1
|
Sillapawattana P, Gruhlke MCH, Seiler TB, Klungsupya P, Charerntantanakul W. Oxidative stress related effect of xenobiotics on eukaryotic model organism, Saccharomyces cerevisiae. Free Radic Biol Med 2024; 212:149-161. [PMID: 38151215 DOI: 10.1016/j.freeradbiomed.2023.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Ecotoxicological assays have traditionally focused on the effects of chemicals at the individual level by exploiting mortality and reproduction as endpoints. Although these two parameters are ecologically relevant, they rarely provide information regarding the elemental toxic mechanisms. Obviously, the number of xenobiotics used has been rapidly increased. Thus, any established measurement that shortens the actual outcome and, simultaneously provides information about toxic mechanisms is desirable. This research focused on the study of oxidative stress response as a biomarker in the eukaryotic model organism, Saccharomyces cerevisiae. For this, yeast cells were exposed to a set of selected environmentally relevant chemicals via different approaches, including cellular diagnostics, gene expression analysis and chemo-genetic screening. The results demonstrated that at the cellular level, model organisms reacted to different chemicals in distinct manner. For each xenobiotic, the correlation between toxic response of molecular and cellular levels are presented. Namely, the expression of target genes after chemical exposure affected the cellular alteration as evidenced by an elevated level of superoxide dismutase and a reduced amount of glutathione. Furthermore, the results derived from chemo-genetic screening, in which mutants lacking of gene of interest were employed, exhibited more susceptibility to test chemicals in comparison to the wildtype. The response of oxidative stress upon chemical exposure in budding yeast from this study is potentially useful for an establishment of a proper bio-test system which can eventually be linked to adverse effects at an individual level in higher eukaryotes.
Collapse
Affiliation(s)
- Panwad Sillapawattana
- Program in Environmental Technology, Faculty of Science, Maejo University, Chiang Mai, Thailand.
| | | | | | - Prapaipat Klungsupya
- Thailand Institute for Scientific and Technological Research (TISTR), Pathum Thani, Thailand
| | | |
Collapse
|
2
|
Acute Exposure to Bisphenol A Causes Oxidative Stress Induction with Mitochondrial Origin in Saccharomyces cerevisiae Cells. J Fungi (Basel) 2021; 7:jof7070543. [PMID: 34356922 PMCID: PMC8303452 DOI: 10.3390/jof7070543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Bisphenol A (BPA) is a major component of the most commonly used plastic products, such as disposable plastics, Tetra Paks, cans, sport protective equipment, or medical devices. Due to the accumulation of excessive amounts of plastic waste and the subsequent release of BPA into the environment, BPA is classified as a pollutant that is undesirable in the environment. To date, the most interesting finding is the ability of BPA to act as an endocrine disrupting compound due to its binding to estrogen receptors (ERs), and adverse physiological effects on living organisms may result from this action. Since evidence of the potential pro-oxidizing effects of BPA has accumulated over the last years, herein, we focus on the detection of oxidative stress and its origin following BPA exposure using pulsed-field gel electrophoresis, flow cytometry, fluorescent microscopy, and Western blot analysis. Saccharomyces cerevisiae cells served as a model system, as these cells lack ERs allowing us to dissect the ER-dependent and -independent effects of BPA. Our data show that high concentrations of BPA affect cell survival and cause increased intracellular oxidation in yeast, which is primarily generated in the mitochondrion. However, an acute BPA exposure does not lead to significant oxidative damage to DNA or proteins.
Collapse
|
3
|
Marć MA, Kincses A, Rácz B, Nasim MJ, Sarfraz M, Lázaro-Milla C, Domínguez-Álvarez E, Jacob C, Spengler G, Almendros P. Antimicrobial, Anticancer and Multidrug-Resistant Reversing Activity of Novel Oxygen-, Sulfur- and Selenoflavones and Bioisosteric Analogues. Pharmaceuticals (Basel) 2020; 13:ph13120453. [PMID: 33322409 PMCID: PMC7763008 DOI: 10.3390/ph13120453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 01/16/2023] Open
Abstract
Multidrug resistance of cancer cells to cytotoxic drugs still remains a major obstacle to the success of chemotherapy in cancer treatment. The development of new drug candidates which may serve as P-glycoprotein (P-gp) efflux pump inhibitors is a promising strategy. Selenium analogues of natural products, such as flavonoids, offer an interesting motif from the perspective of drug design. Herein, we report the biological evaluation of novel hybrid compounds, bearing both the flavone core (compounds 1–3) or a bioisosteric analogue core (compounds 4–6) and the triflyl functional group against Gram-positive and Gram-negative bacteria, yeasts, nematodes, and human colonic adenocarcinoma cells. Results show that these flavones and analogues of flavones inhibited the activity of multidrug resistance (MDR) efflux pump ABCB1 (P-glycoprotein, P-gp). Moreover, the results of the rhodamine 123 accumulation assay demonstrated a dose-dependent inhibition of the abovementioned efflux pump. Three compounds (4, 5, and 6) exhibited potent inhibitory activity, much stronger than the positive control, verapamil. Thus, these chalcogen bioisosteric analogues of flavones become an interesting class of compounds which could be considered as P-gp efflux pump inhibitors in the therapy of MDR cancer. Moreover, all the compounds served as promising adjuvants in the cancer treatment, since they exhibited the P-gp efflux pump modulating activity.
Collapse
Affiliation(s)
- Małgorzata Anna Marć
- Department of Medical Microbiology and Immunobiology, University of Szeged, H-6720 Szeged, Hungary; (A.K.); (B.R.); (G.S.)
- Correspondence: ; Tel.: +36-62-545-115
| | - Annamária Kincses
- Department of Medical Microbiology and Immunobiology, University of Szeged, H-6720 Szeged, Hungary; (A.K.); (B.R.); (G.S.)
| | - Bálint Rácz
- Department of Medical Microbiology and Immunobiology, University of Szeged, H-6720 Szeged, Hungary; (A.K.); (B.R.); (G.S.)
| | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany; (M.J.N.); (M.S.); (C.J.)
| | - Muhammad Sarfraz
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany; (M.J.N.); (M.S.); (C.J.)
| | - Carlos Lázaro-Milla
- Grupo de Lactamas y Heterociclos Bioactivos, Unidad Asociada al CSIC, Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain;
| | - Enrique Domínguez-Álvarez
- Instituto de Química Orgánica General IQOG-CSIC, Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, 28006 Madrid, Spain; (E.D.-Á.); (P.A.)
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany; (M.J.N.); (M.S.); (C.J.)
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, University of Szeged, H-6720 Szeged, Hungary; (A.K.); (B.R.); (G.S.)
| | - Pedro Almendros
- Instituto de Química Orgánica General IQOG-CSIC, Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, 28006 Madrid, Spain; (E.D.-Á.); (P.A.)
| |
Collapse
|
4
|
Nallathambi R, Poulev A, Zuk JB, Raskin I. Proanthocyanidin-Rich Grape Seed Extract Reduces Inflammation and Oxidative Stress and Restores Tight Junction Barrier Function in Caco-2 Colon Cells. Nutrients 2020; 12:nu12061623. [PMID: 32492806 PMCID: PMC7352846 DOI: 10.3390/nu12061623] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Grape polyphenols have previously been shown to improve gut health and attenuate the symptoms of metabolic syndrome; however, the mechanism of these beneficial effects is still debated. In this study, we investigated the protective effect of proanthocyanidin-rich grape seed extract (GSE) on bacterial lipopolysaccharide (LPS)-induced oxidative stress, inflammation, and barrier integrity of human Caco-2 colon cells. GSE significantly reduced the LPS-induced intracellular reactive oxygen species (ROS) production and mitochondrial superoxide production, and upregulated the expression of antioxidant enzyme genes. GSE also restored the LPS-damaged mitochondrial function by increasing mitochondrial membrane potential. In addition, GSE increased the expression of tight junction proteins in the LPS-treated Caco-2 cells, increased the expression of anti-inflammatory cytokines, and decreased pro-inflammatory cytokine gene expression. Our findings suggest that GSE exerts its beneficial effects on metabolic syndrome by scavenging intestinal ROS, thus reducing oxidative stress, increasing epithelial barrier integrity, and decreasing intestinal inflammation.
Collapse
|
5
|
Galstyan AS, Ghochikyan TV, Samvelyan MA, Frangyan VR, Sarfraz M. Synthesis, Study of the Biological Activity of New 1,2,4‐Triazole Derivatives and Characteristics of the Relationship of the Structure and Biological Activity in a Series of the Latter. ChemistrySelect 2019. [DOI: 10.1002/slct.201902761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Armen S. Galstyan
- Faculty of ChemistryYerevan State University 1 A Manoukyan Str. Yerevan 0025 Armenia
| | - Tariel V. Ghochikyan
- Faculty of ChemistryYerevan State University 1 A Manoukyan Str. Yerevan 0025 Armenia
| | - Melanya A. Samvelyan
- Faculty of ChemistryYerevan State University 1 A Manoukyan Str. Yerevan 0025 Armenia
| | - Vardges R. Frangyan
- Faculty of ChemistryYerevan State University 1 A Manoukyan Str. Yerevan 0025 Armenia
| | - Muhammad Sarfraz
- Division of Bioorganic ChemistrySchool of PharmacySaarland University Campus B2 1 Saarbruecken D-66123 Germany
| |
Collapse
|
6
|
Nasim MJ, Witek K, Kincses A, Abdin AY, Żesławska E, Marć MA, Gajdács M, Spengler G, Nitek W, Latacz G, Karczewska E, Kieć-Kononowicz K, Handzlik J, Jacob C. Pronounced activity of aromatic selenocyanates against multidrug resistant ESKAPE bacteria. NEW J CHEM 2019. [DOI: 10.1039/c9nj00563c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Selenocyanates demonstrate pronounced activity against bacteria of the ESKAPE family, yeast and nematodes with limited cytotoxicity against human cells.
Collapse
|
7
|
Bartolini D, Torquato P, Piroddi M, Galli F. Targeting glutathione S-transferase P and its interactome with selenium compounds in cancer therapy. Biochim Biophys Acta Gen Subj 2019; 1863:130-143. [DOI: 10.1016/j.bbagen.2018.09.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/14/2022]
|
8
|
Kharma A, Misak A, Grman M, Brezova V, Kurakova L, Baráth P, Jacob C, Chovanec M, Ondrias K, Domínguez-Álvarez E. Release of reactive selenium species from phthalic selenoanhydride in the presence of hydrogen sulfide and glutathione with implications for cancer research. NEW J CHEM 2019. [DOI: 10.1039/c9nj02245g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The last decade has witnessed a renewed interest in selenium (Se) as an element able to prevent a range of illnesses in humans, mainly through supplementation.
Collapse
|
9
|
Kumar A, Yadav MK, Singh J, Singh JD, Butcher RJ. Facile synthesis of mixed O, S or Se bearing hexasubstituted benzenes and their potential as Cu( ii) ion probe. Dalton Trans 2019; 48:5627-5636. [DOI: 10.1039/c9dt00465c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The synthesis of mixed hexasubstituted benzenes bearing alternate heteroatoms (O, S and Se) is described. The potential of these species as “turn-off” chemical sensors for Cu2+, which is a biologically and environmentally crucial metal ion, is also successfully demonstrated.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Chemistry
- Indian Institute of Technology Delhi (IITD)
- New Delhi-110016
- India
| | - Mantesh K. Yadav
- Department of Chemistry
- Indian Institute of Technology Delhi (IITD)
- New Delhi-110016
- India
| | - Jagriti Singh
- Department of Chemistry
- Indian Institute of Technology Delhi (IITD)
- New Delhi-110016
- India
| | - Jai Deo Singh
- Department of Chemistry
- Indian Institute of Technology Delhi (IITD)
- New Delhi-110016
- India
| | | |
Collapse
|
10
|
Alhasan R, Kharma A, Nasim MJ, Abdin AY, Bonetti J, Giummelly P, Ejike CECC, Leroy P, Gaucher C, Jacob C. Flush with a flash: natural three-component antimicrobial combinations based on S-nitrosothiols, controlled superoxide formation and "domino" reactions leading to peroxynitrite. MEDCHEMCOMM 2018; 9:1994-1999. [PMID: 30647877 PMCID: PMC6301271 DOI: 10.1039/c8md00414e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/21/2018] [Indexed: 11/21/2022]
Abstract
S-Nitrosothiols are ˙NO releasing agents renowned for vasodilatory and antioxidant properties. O2˙- promotes their decomposition, forming highly aggressive peroxynitrite ions (ONOO-). Since the production of O2˙- can be controlled by enzymes or by visible light, such otherwise harmless components can be turned into effective antimicrobial and nematicidal combinations with numerous potential applications in medicine.
Collapse
Affiliation(s)
- Rama Alhasan
- Division of Bioorganic Chemistry , School of Pharmacy , Saarland University , D-66123 Saarbruecken , Germany .
| | - Ammar Kharma
- Division of Bioorganic Chemistry , School of Pharmacy , Saarland University , D-66123 Saarbruecken , Germany .
| | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry , School of Pharmacy , Saarland University , D-66123 Saarbruecken , Germany .
| | - Ahmad Yaman Abdin
- Division of Bioorganic Chemistry , School of Pharmacy , Saarland University , D-66123 Saarbruecken , Germany .
| | | | | | - Chukwunonso E C C Ejike
- Division of Bioorganic Chemistry , School of Pharmacy , Saarland University , D-66123 Saarbruecken , Germany .
- Department of Medical Biochemistry , Alex Ekwueme Federal University , Ndufu-Alike , Ebonyi State , Nigeria
| | - Pierre Leroy
- Université de Lorraine , CITHEFOR , F-54000 Nancy , France
| | | | - Claus Jacob
- Division of Bioorganic Chemistry , School of Pharmacy , Saarland University , D-66123 Saarbruecken , Germany .
| |
Collapse
|
11
|
Sands KN, Back TG. Key steps and intermediates in the catalytic mechanism for the reduction of peroxides by the antioxidant ebselen. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Song M, Kumaran MN, Gounder M, Gibbon DG, Nieves-Neira W, Vaidya A, Hellmann M, Kane MP, Buckley B, Shih W, Caffrey PB, Frenkel GD, Rodriguez-Rodriguez L. Phase I trial of selenium plus chemotherapy in gynecologic cancers. Gynecol Oncol 2018; 150:478-486. [PMID: 30068487 DOI: 10.1016/j.ygyno.2018.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/27/2018] [Accepted: 07/01/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Preclinical studies performed in our laboratory have shown that high-dose selenium inhibits the development of carboplatin drug resistance in an ovarian cancer mouse xenograft model. Based on these data, as well as the potential serious toxicities of supranutritional doses of selenium, a phase I trial of a combination of selenium/carboplatin/paclitaxel was designed to determine the maximum tolerated dose, safety, and effects of selenium on carboplatin pharmacokinetics in the treatment of chemo-naive women with gynecologic cancers. Correlative studies were performed to identify gene targets of selenium. METHODS Chemo-naïve patients with gynecologic malignancy received selenious acid IV on day 1 followed by carboplatin IV and paclitaxel IV on day 3. A standard 3 + 3 dose-escalating design was used for addition of selenium to standard dose chemotherapy. Concentrations of selenium in plasma and carboplatin in plasma ultrafiltrate were analyzed. RESULTS Forty-five patients were enrolled and 291 treatment cycles were administered. Selenium was administered as selenious acid to 9 cohorts of patients with selenium doses ranging from 50 μg to 5000 μg. Grade 3/4 toxicities included neutropenia (66.7%), febrile neutropenia (2.2%), pain (20.0%), infection (13.3%), neurologic (11.1%), and pulmonary adverse effects (11.1%). The maximum tolerated dose of selenium was not reached. Selenium had no effect on carboplatin pharmacokinetics. Correlative studies showed post-treatment downregulation of RAD51AP1, a protein involved in DNA repair, in both cancer cell lines and patient tumors. CONCLUSION Overall, the addition of selenium to carboplatin/paclitaxel chemotherapy is safe and well tolerated, and does not alter carboplatin pharmacokinetics. A 5000 μg dose of elemental selenium as selenious acid is suggested as the dose to be evaluated in a phase II trial.
Collapse
Affiliation(s)
- Mihae Song
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, United States
| | - Muthu N Kumaran
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, United States
| | - Murugesan Gounder
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, United States
| | - Darlene G Gibbon
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, United States
| | - Wilberto Nieves-Neira
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, United States
| | - Ami Vaidya
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, United States
| | - Mira Hellmann
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, United States
| | - Michael P Kane
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, United States
| | - Brian Buckley
- Rutgers Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Road, Piscataway, NJ 08854, United States
| | - Weichung Shih
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, United States
| | - Paula B Caffrey
- Department of Biological Sciences, Rutgers University, 195 University Avenue, Newark, NJ 07102, United States; Department of Biological and Environmental Sciences, 250 University Avenue, California University of PA, California, PA 15419, United States
| | - Gerald D Frenkel
- Department of Biological Sciences, Rutgers University, 195 University Avenue, Newark, NJ 07102, United States
| | - Lorna Rodriguez-Rodriguez
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, United States; Rutgers-Robert Wood Johnson Medical School, Department of Obstetrics, Gynecology and Reproductive Sciences, 125 Paterson Street, New Brunswick, NJ 08901, United States.
| |
Collapse
|
13
|
Ney Y, Jawad Nasim M, Kharma A, Youssef LA, Jacob C. Small Molecule Catalysts with Therapeutic Potential. Molecules 2018; 23:E765. [PMID: 29584669 PMCID: PMC6017662 DOI: 10.3390/molecules23040765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 01/21/2023] Open
Abstract
Catalysts are employed in many areas of research and development where they combine high efficiency with often astonishing selectivity for their respective substrates. In biology, biocatalysts are omnipresent. Enzymes facilitate highly controlled, sophisticated cellular processes, such as metabolic conversions, sensing and signalling, and are prominent targets in drug development. In contrast, the therapeutic use of catalysts per se is still rather limited. Recent research has shown that small molecule catalytic agents able to modulate the redox state of the target cell bear considerable promise, particularly in the context of inflammatory and infectious diseases, stroke, ageing and even cancer. Rather than being "active" on their own in a more traditional sense, such agents develop their activity by initiating, promoting, enhancing or redirecting reactions between biomolecules already present in the cell, and their activity therefore depends critically on the predisposition of the target cell itself. Redox catalysts, for instance, preferably target cells with a distinct sensitivity towards changes in an already disturbed redox balance and/or increased levels of reactive oxygen species. Indeed, certain transition metal, chalcogen and quinone agents may activate an antioxidant response in normal cells whilst at the same time triggering apoptosis in cancer cells with a different pre-existing "biochemical redox signature" and closer to the internal redox threshold. In pharmacy, catalysts therefore stand out as promising lead structures, as sensor/effector agents which are highly effective, fairly selective, active in catalytic, i.e., often nanomolar concentrations and also very flexible in their structural design.
Collapse
Affiliation(s)
- Yannick Ney
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Ammar Kharma
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Lama A Youssef
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, Damascus University, Damascus, Syria.
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| |
Collapse
|
14
|
Álvarez-Pérez M, Ali W, Marć MA, Handzlik J, Domínguez-Álvarez E. Selenides and Diselenides: A Review of Their Anticancer and Chemopreventive Activity. Molecules 2018. [PMID: 29534447 PMCID: PMC6017218 DOI: 10.3390/molecules23030628] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Selenium and selenocompounds have attracted the attention and the efforts of scientists worldwide due to their promising potential applications in cancer prevention and/or treatment. Different organic selenocompounds, with diverse functional groups that contain selenium, have been reported to exhibit anticancer and/or chemopreventive activity. Among them, selenocyanates, selenoureas, selenoesters, selenium-containing heterocycles, selenium nanoparticles, selenides and diselenides have been considered in the search for efficiency in prevention and treatment of cancer and other related diseases. In this review, we focus our attention on the potential applications of selenides and diselenides in cancer prevention and treatment that have been reported so far. The around 80 selenides and diselenides selected herein as representative compounds include promising antioxidant, prooxidant, redox-modulating, chemopreventive, anticancer, cytotoxic and radioprotective compounds, among other activities. The aim of this work is to highlight the possibilities that these novel organic selenocompounds can offer in an effort to contribute to inspire medicinal chemists in their search of new promising derivatives.
Collapse
Affiliation(s)
- Mónica Álvarez-Pérez
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG, CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Wesam Ali
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B2 1, D-66123 Saarbruecken, Germany.
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland.
| | - Małgorzata Anna Marć
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland.
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland.
| | - Enrique Domínguez-Álvarez
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG, CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
15
|
Resveratrol-Inspired Benzo[b]selenophenes Act as Anti-Oxidants in Yeast. Molecules 2018; 23:molecules23020507. [PMID: 29495287 PMCID: PMC6017489 DOI: 10.3390/molecules23020507] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/17/2018] [Accepted: 02/22/2018] [Indexed: 01/31/2023] Open
Abstract
Resveratrol is a natural (poly)phenol primarily found in plants protecting them against pathogens, as well as harmful effects of physical and chemical agents. In higher eukaryotic cells and organisms, this compound displays a remarkable range of biological activities, such as anti-oxidant, anti-inflammatory, anti-cancer, anti-aging, cardio- and neuro-protective properties. Here, biological activities of synthetic selenium-containing derivatives of resveratrol—benzo[b]selenophenes—have been studied in lower eukaryotes Saccharomyces cerevisiae. Their toxicity, as well as DNA damaging and reactive oxygen species (ROS) inducing potencies, manifested through their ability to act as redox active anti-microbial agents, have been examined. We show that some benzo[b]selenophenes can kill yeast cells and that the killing effects are not mediated by DNA damage types that can be detected as DNA double-strand breaks. These benzo[b]selenophenes could potentially be used as anti-fungal agents, although their concentrations relevant to application in humans need to be further evaluated. In addition, most of the studied benzo[b]selenophenes display redox-modulating/anti-oxidant activity (comparable or even higher than that of resveratrol or Trolox) causing a decrease in the intracellular ROS levels in yeast cells. Therefore, after careful re-evaluation in other biological systems these observations might be transferred to humans, where resveratrol-inspired benzo[b]selenophenes could be used as supra-anti-oxidant supplements.
Collapse
|
16
|
Griffin S, Masood MI, Nasim MJ, Sarfraz M, Ebokaiwe AP, Schäfer KH, Keck CM, Jacob C. Natural Nanoparticles: A Particular Matter Inspired by Nature. Antioxidants (Basel) 2017; 7:antiox7010003. [PMID: 29286304 PMCID: PMC5789313 DOI: 10.3390/antiox7010003] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023] Open
Abstract
During the last couple of decades, the rapidly advancing field of nanotechnology has produced a wide palette of nanomaterials, most of which are considered as “synthetic” and, among the wider public, are often met with a certain suspicion. Despite the technological sophistication behind many of these materials, “nano” does not always equate with “artificial”. Indeed, nature itself is an excellent nanotechnologist. It provides us with a range of fine particles, from inorganic ash, soot, sulfur and mineral particles found in the air or in wells, to sulfur and selenium nanoparticles produced by many bacteria and yeasts. These nanomaterials are entirely natural, and, not surprisingly, there is a growing interest in the development of natural nanoproducts, for instance in the emerging fields of phyto- and phyco-nanotechnology. This review will highlight some of the most recent—and sometimes unexpected—advances in this exciting and diverse field of research and development. Naturally occurring nanomaterials, artificially produced nanomaterials of natural products as well as naturally occurring or produced nanomaterials of natural products all show their own, particular chemical and physical properties, biological activities and promise for applications, especially in the fields of medicine, nutrition, cosmetics and agriculture. In the future, such natural nanoparticles will not only stimulate research and add a greener outlook to a traditionally high-tech field, they will also provide solutions—pardon—suspensions for a range of problems. Here, we may anticipate specific biogenic factories, valuable new materials based on waste, the effective removal of contaminants as part of nano-bioremediation, and the conversion of poorly soluble substances and materials to biologically available forms for practical uses.
Collapse
Affiliation(s)
- Sharoon Griffin
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
- Institute of Pharmaceutics and Biopharmaceutics, Philipps University of Marburg, 35037 Marburg, Germany.
| | - Muhammad Irfan Masood
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, 66482 Zweibruecken, Germany.
| | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Muhammad Sarfraz
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Azubuike Peter Ebokaiwe
- Department of Chemistry/Biochemistry and Molecular Biology, Federal University, Ndufu-Alike Ikwo, 482131 Ndufu-Alike, Nigeria.
| | - Karl-Herbert Schäfer
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, 66482 Zweibruecken, Germany.
| | - Cornelia M Keck
- Institute of Pharmaceutics and Biopharmaceutics, Philipps University of Marburg, 35037 Marburg, Germany.
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| |
Collapse
|
17
|
Selenazolinium Salts as "Small Molecule Catalysts" with High Potency against ESKAPE Bacterial Pathogens. Molecules 2017; 22:molecules22122174. [PMID: 29292789 PMCID: PMC6149925 DOI: 10.3390/molecules22122174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 12/25/2022] Open
Abstract
In view of the pressing need to identify new antibacterial agents able to combat multidrug-resistant bacteria, we investigated a series of fused selenazolinium derivatives (1–8) regarding their in vitro antimicrobial activities against 25 ESKAPE-pathogen strains. Ebselen was used as reference compound. Most of the selenocompounds demonstrated an excellent in vitro activity against all S. aureus strains, with activities comparable to or even exceeding the one of ebselen. In contrast to ebselen, some selenazolinium derivatives (1, 3, and 7) even displayed significant actions against all Gram-negative pathogens tested. The 3-bromo-2-(1-hydroxy-1-methylethyl)[1,2]selenazolo[2,3-a]pyridinium chloride (1) was particularly active (minimum inhibitory concentrations, MICs: 0.31–1.24 µg/mL for MRSA, and 0.31–2.48 µg/mL for Gram-negative bacteria) and devoid of any significant mutagenicity in the Ames assay. Our preliminary mechanistic studies in cell culture indicated that their mode of action is likely to be associated with an alteration of intracellular levels of glutathione and cysteine thiols of different proteins in the bacterial cells, hence supporting the idea that such compounds interact with the intracellular thiolstat. This alteration of pivotal cysteine residues is most likely the result of a direct or catalytic oxidative modification of such residues by the highly reactive selenium species (RSeS) employed.
Collapse
|
18
|
Caracelli I, Maganhi SH, de Oliveira Cardoso J, Cunha RL, Vega-Teijido MA, Zukerman-Schpector J, Tiekink ER. Crystallographic and docking (Cathepsins B, K, L and S) studies on bioactive halotelluroxetanes. Z KRIST-CRYST MATER 2017. [DOI: 10.1515/zkri-2017-2079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The molecular structures of the halotelluroxetanes p-MeOC6H4Te(X)[C(=C(H)X′)C(CH2)nO], X=X′=Cl and n=6 (1) and X=Cl, X′=Br and n=5 (4), show similar binuclear aggregates sustained by {· · ·Te–O}2 cores comprising covalent Te–O and secondary Te· · ·O interactions. The resulting C2ClO2(lone-pair) sets define pseudo-octahedral geometries. In each structure, C–X· · ·π(arene) interactions lead to supramolecular layers. Literature studies have shown these and related compounds (i.e. 2: X=X′=Cl and n=5; 3: X=X′=Br and n=5) to inhibit Cathepsins B, K, L and S to varying extents. Molecular docking calculations have been conducted on ligands (i.e. cations derived by removal of the tellurium-bound X atoms) 1′–3′ (note 3′=4′) enabling correlations between affinity for sub-sites and inhibition. The common feature of all docked complexes was the formation of a Te–S covalent bond with cysteine residues, the relative stability of the ligands with an E-configuration and the formation of a C–O· · ·π interaction with the phenyl ring; for 1′ the Te–S covalent bond was weak, a result correlating with its low inhibition profile. At the next level differences are apparent, especially with respect to the interactions formed by the organic-ligand-bound halides. While these atoms do not form specific interactions in Cathepsins B and K, in Cathepsin L, these halides are involved in C–O· · ·X halogen bonds.
Collapse
Affiliation(s)
- Ignez Caracelli
- BioMat, Departamento de Física , Universidade Federal de São Carlos , C.P. 676 , São Carlos, SP, 13565-905 , Brazil
| | - Stella H. Maganhi
- BioMat, Programa de Pós-graduação em Biotecnologia , Universidade Federal de São Carlos , C.P. 676 , São Carlos, SP, 13565-905 , Brazil
| | - Josiane de Oliveira Cardoso
- BioMat, Departamento de Física , Universidade Federal de São Carlos , C.P. 676 , São Carlos, SP, 13565-905 , Brazil
| | - Rodrigo L.O.R. Cunha
- Center of Natural Sciences and Humanities, Federal University of ABC , Santo André, São Paulo 09210-180 , Brazil
| | - Mauricio Angel Vega-Teijido
- Laboratório de Cristalografia, Estereodinâmica e Modelagem Molecular , Departamento de Química , Universidade Federal de São Carlos , C.P. 676 , São Carlos, SP, 13565-905 , Brazil
| | - Julio Zukerman-Schpector
- Laboratório de Cristalografia, Estereodinâmica e Modelagem Molecular , Departamento de Química , Universidade Federal de São Carlos , C.P. 676 , São Carlos, SP, 13565-905 , Brazil
| | - Edward R.T. Tiekink
- Research Centre for Crystalline Materials, School of Science and Technology , Sunway University , 47500 Bandar Sunway , Selangor Darul Ehsan , Malaysia
| |
Collapse
|
19
|
Font M, Plano D, Sanmartín C, Palop JA. Topological and quantum molecular descriptors as effective tools for analyzing cytotoxic activity achieved by a series of (diselanediyldibenzene-4,1-diylnide)biscarbamate derivatives. J Mol Graph Model 2017; 73:62-73. [PMID: 28236745 DOI: 10.1016/j.jmgm.2017.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/28/2016] [Accepted: 01/16/2017] [Indexed: 11/25/2022]
Abstract
A molecular modeling study has been carried out on a previously reported series of (diselanediyldibenzene-4,1-diylnide)biscarbamate derivatives that show cytotoxic and antiproliferative in vitro activity against MCF-7 human cell line; radical scavenging properties were also confirmed when these compounds were tested for their ability to scavenge DPPH and ABTS radicals. The data obtained allowed us to classify the compounds into two different groups: (a) aliphatic carbamates for which the activity could be related with a first nucleophilic attack (mediated by H2O, for example) on the selenium atoms of the central scaffold, followed by the release of the alkyl N-(4-selanylphenyl) and N-(4-selenenophenyl)carbamate moieties. Then, a second nucleophilic attack on the carbamate moiety, to yield 4-aminobenzeneselenol and 4-selenenoaniline respectively, which can ultimately be responsible for the activity of the compounds; (b) aromatic carbamates, for which we propose a preferred nucleophilic attack on the carbamate moiety, yielding 4-[(4-aminophenyl)diselanyl]aniline, the common structural fragment for this series, for which we have previously demonstrated its cytotoxic profile. Then, selenium atoms of the central fragment may later undergo a new nucleophilic attack, to yield 4-selenenoaniline and 4-aminobenzeneselenol. The phenolic moieties released in this process may also have a synergistic cytotoxic and redox activity. The data that support this connection include the conformational behavior and the molecular topography of the derivatives which can influence the accessibility of the hydrolysis points, and some quantum descriptors (bond order, atomic charges, total valences, ionization potential, electron affinity, HOMO 0 and LUMO 0 location, etc.) that have been related to the biological activity of the compounds.
Collapse
Affiliation(s)
- María Font
- University of Navarra, School of Pharmacy and Nutrition, Dpto de Química Orgánica y Farmacéutica, Sección de Modelización Molecular, Irunlarrea, 1, Pamplona, E-31008, Spain; IdISNA, Instituto de Investigación Sanitaria de Navarra, Recinto del Complejo Hospitalario de Navarra, Irunlarrea 3, Pamplona, E-31008, Spain.
| | - Daniel Plano
- IdISNA, Instituto de Investigación Sanitaria de Navarra, Recinto del Complejo Hospitalario de Navarra, Irunlarrea 3, Pamplona, E-31008, Spain; University of Navarra, School of Pharmacy and Nutrition, Dpto de Química Orgánica y Farmacéutica, Sección de Síntesis, Navarra, Irunlarrea, 1, Pamplona, E-31008, Spain
| | - Carmen Sanmartín
- IdISNA, Instituto de Investigación Sanitaria de Navarra, Recinto del Complejo Hospitalario de Navarra, Irunlarrea 3, Pamplona, E-31008, Spain; University of Navarra, School of Pharmacy and Nutrition, Dpto de Química Orgánica y Farmacéutica, Sección de Síntesis, Navarra, Irunlarrea, 1, Pamplona, E-31008, Spain
| | - Juan Antonio Palop
- University of Navarra, School of Pharmacy and Nutrition, Dpto de Química Orgánica y Farmacéutica, Sección de Síntesis, Navarra, Irunlarrea, 1, Pamplona, E-31008, Spain
| |
Collapse
|
20
|
Selenoesters and selenoanhydrides as novel multidrug resistance reversing agents: A confirmation study in a colon cancer MDR cell line. Bioorg Med Chem Lett 2017; 27:797-802. [PMID: 28126516 DOI: 10.1016/j.bmcl.2017.01.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/08/2017] [Accepted: 01/11/2017] [Indexed: 01/05/2023]
Abstract
Taking into account that multidrug resistance (MDR) is the main cause for chemotherapeutic failure in cancer treatment and as a continuation of our efforts to overcome this problem we report the evaluation of one cyclic selenoanhydride (1) and ten selenoesters (2-11) in MDR human colon adenocarcinoma Colo 320 cell line. The most potent derivatives (1, 9-11) inhibited the ABCB1 efflux pump much stronger than the reference compound verapamil. Particularly, the best one (9) was 4-fold more potent than verapamil at a 10-fold lower concentration. Furthermore, the evaluated derivatives exerted a potent and selective cytotoxic activity. In addition, they were strong apoptosis inducers as the four derivatives triggered apoptotic events in a 64-72% of the examined MDR Colo 320 human adenocarcinoma cells.
Collapse
|
21
|
Mukherjee N, Pal S, Saha A, Ranu BC. Silver-catalyzed carbon–selenium cross-coupling using N-(phenylseleno)phthalimide: an alternate approach to the synthesis of organoselenides. CAN J CHEM 2017. [DOI: 10.1139/cjc-2016-0427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Silver(I) catalyzed phenylselenylation of terminal alkynes and organoboronic acids has been demonstrated using N-(phenylseleno)phthalimide as an electrophilic SePh donor. A wide variety of terminal alkynes and organoboronic acids are selenylated efficiently to produce the corresponding alkynyl and diaryl selenides, respectively, in good yields. Silver(I) acts as a Lewis acid in this process.
Collapse
Affiliation(s)
- Nirmalya Mukherjee
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Subhajit Pal
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Amit Saha
- Department of Chemistry, Achhruram Memorial College, Jhalda, Purulia 723202, West Bengal, India
| | - Brindaban C. Ranu
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
22
|
Aspects of a Distinct Cytotoxicity of Selenium Salts and Organic Selenides in Living Cells with Possible Implications for Drug Design. Molecules 2015; 20:13894-912. [PMID: 26263963 PMCID: PMC6331825 DOI: 10.3390/molecules200813894] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/14/2015] [Accepted: 07/22/2015] [Indexed: 12/20/2022] Open
Abstract
Selenium is traditionally considered as an antioxidant element and selenium compounds are often discussed in the context of chemoprevention and therapy. Recent studies, however, have revealed a rather more colorful and diverse biological action of selenium-based compounds, including the modulation of the intracellular redox homeostasis and an often selective interference with regulatory cellular pathways. Our basic activity and mode of action studies with simple selenium and tellurium salts in different strains of Staphylococcus aureus (MRSA) and Saccharomyces cerevisiae indicate that such compounds are sometimes not particularly toxic on their own, yet enhance the antibacterial potential of known antibiotics, possibly via the bioreductive formation of insoluble elemental deposits. Whilst the selenium and tellurium compounds tested do not necessarily act via the generation of Reactive Oxygen Species (ROS), they seem to interfere with various cellular pathways, including a possible inhibition of the proteasome and hindrance of DNA repair. Here, organic selenides are considerably more active compared to simple salts. The interference of selenium (and tellurium) compounds with multiple targets could provide new avenues for the development of effective antibiotic and anticancer agents which may go well beyond the traditional notion of selenium as a simple antioxidant.
Collapse
|
23
|
Trindade C, Juchem ALM, de Albuquerque NRM, de Oliveira IM, Rosa RM, Guecheva TN, Saffi J, Henriques JAP. Antigenotoxic and antimutagenic effects of diphenyl ditelluride against several known mutagens in Chinese hamster lung fibroblasts. Mutagenesis 2015; 30:799-809. [DOI: 10.1093/mutage/gev037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
24
|
Herrero E, Wellinger RE. Yeast as a model system to study metabolic impact of selenium compounds. MICROBIAL CELL 2015; 2:139-149. [PMID: 28357286 PMCID: PMC5349236 DOI: 10.15698/mic2015.05.200] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inorganic Se forms such as selenate or selenite (the two more abundant forms in nature) can be toxic in Saccharomyces cerevisiae cells, which constitute an adequate model to study such toxicity at the molecular level and the functions participating in protection against Se compounds. Those Se forms enter the yeast cell through other oxyanion transporters. Once inside the cell, inorganic Se forms may be converted into selenide through a reductive pathway that in physiological conditions involves reduced glutathione with its consequent oxidation into diglutathione and alteration of the cellular redox buffering capacity. Selenide can subsequently be converted by molecular oxygen into elemental Se, with production of superoxide anions and other reactive oxygen species. Overall, these events result in DNA damage and dose-dependent reversible or irreversible protein oxidation, although additional oxidation of other cellular macromolecules cannot be discarded. Stress-adaptation pathways are essential for efficient Se detoxification, while activation of DNA damage checkpoint and repair pathways protects against Se-mediated genotoxicity. We propose that yeast may be used to improve our knowledge on the impact of Se on metal homeostasis, the identification of Se-targets at the DNA and protein levels, and to gain more insights into the mechanism of Se-mediated apoptosis.
Collapse
Affiliation(s)
- Enrique Herrero
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Rovira Roure 80, 25198 Lleida, Spain
| | - Ralf E Wellinger
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, 41092 Sevilla, Spain
| |
Collapse
|
25
|
Special issue: redox active natural products and their interaction with cellular signalling pathways. Molecules 2014; 19:19588-93. [PMID: 25432010 PMCID: PMC6271017 DOI: 10.3390/molecules191219588] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022] Open
Abstract
During the last decade, research into natural products has experienced a certain renaissance. The urgent need for more and more effective antibiotics in medicine, the demand for ecologically friendly plant protectants in agriculture, “natural” cosmetics and the issue of a sustainable and healthy nutrition in an ageing society have fuelled research into Nature’s treasure chest of “green gold”. Here, redox active secondary metabolites from plants, fungi, bacteria and other (micro-)organisms often have been at the forefront of the most interesting developments. These agents provide powerful means to interfere with many, probably most cellular signaling pathways in humans, animals and lower organisms, and therefore can be used to protect, i.e., in form of antioxidants, and to frighten off or even kill, i.e., in form of repellants, antibiotics, fungicides and selective, often catalytic “sensor/effector” anticancer agents. Interestingly, whilst natural product research dates back many decades, in some cases even centuries, and compounds such as allicin and various flavonoids have been investigated thoroughly in the past, it has only recently become possible to investigate their precise interactions and mode(s) of action inside living cells. Here, fluorescent staining and labelling on the one side, and appropriate detection, either qualitatively under the microscope or quantitatively in flow cytometers and plate readers, on the other, enable researchers to obtain the various pieces of information necessary to construct a fairly complete puzzle of how such compounds act and interact in living cells. Complemented by the more traditional activity assays and Western Blots, and increasingly joined by techniques such as proteomics, chemogenetic screening and mRNA profiling, these cell based bioanalytical techniques form a powerful platform for “intracellular diagnostics”. In the case of redox active compounds, especially of Reactive Sulfur Species (RSS), such techniques have recently unraveled concepts such as the “cellular thiolstat”, yet considerably more research is required in order to gain a full understanding of why and how such compounds act—often selectively—in different organisms.
Collapse
|