1
|
Kantasrila R, Pandith H, Balslev H, Wangpakapattanawong P, Panyadee P, Inta A. Ethnobotany and phytochemistry of plants used to treat musculoskeletal disorders among Skaw Karen, Thailand. PHARMACEUTICAL BIOLOGY 2024; 62:62-104. [PMID: 38131672 PMCID: PMC10763916 DOI: 10.1080/13880209.2023.2292261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
CONTEXT Musculoskeletal system disorders (MSD) are prevalent around the world affecting the health of people, especially farmers who work hard in the field. Karen farmers use many medicinal plants to treat MSD. OBJECTIVE This study collects traditional plant-based remedies used by the Skaw Karen to treat MSD and evaluates their active phytochemical compounds. MATERIALS AND METHODS The ethnobotanical study was conducted in six Karen villages in Chiang Mai province using semi-structured interviews were of 120 informants. The data were analyzed using ethnobotanical indices including use values (UV), choice value (CV), and informant consensus factor (ICF). Consequently, the 20 most important species, according to the indices, were selected for phytochemical analysis using LC-MS/MS. RESULTS A total of 3731 use reports were obtained for 139 species used in MSD treatment. The most common ailments treated with those plants were muscular pain. A total of 172 high-potential active compounds for MSD treatment were identified. Most of them were flavonoids, terpenoids, alkaloids, and steroids. The prevalent phytochemical compounds related to treat MSD were 9-hydroxycalabaxanthone, dihydrovaltrate, morroniside, isoacteoside, lithocholic acid, pomiferin, cucurbitacin E, leonuriside A, liriodendrin, and physalin E. Sambucus javanica Reinw. ex Blume (Adoxaceae), Betula alnoides Buch.-Ham. ex D.Don (Betulaceae), Blumea balsamifera (L.) DC. (Asteraceae), Plantago major L. (Plantaginaceae) and Flacourtia jangomas (Lour.) Raeusch. (Salicaceae) all had high ethnobotanical index values and many active compounds. DISCUSSION AND CONCLUSIONS This study provides valuable information, demonstrating low-cost medicine plants that are locally available. It is a choice of treatment for people living in remote areas.
Collapse
Affiliation(s)
- Rapeeporn Kantasrila
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | | | - Henrik Balslev
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | | | - Prateep Panyadee
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | - Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
| |
Collapse
|
2
|
Wang K, Hu X, Xie XL, Huang M, Wang D, Yu FL. Phytocosmetic potential of Blumea balsamifera oil in mitigating UV-induced photoaging: Evidence from cellular and mouse models. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118535. [PMID: 38972529 DOI: 10.1016/j.jep.2024.118535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Blumea balsamifera (L.) DC. (BB), the source of Blumea balsamifera oil (BBO), is an aromatic medicinal plant, renowned for its pharmacological properties and its traditional use in Southeast Asian countries such as China, Thailand, Vietnam, Malaysia, and the Philippines for centuries. Traditionally, BB has been used as a raw herbal medicine for treating various skin conditions like eczema, dermatitis, athlete's foot, and wound healing for skin injuries. AIM OF THE STUDY This research aimed to explore the inhibitory effects of BBO on skin aging using two models: in vitro analysis with human dermal fibroblasts (HDF) under UVB-induced stress, and in vivo studies on UVA-induced dorsal skin aging in mice. The study sought to uncover the mechanisms behind BBO's anti-aging effects, specifically, its impact on cellular and tissue responses to UV-induced skin aging. MATERIALS AND METHODS We applied doses of 10-20 μL/mL of BBO to HDF cells that had been exposed to UVB radiation to simulate skin aging. We measured cell viability, and levels of reactive oxygen species (ROS), SA-β-gal, pro-inflammatory cytokines, and matrix metalloproteinases (MMPs). In addition, we investigated the involvement of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling pathways in mediating the anti-aging effects of BBO. Histopathological and biochemical analyses were conducted in a mouse model to examine the effects of BBO on UV-induced photoaging. RESULTS UV exposure accelerated aging, and caused cellular damage and inflammatory responses through ROS-mediated pathways. In HDF cells, BBO treatment countered the UVB-induced senescence, and the recovery of cell viability was correlated to notable reductions in SA-β-gal, ROS, pro-inflammatory cytokines, and MMPs. Mechanistically, the anti-aging effect of BBO was associated with the downregulation of the JNK/NF-κB signaling pathways. In the in vivo mouse model, BBO exhibited protective capabilities against UV-induced photoaging, which were manifested by the enhanced antioxidant enzyme activities and tissue remodeling. CONCLUSIONS BBO effectively protects fibroblasts from UV-induced photoaging through the JNK/NF-κB pathway. Recovery from photoaging involves an increase in dermal fibroblasts, alleviation of inflammation, accelerated synthesis of antioxidant enzymes, and slowed degradation of ECM proteins. Overall, BBO enhances the skin's defensive capabilities against oxidative stress, underscoring its potential as a therapeutic agent for oxidative stress-related skin aging.
Collapse
Affiliation(s)
- Kai Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, P.R. China/Hainan Provincial Engineering Research Center for Blumea Balsamifera, Haikou, Hainan, 571101, P.R. China
| | - Xuan Hu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, P.R. China/Hainan Provincial Engineering Research Center for Blumea Balsamifera, Haikou, Hainan, 571101, P.R. China
| | - Xiao-Li Xie
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, P.R. China/Hainan Provincial Engineering Research Center for Blumea Balsamifera, Haikou, Hainan, 571101, P.R. China
| | - Mei Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, P.R. China/Hainan Provincial Engineering Research Center for Blumea Balsamifera, Haikou, Hainan, 571101, P.R. China
| | - Dan Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, P.R. China/Hainan Provincial Engineering Research Center for Blumea Balsamifera, Haikou, Hainan, 571101, P.R. China
| | - Fu-Lai Yu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, P.R. China/Hainan Provincial Engineering Research Center for Blumea Balsamifera, Haikou, Hainan, 571101, P.R. China.
| |
Collapse
|
3
|
Binh HT, Diep TT, Van Ngoc N. Chemical Composition, Anti-Microbial, and Cytotoxic Activities of Essential Oils from Blumea densiflora var. hookeri (C.B. Clarke ex Hook.f.) C.C. Chang & Y.Q. Tseng Leaves from Vietnam. Chem Biodivers 2024:e202401865. [PMID: 39340305 DOI: 10.1002/cbdv.202401865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 09/30/2024]
Abstract
The essential oil from the leaves of Blumea densiflora var. hookeri was analyzed using GC-MS, and bioassays were performed. GC-MS identified thirty-four constituents, representing 79.1 % of the oil composition. The major compounds identified in the oil were (E)-caryophyllene (15.3 %), viridiflorol (5.5 %), trans-dauca-4(11),7-diene (4.6 %), spathulenol (4.4 %), and isolongifolan-7-α-ol (4.3 %). The antimicrobial activity of the oil was assessed to determine its efficacy against six bacterial strains and one fungal strain using minimum inhibitory concentration (MIC) methods. The essential oil demonstrated antimicrobial activity against all tested microorganisms. A cytotoxicity assay was performed on KB and A549 cancer cell lines using the MTT method. The essential oil displayed strong cytotoxic effects on both cell lines, with IC50 values of 1.40±0.05 μg/mL for KB and 1.72±0.04 μg/mL for A549.
Collapse
Affiliation(s)
- Hoang Thi Binh
- Faculty of Biology, Dalat University, Dalat, Lam Dong, 670000, Vietnam
| | - Trinh Thi Diep
- Faculty of Chemistry and Environment, Dalat University, Dalat, Vietnam
| | - Nguyen Van Ngoc
- Faculty of Biology, Dalat University, Dalat, Lam Dong, 670000, Vietnam
| |
Collapse
|
4
|
Guan L, Yang L, Yu F, Zeng H, Yuan C, Xie X, Bai L, Chen Z, Chen X, Wang K, Huang M, Hu X, Liu L. Integrative metabolome and transcriptome analysis characterized methyl jasmonate-elicited flavonoid metabolites of Blumea balsamifera. PHYSIOLOGIA PLANTARUM 2024; 176:e14488. [PMID: 39228009 DOI: 10.1111/ppl.14488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
As a commonly used medicinal plant, the flavonoid metabolites of Blumea balsamifera and their association with genes are still elusive. In this study, the total flavonoid content (TFC), flavonoid metabolites and biosynthetic gene expression patterns of B. balsamifera after application of exogenous methyl jasmonate (MeJA) were scrutinized. The different concentrations of exogenous MeJA increased the TFC of B. balsamifera leaves after 48 h of exposure, and there was a positive correlation between TFC and the elicitor concentration. A total of 48 flavonoid metabolites, falling into 10 structural classes, were identified, among which flavones and flavanones were predominant. After screening candidate genes by transcriptome mining, the comprehensive analysis of gene expression level and TFC suggested that FLS and MYB may be key genes that regulate the TFC in B. balsamifera leaves under exogenous MeJA treatment. This study lays a foundation for elucidating flavonoids of B. balsamifera, and navigates the breeding of flavonoid-rich B. balsamifera varieties.
Collapse
Affiliation(s)
- Lingliang Guan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- National Key Laboratory for Tropical Crop Breeding, Sanya, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, China
- Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Lixin Yang
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
| | - Fulai Yu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- National Key Laboratory for Tropical Crop Breeding, Sanya, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, China
- Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Houyuan Zeng
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
| | - Chao Yuan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- National Key Laboratory for Tropical Crop Breeding, Sanya, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, China
- Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Xiaoli Xie
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- National Key Laboratory for Tropical Crop Breeding, Sanya, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, China
- Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Lin Bai
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- National Key Laboratory for Tropical Crop Breeding, Sanya, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, China
- Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Zhenxia Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- National Key Laboratory for Tropical Crop Breeding, Sanya, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, China
- Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Xiaolu Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- National Key Laboratory for Tropical Crop Breeding, Sanya, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, China
- Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Kai Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- National Key Laboratory for Tropical Crop Breeding, Sanya, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, China
- Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Mei Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- National Key Laboratory for Tropical Crop Breeding, Sanya, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, China
- Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Xuan Hu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- National Key Laboratory for Tropical Crop Breeding, Sanya, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, China
- Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Lei Liu
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
| |
Collapse
|
5
|
Putra IMWA, Fakhrudin N, Nurrochmad A, Wahyuono S. Antidiabetic effect of combined extract of Coccinia grandis and Blumea balsamifera on streptozotocin-nicotinamide induced diabetic rats. J Ayurveda Integr Med 2024; 15:101021. [PMID: 39079440 PMCID: PMC11338941 DOI: 10.1016/j.jaim.2024.101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/13/2024] [Accepted: 06/20/2024] [Indexed: 08/25/2024] Open
Abstract
BACKGROUND Coccinia grandis and Blumea balsamifera are two medicinal plants that have been known to have good antidiabetic properties. Combining these two plant extracts may generate a greater effect that can increase efficacy and decrease the dose. OBJECTIVE This research investigated the antidiabetic activity of the combination of C. grandis and B. balsamifera leaves extracts on experimental diabetic rats. MATERIALS AND METHODS The dried leaves of C. grandis and B. balsamifera were powdered and macerated with ethanol 70% (v/v). A diabetic condition in male Wistar albino rats was generated by intraperitoneal injection of a single dose of streptozotocin (65 mg/kg) followed by nicotinamide (110 mg/kg). Diabetes-confirmed rats were then given glibenclamide (4.5 mg/kg), C. grandis extract (300 mg/kg), B. balsamifera extract (150 mg/kg), and the combined extracts with a dose ratio of 1:1, 1:3, and 3:1. The treatment was performed for 28 days and fasting blood glucose was tested once a week. The pancreas and liver organs were taken on day 29 for antioxidant, histological, and immunohistochemical assessment. RESULTS Among all the extracts, the combined extract with a ratio of 1:3 showed the greatest glucose lowering effect. This combination also lowered malondialdehyde levels while increasing superoxide dismutase and catalase levels in the pancreas and liver organs. Histological examination showed this combination regenerated the islet of Langerhans. It also increased pancreatic insulin expression in immunohistochemical evaluation. CONCLUSION This study revealed that the combined extracts of C. grandis and B. balsamifera exhibited enhanced antidiabetic activity via ameliorating oxidative stress, regenerating β-cells, and increasing insulin expression.
Collapse
Affiliation(s)
- I Made Wisnu Adhi Putra
- Department of Biology, University of Dhyana Pura, Badung, Bali, Indonesia; Doctoral Program in Pharmacy Science, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nanang Fakhrudin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Arief Nurrochmad
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Subagus Wahyuono
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
6
|
Vollmannová A, Bojňanská T, Musilová J, Lidiková J, Cifrová M. Quercetin as one of the most abundant represented biological valuable plant components with remarkable chemoprotective effects - A review. Heliyon 2024; 10:e33342. [PMID: 39021910 PMCID: PMC11253541 DOI: 10.1016/j.heliyon.2024.e33342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
As a consequence of environmental quality changes as well as changes in our population's lifestyle, there is rapidly increasing variability and many so-called lifestyle disorders, allergies, and food intolerances (also known as non-allergic food hypersensitivity). Unhealthy eating practices, an inappropriate food composition with an excessive energy intake, a high intake of saturated fats, simple sugars, and salt, as well as an inadequate intake of fibre, vitamins, and substances with preventive effects (such as antioxidants), are some of the factors causing this detrimental phenomenon. Enhanced consumption of plant foods rich in valuable secondary metabolites such as phenolic acids and flavonoids with the benefit on human health, food research focused on these components, and production of foods with declared higher content of biologically active and prophylactic substances are some ways how to change and improve this situation. A unique class of hydroxylated phenolic compounds with an aromatic ring structure are called flavonoids. One unique subclass of flavonoids is quercetin. This phytochemical naturally takes place in fruits, vegetables, herbs, and other plants. Quercetin and its several derivates are considered to be promising substances with significant antidiabetic, antibacterial, anti-inflammatory, and antioxidant effects, which could also act preventively against cardiovascular disease, cancer, or Alzheimer's disease.
Collapse
Affiliation(s)
- Alena Vollmannová
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, 94976, Slovak Republic
| | - Tatiana Bojňanská
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, 94976, Slovak Republic
| | - Janette Musilová
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, 94976, Slovak Republic
| | - Judita Lidiková
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, 94976, Slovak Republic
| | - Monika Cifrová
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, 94976, Slovak Republic
| |
Collapse
|
7
|
Guan L, Lin N, Wan L, Yu F, Chen X, Xie X, Yuan C, Soaud SA, Abd Elhamid MA, Heakel RMY, Wang L, El-Sappah AH. Transcriptome analysis revealed the role of moderate exogenous methyl jasmonate treatments in enhancing the metabolic pathway of L-borneol in the Blumea balsamifera. FRONTIERS IN PLANT SCIENCE 2024; 15:1391042. [PMID: 38988634 PMCID: PMC11234090 DOI: 10.3389/fpls.2024.1391042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/28/2024] [Indexed: 07/12/2024]
Abstract
Introduction Blumea balsamifera L. (Ainaxiang) DC. is a perennial herb of the compositae family. It is also the primary source of natural borneol. Endo-borneol, the principal medical active element in B. balsamifera, is anti-inflammatory, antioxidant, and analgesic; enhances medicine absorption; refreshes; and is used as a spice and in cosmetic. Industrialization of B. balsamifera is limited by its low L-borneol concentration. Thus, understanding the accumulation pattern of the secondary metabolite endo-borneol and its synthesis process in secondary metabolism is critical for increasing B. balsamifera active ingredient content and cultivation efficiency. Methods In this work, B. balsamifera was treated with varying concentrations (1.00 and 10.00 mmol/L) of methyl jasmonate (MeJA) as an exogenous foliar activator. The physiological parameters and L-borneol concentration were then assessed. Transcriptome sequencing of B. balsamifera-induced leaves was used to identify key genes for monoterpene synthesis. Results The treatment effect of 1 mmol/L MeJA was the best, and the leaves of all three leaf positions accumulated the highest L-borneol after 120 h, correspondingly 3.043 mg·g-1 FW, 3.346 mg·g-1 FW, and 2.044 mg·g-1 FW, with significant differences from the control. The main assembly produced 509,285 transcripts with min and max lengths of 201 and 23,172, respectively. DEG analysis employing volcano blots revealed 593, 224, 612, 2,405, 1,353, and 921 upregulated genes and 4, 123, 573, 1,745, 766, and 763 downregulated genes in the treatments D1_1vsCK, D1_10vsCK, D2_1vsCK, D2_10vsCK, D5_1vsCK, and D5_10vsCK. Interestingly, when exposed to MeJA treatments, the MEP pathway's unigenes express themselves more than those of the MVA route. Finally, when treated with 1 mmol/L, the genes DXR, DXS, and GPS showed increased expression over time. At the same time, a 10 mmol/L therapy resulted in elevated levels of ispH and GGPS. Discussion Our preliminary research indicates that exogenous phytohormones can raise the level of L borneol in B. balsamifera (L.) DC when given in the appropriate amounts. The most significant discovery made while analyzing the effects of different hormones and concentrations on B. balsamifera (L.) DC was the effect of 1 mmol/L MeJA treatment.
Collapse
Affiliation(s)
- Lingliang Guan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, Haikou, China
| | - Na Lin
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Lingyun Wan
- Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Fulai Yu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, Haikou, China
| | - Xiaolu Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, Haikou, China
| | - Xiaoli Xie
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, Haikou, China
| | - Chao Yuan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, Haikou, China
| | - Salma A. Soaud
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Rania M. Y. Heakel
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Linghui Wang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Ahmed H. El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
8
|
Karve J, Gadgoli C. Chemical composition and anti-angiogenic activity of the essential oil from Blumea eriantha D.C. Nat Prod Res 2024; 38:1918-1923. [PMID: 38739564 DOI: 10.1080/14786419.2023.2227990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/18/2023] [Indexed: 05/16/2024]
Abstract
Blumea eriantha D.C is a weed from Asteraceae family and is reported to have anticancer activity. The essential oil from the aerial parts was extracted by steam distillation method with the yield of 0.36%. Through GC-MS analysis of the oil, seventeen compounds could be identified by comparing with linear retention indices with the library. Out of the seventeen compounds β-Caryophylline oxide was isolated by column chromatography with gradient elution and the structure was determined through FT-IR, MS, 1HNMR, 13 C NMR and DEPT. The oil was evaluated for its effect on angiogenesis using Chorioallantoic Membrane Assay (CAM Assay). The concentration dependent antiangiogenic effect was observed with IC 50 value of 19.28 ppm.
Collapse
Affiliation(s)
- Jaie Karve
- Department of Pharmacognosy and Phytochemistry, Saraswathi Vidya Bhavan's College of Pharmacy, Dombivli, India
| | - Chhaya Gadgoli
- Department of Pharmacognosy and Phytochemistry, Saraswathi Vidya Bhavan's College of Pharmacy, Dombivli, India
| |
Collapse
|
9
|
Yadav N, Patel AB, Debbarma S, Priyadarshini MB, Priyadarshi H. Characterization of Bioactive Metabolites and Antioxidant Activities in Solid and Liquid Fractions of Fresh Duckweed ( Wolffia globosa) Subjected to Different Cell Wall Rupture Methods. ACS OMEGA 2024; 9:19940-19955. [PMID: 38737040 PMCID: PMC11080017 DOI: 10.1021/acsomega.3c09674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/14/2024]
Abstract
Fresh Wolffia globosa, the smallest flowering plant well-known for its favorable nutrient composition and rich content of bioactive compounds, was subjected to boiling, freeze-thawing, and mechanical crushing to reduce its excessive (95-96%) moisture level and consequent drying time. The resultant three wolffia matrixes were filtered through a plankton net to fractionate into the residue and the filtrate. The proximate composition, bioactive metabolites, antioxidant activity, and characterization of bioactive metabolites by LC-ESI-QTOF-MS/MS and Fourier transform infrared spectroscopy were made from oven-dried residues and filtrates. Among residues, crude protein (29.84%), crude lipid (5.77%), total carotenoids (TCC; 722.8 μg/g), and vitamin C (70.02 mg/100 g) were the highest (p < 0.05) for freeze-thawing against higher ash (7.99%), total phenolic content (TPC; 191.47 mg GAE g-1 dry weight), total flavonoid content (TFC; 91.54 mg QE g-1 dry weight), DPPH activity (47.46%), and ferric reducing antioxidant power (FRAP) activity (570.19 μmol FeSO4 equiv/mg) for the crushed counterpart and Chl-b in residues from boiling. No significant variation was evident in the total tannin content (TTC). Among filtrates, higher total phenolic content (773.29 mg GAE g-1 dry weight), TFC (392.77 mg QE g-1 dry weight), TTC (22.51 mg TAE g-1), and antioxidant activity as DPPH activity (66.46%) and FRAP (891.62 μmol FeSO4 equiv/mg) were evident for boiling, while that from crushing exhibited the highest TCC (1997.38 μg/g DM). LC-ESI-QTOF-MS/MS analysis identified 72 phenolic compounds with the maximum in residue (33) and filtrate (33) from freeze-thawing, followed by crushing (18 and 19) and boiling (14 and 13) in order, respectively. The results indicated that the predrying cell rupturing method significantly impacted quantitative, as well as qualitative compositions of residues and filtrates from fresh wolffia.
Collapse
Affiliation(s)
- Nitesh
Kumar Yadav
- Department
of Aquaculture, College of Fisheries, Central
Agriculture University (Imphal), Lembucherra, Agartala, Tripura (West) 799210, India
| | - Arun Bhai Patel
- Department
of Aquaculture, College of Fisheries, Central
Agriculture University (Imphal), Lembucherra, Agartala, Tripura (West) 799210, India
| | - Sourabh Debbarma
- Department
of Aquatic Health & Environment, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Agartala, Tripura
(West) 799210, India
| | - M. Bhargavi Priyadarshini
- Department
of Fish Processing Technology& Engineering, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Agartala, Tripura
(West) 799210, India
| | - Himanshu Priyadarshi
- Department
of Fish Genetics and Reproduction, College of Fisheries, Central Agriculture University (Imphal), Lembucherra, Agartala, Tripura
(West) 799210, India
| |
Collapse
|
10
|
Malarz J, Michalska K, Stojakowska A. Polyphenols of the Inuleae-Inulinae and Their Biological Activities: A Review. Molecules 2024; 29:2014. [PMID: 38731504 PMCID: PMC11085778 DOI: 10.3390/molecules29092014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Polyphenols are ubiquitous plant metabolites that demonstrate biological activities essential to plant-environment interactions. They are of interest to plant food consumers, as well as to the food, pharmaceutical and cosmetic industry. The class of the plant metabolites comprises both widespread (chlorogenic acids, luteolin, quercetin) and unique compounds of diverse chemical structures but of the common biosynthetic origin. Polyphenols next to sesquiterpenoids are regarded as the major class of the Inuleae-Inulinae metabolites responsible for the pharmacological activity of medicinal plants from the subtribe (Blumea spp., Dittrichia spp., Inula spp., Pulicaria spp. and others). Recent decades have brought a rapid development of molecular and analytical techniques which resulted in better understanding of the taxonomic relationships within the Inuleae tribe and in a plethora of data concerning the chemical constituents of the Inuleae-Inulinae. The current taxonomical classification has introduced changes in the well-established botanical names and rearranged the genera based on molecular plant genetic studies. The newly created chemical data together with the earlier phytochemical studies may provide some complementary information on biochemical relationships within the subtribe. Moreover, they may at least partly explain pharmacological activities of the plant preparations traditionally used in therapy. The current review aimed to systematize the knowledge on the polyphenols of the Inulae-Inulinae.
Collapse
Affiliation(s)
| | | | - Anna Stojakowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.); (K.M.)
| |
Collapse
|
11
|
Ma C, Liu B, Du L, Liu W, Zhu Y, Chen T, Wang Z, Chen H, Pang Y. Green Preparation and Antibacterial Activity Evaluation of AgNPs- Blumea balsamifera Oil Nanoemulsion. Molecules 2024; 29:2009. [PMID: 38731501 PMCID: PMC11085303 DOI: 10.3390/molecules29092009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Bacterial infection is a thorny problem, and it is of great significance to developing green and efficient biological antibacterial agents that can replace antibiotics. This study aimed to rapidly prepare a new type of green antibacterial nanoemulsion containing silver nanoparticles in one step by using Blumea balsamifera oil (BBO) as an oil phase and tea saponin (TS) as a natural emulsifier and reducing agent. The optimum preparation conditions of the AgNPs@BBO-TS NE were determined, as well as its physicochemical properties and antibacterial activity in vitro being investigated. The results showed that the average particle size of the AgNPs@BBO-TS NE was 249.47 ± 6.23 nm, the PDI was 0.239 ± 0.003, and the zeta potential was -35.82 ± 4.26 mV. The produced AgNPs@BBO-TS NE showed good stability after centrifugation and 30-day storage. Moreover, the AgNPs@BBO-TS NE had an excellent antimicrobial effect on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. These results demonstrated that the AgNPs@BBO-TS NE produced in this study can be used as an efficient and green antibacterial agent in the biomedical field.
Collapse
Affiliation(s)
- Chunfang Ma
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (C.M.); (B.L.); (L.D.); (W.L.)
| | - Bingnan Liu
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (C.M.); (B.L.); (L.D.); (W.L.)
| | - Lingfeng Du
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (C.M.); (B.L.); (L.D.); (W.L.)
| | - Wei Liu
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (C.M.); (B.L.); (L.D.); (W.L.)
| | - Yue Zhu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China; (T.C.); (Z.W.)
- Nano-Drug Technology Research Center of Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Teng Chen
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China; (T.C.); (Z.W.)
- Nano-Drug Technology Research Center of Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Zuhua Wang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China; (T.C.); (Z.W.)
- Nano-Drug Technology Research Center of Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Hongpeng Chen
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (C.M.); (B.L.); (L.D.); (W.L.)
| | - Yuxin Pang
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (C.M.); (B.L.); (L.D.); (W.L.)
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China; (T.C.); (Z.W.)
- Yunfu Traditional Chinese Medicine Resources and Germplasm Resources Database Management Center, Yunfu 527325, China
| |
Collapse
|
12
|
Du L, Ma C, Liu B, Liu W, Zhu Y, Wang Z, Chen T, Huang L, Pang Y. Green Synthesis of Blumea balsamifera Oil Nanoemulsions Stabilized by Natural Emulsifiers and Its Effect on Wound Healing. Molecules 2024; 29:1994. [PMID: 38731484 PMCID: PMC11085480 DOI: 10.3390/molecules29091994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, we developed a green and multifunctional bioactive nanoemulsion (BBG-NEs) of Blumea balsamifera oil using Bletilla striata polysaccharide (BSP) and glycyrrhizic acid (GA) as natural emulsifiers. The process parameters were optimized using particle size, PDI, and zeta potential as evaluation parameters. The physicochemical properties, stability, transdermal properties, and bioactivities of the BBG-NEs under optimal operating conditions were investigated. Finally, network pharmacology and molecular docking were used to elucidate the potential molecular mechanism underlying its wound-healing properties. After parameter optimization, BBG-NEs exhibited excellent stability and demonstrated favorable in vitro transdermal properties. Furthermore, it displayed enhanced antioxidant and wound-healing effects. SD rats wound-healing experiments demonstrated improved scab formation and accelerated healing in the BBG-NE treatment relative to BBO and emulsifier groups. Pharmacological network analyses showed that AKT1, CXCL8, and EGFR may be key targets of BBG-NEs in wound repair. The results of a scratch assay and Western blotting assay also demonstrated that BBG-NEs could effectively promote cell migration and inhibit inflammatory responses. These results indicate the potential of the developed BBG-NEs for antioxidant and skin wound applications, expanding the utility of natural emulsifiers. Meanwhile, this study provided a preliminary explanation of the potential mechanism of BBG-NEs to promote wound healing through network pharmacology and molecular docking, which provided a basis for the mechanistic study of green multifunctional nanoemulsions.
Collapse
Affiliation(s)
- Lingfeng Du
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
| | - Chunfang Ma
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
| | - Bingnan Liu
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
| | - Wei Liu
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
| | - Yue Zhu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Y.Z.); (Z.W.)
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Zuhua Wang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Y.Z.); (Z.W.)
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Teng Chen
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Y.Z.); (Z.W.)
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuxin Pang
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (L.D.); (C.M.); (B.L.); (W.L.)
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Y.Z.); (Z.W.)
- Yunfu Traditional Chinese Medicine Resources and Germplasm Resources Database Management Center, Yunfu 527325, China
| |
Collapse
|
13
|
Ju Z, Liang L, Zheng Y, Shi H, Zhao W, Sun W, Pang Y. Full-Length Transcriptome Sequencing and RNA-Seq Analysis Offer Insights into Terpenoid Biosynthesis in Blumea balsamifera (L.) DC. Genes (Basel) 2024; 15:285. [PMID: 38540346 PMCID: PMC10970515 DOI: 10.3390/genes15030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
Blumea balsamifera (L.) DC., an important economic and medicinal herb, has a long history of being used as a traditional Chinese medicine. Its leaves have always been used as a raw material for the extraction of essential oils, comprising large amounts of terpenoids, which have good therapeutic effects on many diseases, such as eczema, bacterial infection, and hypertension. However, the genetic basis of terpenoid biosynthesis in this plant is virtually unknown on account of the lack of genomic data. Here, a combination of next-generation sequencing (NGS) and full-length transcriptome sequencing was applied to identify genes involved in terpenoid biosynthesis at five developmental stages. Then, the main components of essential oils in B. balsamifera were identified using GC-MS. Overall, 16 monoterpenoids and 20 sesquiterpenoids were identified and 333,860 CCS reads were generated, yielding 65,045 non-redundant transcripts. Among these highly accurate transcripts, 59,958 (92.18%) transcripts were successfully annotated using NR, eggNOG, Swissprot, KEGG, KOG, COG, Pfam, and GO databases. Finally, a total of 56 differently expressed genes (DEGs) involved in terpenoid biosynthesis were identified, including 38 terpenoid backbone genes and 18 TPSs, which provide a significant amount of genetic information for B. balsamifera. These results build a basis for resource protection, molecular breeding, and the metabolic engineering of this plant.
Collapse
Affiliation(s)
- Zhigang Ju
- Pharmacy College, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Z.J.); (L.L.); (Y.Z.); (H.S.); (W.Z.)
| | - Lin Liang
- Pharmacy College, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Z.J.); (L.L.); (Y.Z.); (H.S.); (W.Z.)
| | - Yaqiang Zheng
- Pharmacy College, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Z.J.); (L.L.); (Y.Z.); (H.S.); (W.Z.)
| | - Hongxi Shi
- Pharmacy College, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Z.J.); (L.L.); (Y.Z.); (H.S.); (W.Z.)
| | - Wenxuan Zhao
- Pharmacy College, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Z.J.); (L.L.); (Y.Z.); (H.S.); (W.Z.)
| | - Wei Sun
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountain Area of Southwest of China, School of Life Science, Guizhou Normal University, Guiyang 550025, China
| | - Yuxin Pang
- Pharmacy College, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (Z.J.); (L.L.); (Y.Z.); (H.S.); (W.Z.)
- Yunfu Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527300, China
| |
Collapse
|
14
|
Qi YT, Wang JZ, Zheng Y, Zhang JW, Du SS. Chemical Composition and Insecticidal Activities of Blumea balsamifera (Sambong) Essential Oil Against Three Stored Product Insects. J Food Prot 2024; 87:100205. [PMID: 38065366 DOI: 10.1016/j.jfp.2023.100205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/21/2023]
Abstract
Blumea balsamifera (L.) DC. (Asteraceae), also known as sambong, is a perennial herb used in China for medicinal purposes. The essential oil (EO) of B. balsamifera was extracted by hydrodistillation. Thirty chemical components of the EO were analyzed by gas chromatography-mass spectrometry (GC-MS) and GC, accounting for 88.0% (w/w) of the total oil. The EO of B. balsamifera was mainly composed of monoterpenes and sesquiterpenes, in which borneol (23.3%), β-caryophyllene (20.9%) and camphor (11.8%) were the major components. The insecticidal activities of the EO and its three main compounds against Tribolium castaneum, Lasioderma serricorne and Sitophilus oryzae were evaluated. The results of bioassays displayed that the EO of B. balsamifera did not have fumigant toxicity to the three target insects, but exhibited significant contact activity against L. serricorne (LD50 = 12.4 μg/adult) and S. oryzae (LD50 = 44.4 μg/adult). Meanwhile, the EO showed a notable repellent effect on T. castaneum at all testing concentrations and a general repellent effect on S. oryzae at high concentrations (78.63 nL/cm2). β-Caryophyllene showed the best performance in the contact toxicity bioassays against the three insects. The results indicated that B. balsamifera has the potential to be used as a source of botanical insecticides for the control of stored-product insects.
Collapse
Affiliation(s)
- Yuan-Tong Qi
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, People's Republic of China.
| | - Jia-Zhu Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, People's Republic of China.
| | - Yu Zheng
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, People's Republic of China.
| | - Jia-Wei Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, People's Republic of China.
| | - Shu-Shan Du
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, People's Republic of China.
| |
Collapse
|
15
|
Chen X, Li Y, Pang Y, Shen W, Chen Q, Liu L, Luo X, Chen Z, Li X, Li Y, Zhang Y, Huang M, Yuan C, Wang D, Guan L, Liu Y, Yang Q, Chen H, Wu H, Yu F. A comparative analysis of morphology, microstructure, and volatile metabolomics of leaves at varied developmental stages in Ainaxiang ( Blumea balsamifera (Linn.) DC.). FRONTIERS IN PLANT SCIENCE 2023; 14:1285616. [PMID: 38034556 PMCID: PMC10682096 DOI: 10.3389/fpls.2023.1285616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Introduction Ainaxiang (Blumea balsamifera (Linn.) DC.) is cultivated for the extraction of (-)-borneol and other pharmaceutical raw materials due to its abundant volatile oil. However, there is limited knowledge regarding the structural basis and composition of volatile oil accumulation in fresh B. balsamifera leaves. Methods To address this problem, we compare the fresh leaves' morphology, microstructure, and volatile metabonomic at different development stages, orderly defined from the recently unfolded young stage (S1) to the senescent stage (S4). Results and discussion Distinct differences were observed in the macro-appearance and microstructure at each stage, particularly in the B. balsamifera glandular trichomes (BbGTs) distribution. This specialized structure may be responsible for the accumulation of volatile matter. 213 metabolites were identified through metabolomic analysis, which exhibited spatiotemporal accumulation patterns among different stages. Notably, (-)-borneol was enriched at S1, while 10 key odor metabolites associated with the characteristic balsamic, borneol, fresh, and camphor aromas of B. balsamifera were enriched in S1 and S2. Ultra-microstructural examination revealed the involvement of chloroplasts, mitochondria, endoplasmic reticulum, and vacuoles in the synthesizing, transporting, and storing essential oils. These findings confirm that BbGTs serve as the secretory structures in B. balsamifera, with the population and morphology of BbGTs potentially serving as biomarkers for (-)-borneol accumulation. Overall, young B. balsamifera leaves with dense BbGTs represent a rich (-)-borneol source, while mesophyll cells contribute to volatile oil accumulation. These findings reveal the essential oil accumulation characteristics in B. balsamifera, providing a foundation for further understanding.
Collapse
Affiliation(s)
- Xiaolu Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Yanqun Li
- Medicinal Plants Research Center, South China Agricultural University, Guangzhou, China
| | - Yuxin Pang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wanyun Shen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Liwei Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xueting Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
- College of Tropical Crops, Yunnan Agricultural University, Puer, China
| | - Zhenxia Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Xingfei Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Yulan Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Yingying Zhang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Mei Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Chao Yuan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Dan Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Lingliang Guan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Yuchen Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Quan Yang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Hong Wu
- Medicinal Plants Research Center, South China Agricultural University, Guangzhou, China
| | - Fulai Yu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| |
Collapse
|
16
|
Mohanta YK, Mishra AK, Nongbet A, Chakrabartty I, Mahanta S, Sarma B, Panda J, Panda SK. Potential use of the Asteraceae family as a cure for diabetes: A review of ethnopharmacology to modern day drug and nutraceuticals developments. Front Pharmacol 2023; 14:1153600. [PMID: 37608892 PMCID: PMC10441548 DOI: 10.3389/fphar.2023.1153600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/29/2023] [Indexed: 08/24/2023] Open
Abstract
The diabetes-associated mortality rate is increasing annually, along with the severity of its accompanying disorders that impair human health. Worldwide, several medicinal plants are frequently urged for the management of diabetes. Reports are available on the use of medicinal plants by traditional healers for their blood-sugar-lowering effects, along with scientific evidence to support such claims. The Asteraceae family is one of the most diverse flowering plants, with about 1,690 genera and 32,000 species. Since ancient times, people have consumed various herbs of the Asteraceae family as food and employed them as medicine. Despite the wide variety of members within the family, most of them are rich in naturally occurring polysaccharides that possess potent prebiotic effects, which trigger their use as potential nutraceuticals. This review provides detailed information on the reported Asteraceae plants traditionally used as antidiabetic agents, with a major focus on the plants of this family that are known to exert antioxidant, hepatoprotective, vasodilation, and wound healing effects, which further action for the prevention of major diseases like cardiovascular disease (CVD), liver cirrhosis, and diabetes mellitus (DM). Moreover, this review highlights the potential of Asteraceae plants to counteract diabetic conditions when used as food and nutraceuticals. The information documented in this review article can serve as a pioneer for developing research initiatives directed at the exploration of Asteraceae and, at the forefront, the development of a botanical drug for the treatment of DM.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, kelambakkam, Tamil Nadu, India
| | | | - Amilia Nongbet
- Department of Botany, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Ishani Chakrabartty
- Learning and Development Solutions, Indegene Pvt. Ltd., Manyata Tech Park, Bangalore, India
| | - Saurov Mahanta
- Guwahati Centre, National Institute of Electronics and Information Technology (NIELIT), Guwahati, Assam, India
| | - Bhaskar Sarma
- Department of Botany, Dhemaji College, Dhemaji, Assam, India
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Sujogya Kumar Panda
- Center of Environment Climate Change and Public Health, RUSA 2.0, Utkal University, Bhubaneswar, Odisha, India
| |
Collapse
|
17
|
Inta A, Kampuansai J, Kutanan W, Srikummool M, Pongamornkul W, Srisanga P, Panyadee P. Women's wellness in the mountains: An exploration of medicinal plants among tibeto-burman groups in Thailand. Heliyon 2023; 9:e17722. [PMID: 37539171 PMCID: PMC10395137 DOI: 10.1016/j.heliyon.2023.e17722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
Ethnopharmacological relevance This study offers valuable insight into the traditional healing practices of women's healthcare within four Tibeto-Burman groups. By focusing on women's wellness, the research sheds light on the often-neglected yet significant contributions made by women in the field of traditional medicine. Aims of the study The study seeks to address the gap of studies on the ethnobotany of women healthcare of the Tibeto-Burman groups in Thailand and to analyst the factors that could affect the diversity of ethnobotanical knowledge. Materials and methods The study compiled data from 15 group-informants residing in 12 different villages. The information gathering process involved a combination of free-listing, semi-structured interviews, group discussion, and the walk-to-the-wood method. To analyze the data, the researchers used various methods such as use-reports, Relative Frequency of Citation (RFC), Relative Importance Index (RI), and Cluster analysis. Results This study identified 200 plant species used in traditional women's healthcare practices, with leaves being the most frequently used part. Drinking was the most common method for internal use, while bathing and steam were the most emphasized for external use. Blumea balsamifera and Buddleja asiatica had high RI and RFC. Cluster analysis revealed that group-informants were divided by ethnicity and geographical location. Conclusion This study contributes to the understanding of traditional healthcare practices among Tibeto-Burman groups in Thailand, with a particular focus on women's wellness. The results provide insight into the ethnobotanical knowledge of these communities and highlight the important role played by women in traditional medicine. The study underscores the need for continued research in this field to preserve and utilize this valuable knowledge.
Collapse
Affiliation(s)
- Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wibhu Kutanan
- Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Wittaya Pongamornkul
- Queen Sirikit Botanic Garden, The Botanical Garden Organization, Mae Rim, Chiang Mai 50180, Thailand
| | - Prachaya Srisanga
- Queen Sirikit Botanic Garden, The Botanical Garden Organization, Mae Rim, Chiang Mai 50180, Thailand
| | - Prateep Panyadee
- Queen Sirikit Botanic Garden, The Botanical Garden Organization, Mae Rim, Chiang Mai 50180, Thailand
| |
Collapse
|
18
|
Dai L, Cai S, Chu D, Pang R, Deng J, Zheng X, Dai W. Identification of Chemical Constituents in Blumea balsamifera Using UPLC-Q-Orbitrap HRMS and Evaluation of Their Antioxidant Activities. Molecules 2023; 28:molecules28114504. [PMID: 37298979 DOI: 10.3390/molecules28114504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Blumea balsamifera (L.) DC., a perennial herb in the Asteraceae family native to China and Southeast Asia, has a notable history of medicinal use due to its pharmacological properties. Using UPLC-Q-Orbitrap HRMS techniques, we systematically investigated the chemical constituents of this plant. A total of 31 constituents were identified, of which 14 were flavonoid compounds. Significantly, 18 of these compounds were identified in B. balsamifera for the first time. Furthermore, the mass spectrometry fragmentation patterns of significant chemical constituents identified in B. balsamifera were analyzed, providing important insights into their structural characteristics. The in vitro antioxidative potential of the methanol extract of B. balsamifera was assessed using DPPH and ABTS free-radical-scavenging assays, total antioxidative capacity, and reducing power. The antioxidative activity exhibited a direct correlation with the mass concentration of the extract, with IC50 values of 105.1 ± 0.503 μg/mL and 12.49 ± 0.341 μg/mL for DPPH and ABTS, respectively. For total antioxidant capacity, the absorbance was 0.454 ± 0.009 at 400 μg/mL. In addition, the reducing power was 1.099 ± 0.03 at 2000 μg/mL. This study affirms that UPLC-Q-Orbitrap HRMS can effectively discern the chemical constituents in B. balsamifera, primarily its flavonoid compounds, and substantiates its antioxidative properties. This underscores its potential utility as a natural antioxidant in the food, pharmaceutical, and cosmetics sectors. This research provides a valuable theoretical basis and reference value for the comprehensive development and utilization of B. balsamifera and expands our understanding of this medicinally valuable plant.
Collapse
Affiliation(s)
- Liping Dai
- College of Traditional Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China
- Experimental Center of Yunfu Campus, Guangdong Pharmaceutical University, Yunfu 527325, China
| | - Shengnan Cai
- College of Traditional Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China
- Experimental Center of Yunfu Campus, Guangdong Pharmaceutical University, Yunfu 527325, China
| | - Dake Chu
- Experimental Center of Yunfu Campus, Guangdong Pharmaceutical University, Yunfu 527325, China
| | - Rui Pang
- Experimental Center of Yunfu Campus, Guangdong Pharmaceutical University, Yunfu 527325, China
| | - Jianhao Deng
- Experimental Center of Yunfu Campus, Guangdong Pharmaceutical University, Yunfu 527325, China
| | - Xilong Zheng
- College of Traditional Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China
| | - Wei Dai
- Experimental Center of Yunfu Campus, Guangdong Pharmaceutical University, Yunfu 527325, China
| |
Collapse
|
19
|
Xia K, Qi WJ, Wu XQ, Song YY, Zhu JJ, Ai Y, Cui Z, Zhang ZP, Tang SA, Gui YT, Yuan Y, Wang L, Zhong H. Synthesis, Structure Revision, and Anti-inflammatory Activity Investigation of Putative Blumeatin. ACS OMEGA 2023; 8:14240-14246. [PMID: 37091405 PMCID: PMC10116622 DOI: 10.1021/acsomega.3c01247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Blumeatin, reported herein, bearing two hydroxyl groups at C3' and C5' of ring B, is isolated from the traditional Chinese medicine Blumea balsamifera. But the isolation procedure of blumeatin from plants has limitations of prolonged duration and high cost. A procedure featuring Lewis acid-catalyzed ring closure and chiral resolution via Schiff base intermediates is provided here to prepare optically pure blumeatin and its R-isomer efficiently. Furthermore, the structure revision of putative blumeatin based on a logically synthetic procedure and NMR spectroscopic analysis was conducted. The 1D and 2D NMR data analysis unambiguously confirmed our proposal that the reported blumeatin structure has been misassigned as it corresponds to sterubin, which contains two hydroxyl groups at C3' and C4' of ring B. Finally, the results of the ear-swelling test exhibited that synthetic (±)-blumeatin and (±)-sterubin had moderate anti-inflammatory activity which was less than that of (-)-sterubin.
Collapse
Affiliation(s)
- Kai Xia
- School
of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Wei-Jin Qi
- School
of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Xiao-Qiang Wu
- Changchun
Lanjiang Pharmaceutical Technology Co., LTD, Changchun 130051, China
| | - Yu-Yang Song
- School
of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Jun-Jie Zhu
- School
of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Yi Ai
- School
of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Zhen Cui
- School
of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Zheng-Ping Zhang
- School
of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Shu-Ai Tang
- School
of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Yu-Ting Gui
- School
of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Yue Yuan
- School
of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Lu Wang
- Guizhou
University Chemical Engineering Center, Guiyang 550025, China
| | - Hang Zhong
- School
of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
- Guizhou
Engineering Laboratory for Synthetic Drugs, Guiyang 550025, China
| |
Collapse
|
20
|
Bio-Prospecting of Crude Leaf Extracts from Thirteen Plants of Brazilian Cerrado Biome on Human Glioma Cell Lines. Molecules 2023; 28:molecules28031394. [PMID: 36771057 PMCID: PMC9921846 DOI: 10.3390/molecules28031394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Malignant gliomas are aggressive tumors characterized by fast cellular growth and highly invasive properties. Despite all biological and clinical advances in therapy, the standard treatment remains essentially palliative. Therefore, searching for alternative therapies that minimize adverse symptoms and improve glioblastoma patients' outcomes is imperative. Natural products represent an essential source in the discovery of such new drugs. Plants from the cerrado biome have been receiving increased attention due to the presence of secondary metabolites with significant therapeutic potential. (2) Aim: This study provides data on the cytotoxic potential of 13 leaf extracts obtained from plants of 5 families (Anacardiaceae, Annonaceae, Fabaceae, Melastomataceae e Siparunaceae) found in the Brazilian cerrado biome on a panel of 5 glioma cell lines and one normal astrocyte. (3) Methods: The effect of crude extracts on cell viability was evaluated by MTS assay. Mass spectrometry (ESI FT-ICR MS) was performed to identify the secondary metabolites classes presented in the crude extracts and partitions. (4) Results: Our results revealed the cytotoxic potential of Melastomataceae species Miconia cuspidata, Miconia albicans, and Miconia chamissois. Additionally, comparing the four partitions obtained from M. chamissois crude extract indicates that the chloroform partition had the greatest cytotoxic activity against the glioma cell lines. The partitions also showed a mean IC50 close to chemotherapy, temozolomide; nevertheless, lower toxicity against normal astrocytes. Analysis of secondary metabolites classes presented in these crude extracts and partitions indicates the presence of phenolic compounds. (5) Conclusions: These findings highlight M. chamissois chloroform partition as a promising component and may guide the search for the development of additional new anticancer therapies.
Collapse
|
21
|
Terpenoids and Bio-Functions of Essential Oils Hydrodistilled Differently from Freshly Immature and Mature Blumea balsamifera Leaves. J Trop Med 2023; 2023:5152506. [PMID: 36926419 PMCID: PMC10014153 DOI: 10.1155/2023/5152506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
The volatiles and antioxidant capacity of essential oils (EOs) extracted from freshly immature and mature leaves of Blumea balsamifera at various hydrodistillation times were investigated. Seven major terpenoids were identified: two monoterpenes, camphor and L-borneol, and five sesquiterpenes, silphiperfol-5-ene, 7-epi-silphiperfol-5-ene, ß-caryophyllene, ɤ-eudesmol, and α-eudesmol. The quantity and terpenoid composition of the EOs were impressed by leaf maturity and hydrodistillation times. The yield of EOs from the immature leaves was 1.4 times that of mature leaves, with 73% of the yield acquired within the first 6 hours (hrs) of hydrodistillation. Approximately 97% of camphor and L-borneol, 80% of ß-caryophyllene, silphiperfolene, and 7-epi-silphiperfolene, 32% of ɤ-eudesmol, and 54% α-eudesmol were collected in the first 6 hrs of hydrodistillation. More ß-caryophyllene, ɤ-eudesmol, and α-eudesmol were found in the mature leaf EOs. The antioxidant capacity of the EOs was proportionally related to their terpenoid contents. The EOs extracted from immature leaves at 0-6 hrs of hydrodistillation demonstrated distinctive antibacterial activity against Staphylococcus aureus, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 0.5 mg/mL and 1 mg/mL, respectively.
Collapse
|
22
|
WANG J, HE H, ZHOU Z, BAI L, SHE X, HE L, HE Y, TAN D. Chemical constituents and bioactivities of Blumea balsamifera (Sembung): a systematic review. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.132322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Jianmei WANG
- Zunyi Medical University, China; Zunyi Medical University, China
| | | | - Zhongbiao ZHOU
- Guizhou Huangguoshu Lishuang Pharmaceutcial Co. Ltd, China
| | - Lixin BAI
- Guizhou Huangguoshu Lishuang Pharmaceutcial Co. Ltd, China
| | | | - Li HE
- Guizhou Miaoyao Biotechnology Co. Ltd, China
| | - Yuqi HE
- Zunyi Medical University, China; Zunyi Medical University, China
| | - Daopeng TAN
- Zunyi Medical University, China; Zunyi Medical University, China
| |
Collapse
|
23
|
Jirakitticharoen S, Wisuitiprot W, Jitareerat P, Wongs-Aree C. Phenolics, Antioxidant and Antibacterial Activities of Immature and Mature Blumea balsamifera Leaf Extracts Eluted with Different Solvents. J Trop Med 2022; 2022:7794227. [PMID: 36438181 PMCID: PMC9683983 DOI: 10.1155/2022/7794227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/11/2022] [Indexed: 12/23/2024] Open
Abstract
Blumea balsamifera (L.) DC., belonging to the Asteraceae family, also known as "ngai camphor," is one of the traditional herbs used in Thailand for folk medicine and a component in local food and drinks. There was, however, no evidence indicating the presence of beneficial compounds at different leaf ages. Exploring various extraction solvents, we investigated the phenolics, flavonoids in particular quercetin content, antioxidant capacity, and antibacterial activity of immature and mature leaf extracts. The dried leaves were macerated in 50% ethanol, 95% ethanol, hexane, or decocted in water. Bioactive substances were analyzed by UV spectrophotometry and HPLC. Analysis of antioxidant capacity was done byDPPH, ABTS, FRAP, and NO scavenging assays. The antibacterial activity of immature leaf extract eluted with 50% ethanol was subsequentially evaluated in vitro. Extraction with 50% ethanol proved optimal, yielding 1.2-1.6-fold and 1.5-fold greater immature and mature leaf extracts than other solvents. More phenolics (1.2-fold), flavonoids (1.1-fold), quercetin content (4.8-fold), and antioxidant activity (1.3-fold) were found in the immature leaf extract. There was a significant positive correlation between antioxidant activity and bioactive compounds. The immature leaf extract eluted with 50% ethanol showed antibacterial activity against Staphylococcus aureus, with a minimum inhibitory concentration of 0.5 mg/mL. The immature leaves of B. balsamifera are a rich source of quercetin and phenolics, and 50% ethanol proved optimal for extracting bioactive components from these leaves.
Collapse
Affiliation(s)
- Sirinapha Jirakitticharoen
- Division of Postharvest Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Wudtichai Wisuitiprot
- Department of Thai Traditional Medicine, Sirindhorn College of Public Health Phitsanulok, Phitsanulok 65130, Thailand
| | - Pongphen Jitareerat
- Division of Postharvest Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
- Postharvest Technology Innovation Center, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| | - Chalermchai Wongs-Aree
- Division of Postharvest Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
- Postharvest Technology Innovation Center, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| |
Collapse
|
24
|
A Review on Medicinal Plants Having Anticancer Properties of Northeast India and Associated Endophytic Microbes and their Future in Medicinal Science. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human beings are affected by different diseases and suffer to different extents. Cancer is one of the major human disease and millions of people suffered from cancer and end their lives every year. Peoples are dependent on herbal medicines since prehistoric time especially from developing countries. It is very common to have different side effects of modern synthetic medicines; hence now-a-days importance of herbal medicines due to no or least side effects increases all parts of the world. But the major problems of using herbal medicines are that plants can produce very limited amount of medicinally important bioactive metabolites and they have very long growth periods. Therefore endophytes are the excellent alternative of plant derived metabolites. Endophytic microbes can synthesize exactly same type of metabolites as the plant produces. North East India is a treasure of plant resources; various types of medicinal plants are present in this region. Different types of indigenous tribes are inhabited in this region who used different plants in traditional system for treating various disease. But with increasing demand it is sometimes not sufficient to manage the demand of medicines, therefore for massive production endophytic study is crucial. In spite of having huge plant resources very limited endophytic studies are observed in this region. In this review, we studied different plants with their endophytes of NE India showing anticancer properties.
Collapse
|
25
|
Masyudi M, Hanafiah M, Usman S, Marlina M. Effectiveness of gel formulation of capa leaf (Blumea balsamifera L.) on wound healing in white rats. Vet World 2022; 15:2059-2066. [PMID: 36313855 PMCID: PMC9615488 DOI: 10.14202/vetworld.2022.2059-2066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background and Aim: The capa plant (Blumea balsamifera L.) has been widely used as a traditional herbal medicine in many parts of the world, including South Aceh, Indonesia. It is generally used for wound healing due to its antibacterial and anti-inflammatory properties. However, it is only available as extract or oil, and no gel formulation exists so far. Thus, in this study, we formulated the extract into a pharmaceutical gel and investigated its effectiveness in healing incision wounds in white rats (Rattus norvegicus). Materials and Methods: We collected B. balsamifera leaf samples from Gunongpulo village, South Aceh, Indonesia. We then produced leaf extract through maceration and formulated the extract into a gel using Carbopol 940, methylparaben, triethanolamine, and propylene glycol. We applied the gel to incision wounds in white rats for 7 and 14 days. We then monitored wound healing based on wound length, histology of skin tissues, and levels of cytokine 2 (interleukin-2 [IL-2]). Results: The gel formulation K3 (10% B. balsamifera leaf extract) was the most effective, followed by the gel formulations K2 (5% B. balsamifera leaf extract) and K4 (1% gentamicin ointment, positive control). K3 reduced wound length by 14 mm on day 7 and 29 mm on day 14. Histological analysis showed that fibroblast growth and angiogenesis were most significant in the K3-treated group, exceeding that of the positive control group. The K3-treated group also had the highest IL-2 levels, with an average of 107.7767 ng/L on day 7 and 119.1900 ng/L on day 14. Conclusion: The 10% B. balsamifera leaf gel effectively reduced wound length, increased fibroblast cell growth and angiogenesis, and IL-2 levels, accelerating wound healing.
Collapse
Affiliation(s)
- Masyudi Masyudi
- Department of Medical Sciences, Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia; Department of Public Health, Universitas Serambi Mekkah, Banda Aceh, Indonesia
| | - Muhammad Hanafiah
- Parasitology Laboratory, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Said Usman
- Deapartment of Public Health, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Marlina Marlina
- Department of Medical and Surgical Nursing, Faculty of Nursing, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
26
|
Antibacterial activity and cytotoxicity of sequentially extracted medicinal plant Blumea balsamifera Lin. (DC). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Huang XL, Wang DW, Liu YQ, Cheng YX. Diterpenoids from Blumea balsamifera and Their Anti-Inflammatory Activities. Molecules 2022; 27:molecules27092890. [PMID: 35566241 PMCID: PMC9100843 DOI: 10.3390/molecules27092890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
Six new diterpenoids, blusamiferoids A–F (1–6), including four pimarane-type diterpenoids, one rosane-type diterpenoid (3), and one rearranged abietane-type diterpenoid (6), were isolated from the dry aerial parts of Blumea balsamifera. Their structures were characterized by spectroscopic and computational methods. In particular, the structures of 1 and 4 were confirmed by X-ray crystallography. Compounds 5 and 6 were found to dose-dependently inhibit the production of TNF-α, IL-6, and nitrite oxide, and compound 5 also downregulated NF-κB phosphorylation in lipopolysaccharide (LPS)-induced RAW 264.7 cells.
Collapse
Affiliation(s)
- Xiao-Ling Huang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China;
| | - Dai-Wei Wang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China;
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China;
- Correspondence: (Y.-Q.L.); (Y.-X.C.)
| | - Yong-Xian Cheng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China;
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China;
- Guangdong Key Laboratory of Functional Substances in Medicinal Edible Resources and HealthcareProducts, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou 521041, China
- Correspondence: (Y.-Q.L.); (Y.-X.C.)
| |
Collapse
|
28
|
Cordero CS, Meve U, Alejandro GJD. Ethnobotanical Documentation of Medicinal Plants Used by the Indigenous Panay Bukidnon in Lambunao, Iloilo, Philippines. Front Pharmacol 2022; 12:790567. [PMID: 35082673 PMCID: PMC8784692 DOI: 10.3389/fphar.2021.790567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
The Panay Bukidnon is a group of indigenous peoples living in the interior highlands of Panay Island in Western Visayas, Philippines. Little is known about their ethnobotanical knowledge due to limited written records, and no recent research has been conducted on the medicinal plants they used in ethnomedicine. This study aims to document the medicinal plants used by the indigenous Panay Bukidnon in Lambunao, Iloilo, Panay Island. Semi-structured interviews were conducted with 75 key informants from June 2020 to September 2021 to determine the therapeutic use of medicinal plants in traditional medicine. A total of 131 medicinal plant species distributed in 121 genera and 57 families were used to address 91 diseases in 16 different uses or disease categories. The family Fabaceae was best represented with 13 species, followed by Lamiaceae with nine species and Poaceae with eight species. The leaf was the most frequently used plant part and decoction was the most preferred form of preparation. To evaluate the plant importance, use value (UV), relative frequency citation (RFC), relative important index (RI), informant consensus factor (ICF), and fidelity level (FL) were used. Curcuma longa L. had the highest UV (0.79), Artemisia vulgaris L. had the highest RFC value (0.57), and Annona muricata L. had the highest RI value (0.88). Diseases and symptoms or signs involving the respiratory system and injury, poisoning, and certain other consequences of external causes recorded the highest ICF value (0.80). Blumea balsamifera (L.) DC. and Chromolaena odorata (L.) R.M. King & H. Rob were the most relevant and agreed species for the former and latter disease categories, respectively. C. odorata had the highest FL value (100%) and was the most preferred medicinal plant used for cuts and wounds. The results of this study serve as a medium for preserving cultural heritage, ethnopharmacological bases for further drug research and discovery, and preserving biological diversity.
Collapse
Affiliation(s)
- Cecilia Salugta Cordero
- The Graduate School, University of Santo Tomas, Manila, Philippines.,Biology Department, School of Health Science Professions, St. Dominic College of Asia, City of Bacoor, Philippines
| | - Ulrich Meve
- Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany
| | - Grecebio Jonathan Duran Alejandro
- The Graduate School, University of Santo Tomas, Manila, Philippines.,College of Science and Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| |
Collapse
|
29
|
Chaniad P, Phuwajaroanpong A, Techarang T, Viriyavejakul P, Chukaew A, Punsawad C. Antiplasmodial activity and cytotoxicity of plant extracts from the Asteraceae and Rubiaceae families. Heliyon 2022; 8:e08848. [PMID: 35141436 PMCID: PMC8814390 DOI: 10.1016/j.heliyon.2022.e08848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/01/2021] [Accepted: 01/24/2022] [Indexed: 12/02/2022] Open
Abstract
The increasing resistance of parasites to antimalarial drugs and the limited number of effective drugs are the greatest challenges in the treatment of malaria. It is necessary to search for an alternative medicine for use as a new, more effective antimalarial drug. Therefore, this study aimed to evaluate the in vitro antimalarial activity and cytotoxicity of extracts from plants belonging to the Asteraceae and Rubiaceae families. The phytoconstituents of one hundred ten ethanolic and aqueous extracts from different parts of twenty-three plant species were analyzed. Evaluation of their antimalarial activities against the chloroquine (CQ)-resistant Plasmodium falciparum (K1) strain was carried out using the lactate dehydrogenase (pLDH) assay, and their cytotoxicity in Vero cells was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric method. A total of 40.91% of the extracts were active antimalarial agents. Three extracts (2.73%) exhibited high antiplasmodial activity (IC50 < 10 μg/ml), twenty-four extracts (21.82%) were moderately active with IC50 values ranging from 10-50 μg/ml, and eighteen extracts (16.36%) were mildly active with IC50 values ranging from 50-100 μg/ml. The ethanolic leaf extract of Mussaenda erythrophylla (Dona Trining; Rubiaceae) exhibited the highest activity against P. falciparum, with an IC50 value of 3.73 μg/ml and a selectivity index (SI) of 30.74, followed by the ethanolic leaf extract of Mussaenda philippica Dona Luz x M. flava (Dona Marmalade; Rubiaceae) and the ethanolic leaf extract of Blumea balsamifera (Camphor Tree; Asteraceae), with IC50 values of 5.94 and 9.66 μg/ml and SI values of 25.36 and >20.70, respectively. GC-MS analysis of these three plant species revealed the presence of various compounds, such as squalene, oleic acid amide, β-sitosterol, quinic acid, phytol, oleamide, α-amyrin, sakuranin, quercetin and pillion. In conclusion, the ethanolic leaf extract of M. erythrophylla, the leaf extract of M. philippica Dona Luz x M. flava and the leaf extract of B. balsamifera had strong antimalarial properties with minimal toxicity, indicating that compounds from these plant species have the potential to be developed into new antiplasmodial agents.
Collapse
Affiliation(s)
- Prapaporn Chaniad
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Arisara Phuwajaroanpong
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tachpon Techarang
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Parnpen Viriyavejakul
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Arnon Chukaew
- Chemistry Department, Faculty of Science and Technology, Suratthani Rajabhat University, Surat Tani 84100, Thailand
| | - Chuchard Punsawad
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
30
|
Putra IMWA, Fakhrudin N, Kusumawati IGAW, Nurrochmad A, Wahyuono S. Antioxidant properties of extract combination of Coccinia grandis and Blumea balsamifera: An in vitro synergistic effect. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2022.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: As single extracts, Coccinia grandis and Blumea balsamifera have been known to have potent antioxidant activities. However, the synergistic antioxidant effect of the combination of these plant extracts was unknown. In this study, the combination of C. grandis and B. balsamifera extracts was investigated for its antioxidant and synergistic properties. Methods: Separately, C. grandis and B. balsamifera leaves were extracted with ethanol. After evaporation, the thick extracts were assayed for their total phenolic content (TPC) and total flavonoid content (TFC). The antioxidant properties of single and combined extracts were measured using the molybdenum(VI) reducing power, ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. The possible synergism effect was evaluated using the checkerboard method and the combination index values were also calculated. Results: The TPC and TFC of the B. balsamifera extracts were much greater than that of C. grandis extract. In the molybdenum(VI) reducing power and FRAP assay, the reducing power of the extract combination increased as B. balsamifera extract concentration increased (P < 0.05). In the ABTS+ and DPPH radical scavenging assays, B. balsamifera extract demonstrated a higher antioxidant activity than C. grandis extract (P < 0.05). When combined, increasing the concentration of B. balsamifera caused an increase in the radical scavenging activity (P < 0.05). Synergism was observed in the combination of the extracts with low concentration ratios. Conclusion: In this study, we showed that the combination of C. grandis and B. balsamifera leaf extracts possessed synergistic antioxidant properties.
Collapse
Affiliation(s)
- I Made Wisnu Adhi Putra
- Doctorate Program of Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Biology, University of Dhyana Pura, Kuta Utara, Badung, Bali 80361, Indonesia
| | - Nanang Fakhrudin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | | - Arief Nurrochmad
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Subagus Wahyuono
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
31
|
Abdullah, Mehmood F, Rahim A, Heidari P, Ahmed I, Poczai P. Comparative plastome analysis of Blumea, with implications for genome evolution and phylogeny of Asteroideae. Ecol Evol 2021; 11:7810-7826. [PMID: 34188853 PMCID: PMC8216946 DOI: 10.1002/ece3.7614] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/09/2021] [Indexed: 12/25/2022] Open
Abstract
The genus Blumea (Asteroideae, Asteraceae) comprises about 100 species, including herbs, shrubs, and small trees. Previous studies have been unable to resolve taxonomic issues and the phylogeny of the genus Blumea due to the low polymorphism of molecular markers. Therefore, suitable polymorphic regions need to be identified. Here, we de novo assembled plastomes of the three Blumea species B. oxyodonta, B. tenella, and B. balsamifera and compared them with 26 other species of Asteroideae after correction of annotations. These species have quadripartite plastomes with similar gene content, genome organization, and inverted repeat contraction and expansion comprising 113 genes, including 80 protein-coding, 29 transfer RNA, and 4 ribosomal RNA genes. The comparative analysis of codon usage, amino acid frequency, microsatellite repeats, oligonucleotide repeats, and transition and transversion substitutions has revealed high resemblance among the newly assembled species of Blumea. We identified 10 highly polymorphic regions with nucleotide diversity above 0.02, including rps16-trnQ, ycf1, ndhF-rpl32, petN-psbM, and rpl32-trnL, and they may be suitable for the development of robust, authentic, and cost-effective markers for barcoding and inference of the phylogeny of the genus Blumea. Among these highly polymorphic regions, five regions also co-occurred with oligonucleotide repeats and support use of repeats as a proxy for the identification of polymorphic loci. The phylogenetic analysis revealed a close relationship between Blumea and Pluchea within the tribe Inuleae. At tribe level, our phylogeny supports a sister relationship between Astereae and Anthemideae rooted as Gnaphalieae, Calenduleae, and Senecioneae. These results are contradictory to recent studies which reported a sister relationship between "Senecioneae and Anthemideae" and "Astereae and Gnaphalieae" or a sister relationship between Astereae and Gnaphalieae rooted as Calenduleae, Anthemideae, and then Senecioneae using nuclear genome sequences. The conflicting phylogenetic signals observed at the tribal level between plastidt and nuclear genome data require further investigation.
Collapse
Affiliation(s)
- Abdullah
- Department of BiochemistryFaculty of Biological SciencesQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Furrukh Mehmood
- Department of BiochemistryFaculty of Biological SciencesQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Abdur Rahim
- Department of ZoologyPost Graduate College NowsheraAbdul Wali Khan UniversityMardanPakistan
| | - Parviz Heidari
- Faculty of AgricultureShahrood University of TechnologyShahroodIran
| | - Ibrar Ahmed
- Alpha Genomics Private LimitedIslamabadPakistan
| | - Péter Poczai
- Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
32
|
Antibacterial effect of Blumea balsamifera (L.) DC. essential oil against Staphylococcus aureus. Arch Microbiol 2021; 203:3981-3988. [PMID: 34032873 DOI: 10.1007/s00203-021-02384-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Staphylococcus aureus (S. aureus) is a common pathogenic bacteria in clinical environment, which can cause various diseases. Blumea balsamifera (L.) DC. as a traditional Chinese herb, its essential oil shows excellent bacteriostatic effect against S. aureus. To study the antibacterial effect of B. balsamifera (L.) DC. essential oil (BBO) against S. aureus, this study evaluated the effect of BBO on the permeability and integrity of cell membranes and on the total protein and nucleic acid content in S. aureus. Furthermore, proteomics was used to study the effect of BBO on the proteome of S. aureus. The results showed that BBO can destroy the permeability of the cell membrane, and inhibit the synthesis of bacterial nucleic acid and protein. Proteomics shows that BBO affects disorder of amino acid metabolism and affects the activity of various enzymes and the transport of substances. Taken together, these results indicated a substantial antibacterial effect of BBO on S. aureus.
Collapse
|
33
|
Widhiantara IG, Jawi IM. Phytochemical composition and health properties of Sembung plant ( Blumea balsamifera): A review. Vet World 2021; 14:1185-1196. [PMID: 34220120 PMCID: PMC8243688 DOI: 10.14202/vetworld.2021.1185-1196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Indonesia's mindset has been focusing on the use of natural medicines, food, and healing practices widely recognized by the nation's culture. Traditional medicines and herbs used in traditional medicine can often lead to the discovery of drugs against certain diseases. The aim of this review was to study evidence-based data on the importance of Sembung plant, Blumea balsamifera, as a potential traditional medicine. The distribution, ethnopharmacology, secondary metabolites, and bioactivity against several diseases are focused in this review. Information and research related to Sembung plant were searched using the terms "B. balsamifera," "phytochemicals," and "pharmacological activity" on ResearchGate, Google Scholar, Science Direct, PubMed, and scientific information-based databases up to 2020. Several ethnomedical articles recommend B. balsamifera for the treatment of sinusitis, colic pain, cough, kidney stones, flu, or as a diuretic. This knowledge has already been applied in several countries in Southeast Asia. B. balsamifera has been reported to contain several phytochemicals both volatile (terpenoids, fatty acids, phenols, alcohol, aldehydes, ethers, ketones, pyridines, furans, and alkanes) and non-volatile (flavonoids, flavanones, and chalcones). Extracts and phytochemicals of B. balsamifera contain several biological capacities such as antioxidant, antimicrobial, antifungal, anti-inflammatory, hypolipidemic, anti-infertility, hepatoprotective activity, antidiabetic, gastroprotective, antitumor, anticancer, and immunomodulatory agent against Coronavirus disease-19 infection. This review provides essential data for the potential application of B. balsamifera as a nutraceutical or in future medicinal preparations.
Collapse
Affiliation(s)
- I. Gede Widhiantara
- Medical Science Study Program, Faculty of Medicine, Udayana University, Jalan P.B. Sudirman, Denpasar City, Bali Province 80234, Indonesia
- Study Program of Biology, Faculty of Health, Science, and Technology, Dhyana Pura University, Jalan Raya Padang Luwih, Dalung, North Kuta, Badung, Bali Province 80361, Indonesia
| | - I. Made Jawi
- Department of Pharmacology, Faculty of Medicine, Udayana University, Jalan P.B. Sudirman, Denpasar City, Bali Province 80234, Indonesia
| |
Collapse
|
34
|
Xiong Y, Yi P, Li Y, Gao R, Chen J, Hu Z, Lou H, Du C, Zhang J, Zhang Y, Yuan C, Huang L, Hao X, Gu W. New sesquiterpeniod esters form Blumea balsamifera (L.) DC. and their anti-influenza virus activity. Nat Prod Res 2020; 36:1151-1160. [PMID: 33331176 DOI: 10.1080/14786419.2020.1861615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phytochemical studies led to the isolation of five new sesquiterpeniod esters, named balsamiferine N-R, along with ten known compounds (6-15) from the leaves of Blumea balsamifera (L.) DC. The skeletons of nine known sesquiterpeniods belong to guaiane and eudesmane. The structures of the new compounds including their absolute configurations were elucidated by comprehensive spectroscopic analysis, and quantum-chemical electronic circular dichroism (ECD) calculation. Compounds 3 and 4 showed significant inhibitory effects on influenza A virus (H3N2) with IC50 values of 46.23 μg/mL and 38.49 μg/mL, respectively. It was the first report on the anti-influenza A virus constituents from B. balsamifera.
Collapse
Affiliation(s)
- Yan Xiong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou medical university, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and, Chinese Academy of Sciences, Guiyang, China.,Guizhou Nursing Vocational College, Guiyang, China
| | - Ping Yi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou medical university, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and, Chinese Academy of Sciences, Guiyang, China
| | - Yuhuan Li
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences, Beijing, China
| | - Rongmei Gao
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences, Beijing, China
| | - Junlei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou medical university, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and, Chinese Academy of Sciences, Guiyang, China
| | - Zhanxing Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou medical university, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and, Chinese Academy of Sciences, Guiyang, China
| | - Huayong Lou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou medical university, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and, Chinese Academy of Sciences, Guiyang, China
| | - Caixia Du
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou medical university, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and, Chinese Academy of Sciences, Guiyang, China
| | - Jiayu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou medical university, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and, Chinese Academy of Sciences, Guiyang, China
| | - Yu Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou medical university, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and, Chinese Academy of Sciences, Guiyang, China
| | - Liejun Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou medical university, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and, Chinese Academy of Sciences, Guiyang, China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou medical university, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and, Chinese Academy of Sciences, Guiyang, China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou medical university, Guiyang, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and, Chinese Academy of Sciences, Guiyang, China
| |
Collapse
|
35
|
Ullah A, Saito Y, Ullah S, Haider MK, Nawaz H, Duy-Nam P, Kharaghani D, Kim IS. Bioactive Sambong oil-loaded electrospun cellulose acetate nanofibers: Preparation, characterization, and in-vitro biocompatibility. Int J Biol Macromol 2020; 166:1009-1021. [PMID: 33152363 DOI: 10.1016/j.ijbiomac.2020.10.257] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022]
Abstract
Blumea balsamifera oil loaded cellulose acetate nanofiber mats were prepared by electrospinning. The inclusion of blumea oil increased the nanofiber diameter. FTIR spectra confirm the addition of blumea oil in the nanofiber mats. The XRD pattern suggests that the inclusion of blumea oil has caused a misalignment in the polymer chains of the cellulose acetate. Thus, a decrease in the tensile strength was observed for the blumea oil loaded nanofibers. The increase in fiber diameter causes a reduction in the porosity of the nanofiber mats. The blumea oil loaded nanofiber mats showed antibacterial efficacy against Escherichia coli and Staphylococcus aureus. The blumea oil showed antioxidant abilities against the DPPH solution. MVTR of the neat and blumea oil loaded nanofiber mats was in the range of 2450-1750 g/m2/day, which is adequate for the transport of air and moisture from the wound surface. Blumea oil loaded mats showed good cell viability ~92% for NIH 3T3 cells in more extended periods of incubation. A biphasic release profile was obtained, and the release followed the first-order kinetics depending upon the highest value of the coefficient of correlation R 2 (88.6%).
Collapse
Affiliation(s)
- Azeem Ullah
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda 386-8567, Nagano, Japan
| | - Yusuke Saito
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda 386-8567, Nagano, Japan
| | - Sana Ullah
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda 386-8567, Nagano, Japan
| | - Md Kaiser Haider
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda 386-8567, Nagano, Japan
| | - Hifza Nawaz
- Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Phan Duy-Nam
- School of Textile-Leather and Fashion, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi 10000, Viet Nam
| | - Davood Kharaghani
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda 386-8567, Nagano, Japan.
| |
Collapse
|
36
|
Zhang B, Tang M, Zhang W, Zhangb C, Ai Y, Liang X, Shi Y, Chen Y, Zhang L, He T. Chemical composition of Blumea balsamifera and Magnolia sieboldii essential oils and prevention of UV-B radiation-induced skin photoaging. Nat Prod Res 2020; 35:5977-5980. [PMID: 32856487 DOI: 10.1080/14786419.2020.1809401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Blumea balsamifera essential oils (BBEOs) and Magnolia sieboldii essential oils (MSEOs) have exhibited outstanding antioxidant, anti-bacterial and anti-inflammatory activities. However, their anti-photoaging ability is still unclear. In this study, the chemical compositions of BBEOs and MSEOs are firstly determined by GC-MS analysis, and then their anti-photoaging is evaluated via an ultraviolet radiation (UV-B) induced mice skin-injury model. A total of 35 and 33 components are identified from BBEOs and MSEOs, and their dominant compositions are caryophyllene (18.54%) and borneol (18.33%) in BBEOs, and β-elemene (29.10%), γ-terpinene (17.01%) and (E)-β-ocymene (11.69%) in MSEOs. According to the skin injury model, the application of BBEOs and MSEOs to mice skin can effectively inhibit skin photoaging by down-regulating the expression of inflammatory factors including TNF-α, IL-6 and IL-10. Clearly, both essential oils reveal the potential as additives in cosmetics for anti-photoaging.
Collapse
Affiliation(s)
- Bing Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China
| | - Minghui Tang
- Hua An Tang Biotech Group Co., Ltd, Guangzhou, PR China
| | - Wenhuan Zhang
- Hua An Tang Biotech Group Co., Ltd, Guangzhou, PR China
| | | | - Yong Ai
- Hua An Tang Biotech Group Co., Ltd, Guangzhou, PR China
| | - Xiaoxin Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China
| | - Yaohui Shi
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China
| | - Yubin Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China
| | - Tinggang He
- Hua An Tang Biotech Group Co., Ltd, Guangzhou, PR China
| |
Collapse
|
37
|
He C, Yang P, Wang L, Jiang X, Zhang W, Liang X, Yin L, Yin Z, Geng Y, Zhong Z, Song X, Zou Y, Li L, Lv C. Antibacterial effect of Blumea balsamifera DC. essential oil against Haemophilus parasuis. Arch Microbiol 2020; 202:2499-2508. [PMID: 32638056 DOI: 10.1007/s00203-020-01946-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/22/2020] [Accepted: 06/06/2020] [Indexed: 11/30/2022]
Abstract
Haemophilus parasuis (H. parasuis), the cause of the Glasser's disease, is a potentially pathogenic gram-negative organism that colonizes the upper respiratory tract of pigs. The extraction of Blumea balsamifera DC., as a traditional Chinese herb, has shown great bacteriostatic effect against several common bacteria. To study the antibacterial effect on H. parasuis in vitro, this study evaluated the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Blumea balsamifera DC. essential oil (BBO) as well as morphological changes in H. parasuis treated with it. Furthermore, changes in expression of total protein and key virulence factors were also assessed. Results showed that the MIC and MBC were 0.625 and 1.25 μg/mL, respectively. As the concentration of BBO increased, the growth curve inhibition became stronger. H. parasuis cells were damaged severely after treatment with BBO for 4 h, demonstrating plasmolysis and enlarged vacuoles, along with broken cell walls and membranes. Total protein and virulence factor expression in H. parasuis was significantly downregulated by BBO. Taken together, these results indicated a substantial antibacterial effect of BBO on H. parasuis.
Collapse
Affiliation(s)
- Changliang He
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang District, Chengdu, Sichuan, People's Republic of China. .,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China.
| | - Peiyi Yang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang District, Chengdu, Sichuan, People's Republic of China.,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Lu Wang
- Engineering Research Center of the Utilization for Characteristic Bio-Pharmaceutical Resources in Southwest, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Xiaolin Jiang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang District, Chengdu, Sichuan, People's Republic of China.,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Wei Zhang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang District, Chengdu, Sichuan, People's Republic of China.,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Xiaoxia Liang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang District, Chengdu, Sichuan, People's Republic of China.,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Lizi Yin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang District, Chengdu, Sichuan, People's Republic of China.,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Zhongqiong Yin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang District, Chengdu, Sichuan, People's Republic of China.,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Zhijun Zhong
- Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Xu Song
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang District, Chengdu, Sichuan, People's Republic of China.,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Yuanfeng Zou
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang District, Chengdu, Sichuan, People's Republic of China.,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Lixia Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang District, Chengdu, Sichuan, People's Republic of China.,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Cheng Lv
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Wenjiang District, Chengdu, Sichuan, People's Republic of China.,Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People's Republic of China
| |
Collapse
|
38
|
Medicinal Plants for Treating Musculoskeletal Disorders among Karen in Thailand. PLANTS 2020; 9:plants9070811. [PMID: 32605228 PMCID: PMC7412036 DOI: 10.3390/plants9070811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
Millions of people suffer from Musculoskeletal System Disorders (MSDs), including Karen people who work hard in the fields for their subsistence and have done so for generations. This has forced the Karen to use many medicinal plants to treat MSDs. We gathered data from 15 original references covering 27 Karen communities and we document 461 reports of the use of 175 species for treating MSDs among the Karen people in Thailand. The data were analyzed by calculating use values (UV), relative frequency of citation (RFC) and informant consensus factor (ICF). Many use reports and species were from Leguminosae and Zingiberaceae. Roots and leaves were the most used parts, while the preferred preparation methods were decoction and burning. Oral ingestion was the most common form of administration. The most common ailment was muscle pain. Sambucus javanica and Plantago major were the most important species because they had the highest and second-highest values for both UV and RFC, respectively. This study revealed that the Karen people in Thailand use various medicinal plants to treat MSDs. These are the main resources for the further development of inexpensive treatments of MSDs that would benefit not only the Karen, but all people who suffer from MSD.
Collapse
|
39
|
Simultaneous Quantitative Determination of Polyphenolic Compounds in Blumea balsamifera (Ai-Na-Xiang, Sembung) by High-Performance Liquid Chromatography with Photodiode Array Detector. Int J Anal Chem 2020; 2020:9731327. [PMID: 32256597 PMCID: PMC7104272 DOI: 10.1155/2020/9731327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/04/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
A high-performance liquid chromatography method was developed for simultaneous quantification of 18 polyphenolic compounds from the leaves of Blumea balsamifera, including 17 flavonoids and 1 phenylethanone. The B. balsamifera extraction was separated by a Kromasil C18 column (250 × 4.6 mm, 5 μm) with a binary gradient mobile phase consisting of acetonitrile and 0.2% aqueous acetic acid. A photodiode array detector (PDA) was used to record the signals of investigated constituents. The linearity, sensitivity, stability, precision, and accuracy of the established assay methods were assessed to meet the requirements of quantitative determination. Samples extracted by reflux in 25 mL of 80% methanol for 30 minutes were selected for the extraction method. The 18 compounds were accurately identified by comparing with the reference compounds. The purity of each peak was confirmed by the base peak in the mass spectrum. The contents of 18 compounds in Blumea samples from four different regions were successfully determined. The results also showed that 3,3′,5,7-tetrahydroxy-4′-methoxyflavanone was the most abundant constituent, which could be used as a potential chemical marker for quality control of B. balsamifera and Chinese patent medications containing B. balsamifera herb.
Collapse
|
40
|
Leu YL, Wang TH, Wu CC, Huang KY, Jiang YW, Hsu YC, Chen CY. Hydroxygenkwanin Suppresses Non-Small Cell Lung Cancer Progression by Enhancing EGFR Degradation. Molecules 2020; 25:molecules25040941. [PMID: 32093124 PMCID: PMC7070862 DOI: 10.3390/molecules25040941] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is frequently overexpressed and mutated in non-small cell lung cancer (NSCLC), which is the major type of lung cancer. The EGFR tyrosine kinase inhibitors (TKIs) are the approved treatment for patients harboring activating mutations in the EGFR kinase. However, most of the patients treated with EGFR-TKIs developed resistance. Therefore, the development of compounds exhibiting unique antitumor activities might help to improve the management of NSCLC patients. The total flavonoids from Daphne genkwa Sieb. et Zucc. have been shown to contain antitumor activity. Here, we have isolated a novel flavonoid hydroxygenkwanin (HGK) that displays selective cytotoxic effects on all of the NSCLC cells tested. In this study, we employed NSCLC cells harboring EGFR mutations and xenograft mouse model to examine the antitumor activity of HGK on TKI-resistant NSCLC cells. The results showed that HGK suppressed cancer cell viability both in vitro and in vivo. Whole-transcriptome analysis suggests that EGFR is a potential upstream regulator that is involved in the gene expression changes affected by HGK. In support of this analysis, we presented evidence that HGK reduced the level of EGFR and inhibited several EGFR-downstream signalings. These results suggest that the antitumor activity of HGK against TKI-resistant NSCLC cells acts by enhancing the degradation of EGFR.
Collapse
Affiliation(s)
- Yann-Lii Leu
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 333, Taiwan;
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Tong-Hong Wang
- Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; (T.-H.W.); (Y.-W.J.)
- Tissue Bank, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Otolaryngology-Head&Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Kuo-Yen Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan;
| | - Yu-Wen Jiang
- Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; (T.-H.W.); (Y.-W.J.)
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320, Taiwan
- Correspondence: (Y.-C.H.); (C.-Y.C.); Tel.: +886-3-4227151 (Y.-C.H.); +886-3-2118999 (C.-Y.C.); Fax: +886-3-4226062 (Y.-C.H.); +886-3-2118866 (C.-Y.C.)
| | - Chi-Yuan Chen
- Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; (T.-H.W.); (Y.-W.J.)
- Tissue Bank, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Correspondence: (Y.-C.H.); (C.-Y.C.); Tel.: +886-3-4227151 (Y.-C.H.); +886-3-2118999 (C.-Y.C.); Fax: +886-3-4226062 (Y.-C.H.); +886-3-2118866 (C.-Y.C.)
| |
Collapse
|
41
|
Zhang YB, Yuan Y, Pang YX, Yu FL, Yuan C, Wang D, Hu X. Phylogenetic Reconstruction and Divergence Time Estimation of Blumea DC. (Asteraceae: Inuleae) in China Based on nrDNA ITS and cpDNA trnL-F Sequences. PLANTS (BASEL, SWITZERLAND) 2019; 8:E210. [PMID: 31288447 PMCID: PMC6681236 DOI: 10.3390/plants8070210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 11/17/2022]
Abstract
The genus Blumea is one of the most economically important genera of Inuleae (Asteraceae) in China. It is particularly diverse in South China, where 30 species are found, more than half of which are used as herbal medicines or in the chemical industry. However, little is known regarding the phylogenetic relationships and molecular evolution of this genus in China. We used nuclear ribosomal DNA (nrDNA) internal transcribed spacer (ITS) and chloroplast DNA (cpDNA) trnL-F sequences to reconstruct the phylogenetic relationship and estimate the divergence time of Blumea in China. The results indicated that the genus Blumea is monophyletic and it could be divided into two clades that differ with respect to the habitat, morphology, chromosome type, and chemical composition of their members. The divergence time of Blumea was estimated based on the two root times of Asteraceae. The results indicated that the root age of Asteraceae of 76-66 Ma may maintain relatively accurate divergence time estimation for Blumea, and Blumea might had diverged around 49.00-18.43 Ma. This common ancestor had an explosive expansion during the Oligocene and Miocene and two major clades were differentiated during these epochs 29.60 Ma (17.76-45.23 Ma 95% HPD (Highest Posterior Density). Evidence from paleogeography and paleoclimate studies has confirmed that Blumea experienced differentiation and an explosive expansion during the Oligocene and Miocene.
Collapse
Affiliation(s)
- Ying-Bo Zhang
- Tropical Crops Genetic Resources Institute/Hainan Provincial Engineering Research Center for Blumea Balsamifera, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Yuan Yuan
- School of Traditional Chinese Medicine Resources, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yu-Xin Pang
- School of Traditional Chinese Medicine Resources, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Fu-Lai Yu
- Tropical Crops Genetic Resources Institute/Hainan Provincial Engineering Research Center for Blumea Balsamifera, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Chao Yuan
- Tropical Crops Genetic Resources Institute/Hainan Provincial Engineering Research Center for Blumea Balsamifera, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Dan Wang
- Tropical Crops Genetic Resources Institute/Hainan Provincial Engineering Research Center for Blumea Balsamifera, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Xuan Hu
- Tropical Crops Genetic Resources Institute/Hainan Provincial Engineering Research Center for Blumea Balsamifera, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| |
Collapse
|
42
|
Gutiérrez YI, Scull R, Villa A, Satyal P, Cos P, Monzote L, Setzer WN. Chemical Composition, Antimicrobial and Antiparasitic Screening of the Essential Oil from Phania matricarioides (Spreng.) Griseb. Molecules 2019; 24:molecules24081615. [PMID: 31022871 PMCID: PMC6515228 DOI: 10.3390/molecules24081615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 12/27/2022] Open
Abstract
Essential oils (EOs) have gained increasing attention due to their pharmacological effectiveness, and they also constitute some of the most popular natural products. In this study, we present the chemical characterization of the EO from Phania matricarioides and the in vitro activity/selectivity against a wide panel of bacteria, fungi and parasitic protozoa. Forty-five compounds were identified in the studied EO, of which lavandulyl acetate (40.1%) and thymyl isobutyrate (13.9%) were the major components. The EO did not inhibit bacterial or fungal growth at the maximum concentration tested (64 µg/mL), although it displayed activity on all evaluated protozoa (IC50 values ranging from 2.2 to 56.6 µg/mL). In parallel, the EO demonstrated a noteworthy cytotoxic activity against peritoneal macrophages (CC50 values of 28.0 µg/mL). The most sensitive microorganism was Trypanosoma cruzi, which had a superior activity (IC50 = 2.2 µg/mL) and selectivity (SI = 13) in respect to other parasitic protozoa and the reference drug (p < 0.05). Further in vivo studies are needed to evaluate the potential use of this EO and the main compounds as antitrypanosomal agents. To our knowledge, this is the first report of chemical characterization and antimicrobial assessment of the EO from P. matricarioides.
Collapse
Affiliation(s)
- Yamilet I Gutiérrez
- Department of Pharmacy, Institute of Pharmacy and Food, Havana University, Coronela, Lisa, Havana 13600, Cuba.
| | - Ramón Scull
- Department of Pharmacy, Institute of Pharmacy and Food, Havana University, Coronela, Lisa, Havana 13600, Cuba.
| | - Anabel Villa
- Genetic toxicology and antitumor laboratory, Drug Research and Development Center (CIDEM), Havana 10600, Cuba.
| | - Prabodh Satyal
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA.
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium.
- Research Network Natural Products against Neglected Diseases (ResNet NPND).
| | - Lianet Monzote
- Research Network Natural Products against Neglected Diseases (ResNet NPND).
- Parasitology Department, Center of Research, Diagnostic and Reference, Institute of Tropical Medicine "Pedro Kouri", Havana 10400, Cuba.
| | - William N Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA.
- Research Network Natural Products against Neglected Diseases (ResNet NPND).
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
43
|
Lee C, Kim SY, Eum S, Paik JH, Bach TT, Darshetkar AM, Choudhary RK, Hai DV, Quang BH, Thanh NT, Choi S. Ethnobotanical study on medicinal plants used by local Van Kieu ethnic people of Bac Huong Hoa nature reserve, Vietnam. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:283-294. [PMID: 30412749 DOI: 10.1016/j.jep.2018.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The ethnobotanical survey was carried out in the Bac Huong Hoa Nature Reserve (BHHNR), Vietnam. The Van Kieu ethnic group, the inhabitant of Nature Reserve, is rich in knowledge about the medicinal plants found in the Nature Reserve. However, their knowledge is less documented. AIM OF THE STUDY The present study was conducted to document the use of medicinal plants, plant parts used, mode of preparation and delivery by the ethnic group of Van Kieu. The study also aimed at comparing the information generated by this study with the previously published Dictionary of Vietnam Medicinal plants (DVM). MATERIALS AND METHODS The information was collected through semi-structured and unstructured interviews. The interviews were conducted from April 2016 to March 2017. The number of informants involved in the survey was 93 belonging to age group of 20-81. Species Use-Reports (UR) were analyzed to determine the plant importance in the local and the Informant Consensus Factor (FIC). Local plant uses were listed and compared with the previously published data from Vietnam. RESULTS Comprehensively 355 Use-Reports were documented in this study. A total of 111 medicinal plant species belonging to 102 genera and 46 families were reported. Out of 46 families, Euphorbiaceae (10 species), Compositae and Leguminosae (9 species each), Apocynaceae (7 species), Rutaceae and Rubiaceae (5 species each) were the dominant families. Leaves were the most frequently used plant part (43.1%) in the preparation of medicines. The most frequent preparation method was decoction (49%) while the oral route of administration (51%) was the most commonly mentioned mode of administration. Artocarpus heterophyllus Lam., Chromolaena odorata (L.) R.M.King & H.Rob., Blumea balsamifera (L.) DC., Psidium guajava L. and Catunaregam spinosa (Thunb.) Tirveng. were shown to be the most useful plants as indicated by their relatively high UR. Eight medicinal plants (7.21%) used by Van Kieu ethnic people have not been previously reported in DVM. CONCLUSION The Van Kieu ethnic group holds valuable knowledge about uses of medicinal plant resources which is inherited through generations however this knowledge was not documented. The study highlights the need for documenting and publicizing the traditional medicinal knowledge which will provide basic data for further research and conservation.
Collapse
Affiliation(s)
- Changyoung Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, 125, Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Botany, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, 125, Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sangmi Eum
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, 125, Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, 125, Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Tran The Bach
- Institute of Ecology and Biological Resources (IEBR), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cay Giay, Hanoi, Vietnam
| | | | | | - Do Van Hai
- Institute of Ecology and Biological Resources (IEBR), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cay Giay, Hanoi, Vietnam
| | - Bui Hong Quang
- Institute of Ecology and Biological Resources (IEBR), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cay Giay, Hanoi, Vietnam
| | - Nguyen Trung Thanh
- Department of Botany, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam.
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, 125, Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
44
|
Gutiérrez YI, Scull R, Monzote L, Rodríguez KM, Bello A, Setzer WN. Comparative Pharmacognosy, Chemical Profile and Antioxidant Activity of Extracts from Phania matricarioides (Spreng.) Griseb. Collected from Different Localities in Cuba. PLANTS 2018; 7:plants7040110. [PMID: 30558108 PMCID: PMC6313911 DOI: 10.3390/plants7040110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/20/2018] [Accepted: 12/05/2018] [Indexed: 12/23/2022]
Abstract
Phania matricarioides (Spreng.) Griseb. is a traditionally used plant with various pharmacological properties. However, there are only scarce reports about the phytochemistry and biological activity of this plant. In this work, P. matricarioides was collected from three different localities of Cuba: PmB (collected in Bauta, Artemisa), PmC (collected in Cangrejeras, Artemisa), and PmI (collected in La Lisa, Havana), extracted with aqueous ethanol, and analyzed macroscopically and microscopically. The extracts were screened for phytochemical contents, analyzed by TLC and HPLC, and screened for antioxidant activity using the FRAP and DPPH assays. Macroscopic analysis showed similar results for all samples; however, microscopic, physicochemical and phytochemical studies showed appreciable differences. In particular, the total solid of PmC extract was higher (1.94 ± 0.03%) than the other samples. In HPLC profiles, quercetin was identified in the three samples and a greater similarity between samples PmB and PmI was observed. All samples demonstrated radical-scavenging antioxidant activity by the DPPH assay, which PmC also demonstrated the smaller (p < 0.05) value (IC50 = 27.4 ± 0.1 µg/mL), but was statistically superior (p < 0.05) to vitamin C (IC50 = 23.7 ± 0 µg/mL). Also, in the FRAP assay, a higher vitamin C equivalent of PmC was significantly superior (p < 0.05) to the other extracts at the evaluated concentrations, which is likely due to a higher concentration of quercetin. In conclusion, P. matricarioides could constitute a potential resource in the field of phytotherapeutic products, and the results obtained can contribute to the development of the quality control norms for this species.
Collapse
Affiliation(s)
- Yamilet I Gutiérrez
- Department of Chemistry, Institute of Pharmacy and Food, Havana University, Coronela, Lisa, Havana 13600, Cuba.
| | - Ramón Scull
- Department of Chemistry, Institute of Pharmacy and Food, Havana University, Coronela, Lisa, Havana 13600, Cuba.
| | - Lianet Monzote
- Parasitology Department, Institute of Tropical Medicine "Pedro Kouri", Havana 10400, Cuba.
| | | | - Adonis Bello
- Facultad de Ciencias Químicas, Universidad de Guayaquil, P.O. Box 0901-5738, Guayaquil 090514, Ecuador.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
45
|
Carvalho AR, Diniz RM, Suarez MAM, Figueiredo CSSES, Zagmignan A, Grisotto MAG, Fernandes ES, da Silva LCN. Use of Some Asteraceae Plants for the Treatment of Wounds: From Ethnopharmacological Studies to Scientific Evidences. Front Pharmacol 2018; 9:784. [PMID: 30186158 PMCID: PMC6110936 DOI: 10.3389/fphar.2018.00784] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
Severe wounds result in large lesions and/or loss of function of the affected areas. The treatment of wounds has challenged health professionals due to its complexity, especially in patients with chronic diseases (such as diabetes), and the presence of pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa. Taking this into consideration, the development of new therapies for wound healing requires immediate attention. Ethnopharmacological studies performed in different countries have shown the use of several plants from the Asteraceae family as wound-healing agents. Evidences gained from the traditional medicine have opened new ways for the development of novel and more efficient therapies based on the pharmacological properties of these plants. In this article, we discuss the literature data on the use of Asteraceae plants for the treatment of wounds, based on the ethnopharmacological relevance of each plant. Special attention was given to studies showing the mechanisms of action of Asteraceae-derived compounds and clinical trials. Ageratina pichinchensis (Kunth) R.M. King and H. Rob. and Calendula officinalis L. preparations/compounds were found to show good efficacy when assessed in clinical trials of complicated wounds, including venous leg ulcers and foot ulcers of diabetic patients. The compounds silibinin [from Silybum marianum (L.) Gaertn.] and jaceosidin (from Artemisia princeps Pamp.) were identified as promising compounds for the treatment of wounds. Overall, we suggest that Asteraceae plants represent important sources of compounds that may act as new and efficient healing products.
Collapse
Affiliation(s)
| | - Roseana M Diniz
- Programa de Pós-Graduação, Universidade Ceuma, São Luís, Brazil
| | | | | | | | | | | | | |
Collapse
|
46
|
Phumthum M, Srithi K, Inta A, Junsongduang A, Tangjitman K, Pongamornkul W, Trisonthi C, Balslev H. Ethnomedicinal plant diversity in Thailand. JOURNAL OF ETHNOPHARMACOLOGY 2018; 214:90-98. [PMID: 29241674 DOI: 10.1016/j.jep.2017.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants have provided medicine to humans for thousands of years, and in most parts of the world people still use traditional plant-derived medicine. Knowledge related to traditional use provides an important alternative to unavailable or expensive western medicine in many rural communities. At the same time, ethnomedicinal discoveries are valuable for the development of modern medicine. Unfortunately, globalization and urbanization causes the disappearance of much traditional medicinal plant knowledge. AIM OF THE STUDY To review available ethnobotanical knowledge about medicinal plants in Thailand and to estimate its diversity. METHODS Information about ethnomedicinal uses of plants in Thailand was extracted from 64 scientific reports, books, and theses produced between 1990 and 2014. Plant identifications in the primary sources were updated to currently accepted names following The Plant List website and the species were assigned to family following the Angiosperm Phylogeny Website. Use Values (UV) were calculated to estimate the importance of medicinal plant species (UVs) and families (UVf). Medicinal use categories, plant parts used, preparations of the medicine, and their applications were noted for each use report. RESULTS We found 16,789 use reports for 2187 plant species in 206 families. These data came from 19 ethnic groups living in 121 villages throughout Thailand. The health conditions most commonly treated with medicinal plants were in the categories digestive system disorders, infections/infestations, nutritional disorders, muscular-skeletal system disorders, and genitourinary system disorders. Plant families with very high use values were Fabaceae, Asteraceae, Acanthaceae, Lamiaceae, and Zingiberaceae and species with very high use values were Chromolaena odorata (L.) R.M.King & H.Rob., Blumea balsamifera (L.) DC., and Cheilocostus speciosus (J.Koenig) C.D.Specht. Stems and leaves were the most used plant parts, but also other parts of the plants were used in medicinal recipes. The most common way of using the medicinal plants was as a decoction in water. CONCLUSION We found 2187 plant species that were used in traditional medicine in Thailand. Of these a few hundred had high use values, suggesting that they may produce bioactive compounds with strong physiological effects.
Collapse
Affiliation(s)
- Methee Phumthum
- Department of Bioscience, Aarhus University, Building 1540, Ny Munkegade 116, DK-8000 Aarhus C, Denmark
| | - Kamonnate Srithi
- Program in Plant Protection, Faculty of Agricultural Production, Maejo University, Sansai, Chiang Mai 50290, Thailand; Department of Biology, Faculty of Science, Chiang Mai University, Thailand
| | - Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
| | - Auemporn Junsongduang
- Science and Technology Department, Liberal Art and Science Faculty, Roi Et Rajabhat University, Thailand
| | - Kornkanok Tangjitman
- Faculty of Science and Technology, Muban Chom Bueng Rajabhat University, Chom Bueng, Ratchaburi 70150, Thailand
| | | | - Chusie Trisonthi
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
| | - Henrik Balslev
- Department of Bioscience, Aarhus University, Building 1540, Ny Munkegade 116, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
47
|
Sun X, Yao C, Xiong D, Zhang B, Sun J, Liao S, Wang A, Lan Y, Li Y. Simultaneous Quantification of Seven Caffeoylquinic Acids in Ecotypes of Blumea balsamifera at Various Life Stages by High-Performance Liquid Chromatography. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1387137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Xu Sun
- Engineering Research Center for the Development and Applications of Ethnic Medicines and Traditional Chinese Medicine (TCM)/National Engineering Research Center of Miao’s Medicines, Guizhou Medical University, Guiyang, Guizhou, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Chengfen Yao
- Engineering Research Center for the Development and Applications of Ethnic Medicines and Traditional Chinese Medicine (TCM)/National Engineering Research Center of Miao’s Medicines, Guizhou Medical University, Guiyang, Guizhou, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P. R. China
- Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Dandan Xiong
- Engineering Research Center for the Development and Applications of Ethnic Medicines and Traditional Chinese Medicine (TCM)/National Engineering Research Center of Miao’s Medicines, Guizhou Medical University, Guiyang, Guizhou, P. R. China
- Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Bao Zhang
- Engineering Research Center for the Development and Applications of Ethnic Medicines and Traditional Chinese Medicine (TCM)/National Engineering Research Center of Miao’s Medicines, Guizhou Medical University, Guiyang, Guizhou, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P. R. China
- Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Jia Sun
- Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Shanggao Liao
- Engineering Research Center for the Development and Applications of Ethnic Medicines and Traditional Chinese Medicine (TCM)/National Engineering Research Center of Miao’s Medicines, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Aimin Wang
- Engineering Research Center for the Development and Applications of Ethnic Medicines and Traditional Chinese Medicine (TCM)/National Engineering Research Center of Miao’s Medicines, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Yanyu Lan
- Engineering Research Center for the Development and Applications of Ethnic Medicines and Traditional Chinese Medicine (TCM)/National Engineering Research Center of Miao’s Medicines, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Yongjun Li
- Engineering Research Center for the Development and Applications of Ethnic Medicines and Traditional Chinese Medicine (TCM)/National Engineering Research Center of Miao’s Medicines, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| |
Collapse
|
48
|
Effects and Mechanisms of Total Flavonoids from Blumea balsamifera (L.) DC. on Skin Wound in Rats. Int J Mol Sci 2017; 18:ijms18122766. [PMID: 29257119 PMCID: PMC5751365 DOI: 10.3390/ijms18122766] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 12/17/2022] Open
Abstract
Chinese herbal medicine (CHM) evolved through thousands of years of practice and was popular not only among the Chinese population, but also most countries in the world. Blumea balsamifera (L.) DC. as a traditional treatment for wound healing in Li Nationality Medicine has a long history of nearly 2000 years. This study was to evaluate the effects of total flavonoids from Blumea balsamifera (L.) DC. on skin excisional wound on the back of Sprague-Dawley rats, reveal its chemical constitution, and postulate its action mechanism. The rats were divided into five groups and the model groups were treated with 30% glycerol, the positive control groups with Jing Wan Hong (JWH) ointment, and three treatment groups with high dose (2.52 g·kg−1), medium dose (1.26 g·kg−1), and low dose (0.63 g·kg−1) of total flavonoids from B. balsamifera. During 10 consecutive days of treatment, the therapeutic effects of rates were evaluated. On day 1, day 3, day 5, day 7, and day 10 after treatment, skin samples were taken from all the rats for further study. Significant increases of granulation tissue, fibroblast, and capillary vessel proliferation were observed at day 7 in the high dose and positive control groups, compared with the model group, with the method of 4% paraformaldehyde for histopathological examination and immunofluorescence staining. To reveal the action mechanisms of total flavonoids on wound healing, the levels of CD68, vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1), and hydroxyproline were measured at different days. Results showed that total flavonoids had significant effects on rat skin excisional wound healing compared with controls, especially high dose ones (p < 0.05). Furthermore, the total flavonoid extract was investigated phytochemically, and twenty-seven compounds were identified from the total flavonoid sample by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry/diode array detector (UPLC-Q-TOF-MS/DAD), including 16 flavonoid aglucons, five flavonoid glycosides (main peaks in chromatogram), five chlorogenic acid analogs, and 1 coumarin. Reports show that flavonoid glycoside possesses therapeutic effects of curing wounds by inducing neovascularization, and chlorogenic acid also has anti-inflammatory and wound healing activities; we postulated that all the ingredients in total flavonoids sample maybe exert a synergetic effect on wound curing. Accompanied with detection of four growth factors, the upregulation of these key growth factors may be the mechanism of therapeutic activities of total flavonoids. The present study confirmed undoubtedly that flavonoids were the main active constituents that contribute to excisional wound healing, and suggested its action mechanism of improving expression levels of growth factors at different healing phases.
Collapse
|
49
|
NIR Rapid Assessments of Blumea balsamifera (Ai-na-xiang) in China. Molecules 2017; 22:molecules22101730. [PMID: 29035305 PMCID: PMC6151818 DOI: 10.3390/molecules22101730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 11/20/2022] Open
Abstract
Blumea balsamifera (Ai-na-xiang) is used as an important plant source of natural borneol, which is widely used in the pharmaceutical industry. The aim of this study was to establish the methods based on near infrared (NIR) spectroscopy for determining the geographical origin of B. balsamifera, as well as developing a method for the quantitative rapid analysis of the active pharmaceutical ingredients (APIs). A total of 109 samples were collected from China in 2013 and arbitrarily divided into calibration and prediction sets using the Kennard–Stone algorithm. The l-borneol and total flavone contents of the samples were measured by gas chromatography and ultraviolet-visible spectroscopy, respectively. The NIR spectra were acquired using an integrating sphere and a partial least squares (PLS) model was built using the optimum wavelength regions, which were selected using a synergy interval partial least-squares (SiPLS) algorithm. The root mean square errors of prediction of the l-borneol and total flavone models were 0.0779 and 2.2694 mg/g, with R2 of 0.9069 and 0.8013, respectively. A discriminant model to determine the geographical origin of B. balsamifera (Guizhou and Hainan) was also established using a partial least squares discriminant analysis method with an optimum pretreatment method. The prediction accuracy rate of the model was 100%. NIR spectroscopy can be used as a reliable and environmentally friendly method to determine the API and the origin of different B. balsamifera samples.
Collapse
|
50
|
Chassagne F, Hul S, Deharo E, Bourdy G. Natural remedies used by Bunong people in Mondulkiri province (Northeast Cambodia) with special reference to the treatment of 11 most common ailments. JOURNAL OF ETHNOPHARMACOLOGY 2016; 191:41-70. [PMID: 27282662 DOI: 10.1016/j.jep.2016.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In this paper we present a comprehensive ethnomedicinal study conducted in Mondulkiri province. Traditional knowledge about natural medicine (plants, animals, mushrooms) was investigated in Cambodia's largest indigenous community: the Bunong people. The survey aims to document the medicinal plant use of this ethnic, by focusing on the eleven most frequent diseases encountered in the area, in order to highlight species that could be recommended in public health programs. MATERIALS AND METHODS During the years 2013 and 2014, 202 villagers were interviewed in 28 villages from the five districts in Mondulkiri. Two types of methodology were employed: (1) an ethnobotanical field survey (walk-in-the-wood interviews) and (2) semi-structured household interviews with a special emphasis on the treatment of 11 most common ailments encountered in the area. Medicinal plants and mushrooms were collected and identified together with medicinal animals. The factor informant consensus (FIC) and fidelity level (FL) were calculated. RESULTS Bunong people use a total of 214 plants belonging to 72 families, 1 mushroom and 22 animal species in their traditional healthcare practices in order to treat 51 different ailments. Among the medicinal plants, Fabaceae was the most predominant family; Chromolaena odorata (L.) R.M. King and H.Rob. (Asteraceae), Zingiber montanum (J.Koenig) Link ex A.Dietr. (Zingiberaceae) and Kalanchoe pinnata (Lam.) Pers. (Crassulaceae) were the most cited medicinal plants; and four ailments (cold/fever, diarrhea, postpartum disorders and stomachache) were described as major ailments in the community. The root was the most important part of plants used, and decoction was the most cited method of preparation. During our survey, we also discovered a "new to science" plant species called Ardisia mondulkiriensis Hul and Chassagne, and we recorded for the second time the plant species recently described, Solanum sakhanii Hul. CONCLUSION Most of the species reported for the treatment of the 11 most frequent ailments have already been proven to be efficient and safe. Furthermore, 10 plant species are reported for the first time as medicinal and some of them are widely used in the community. Further pharmacological and phytochemical investigations should be undergone to assess the pharmaceutical potential of these species. While undergoing considerable changes, Bunong people have maintained extensive traditional medicine knowledge. As this indigenous hill tribe depend mainly on natural remedies for their daily healthcare, environmental preservation is of high importance for the community.
Collapse
Affiliation(s)
- François Chassagne
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France; Nomad RSI Organization, Doh Kromom Village, Sokhadom Commune, Senmonorom District, Mondulkiri Province, Cambodia.
| | - Sovanmoly Hul
- Muséum National d'Histoire Naturelle (MNHN), Département de Systématique et Évolution, UMR 7205 (ISYEB), Herbier National (P), CP 39, 57 Rue Cuvier, 75231 Paris Cedex 5, France
| | - Eric Deharo
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France
| | | |
Collapse
|