1
|
Selectively Halogenated Flavonolignans-Preparation and Antibacterial Activity. Int J Mol Sci 2022; 23:ijms232315121. [PMID: 36499444 PMCID: PMC9738062 DOI: 10.3390/ijms232315121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
A library of previously unknown halogenated derivatives of flavonolignans (silybins A and B, 2,3-dehydrosilybin, silychristin A, and 2,3-dehydrosilychristin A) was prepared. The effect of halogenation on the biological activity of flavonolignans was investigated. Halogenated derivatives had a significant effect on bacteria. All prepared derivatives inhibited the AI-2 type of bacterial communication (quorum sensing) at concentrations below 10 µM. All prepared compounds also inhibited the adhesion of bacteria (Staphyloccocus aureus and Pseudomonas aeruginosa) to the surface, preventing biofilm formation. These two effects indicate that the halogenated derivatives are promising antibacterial agents. Moreover, these derivatives acted synergistically with antibiotics and reduced the viability of antibiotic-resistant S. aureus. Some flavonolignans were able to reverse the resistant phenotype to a sensitive one, implying that they modulate antibiotic resistance.
Collapse
|
2
|
Mardani M, Badakné K, Farmani J, Shahidi F. Enzymatic lipophilization of bioactive compounds with high antioxidant activity: a review. Crit Rev Food Sci Nutr 2022; 64:4977-4994. [PMID: 36419380 DOI: 10.1080/10408398.2022.2147268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Food products contain bioactive compounds such as phenolic and polyphenolic compounds and vitamins, resulting in a myriad of biological characteristics such as antimicrobial, anticarcinogenic, and antioxidant activities. However, their application is often restricted because of their relatively low solubility and stability in emulsions and oil-based products. Therefore, chemical, enzymatic, or chemoenzymatic lipophilization of these compounds can be achieved by grafting a non-polar moiety onto their polar structures. Among different methods, enzymatic modification is considered environmentally friendly and may require only minor downstream processing and purification steps. In recent years, different systems have been suggested to design the synthetic reaction of these novel products. This review presents the new trends in this area by summarizing the essential enzymatic modifications in the last decade that led to the synthesis of bioactive compounds with attractive antioxidative properties for the food industry by emphasizing on optimization of the reaction conditions to maximize the production yields. Lastly, recent developments regarding characterization, potential applications, emerging research areas, and needs are highlighted.
Collapse
Affiliation(s)
- Mohsen Mardani
- Department of Cereal and Industrial Plant Processing, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Katalin Badakné
- Department of Cereal and Industrial Plant Processing, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Jamshid Farmani
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
3
|
Křen V, Valentová K. Silybin and its congeners: from traditional medicine to molecular effects. Nat Prod Rep 2022; 39:1264-1281. [PMID: 35510639 DOI: 10.1039/d2np00013j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2015 up to 2022 (Feb)Silymarin, an extract of milk thistle (Silybum marianum) fruits, has been used in various medicinal applications since ancient times. A major component of silymarin is the flavonolignan silybin and its relatives isosilybin, silychristin, silydianin, 2,3-dehydrosilybin, and some others. Except for silydianin, they occur in nature as two stereomers. This review focuses on recent developments in chemistry, biosynthesis, modern advanced analytical methods, and transformations of flavonolignans specifically reflecting their chirality. Recently described chemotypes of S. marianum, but also the newest findings regarding the pharmacokinetics, hepatoprotective, antiviral, neuroprotective, and cardioprotective activity, modulation of endocrine functions, modulation of multidrug resistance, and safety of flavonolignans are discussed. A growing number of studies show that the respective diastereomers of flavonolignans have significantly different activities in anisotropic biological systems. Moreover, it is now clear that flavonolignans do not act as antioxidants in vivo, but as specific ligands of biological targets and therefore their chirality is crucial. Many controversies often arise, mainly due to the non-standard composition of this phytopreparation, the use of various undefined mixtures, the misattribution of silymarin vs. silybin, and also the failure to consider the chemistry of the respective components of silymarin.
Collapse
Affiliation(s)
- Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, CZ 14220, Czech Republic.
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, CZ 14220, Czech Republic.
| |
Collapse
|
4
|
Cardullo N, Muccilli V, Tringali C. Laccase-mediated synthesis of bioactive natural products and their analogues. RSC Chem Biol 2022; 3:614-647. [PMID: 35755186 PMCID: PMC9175115 DOI: 10.1039/d1cb00259g] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/14/2022] [Indexed: 11/21/2022] Open
Abstract
Laccases are a class of multicopper oxidases that catalyse the one-electron oxidation of four equivalents of a reducing substrate, with the concomitant four-electron reduction of dioxygen to water. Typically, they catalyse many anabolic reactions, in which mostly phenolic metabolites were subjected to oxidative coupling. Alternatively, laccases catalyse the degradation or modification of biopolymers like lignin in catabolic processes. In recent years, laccases have proved valuable and green biocatalysts for synthesising compounds with therapeutic value, including antitumor, antibiotic, antimicrobial, and antioxidant agents. Further up to date applications include oxidative depolymerisation of lignin to gain new biomaterials and bioremediation processes of industrial waste. This review summarizes selected examples from the last decade's literature about the laccase-mediated synthesis of biologically active natural products and their analogues; these will include lignans and neolignans, dimeric stilbenoids, biflavonoids, biaryls and other compounds of potential interest for the pharmaceutical industry. In addition, a short section about applications of laccases in natural polymer modification has been included.
Collapse
Affiliation(s)
- Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania V.le A. Doria 6 95125-Catania Italy +39-095-580138 +39-095-7385041 +39-095-7385025
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania V.le A. Doria 6 95125-Catania Italy +39-095-580138 +39-095-7385041 +39-095-7385025
| | - Corrado Tringali
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania V.le A. Doria 6 95125-Catania Italy +39-095-580138 +39-095-7385041 +39-095-7385025
| |
Collapse
|
5
|
Morais PAB, Francisco CS, de Paula H, Ribeiro R, Eloy MA, Javarini CL, Neto ÁC, Júnior VL. Semisynthetic Triazoles as an Approach in the Discovery of Novel Lead Compounds. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210126100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Historically, medicinal chemistry has been concerned with the approach of organic
chemistry for new drug synthesis. Considering the fruitful collections of new molecular entities,
the dedicated efforts for medicinal chemistry are rewarding. Planning and search for new
and applicable pharmacologic therapies involve the altruistic nature of the scientists. Since
the 19th century, notoriously applying isolated and characterized plant-derived compounds in
modern drug discovery and various stages of clinical development highlight its viability and
significance. Natural products influence a broad range of biological processes, covering transcription,
translation, and post-translational modification, being effective modulators of most
basic cellular processes. The research of new chemical entities through “click chemistry”
continuously opens up a map for the remarkable exploration of chemical space towards leading
natural products optimization by structure-activity relationship. Finally, in this review, we expect to gather a
broad knowledge involving triazolic natural product derivatives, synthetic routes, structures, and their biological activities.
Collapse
Affiliation(s)
- Pedro Alves Bezerra Morais
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Carla Santana Francisco
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Heberth de Paula
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Rayssa Ribeiro
- Programa de Pos- Graduacao em Agroquimica, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Mariana Alves Eloy
- Programa de Pos- Graduacao em Agroquimica, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Clara Lirian Javarini
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Álvaro Cunha Neto
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Valdemar Lacerda Júnior
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| |
Collapse
|
6
|
Recent Advances in the Use of the Dimerization Strategy as a Means to Increase the Biological Potential of Natural or Synthetic Molecules. Molecules 2021; 26:molecules26082340. [PMID: 33920597 PMCID: PMC8073093 DOI: 10.3390/molecules26082340] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
The design of C2-symmetric biologically active molecules is a subject of interest to the scientific community. It provides the possibility of discovering medicine with higher biological potential than the parent drugs. Such molecules are generally produced by classic chemistry, considering the shortness of reaction sequence and the efficacy for each step. This review describes and analyzes recent advances in the field and emphasizes selected C2-symmetric molecules (or axial symmetric molecules) made during the last 10 years. However, the description of the dimers is contextualized by prior work allowing its development, and they are categorized by their structure and/or by their properties. Hence, this review presents dimers composed of steroids, sugars, and nucleosides; known and synthetic anticancer agents; polyphenol compounds; terpenes, known and synthetic antibacterial agents; and natural products. A special focus on the anticancer potential of the dimers transpires throughout the review, notwithstanding their structure and/or primary biological properties.
Collapse
|
7
|
Hurtová M, Biedermann D, Kuzma M, Křen V. Mild and Selective Method of Bromination of Flavonoids. JOURNAL OF NATURAL PRODUCTS 2020; 83:3324-3331. [PMID: 33170002 DOI: 10.1021/acs.jnatprod.0c00655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new method was developed for the mild and selective bromination of simple aromatic compounds and flavonoids in good yields using α,β-dibromohydrocinnamic acid in the presence of a base. This procedure enables selective mono- or dibromination of compounds highly sensitive to oxidative or radical attack. New brominated derivatives of silymarin flavonolignans and related flavonoids were prepared. These brominated derivatives can be used as valuable synthetic intermediates in further synthesis.
Collapse
Affiliation(s)
- Martina Hurtová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - David Biedermann
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Marek Kuzma
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
8
|
Káňová K, Petrásková L, Pelantová H, Rybková Z, Malachová K, Cvačka J, Křen V, Valentová K. Sulfated Metabolites of Luteolin, Myricetin, and Ampelopsin: Chemoenzymatic Preparation and Biophysical Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11197-11206. [PMID: 32910657 DOI: 10.1021/acs.jafc.0c03997] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Authentic standards of food flavonoids are important for human metabolic studies. Their isolation from biological materials is impracticable; however, they can be prepared in vitro. Twelve sulfated metabolites of luteolin, myricetin, and ampelopsin were obtained with arylsulfotransferase from Desulfitobacterium hafniense and fully characterized by high-performance liquid chromatography, MS, and NMR. The compounds were tested for their ability to scavenge 1,1-diphenyl-2-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), and N,N-dimethyl-p-phenylenediamine radicals, to reduce ferric ions and Folin-Ciocalteu reagent, and to inhibit tert-butyl hydroperoxide-induced lipid peroxidation of rat liver microsomes. The activity differed considerably even between monosulfate isomers. The parent compounds and myricetin-3'-O-sulfate were the most active while other compounds displayed significantly lower activity, particularly luteolin sulfates. No mutagenic activity of the parent compounds and their main metabolites was observed; only myricetin showed minor pro-mutagenicity. The prepared sulfated metabolites are now available as authentic standards for future in vitro and in vivo metabolic studies.
Collapse
Affiliation(s)
- Kristýna Káňová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, CZ 166 28 Prague, Czech Republic
| | - Lucie Petrásková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Zuzana Rybková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, CZ 710 00 Ostrava, Czech Republic
| | - Kateřina Malachová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, CZ 710 00 Ostrava, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| |
Collapse
|
9
|
Chambers CS, Biedermann D, Valentová K, Petrásková L, Viktorová J, Kuzma M, Křen V. Preparation of Retinoyl-Flavonolignan Hybrids and Their Antioxidant Properties. Antioxidants (Basel) 2019; 8:antiox8070236. [PMID: 31340489 PMCID: PMC6680806 DOI: 10.3390/antiox8070236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 11/27/2022] Open
Abstract
Antioxidants protect the structural and functional components in organisms against oxidative stress. Most antioxidants are of plant origin as the plants are permanently exposed to oxidative stress (UV radiation, photosynthetic reactions). Both carotenoids and flavonoids are prominent antioxidant and anti-radical agents often occurring together in the plant tissues and acting in lipophilic and hydrophilic milieu, respectively. They are complementary in their anti-radical activity. This study describes the synthesis of a series of hybrid ester conjugates of retinoic acid with various flavonolignans, such as silybin, 2,3-dehydrosilybin and isosilybin. Antioxidant/anti-radical activities and bio-physical properties of novel covalent carotenoid-flavonoid hybrids, as well as various mixtures of the respective parent components, were investigated. Retinoyl conjugates with silybin—which is the most important flavonolignan in silymarin complex—(and its pure diastereomers) displayed better 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity than both the parent compounds and their equimolar mixtures.
Collapse
Affiliation(s)
- Christopher S Chambers
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - David Biedermann
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Lucie Petrásková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic
| | - Marek Kuzma
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| |
Collapse
|
10
|
Romanucci V, Di Fabio G, Zarrelli A. A New Class of Synthetic Flavonolignan-Like Dimers: Still Few Molecules, but with Attractive Properties. Molecules 2018; 24:E108. [PMID: 30597952 PMCID: PMC6337569 DOI: 10.3390/molecules24010108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
In recent years, there has been increasing interest in dimeric molecules due to reports of their promising therapeutic value in the treatment of numerous diseases (such as cancer, HIV, Alzheimer's and, malaria). Many reports in the literature have highlighted the ability of these molecules to interact not only with specific biologic receptors but also to induce a biological response that more than doubles the results of the corresponding monomeric counterpart. In this regard, flavonolignan dimers or simply bi-flavonolignans are an emerging class of dimeric compounds that unlike bi-flavonoids, which are very widespread in nature, consist of synthetic dimers of some flavonolignans isolated from the milk thistle Silybum marianum [L. Gaertn. (Asteraceae)]. This mini-review will discuss recent developments in the synthesis, characterization and antioxidant activity of new families of flavonolignan dimers, in light of emerging medicinal chemistry strategies.
Collapse
Affiliation(s)
- Valeria Romanucci
- Department of Chemical Sciences, University of Napoli 'Federico II', Via Cintia 4, I-80126 Napoli, Italy.
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Napoli 'Federico II', Via Cintia 4, I-80126 Napoli, Italy.
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Napoli 'Federico II', Via Cintia 4, I-80126 Napoli, Italy.
| |
Collapse
|
11
|
Tvrdý V, Catapano MC, Rawlik T, Karlíčková J, Biedermann D, Křen V, Mladěnka P, Valentová K. Interaction of isolated silymarin flavonolignans with iron and copper. J Inorg Biochem 2018; 189:115-123. [PMID: 30245273 DOI: 10.1016/j.jinorgbio.2018.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/02/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023]
Abstract
Silymarin, the standardized extract from the milk thistle (Silybum marianum), is composed mostly of flavonolignans and is approved in the EU for the adjuvant therapy of alcoholic liver disease. It is also used for other purported effects in miscellaneous nutraceuticals. Due to polyhydroxylated structures and low systemic bioavailability, these flavonolignans are likely to interact with transition metals in the gastrointestinal tract. The aim of this study was to analyze the interactions of pure silymarin flavonolignans with copper and iron. Both competitive and non-competitive methods at various physiologically relevant pH levels ranging from 4.5 to 7.5 were tested. Only 2,3‑dehydrosilybin was found to be a potent or moderately active iron and copper chelator. Silybin A, silybin B and silychristin A were less potent or inactive chelators. Both 2,3‑dehydrosilybin enantiomers (A and B) were equally active iron and copper chelators, and the preferred stoichiometries were mainly 2:1 and 3:1 (2,3‑dehydrosilybin:metal). Additional experiments showed that silychristin was the most potent iron and copper reductant. Comparison with their structural precursors taxifolin and quercetin is included as well. Based on these results, silymarin administration most probably affects the kinetics of copper and iron in the gastrointestinal tract, however, due to the different interactions of individual components of silymarin with these transition metals, the biological effects need to be evaluated in the future in a much more complex study.
Collapse
Affiliation(s)
- Václav Tvrdý
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Maria Carmen Catapano
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Tomasz Rawlik
- Department of Analytical Chemistry, Faculty of Mathematics, Physics and Chemistry, Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-003 Katowice, Poland
| | - Jana Karlíčková
- Department of Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - David Biedermann
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
12
|
Valentová K, Káňová K, Di Meo F, Pelantová H, Chambers CS, Rydlová L, Petrásková L, Křenková A, Cvačka J, Trouillas P, Křen V. Chemoenzymatic Preparation and Biophysical Properties of Sulfated Quercetin Metabolites. Int J Mol Sci 2017; 18:ijms18112231. [PMID: 29068411 PMCID: PMC5713201 DOI: 10.3390/ijms18112231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/02/2017] [Accepted: 10/20/2017] [Indexed: 11/28/2022] Open
Abstract
Sulfated quercetin derivatives are important authentic standards for metabolic studies. Quercetin-3′-O-sulfate, quercetin-4′-O-sulfate, and quercetin-3-O-sulfate as well as quercetin-di-O-sulfate mixture (quercetin-7,3′-di-O-sulfate, quercetin-7,4′-di-O-sulfate, and quercetin-3′,4′-di-O-sulfate) were synthetized by arylsulfotransferase from Desulfitobacterium hafniense. Purified monosulfates and disulfates were fully characterized using MS and NMR and tested for their 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) and N,N-dimethyl-p-phenylenediamine (DMPD) radical scavenging, Folin-Ciocalteau reduction (FCR), ferric reducing antioxidant power (FRAP), and anti-lipoperoxidant activities in rat liver microsomes damaged by tert-butylhydroperoxide. Although, as expected, the sulfated metabolites were usually less active than quercetin, they remained still effective antiradical and reducing agents. Quercetin-3′-O-sulfate was more efficient than quercetin-4′-O-sulfate in DPPH and FCR assays. In contrast, quercetin-4′-O-sulfate was the best ferric reductant and lipoperoxidation inhibitor. The capacity to scavenge ABTS+• and DMPD was comparable for all substances, except for disulfates, which were the most efficient. Quantum calculations and molecular dynamics simulations on membrane models supported rationalization of free radical scavenging and lipid peroxidation inhibition. These results clearly showed that individual metabolites of food bioactives can markedly differ in their biological activity. Therefore, a systematic and thorough investigation of all bioavailable metabolites with respect to native compounds is needed when evaluating food health benefits.
Collapse
Affiliation(s)
- Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | - Kristýna Káňová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | - Florent Di Meo
- INSERM U850, Univ. Limoges, School of Pharmacy, 2 rue du Docteur Marcland, F-87025 Limoges, France.
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | | | - Lenka Rydlová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | - Lucie Petrásková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | - Alena Křenková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague, Czech Republic.
| | - Patrick Trouillas
- INSERM U850, Univ. Limoges, School of Pharmacy, 2 rue du Docteur Marcland, F-87025 Limoges, France.
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17. listopadu 12, CZ-77146 Olomouc, Czech Republic.
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| |
Collapse
|
13
|
Vavříková E, Křen V, Jezova-Kalachova L, Biler M, Chantemargue B, Pyszková M, Riva S, Kuzma M, Valentová K, Ulrichová J, Vrba J, Trouillas P, Vacek J. Novel flavonolignan hybrid antioxidants: From enzymatic preparation to molecular rationalization. Eur J Med Chem 2017; 127:263-274. [DOI: 10.1016/j.ejmech.2016.12.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/02/2016] [Accepted: 12/24/2016] [Indexed: 01/24/2023]
|
14
|
Zatloukalová M, Vavříková E, Pontinha ADR, Coufal J, Křen V, Fojta M, Ulrichová J, Oliveira-Brett AM, Vacek J. Flavonolignan Conjugates as DNA-binding Ligands and Topoisomerase I Inhibitors: Electrochemical and Electrophoretic Approaches. ELECTROANAL 2016. [DOI: 10.1002/elan.201600146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry; Faculty of Medicine and Dentistry; Palacký University; Hněvotínská 3 775 15 Olomouc Czech Republic
- Department of Chemistry; Faculty of Science and Technology; University of Coimbra; 3004-535 Coimbra Portugal
| | - Eva Vavříková
- Institute of Microbiology; Laboratory of Biotransformation; Czech Academy of Sciences; Vídeňská 1083 142 20 Prague Czech Republic
| | - Ana Dora Rodrigues Pontinha
- Department of Chemistry; Faculty of Science and Technology; University of Coimbra; 3004-535 Coimbra Portugal
| | - Jan Coufal
- Institute of Biophysics; Department of Biophysical Chemistry and Molecular Oncology; Czech Academy of Sciences; Královopolská 135 612 65 Brno Czech Republic
| | - Vladimír Křen
- Institute of Microbiology; Laboratory of Biotransformation; Czech Academy of Sciences; Vídeňská 1083 142 20 Prague Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics; Department of Biophysical Chemistry and Molecular Oncology; Czech Academy of Sciences; Královopolská 135 612 65 Brno Czech Republic
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry; Faculty of Medicine and Dentistry; Palacký University; Hněvotínská 3 775 15 Olomouc Czech Republic
| | - Ana Maria Oliveira-Brett
- Department of Chemistry; Faculty of Science and Technology; University of Coimbra; 3004-535 Coimbra Portugal
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry; Faculty of Medicine and Dentistry; Palacký University; Hněvotínská 3 775 15 Olomouc Czech Republic
| |
Collapse
|
15
|
Antonopoulou I, Varriale S, Topakas E, Rova U, Christakopoulos P, Faraco V. Enzymatic synthesis of bioactive compounds with high potential for cosmeceutical application. Appl Microbiol Biotechnol 2016; 100:6519-6543. [PMID: 27276911 PMCID: PMC4939304 DOI: 10.1007/s00253-016-7647-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022]
Abstract
Cosmeceuticals are cosmetic products containing biologically active ingredients purporting to offer a pharmaceutical therapeutic benefit. The active ingredients can be extracted and purified from natural sources (botanicals, herbal extracts, or animals) but can also be obtained biotechnologically by fermentation and cell cultures or by enzymatic synthesis and modification of natural compounds. A cosmeceutical ingredient should possess an attractive property such as anti-oxidant, anti-inflammatory, skin whitening, anti-aging, anti-wrinkling, or photoprotective activity, among others. During the past years, there has been an increased interest on the enzymatic synthesis of bioactive esters and glycosides based on (trans)esterification, (trans)glycosylation, or oxidation reactions. Natural bioactive compounds with exceptional theurapeutic properties and low toxicity may offer a new insight into the design and development of potent and beneficial cosmetics. This review gives an overview of the enzymatic modifications which are performed currently for the synthesis of products with attractive properties for the cosmeceutical industry.
Collapse
Affiliation(s)
- Io Antonopoulou
- Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187, Luleå, Sweden
| | - Simona Varriale
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Evangelos Topakas
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15700, Athens, Greece
| | - Ulrika Rova
- Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187, Luleå, Sweden
| | - Paul Christakopoulos
- Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187, Luleå, Sweden
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
16
|
Pyszková M, Biler M, Biedermann D, Valentová K, Kuzma M, Vrba J, Ulrichová J, Sokolová R, Mojović M, Popović-Bijelić A, Kubala M, Trouillas P, Křen V, Vacek J. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radic Biol Med 2016; 90:114-25. [PMID: 26582372 DOI: 10.1016/j.freeradbiomed.2015.11.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
Abstract
The protective constituents of silymarin, an extract from Silybum marianum fruits, have been extensively studied in terms of their antioxidant and hepatoprotective activities. Here, we explore the electron-donor properties of the major silymarin flavonolignans. Silybin (SB), silychristin (SCH), silydianin (SD) and their respective 2,3-dehydroderivatives (DHSB, DHSCH and DHSD) were oxidized electrochemically and their antiradical/antioxidant properties were investigated. Namely, Folin-Ciocalteau reduction, DPPH and ABTS(+) radical scavenging, inhibition of microsomal lipid peroxidation and cytoprotective effects against tert-butyl hydroperoxide-induced damage to a human hepatocellular carcinoma HepG2 cell line were evaluated. Due to the presence of the highly reactive C3-OH group and the C-2,3 double bond (ring C) allowing electron delocalization across the whole structure in the 2,3-dehydroderivatives, these compounds are much more easily oxidized than the corresponding flavonolignans SB, SCH and SD. This finding was unequivocally confirmed not only by experimental approaches, but also by density functional theory (DFT) calculations. The hierarchy in terms of ability to undergo electrochemical oxidation (DHSCH~DHSD>DHSB>>SCH/SD>SB) was consistent with their antiradical activities, mainly DPPH scavenging, as well as in vitro cytoprotection of HepG2 cells. The results are discussed in the context of the antioxidant vs. prooxidant activities of flavonolignans and molecular interactions in complex biological systems.
Collapse
Affiliation(s)
- Michaela Pyszková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Michal Biler
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic; INSERM UMR 850, Univ. Limoges, School of Pharmacy, 2 rue du Docteur Marcland, 87025 Limoges, France
| | - David Biedermann
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Marek Kuzma
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jiří Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Romana Sokolová
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Miloš Mojović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Ana Popović-Bijelić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Martin Kubala
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Patrick Trouillas
- INSERM UMR 850, Univ. Limoges, School of Pharmacy, 2 rue du Docteur Marcland, 87025 Limoges, France; Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
| |
Collapse
|
17
|
Bassanini I, Hult K, Riva S. Dicarboxylic esters: Useful tools for the biocatalyzed synthesis of hybrid compounds and polymers. Beilstein J Org Chem 2015; 11:1583-95. [PMID: 26664578 PMCID: PMC4660951 DOI: 10.3762/bjoc.11.174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/21/2015] [Indexed: 12/23/2022] Open
Abstract
Dicarboxylic acids and their derivatives (esters and anhydrides) have been used as acylating agents in lipase-catalyzed reactions in organic solvents. The synthetic outcomes have been dimeric or hybrid derivatives of bioactive natural compounds as well as functionalized polyesters.
Collapse
Affiliation(s)
- Ivan Bassanini
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco 9, Milano, Italy
| | - Karl Hult
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco 9, Milano, Italy ; School of Biotechnology, Department of Industrial Biotechnology, Albanova KTH, Royal Institute of Technology, Stockholm, Sweden
| | - Sergio Riva
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco 9, Milano, Italy
| |
Collapse
|
18
|
Regioselective alcoholysis of silychristin acetates catalyzed by lipases. Int J Mol Sci 2015; 16:11983-95. [PMID: 26016503 PMCID: PMC4490424 DOI: 10.3390/ijms160611983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/19/2015] [Indexed: 11/17/2022] Open
Abstract
A panel of lipases was screened for the selective acetylation and alcoholysis of silychristin and silychristin peracetate, respectively. Acetylation at primary alcoholic group (C-22) of silychristin was accomplished by lipase PS (Pseudomonas cepacia) immobilized on diatomite using vinyl acetate as an acetyl donor, whereas selective deacetylation of 22-O-acetyl silychristin was accomplished by Novozym 435 in methyl tert-butyl ether/n-butanol. Both of these reactions occurred without diastereomeric discrimination of silychristin A and B. Both of these enzymes were found to be capable to regioselective deacetylation of hexaacetyl silychristin to afford penta-, tetra- and tri-acetyl derivatives, which could be obtained as pure synthons for further selective modifications of the parent molecule.
Collapse
|
19
|
Gavezzotti P, Vavříková E, Valentová K, Fronza G, Kudanga T, Kuzma M, Riva S, Biedermann D, Křen V. Enzymatic oxidative dimerization of silymarin flavonolignans. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Abstract
Silybin, a secondary metabolite isolated from the seeds of the blessed milk thistle (Silybum marianum) was discovered as the first member of a new family of natural compounds called flavonolignans in 1959. Over the years it has received the research attention of many organic chemists. This research has resulted in a number of semisynthetic derivatives prepared in an effort to modulate and better target the biological activities of silybin or to improve its physical properties, such as its solubility. A fundamental breakthrough in silybin chemistry was the determination of the absolute configurations of silybin A and silybin B, and the development of methods for their separation. This review covers articles dealing with silybin chemistry and also summarizes all the derivatives prepared.
Collapse
Affiliation(s)
- D Biedermann
- Institute of Microbiology AS CR, Centre of Biocatalysis and Biotransformation, Vídeňská 1083, Prague 4, CZ 14220, Czech Republic.
| | | | | | | |
Collapse
|
21
|
Bioresolution production of (2R,3S)-ethyl-3-phenylglycidate for chemoenzymatic synthesis of the taxol C-13 side chain by Galactomyces geotrichum ZJUTZQ200, a new epoxide-hydrolase-producing strain. Molecules 2014; 19:8067-79. [PMID: 24936708 PMCID: PMC6270955 DOI: 10.3390/molecules19068067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/06/2014] [Accepted: 06/11/2014] [Indexed: 11/17/2022] Open
Abstract
A newly isolated Galactomyces geotrichum ZJUTZQ200 strain containing an epoxide hydrolase was used to resolve racemic ethyl 3-phenylglycidate (rac-EPG) for producing (2R,3S)-ethyl-3-phenylglycidate ((2R,3S)-EPG). G. geotrichum ZJUTZQ200 was verified to be able to afford high enantioselectivity in whole cell catalyzed synthesis of this chiral phenylglycidate synthon. After the optimization of the enzymatic production and bioresolution conditions, (2R,3S)-EPG was afforded with high enantioselectivity (e.e.S > 99%, E > 49) after a 8 h reaction. The co-solvents, pH buffer solutions and substrate/cell ratio were found to have significant influences on the bioresolution properties of G. geotrichum ZJUTZQ200. Based on the bioresolution product (2R,3S)-EPG, taxol’s side chain ethyl (2R,3S)-3-benzoylamino-2-hydroxy-3-phenylpropionate was successfully synthesized by a chemoenzymatic route with high enantioselectivity (e.e.S > 95%).
Collapse
|