Application of Porphyrins in Antibacterial Photodynamic Therapy. Molecules 2019; 24:E2456. [PMID: 31277423 PMCID: PMC6650910 DOI: 10.3390/molecules24132456] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 11/28/2022] Open
Abstract
Antibiotics are commonly used to control, treat, or prevent bacterial infections, however bacterial resistance to all known classes of traditional antibiotics has greatly increased in the past years especially in hospitals rendering certain therapies ineffective. To limit this emerging public health problem, there is a need to develop non-incursive, non-toxic, and new antimicrobial techniques that act more effectively and quicker than the current antibiotics. One of these effective techniques is antibacterial photodynamic therapy (aPDT). This review focuses on the application of porphyrins in the photo-inactivation of bacteria. Mechanisms of bacterial resistance and some of the current 'greener' methods of synthesis of meso-phenyl porphyrins are discussed. In addition, significance and limitations of aPDT are also discussed. Furthermore, we also elaborate on the current clinical applications and the future perspectives and directions of this non-antibiotic therapeutic strategy in combating infectious diseases.
Collapse
Affiliation(s)
- Bamidele M Amos-Tautua
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2000, South Africa
| | - Sandile P Songca
- Department of Chemistry, University of KwaZulu-Natal, Private Bag X 54001, Durban 4000, South Africa
| | - Oluwatobi S Oluwafemi
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein 2028, South Africa.
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2000, South Africa.
| |
Collapse
|
29
|
dos Santos DP, Soares Lopes DP, de Moraes RC, Vieira Gonçalves C, Pereira Rosa L, da Silva Rosa FC, da Silva RAA. Photoactivated resveratrol against Staphylococcus aureus infection in mice. Photodiagnosis Photodyn Ther 2019; 25:227-236. [DOI: 10.1016/j.pdpdt.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/22/2018] [Accepted: 01/04/2019] [Indexed: 01/02/2023]
|
30
|
Li Y, Chen R, Zhou H, Shi Y, Qin C, Gao Y, Zhang G, Gao Y, Xiao L, Jia S. Observation of Singlet Oxygen with Single-Molecule Photosensitization by Time-Dependent Photon Statistics. J Phys Chem Lett 2018; 9:5207-5212. [PMID: 30122039 DOI: 10.1021/acs.jpclett.8b02088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The singlet oxygen has been widely applied to the treatment of physiological diseases, and the photosensitized generation of singlet oxygen is the main means of its physiological applications. On the basis of the fluctuation of fluorescence field from single photosensitizer, we characterize the generation of singlet oxygen at single molecule level with the time-dependent photon statistical method. By measuring the time-tagged-time-resolved single-molecule fluorescence photons, we analyze the time-dependent Mandel-Q parameter, which has been performed at different oxygen environment. It is shown that the single molecule not only offers an efficient way of generating singlet oxygen in ambient condition but also provides insights for the fluctuation of singlet oxygen in the nanoscale environment. The method of time-dependent photon statistics provides a convenient methodology for observing photosensitizers generating singlet oxygen in real time at single photosensitizer level.
Collapse
Affiliation(s)
- Yao Li
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Ruiyun Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Haitao Zhou
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Ying Shi
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Chengbing Qin
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Yajun Gao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Guofeng Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Yan Gao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| |
Collapse
|
31
|
Pibiri I, Buscemi S, Palumbo Piccionello A, Pace A. Photochemically Produced Singlet Oxygen: Applications and Perspectives. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800076] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche - STEBICEF; Università degli Studi di Palermo; Viale delle Scienze, Edificio 17 - 90128 Palermo Italy
| | - Silvestre Buscemi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche - STEBICEF; Università degli Studi di Palermo; Viale delle Scienze, Edificio 17 - 90128 Palermo Italy
| | - Antonio Palumbo Piccionello
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche - STEBICEF; Università degli Studi di Palermo; Viale delle Scienze, Edificio 17 - 90128 Palermo Italy
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche - STEBICEF; Università degli Studi di Palermo; Viale delle Scienze, Edificio 17 - 90128 Palermo Italy
- Dipartimento di Scienze per l'Innovazione Tecnologica; Istituto EuroMediterraneo di Scienza e Tecnologia - IEMEST; Via Michele Miraglia, 20 - 90139 - Palermo Italy
| |
Collapse
|
32
|
Abstract
Microbial pathogens have increasingly shown multidrug resistance posing a serious threat to the public health. Advances in technology are opening novel avenues for discovery of compounds that will mitigate the ever-increasing drug-resistant microbes. Use of photodynamic photosensitizer is one of the promising alternative approaches since they offer low risk of bacteria resistance as they use generated reactive oxygen species to kill the microbes. Phthalocyanine (Pc) is one such photosensitizer which has already shown promising antimicrobial photodynamic therapeutic properties. Previous studies have shown effectiveness of the Pc against Gram-positive bacteria. However, its effectiveness toward Gram-negative bacteria is limited by the impermeability of the bacteria’s outer membrane which is made up of lipopolysaccharides layer. The effectiveness of this photosensitizer is determined by its photophysical and photochemical properties such as singlet/triplet lifetimes, singlet oxygen quantum yields, and fluorescence quantum yield. Therefore, this review focuses on the recent significance advances on designing Pc that have this improved property by either conjugating with nanoparticles, quantum dots, functional groups in peripheral position, considering effect of cationic charge, and its position on the macrocycle.
Collapse
|
33
|
Tan L, Li J, Liu X, Cui Z, Yang X, Yeung KWK, Pan H, Zheng Y, Wang X, Wu S. In Situ Disinfection through Photoinspired Radical Oxygen Species Storage and Thermal-Triggered Release from Black Phosphorous with Strengthened Chemical Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1703197. [PMID: 29251423 DOI: 10.1002/smll.201703197] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/21/2017] [Indexed: 05/19/2023]
Abstract
Photodynamic therapy (PDT) utilizing light-induced reactive oxygen species (ROS) is a promising alternative to combat antibiotic-resistant bacteria and biofilm. However, the photosensitizer (PS)-modified surface only exhibits antibacterial properties in the presence of light. It is known that extended photoirradiation may lead to phototoxicity and tissue hypoxia, which greatly limits PDT efficiency, while ambient pathogens also have the opportunity to attach to biorelevant surfaces in medical facilities without light. Here, an antimicrobial film composed of black phosphorus nanosheets (BPSs) and poly (4-pyridonemethylstyrene) endoperoxide (PPMS-EPO) to control the storage and release of ROS reversibly is introduced. BPS, as a biocompatible PS, can produce high singlet oxygen under the irradiation of visible light of 660 nm, which can be stably stored in PPMS-EPO. The ROS can be gradually thermally released in the dark. In vitro antibacterial studies demonstrate that the PPMS-EPO/BPS film exhibits a rapid disinfection ability with antibacterial rate of 99.3% against Escherichia coli and 99.2% against Staphylococcus aureus after 10 min of irradiation. Even without light, the corresponding antibacterial rate reaches 76.5% and 69.7%, respectively. In addition, incorporating PPMS significantly improves the chemical stability of the BPS.
Collapse
Affiliation(s)
- Lei Tan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Jun Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Xiangmei Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Xianjin Yang
- School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yufeng Zheng
- China State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Shuilin Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
34
|
Miletin M, Zimcik P, Novakova V. Photodynamic properties of aza-analogues of phthalocyanines. Photochem Photobiol Sci 2018; 17:1749-1766. [DOI: 10.1039/c8pp00106e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Spectral and photophysical properties and in vitro photodynamic activity of aza-analogues of phthalocyanines are summarized.
Collapse
Affiliation(s)
- Miroslav Miletin
- Faculty of Pharmacy in Hradec Kralove
- Charles University
- Hradec Kralove 50005
- Czech Republic
| | - Petr Zimcik
- Faculty of Pharmacy in Hradec Kralove
- Charles University
- Hradec Kralove 50005
- Czech Republic
| | - Veronika Novakova
- Faculty of Pharmacy in Hradec Kralove
- Charles University
- Hradec Kralove 50005
- Czech Republic
| |
Collapse
|
35
|
Galstyan A, Dobrindt U. Breaching the wall: morphological control of efficacy of phthalocyanine-based photoantimicrobials. J Mater Chem B 2018; 6:4630-4637. [DOI: 10.1039/c8tb01357h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this paper, photophysical, theoretical and biological studies are combined, highlighting the importance of different characteristics for designing new and more effective PSs.
Collapse
Affiliation(s)
- Anzhela Galstyan
- Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| | - Ulrich Dobrindt
- Institute of Hygiene
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| |
Collapse
|
36
|
Galstyan A, Putze J, Dobrindt U. Gaining Access to Bacteria through (Reversible) Control of Lipophilicity. Chemistry 2017; 24:1178-1186. [DOI: 10.1002/chem.201704562] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Anzhela Galstyan
- Center for Nanotechnology; Physikalisches Institut; Westfälische Wilhelms-Universität Münster; Heisenbergstrasse 11 48149 Münster Germany
| | - Johannes Putze
- Institut für Hygiene; Westfälische Wilhelms-Universität Münster; Mendelstraße 7 48149 Münster Germany
| | - Ulrich Dobrindt
- Institut für Hygiene; Westfälische Wilhelms-Universität Münster; Mendelstraße 7 48149 Münster Germany
| |
Collapse
|
37
|
Müller A, Preuß A, Röder B. Photodynamic inactivation of Escherichia coli - Correlation of singlet oxygen kinetics and phototoxicity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:219-227. [PMID: 29156350 DOI: 10.1016/j.jphotobiol.2017.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/09/2017] [Accepted: 11/12/2017] [Indexed: 01/22/2023]
Abstract
Photodynamic inactivation (PDI) of bacteria may play a major role in facing the challenge of the ever expanding antibiotic resistances. Here we report about the direct correlation of singlet oxygen luminescence kinetics and phototoxicity in E. coli cell suspension under PDI using the widely applied cationic photosensitizer TMPyP. Through direct access to the microenvironment, the time resolved investigation of singlet oxygen luminescence plays a key role in understanding the photosensitization mechanism and inactivation pathway. Using the homemade set-up for highly sensitive time resolved singlet oxygen luminescence detection, we show that the cationic TMPyP is localized predominantly outside the bacterial cells but in their immediate vicinity prior to photodynamic inactivation. Throughout following light exposure, a clear change in singlet oxygen kinetics indicates a redistribution of photosensitizer molecules to at least one additional microenvironment. We found the signal kinetics mirrored in cell viability measurements of equally treated samples from same overnight cultures conducted in parallel: A significant drop in cell viability of the illuminated samples and stationary viability of dark controls. Thus, for the system investigated in this work - a Gram-negative model bacteria and a well-known PS for its PDI - singlet oxygen kinetics correlates with phototoxicity. This finding suggests that it is well possible to evaluate PDI efficiency directly via time resolved singlet oxygen detection.
Collapse
Affiliation(s)
- Alexander Müller
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany
| | - Annegret Preuß
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany
| | - Beate Röder
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany.
| |
Collapse
|
38
|
Leishmanicidal effect of antiparasitic photodynamic therapy—ApPDT on infected macrophages. Lasers Med Sci 2017; 32:1959-1964. [DOI: 10.1007/s10103-017-2292-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/21/2017] [Indexed: 12/27/2022]
|
39
|
López-Chicón P, Gulías Ò, Nonell S, Agut M. In Vitro Antimicrobial Photodynamic Therapy Against Trichophyton mentagrophytes Using New Methylene Blue as the Photosensitizer. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.adengl.2016.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Terapia fotodinámica antimicrobiana in vitro aplicada sobre Trichophyton mentagrophytes con nuevo azul de metileno como fotosensibilizador. ACTAS DERMO-SIFILIOGRAFICAS 2016; 107:765-770. [DOI: 10.1016/j.ad.2016.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/19/2016] [Indexed: 11/22/2022] Open
|
41
|
Fila G, Kasimova K, Arenas Y, Nakonieczna J, Grinholc M, Bielawski KP, Lilge L. Murine Model Imitating Chronic Wound Infections for Evaluation of Antimicrobial Photodynamic Therapy Efficacy. Front Microbiol 2016; 7:1258. [PMID: 27555843 PMCID: PMC4977341 DOI: 10.3389/fmicb.2016.01258] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 07/29/2016] [Indexed: 11/22/2022] Open
Abstract
It is generally acknowledged that the age of antibiotics could come to an end, due to their widespread, and inappropriate use. Particularly for chronic wounds alternatives are being thought. Antimicrobial Photodynamic Therapy (APDT) is a potential candidate, and while approved for some indications, such as periodontitis, chronic sinusitis and other niche indications, its use in chronic wounds is not established. To further facilitate the development of APDT in chronic wounds we present an easy to use animal model exhibiting the key hallmarks of chronic wounds, based on full-thickness skin wounds paired with an optically transparent cover. The moisture-retaining wound exhibited rapid expansion of pathogen colonies up to 8 days while not jeopardizing the host survival. Use of two bioluminescent pathogens; methicillin resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa permits real time monitoring of the pathogens. The murine model was employed to evaluate the performance of four different photosensitizers as mediators in Photodynamic Therapy. While all four photosensitizers, Rose Bengal, porphyrin TMPyP, New Methylene Blue, and TLD1411 demonstrated good to excellent antimicrobial efficacy in planktonic solutions at 1 to 50 μM concentrations, whereas in in vivo the growth delay was limited with 24–48 h delay in pathogen expansion for MRSA, and we noticed longer growth suppression of P. aeruginosa with TLD1411 mediated Photodynamic Therapy. The murine model will enable developing new strategies for enhancement of APDT for chronic wound infections.
Collapse
Affiliation(s)
- Grzegorz Fila
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Kamola Kasimova
- Princess Margaret Cancer Centre, University Health Network Toronto, ON, Canada
| | | | - Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Krzysztof P Bielawski
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Lothar Lilge
- Princess Margaret Cancer Centre, University Health NetworkToronto, ON, Canada; Department of Medical Biophysics, University of TorontoToronto, ON, Canada
| |
Collapse
|
42
|
Awad MM, Tovmasyan A, Craik JD, Batinic-Haberle I, Benov LT. Important cellular targets for antimicrobial photodynamic therapy. Appl Microbiol Biotechnol 2016; 100:7679-88. [DOI: 10.1007/s00253-016-7632-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 12/17/2022]
|
43
|
Gehring J, Trepka B, Klinkenberg N, Bronner H, Schleheck D, Polarz S. Sunlight-Triggered Nanoparticle Synergy: Teamwork of Reactive Oxygen Species and Nitric Oxide Released from Mesoporous Organosilica with Advanced Antibacterial Activity. J Am Chem Soc 2016; 138:3076-84. [DOI: 10.1021/jacs.5b12073] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Julia Gehring
- Department of Chemistry and ‡Department of
Biology, University of Konstanz, Konstanz D-78457, Germany
| | - Bastian Trepka
- Department of Chemistry and ‡Department of
Biology, University of Konstanz, Konstanz D-78457, Germany
| | - Nele Klinkenberg
- Department of Chemistry and ‡Department of
Biology, University of Konstanz, Konstanz D-78457, Germany
| | - Hannah Bronner
- Department of Chemistry and ‡Department of
Biology, University of Konstanz, Konstanz D-78457, Germany
| | - David Schleheck
- Department of Chemistry and ‡Department of
Biology, University of Konstanz, Konstanz D-78457, Germany
| | - Sebastian Polarz
- Department of Chemistry and ‡Department of
Biology, University of Konstanz, Konstanz D-78457, Germany
| |
Collapse
|
44
|
Noimark S, Salvadori E, Gómez-Bombarelli R, MacRobert AJ, Parkin IP, Kay CWM. Comparative study of singlet oxygen production by photosensitiser dyes encapsulated in silicone: towards rational design of anti-microbial surfaces. Phys Chem Chem Phys 2016; 18:28101-28109. [DOI: 10.1039/c6cp02529c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Theoretical and experimental toolbox for the rational design of light-activated antimicrobial surfaces.
Collapse
Affiliation(s)
- Sacha Noimark
- Materials Chemistry Research Centre
- Department of Chemistry
- University College London
- London WC1H 0AJ
- UK
| | - Enrico Salvadori
- Institute of Structural and Molecular Biology and London Centre for Nanotechnology University College London
- London WC1E 6BT
- UK
- School of Biological and Chemical Sciences
- Queen Mary University of London
| | | | - Alexander J. MacRobert
- UCL Division of Surgery and Interventional Science
- University College London
- London WCIE 6AU
- UK
| | - Ivan P. Parkin
- Materials Chemistry Research Centre
- Department of Chemistry
- University College London
- London WC1H 0AJ
- UK
| | - Christopher W. M. Kay
- Institute of Structural and Molecular Biology and London Centre for Nanotechnology University College London
- London WC1E 6BT
- UK
| |
Collapse
|
45
|
Li KT, Duan QQ, Chen Q, He JW, Tian S, Lin HD, Gao Q, Bai DQ. The effect of aloe emodin-encapsulated nanoliposome-mediated r-caspase-3 gene transfection and photodynamic therapy on human gastric cancer cells. Cancer Med 2015; 5:361-9. [PMID: 26686868 PMCID: PMC4735781 DOI: 10.1002/cam4.584] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/26/2015] [Accepted: 10/11/2015] [Indexed: 11/11/2022] Open
Abstract
Gastric carcinoma (GC) has high incidence and mortality rates in China. Surgery and chemotherapy are the main treatments. Photodynamic therapy (PDT) has become a new treatment modality, appearing in recent experimental studies and clinical trials in various tumors. This study explores the combined effect of gene transfection with PDT on GC cells using aloe emodin (AE)-encapsulated nanoliposomes, which acted as gene carrier as well as one photosensitizer (PS). AE-encapsulated nanoliposomes (nano-AE) were prepared by reverse evaporation method. Electron microscopy and nano-ZS90 analyzer were used to detect its morphology, size, and wavelength. Western blot was used to detect the expression of the caspase-3 after transfection. MTT assay and flow cytometry were employed to determine the cytotoxic and apoptotic rates, respectively. Hoechst 33342 staining was adopted to detect the morphological changes in death gastric cancer cells. Cellular reactive oxygen species (ROS) contents were measured by DCFH-DA staining. Outcomes demonstrated that the nano-AE has good properties as gene delivery carriers as well as a PS. The group in which the recombinant plasmid of r-caspase-3 was transfected had higher protein expression of the caspase-3 than controls, meanwhile the proliferation rates of the transfected cells were inhibited by the nano-AE-mediated PDT in an energy-dependent manner. In addition, in the transfected cells, the death rate increased to 77.3% as assessed 12 h after PDT (6.4 J/cm(2) ). Hochest 33342 staining also revealed that the death rate increased significantly in the transfected group compared with other groups. Compared to control groups, the production of ROS in nano-AE PDT group had quadrupled in SGC-7901 cells as early as 1 h after PDT, while it is similar to the group of nano-AE transfection and PDT. Nano-AE-mediated r-caspase-3 gene transfection coupled with PDT could inhibit the proliferation rate and increase the apoptotic rate remarkably in human gastric cancer cells.
Collapse
Affiliation(s)
- Kai-Ting Li
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin-Qin Duan
- Department of gastroenterology, Chinese Medicine Hospital of Longquan, Chengdu, China
| | - Qing Chen
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan-Wen He
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Si Tian
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hai-Dan Lin
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Gao
- Department of gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ding-Qun Bai
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
46
|
Liu Y, Qin R, Zaat SAJ, Breukink E, Heger M. Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections. J Clin Transl Res 2015; 1:140-167. [PMID: 30873451 PMCID: PMC6410618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 11/22/2015] [Accepted: 12/28/2015] [Indexed: 10/28/2022] Open
Abstract
Antibacterial photodynamic therapy (APDT) has drawn increasing attention from the scientific society for its potential to effectively kill multidrug-resistant pathogenic bacteria and for its low tendency to induce drug resistance that bacteria can rapidly develop against traditional antibiotic therapy. The review summarizes the mechanism of action of APDT, the photosensitizers, the barriers to PS localization, the targets, the in vitro-, in vivo-, and clinical evidence, the current developments in terms of treating Gram-positive and Gram-negative bacteria, the limitations, as well as future perspectives. Relevance for patients: A structured overview of all important aspects of APDT is provided in the context of resistant bacterial species. The information presented is relevant and accessible for scientists as well as clinicians, whose joint effort is required to ensure that this technology benefits patients in the post-antibiotic era.
Collapse
Affiliation(s)
- Yao Liu
- Department of Membrane Biochemistry and Biophysics, Utrecht University, the Netherlands
| | - Rong Qin
- Department of Membrane Biochemistry and Biophysics, Utrecht University, the Netherlands
| | - Sebastian A. J. Zaat
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Eefjan Breukink
- Department of Membrane Biochemistry and Biophysics, Utrecht University, the Netherlands
| | - Michal Heger
- Department of Membrane Biochemistry and Biophysics, Utrecht University, the Netherlands, Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
47
|
Mattila H, Khorobrykh S, Havurinne V, Tyystjärvi E. Reactive oxygen species: Reactions and detection from photosynthetic tissues. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:176-214. [PMID: 26498710 DOI: 10.1016/j.jphotobiol.2015.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) have long been recognized as compounds with dual roles. They cause cellular damage by reacting with biomolecules but they also function as agents of cellular signaling. Several different oxygen-containing compounds are classified as ROS because they react, at least with certain partners, more rapidly than ground-state molecular oxygen or because they are known to have biological effects. The present review describes the typical reactions of the most important ROS. The reactions are the basis for both the detection methods and for prediction of reactions between ROS and biomolecules. Chemical and physical methods used for detection, visualization and quantification of ROS from plants, algae and cyanobacteria will be reviewed. The main focus will be on photosynthetic tissues, and limitations of the methods will be discussed.
Collapse
Affiliation(s)
- Heta Mattila
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Sergey Khorobrykh
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Vesa Havurinne
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland.
| |
Collapse
|
48
|
Application of phthalocyanines in flow- and sequential-injection analysis and microfluidics systems: A review. Talanta 2015; 139:75-88. [DOI: 10.1016/j.talanta.2015.02.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/10/2015] [Accepted: 02/17/2015] [Indexed: 11/18/2022]
|
49
|
Kasimova KR, Sadasivam M, Landi G, Sarna T, Hamblin MR. Potentiation of photoinactivation of Gram-positive and Gram-negative bacteria mediated by six phenothiazinium dyes by addition of azide ion. Photochem Photobiol Sci 2015; 13:1541-8. [PMID: 25177833 DOI: 10.1039/c4pp00021h] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Antimicrobial photodynamic inactivation (APDI) using phenothiazinium dyes is mediated by reactive oxygen species consisting of a combination of singlet oxygen (quenched by azide), hydroxyl radicals and other reactive oxygen species. We recently showed that addition of sodium azide paradoxically potentiated APDI of Gram-positive and Gram-negative bacteria using methylene blue as the photosensitizer, and this was due to electron transfer to the dye triplet state from azide anion, producing azidyl radical. Here we compare this effect using six different homologous phenothiazinium dyes: methylene blue, toluidine blue O, new methylene blue, dimethylmethylene blue, azure A, and azure B. We found both significant potentiation (up to 2 logs) and also significant inhibition (>3 logs) of killing by adding 10 mM azide depending on Gram classification, washing the dye from the cells, and dye structure. Killing of E. coli was potentiated with all 6 dyes after a wash, while S. aureus killing was only potentiated by MB and TBO with a wash and DMMB with no wash. More lipophilic dyes (higher log P value, such as DMMB) were more likely to show potentiation. We conclude that the Type I photochemical mechanism (potentiation with azide) likely depends on the microenvironment, i.e. higher binding of dye to bacteria. Bacterial dye-binding is thought to be higher with Gram-negative compared to Gram-positive bacteria, when unbound dye has been washed away, and with more lipophilic dyes.
Collapse
Affiliation(s)
- Kamola R Kasimova
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
50
|
Formiga Filho ALN, Carneiro VSM, Souza EA, Santos RL, Catão MHCV, Medeiros ACD. In Vitro Evaluation of Antimicrobial Photodynamic Therapy Associated with Hydroalcoholic Extracts of Schinopsis brasiliensis Engl.: New Therapeutic Perspectives. Photomed Laser Surg 2015; 33:240-5. [PMID: 25866862 DOI: 10.1089/pho.2014.3796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the photodynamic potential of extracts of Schinopsis brasiliensis Engl. on bacteria involved in several human infections. BACKGROUND DATA Photodynamic therapy (PDT) involves the interaction of light with an appropriate and photosensitizer wavelength, and the prospect of existing photosensitive compounds in herbal extracts enhanced by the application of laser diode has been promising. METHODS The antibacterial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis was obtained by the disk diffusion method on agar. The laser diode InGaAIP was used with 660 nm wavelength, 100 mW, and 4 J/cm(2), and the application was performed in a timely manner for 34 sec on each disk tested. The groups tested were: Laser and bark extract (B+L+); bark extract only (B+L-); Laser and leaf extract (F+L+); leaf extract only (F+L-); Laser and malachite green (M+L+); malachite green only (M+L-); and laser only (L+). RESULTS There were significant differences between the B+L- and B+L+ groups (p=0.029) and between the L+F- and L+F+ groups (p=0.029) at various concentrations of the nebulized extracts of bark and leaf. Among the tested pathogens, S. aureus showed the highest zone of inhibition, 24.55±0.36 mm in group B+L+, 500 mg.mL(-1). CONCLUSIONS PDT with malachite green was effective, and groups B+L+ and F+L+ showed excellent activity on the bacteria tested, suggesting the presence of photosensitizers in extracts of S. brasiliensis Engl.
Collapse
Affiliation(s)
- Amaro L N Formiga Filho
- 1 Laboratório de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba , Bairro Universitário, Campina Grande, Paraiba, Brazil
| | | | | | | | | | | |
Collapse
|