1
|
Quinlan JA, Sabbineni S, Robey RW, Lipsey CC, Inglut CT, Thomas JR, Walker JR, Zhou W, Huang HC, Gottesman MM. Identification of NanoLuciferase Substrates Transported by Human ABCB1 and ABCG2 and Their Zebrafish Homologs at the Blood-Brain Barrier. Mol Pharmacol 2024; 106:278-286. [PMID: 39322411 PMCID: PMC11585257 DOI: 10.1124/molpharm.123.000811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024] Open
Abstract
ATP-binding cassette (ABC) transporters expressed at the blood-brain barrier (BBB) impede delivery of therapeutic agents to the brain, including agents to treat neurodegenerative diseases and primary and metastatic brain cancers. Two transporters, ABCB1 and ABCG2, are highly expressed at the BBB and are responsible for the efflux of numerous clinically useful chemotherapeutic agents, including irinotecan, paclitaxel, and doxorubicin. Based on a previous mouse model, we have generated transgenic zebrafish in which expression of NanoLuciferase (NanoLuc) is controlled by the promoter of glial fibrillary acidic protein, leading to expression in zebrafish glia. To identify agents that disrupt the BBB, including inhibitors of ABCB1 and ABCG2, we identified NanoLuc substrates that are also transported by ABCB1, ABCG2, and their zebrafish homologs. These substrates will elevate the amount of bioluminescent light produced in the transgenic zebrafish with BBB disruption. We transfected HEK293 cells with NanoLuc and either human ABCB1, ABCG2, or their zebrafish homologs Abcb4 or Abcg2a, respectively, that are expressed at the zebrafish BBB. We evaluated the luminescence and transporter substrate status of 16 NanoLuc substrates. We identified eight substrates that were efficiently pumped out by ABCB1, six by Abcb4, seven by ABCG2, and seven by Abcg2a. These data will aid in the development of a transgenic zebrafish model of the BBB to identify novel BBB disruptors and should prove useful in the development of other animal models that use NanoLuc as a reporter. SIGNIFICANCE STATEMENT: The ATP-binding cassette (ABC) transporters ABCB1 and ABCG2 at the blood-brain barrier (BBB) hinder pharmacological treatment of brain-related diseases. Consequently, there is a need for tools to identify BBB disruptors. This study screened 16 NanoLuciferase substrates, identifying the brightest and those that were transported by human and zebrafish ABC transporters at the BBB. This work supports and complements development of a transgenic zebrafish model, in which NanoLuciferase is expressed within glial cells, enabling detection of BBB disruption.
Collapse
Affiliation(s)
- John A Quinlan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland (J.A.Q., C.T.I., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (J.A.Q., S.S., R.W.R., C.C.L., C.T.I., J.R.T., M.M.G.); and Promega Corporation, San Luis Obispo, California (J.R.W., W.Z.)
| | - Sashank Sabbineni
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland (J.A.Q., C.T.I., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (J.A.Q., S.S., R.W.R., C.C.L., C.T.I., J.R.T., M.M.G.); and Promega Corporation, San Luis Obispo, California (J.R.W., W.Z.)
| | - Robert W Robey
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland (J.A.Q., C.T.I., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (J.A.Q., S.S., R.W.R., C.C.L., C.T.I., J.R.T., M.M.G.); and Promega Corporation, San Luis Obispo, California (J.R.W., W.Z.)
| | - Crystal C Lipsey
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland (J.A.Q., C.T.I., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (J.A.Q., S.S., R.W.R., C.C.L., C.T.I., J.R.T., M.M.G.); and Promega Corporation, San Luis Obispo, California (J.R.W., W.Z.)
| | - Collin T Inglut
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland (J.A.Q., C.T.I., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (J.A.Q., S.S., R.W.R., C.C.L., C.T.I., J.R.T., M.M.G.); and Promega Corporation, San Luis Obispo, California (J.R.W., W.Z.)
| | - Joanna R Thomas
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland (J.A.Q., C.T.I., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (J.A.Q., S.S., R.W.R., C.C.L., C.T.I., J.R.T., M.M.G.); and Promega Corporation, San Luis Obispo, California (J.R.W., W.Z.)
| | - Joel R Walker
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland (J.A.Q., C.T.I., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (J.A.Q., S.S., R.W.R., C.C.L., C.T.I., J.R.T., M.M.G.); and Promega Corporation, San Luis Obispo, California (J.R.W., W.Z.)
| | - Wenhui Zhou
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland (J.A.Q., C.T.I., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (J.A.Q., S.S., R.W.R., C.C.L., C.T.I., J.R.T., M.M.G.); and Promega Corporation, San Luis Obispo, California (J.R.W., W.Z.)
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland (J.A.Q., C.T.I., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (J.A.Q., S.S., R.W.R., C.C.L., C.T.I., J.R.T., M.M.G.); and Promega Corporation, San Luis Obispo, California (J.R.W., W.Z.)
| | - Michael M Gottesman
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland (J.A.Q., C.T.I., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (J.A.Q., S.S., R.W.R., C.C.L., C.T.I., J.R.T., M.M.G.); and Promega Corporation, San Luis Obispo, California (J.R.W., W.Z.)
| |
Collapse
|
2
|
Ebrahimnezhad M, Asl SH, Rezaie M, Molavand M, Yousefi B, Majidinia M. lncRNAs: New players of cancer drug resistance via targeting ABC transporters. IUBMB Life 2024; 76:883-921. [PMID: 39091106 DOI: 10.1002/iub.2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/30/2024] [Indexed: 08/04/2024]
Abstract
Cancer drug resistance poses a significant obstacle to successful chemotherapy, primarily driven by the activity of ATP-binding cassette (ABC) transporters, which actively efflux chemotherapeutic agents from cancer cells, reducing their intracellular concentrations and therapeutic efficacy. Recent studies have highlighted the pivotal role of long noncoding RNAs (lncRNAs) in regulating this resistance, positioning them as crucial modulators of ABC transporter function. lncRNAs, once considered transcriptional noise, are now recognized for their complex regulatory capabilities at various cellular levels, including chromatin modification, transcription, and post-transcriptional processing. This review synthesizes current research demonstrating how lncRNAs influence cancer drug resistance by modulating the expression and activity of ABC transporters. lncRNAs can act as molecular sponges, sequestering microRNAs that would otherwise downregulate ABC transporter genes. Additionally, they can alter the epigenetic landscape of these genes, affecting their transcriptional activity. Mechanistic insights reveal that lncRNAs contribute to the activity of ABC transporters, thereby altering the efflux of chemotherapeutic drugs and promoting drug resistance. Understanding these interactions provides a new perspective on the molecular basis of chemoresistance, emphasizing the regulatory network of lncRNAs and ABC transporters. This knowledge not only deepens our understanding of the biological mechanisms underlying drug resistance but also suggests novel therapeutic strategies. In conclusion, the intricate interplay between lncRNAs and ABC transporters is crucial for developing innovative solutions to combat cancer drug resistance, underscoring the importance of continued research in this field.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hassanzadeh Asl
- Student Research Committee, Faculty of Medicine, Tabriz Azad University of Medical Sciences, Tabriz, Iran
| | - Maede Rezaie
- Immunology research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Molavand
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Eshaq AM, Flanagan TW, Hassan SY, Al Asheikh SA, Al-Amoudi WA, Santourlidis S, Hassan SL, Alamodi MO, Bendhack ML, Alamodi MO, Haikel Y, Megahed M, Hassan M. Non-Receptor Tyrosine Kinases: Their Structure and Mechanistic Role in Tumor Progression and Resistance. Cancers (Basel) 2024; 16:2754. [PMID: 39123481 PMCID: PMC11311543 DOI: 10.3390/cancers16152754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Protein tyrosine kinases (PTKs) function as key molecules in the signaling pathways in addition to their impact as a therapeutic target for the treatment of many human diseases, including cancer. PTKs are characterized by their ability to phosphorylate serine, threonine, or tyrosine residues and can thereby rapidly and reversibly alter the function of their protein substrates in the form of significant changes in protein confirmation and affinity for their interaction with protein partners to drive cellular functions under normal and pathological conditions. PTKs are classified into two groups: one of which represents tyrosine kinases, while the other one includes the members of the serine/threonine kinases. The group of tyrosine kinases is subdivided into subgroups: one of them includes the member of receptor tyrosine kinases (RTKs), while the other subgroup includes the member of non-receptor tyrosine kinases (NRTKs). Both these kinase groups function as an "on" or "off" switch in many cellular functions. NRTKs are enzymes which are overexpressed and activated in many cancer types and regulate variable cellular functions in response to extracellular signaling-dependent mechanisms. NRTK-mediated different cellular functions are regulated by kinase-dependent and kinase-independent mechanisms either in the cytoplasm or in the nucleus. Thus, targeting NRTKs is of great interest to improve the treatment strategy of different tumor types. This review deals with the structure and mechanistic role of NRTKs in tumor progression and resistance and their importance as therapeutic targets in tumor therapy.
Collapse
Affiliation(s)
- Abdulaziz M. Eshaq
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sara A. Al Asheikh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Waleed A. Al-Amoudi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Simeon Santourlidis
- Institute of Cell Therapeutics and Diagnostics, University Medical Center of Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Maryam O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Marcelo L. Bendhack
- Department of Urology, Red Cross University Hospital, Positivo University, Rua Mauá 1111, Curitiba 80030-200, Brazil;
| | - Mohammed O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Fessart D, Robert J. [Mechanisms of cancer drug resistance]. Bull Cancer 2024; 111:37-50. [PMID: 37679207 DOI: 10.1016/j.bulcan.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 09/09/2023]
Abstract
Despite decades of research into the molecular mechanisms of cancer and the development of new treatments, drug resistance persists as a major problem. This is in part due to the heterogeneity of cancer, including the diversity of tumor cell lineage and cell plasticity, the spectrum of somatic mutations, the complexity of microenvironments, and immunosuppressive characteristic, then necessitating the use of many different therapeutic approaches. We summarize here the biological causes of resistance, thus offering new perspectives for tackle drug resistance.
Collapse
Affiliation(s)
- Delphine Fessart
- ARTiSt lab, Université de Bordeaux, Inserm U1312 BRIC, 33000 Bordeaux, France.
| | - Jacques Robert
- ARTiSt lab, Université de Bordeaux, Inserm U1312 BRIC, 33000 Bordeaux, France
| |
Collapse
|
5
|
Huang F, Li Y, Zhang XJ, Lin MY, Han GY, Lin HY, Lin HY, Miao Z, Li BH, Sheng CQ, Yao JZ. Novel chlorin e 6-based conjugates of tyrosine kinase inhibitors: Synthesis and photobiological evaluation as potent photosensitizers for photodynamic therapy. Eur J Med Chem 2023; 261:115787. [PMID: 37690263 DOI: 10.1016/j.ejmech.2023.115787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/03/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Since tyrosine kinase inhibitor (TKI) could reverse ABCG2-mediated drug-resistance, novel chlorin e6-based conjugates of Dasatinib and Imatinib as photosensitizer (PS) were designed and synthesized. The results demonstrated that conjugate 10b showed strongest phototoxicity against HepG2 and B16-F10 cells, which was more phototoxic than chlorin e6 and Talaporfin. It could reduce efflux of intracellular PS by inhibiting ABCG2 in HepG2 cells, and localize in mitochondria, lysosomes, golgi and ER, resulting in higher cell apoptosis rate and ROS production than Talaporfin. Moreover, it could induce cell autophagy and block cell cycle in S phase, and significantly inhibit tumor growth and prolong survival time on BALB/c nude mice bearing HepG2 xenograft tumor to a greater extent than chlorin e6. Consequently, compound 10b could be applied as a promising candidate PS due to its good water-solubility and stability, low drug-resistance, high quantum yield of 1O2 and excellent antitumor efficacy in vitro and in vivo.
Collapse
Affiliation(s)
- Fei Huang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yu Li
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Xing-Jie Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Mei-Yu Lin
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Gui-Yan Han
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, 266000, China
| | - Hui-Ying Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Hui-Yun Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Bu-Hong Li
- School of Science, Hainan University, 58 Renmin Avenue, Haikou, 570228, China.
| | - Chun-Quan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Jian-Zhong Yao
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
6
|
Bhattacharya D, Mukhopadhyay M, Shivam K, Tripathy S, Patra R, Pramanik A. Recent developments in photodynamic therapy and its application against multidrug resistant cancers. Biomed Mater 2023; 18:062005. [PMID: 37827172 DOI: 10.1088/1748-605x/ad02d4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
Recently, photodynamic therapy (PDT) has received a lot of attention for its potential use in cancer treatment. It enables the therapy of a multifocal disease with the least amount of tissue damage. The most widely used prodrug is 5-aminolevulinic acid, which undergoes heme pathway conversion to protoporphyrin IX, which acts as a photosensitizer (PS). Additionally, hematoporphyrin, bacteriochlorin, and phthalocyanine are also studied for their therapeutic potential in cancer. Unfortunately, not every patient who receives PDT experiences a full recovery. Resistance to different anticancer treatments is commonly observed. A few of the resistance mechanisms by which cancer cells escape therapeutics are genetic factors, drug-drug interactions, impaired DNA repair pathways, mutations related to inhibition of apoptosis, epigenetic pathways, etc. Recently, much research has been conducted to develop a new generation of PS based on nanomaterials that could be used to overcome cancer cells' multidrug resistance (MDR). Various metal-based, polymeric, lipidic nanoparticles (NPs), dendrimers, etc, have been utilized in the PDT application against cancer. This article discusses the detailed mechanism by which cancer cells evolve towards MDR as well as recent advances in PDT-based NPs for use against multidrug-resistant cancers.
Collapse
Affiliation(s)
- Debalina Bhattacharya
- Department of Microbiology, Maulana Azad College, Kolkata, West Bengal 700013, India
| | - Mainak Mukhopadhyay
- Department of Biotechnology, JIS University, Kolkata, West Bengal 700109, India
| | - Kumar Shivam
- Amity Institute of Click Chemistry Research & Studies, Amity University, Noida 201301, India
| | - Satyajit Tripathy
- Department of Pharmacology, University of Free State, Bloemfontein, Free State, 9301, South Africa
- Amity Institute of Allied Health Science, Amity University, Noida 201301, India
| | - Ranjan Patra
- Amity Institute of Click Chemistry Research & Studies, Amity University, Noida 201301, India
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Arindam Pramanik
- School of Medicine, University of Leeds, Leeds, LS9 7TF, United Kingdom
- Amity Institute of Biotechnology, Amity University, Noida 201301, India
| |
Collapse
|
7
|
Inglut CT, Quinlan JA, Robey RW, Thomas JR, Walker JR, Zhou W, Huang HC, Gottesman MM. Identification of NanoLuciferase Substrates Transported by Human ABCB1 and ABCG2 and their Zebrafish Homologs at the Blood-Brain Barrier. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563277. [PMID: 37986908 PMCID: PMC10659404 DOI: 10.1101/2023.10.20.563277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
ATP-binding cassette (ABC) transporters expressed at the blood-brain barrier (BBB) impede delivery of therapeutic agents to the brain, including agents to treat neurodegenerative diseases and primary and metastatic brain cancers. Two transporters, P-glycoprotein (P-gp, ABCB1) and ABCG2, are highly expressed at the BBB and are responsible for the efflux of numerous clinically useful chemotherapeutic agents, including irinotecan, paclitaxel, and doxorubicin. Based on a previous mouse model, we have generated transgenic zebrafish in which expression of NanoLuciferase (NanoLuc) is controlled by the promoter of glial fibrillary acidic protein, leading to expression in zebrafish glia. To identify agents that disrupt the BBB, including inhibitors of ABCB1 and ABCG2, we identified NanoLuc substrates that are also transported by P-gp, ABCG2, and their zebrafish homologs. These substrates will elevate the amount of bioluminescent light produced in the transgenic zebrafish with BBB disruption. We transfected HEK293 cells with NanoLuc and either human ABCB1, ABCG2, or their zebrafish homologs Abcb4 or Abcg2a, respectively, and expressed at the zebrafish BBB. We evaluated the luminescence of ten NanoLuc substrates, then screened the eight brightest to determine which are most efficiently effluxed by the ABC transporters. We identified one substrate efficiently pumped out by ABCB1, two by Abcb4, six by ABCG2, and four by Abcg2a. These data will aid in the development of a transgenic zebrafish model of the BBB to identify novel BBB disruptors and should prove useful in the development of other animal models that use NanoLuc as a reporter.
Collapse
Affiliation(s)
| | | | - Robert W. Robey
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 (C.T.I., J.A.Q., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892 (C.T.I., J.A.Q., R.W.R, J.R.T, M.M.G.), Promega Corporation, San Luis Obispo, CA, 93401 (J.R.W., W.Z.)
| | - Joanna R. Thomas
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 (C.T.I., J.A.Q., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892 (C.T.I., J.A.Q., R.W.R, J.R.T, M.M.G.), Promega Corporation, San Luis Obispo, CA, 93401 (J.R.W., W.Z.)
| | - Joel R. Walker
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 (C.T.I., J.A.Q., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892 (C.T.I., J.A.Q., R.W.R, J.R.T, M.M.G.), Promega Corporation, San Luis Obispo, CA, 93401 (J.R.W., W.Z.)
| | - Wenhui Zhou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 (C.T.I., J.A.Q., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892 (C.T.I., J.A.Q., R.W.R, J.R.T, M.M.G.), Promega Corporation, San Luis Obispo, CA, 93401 (J.R.W., W.Z.)
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 (C.T.I., J.A.Q., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892 (C.T.I., J.A.Q., R.W.R, J.R.T, M.M.G.), Promega Corporation, San Luis Obispo, CA, 93401 (J.R.W., W.Z.)
| | - Michael M. Gottesman
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 (C.T.I., J.A.Q., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892 (C.T.I., J.A.Q., R.W.R, J.R.T, M.M.G.), Promega Corporation, San Luis Obispo, CA, 93401 (J.R.W., W.Z.)
| |
Collapse
|
8
|
Lei Z, Tian Q, Teng Q, Wurpel JND, Zeng L, Pan Y, Chen Z. Understanding and targeting resistance mechanisms in cancer. MedComm (Beijing) 2023; 4:e265. [PMID: 37229486 PMCID: PMC10203373 DOI: 10.1002/mco2.265] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023] Open
Abstract
Resistance to cancer therapies has been a commonly observed phenomenon in clinical practice, which is one of the major causes of treatment failure and poor patient survival. The reduced responsiveness of cancer cells is a multifaceted phenomenon that can arise from genetic, epigenetic, and microenvironmental factors. Various mechanisms have been discovered and extensively studied, including drug inactivation, reduced intracellular drug accumulation by reduced uptake or increased efflux, drug target alteration, activation of compensatory pathways for cell survival, regulation of DNA repair and cell death, tumor plasticity, and the regulation from tumor microenvironments (TMEs). To overcome cancer resistance, a variety of strategies have been proposed, which are designed to enhance the effectiveness of cancer treatment or reduce drug resistance. These include identifying biomarkers that can predict drug response and resistance, identifying new targets, developing new targeted drugs, combination therapies targeting multiple signaling pathways, and modulating the TME. The present article focuses on the different mechanisms of drug resistance in cancer and the corresponding tackling approaches with recent updates. Perspectives on polytherapy targeting multiple resistance mechanisms, novel nanoparticle delivery systems, and advanced drug design tools for overcoming resistance are also reviewed.
Collapse
Affiliation(s)
- Zi‐Ning Lei
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Qin Tian
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - John N. D. Wurpel
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Leli Zeng
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Yihang Pan
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| |
Collapse
|
9
|
Pan Q, Lu Y, Xie L, Wu D, Liu R, Gao W, Luo K, He B, Pu Y. Recent Advances in Boosting EGFR Tyrosine Kinase Inhibitors-Based Cancer Therapy. Mol Pharm 2023; 20:829-852. [PMID: 36588471 DOI: 10.1021/acs.molpharmaceut.2c00792] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidermal growth factor receptor (EGFR) plays a key role in signal transduction pathways associated with cell proliferation, growth, and survival. Its overexpression and aberrant activation in malignancy correlate with poor prognosis and short survival. Targeting inhibition of EGFR by small-molecular tyrosine kinase inhibitors (TKIs) is emerging as an important treatment model besides of chemotherapy, greatly reshaping the landscape of cancer therapy. However, they are still challenged by the off-targeted toxicity, relatively limited cancer types, and drug resistance after long-term therapy. In this review, we summarize the recent progress of oral, pulmonary, and injectable drug delivery systems for enhanced and targeting TKI delivery to tumors and reduced side effects. Importantly, EGFR-TKI-based combination therapies not only greatly broaden the applicable cancer types of EGFR-TKI but also significantly improve the anticancer effect. The mechanisms of TKI resistance are summarized, and current strategies to overcome TKI resistance as well as the application of TKI in reversing chemotherapy resistance are discussed. Finally, we provide a perspective on the future research of EGFR-TKI-based cancer therapy.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Yao Lu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
10
|
Kaehler M, Cascorbi I. Molecular Mechanisms of Tyrosine Kinase Inhibitor Resistance in Chronic Myeloid Leukemia. Handb Exp Pharmacol 2023; 280:65-83. [PMID: 36882601 DOI: 10.1007/164_2023_639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The hematopoietic neoplasm chronic myeloid leukemia (CML) is a rare disease caused by chromosomal reciprocal translocation t(9;22)(q34:q11) with subsequent formation of the BCR-ABL1 fusion gene. This fusion gene encodes a constitutively active tyrosine kinase, which results in malignant transformation of the cells. Since 2001, CML can be effectively treated using tyrosine kinase inhibitors (TKIs) such as imatinib, which prevent phosphorylation of downstream targets by blockade of the BCR-ABL kinase. Due to its tremendous success, this treatment became the role model of targeted therapy in precision oncology. Here, we review the mechanisms of TKI resistance focusing on BCR-ABL1-dependent and -independent mechanisms. These include the genomics of the BCR-ABL1, TKI metabolism and transport and alternative signaling pathways.
Collapse
Affiliation(s)
- Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
11
|
Wang X, Hong M. Protein Kinases and Cross-talk between Post-translational Modifications in the Regulation of Drug Transporters. Mol Pharmacol 2023; 103:9-20. [PMID: 36302660 DOI: 10.1124/molpharm.122.000604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 10/03/2022] [Indexed: 02/03/2023] Open
Abstract
Drug transporters are modulators for drug absorption, distribution, and excretion. Key drug transporters including P-glycoprotein and breast cancer resistance protein of the ABC superfamily; organic anion transporting polypeptide 1B1 and 1B3, organic anion transporter 1 and 3, and organic cation transporter 2, as well as multidrug and toxin extrusion 1 and 2 of the SLC superfamily have been recommended by regulatory agencies to be investigated and evaluated in drug-drug interaction (DDI) studies due to their important roles in determining the efficacy, toxicity and DDI of various drugs. Drug transporters are subjected to multiple levels of control and post-translational modifications (PTMs) provide rapid and versatile ways of regulation. Under pathologic and/or pharmacological conditions, PTMs may be altered in the cellular system, leading to functional changes of transporter proteins. Phosphorylation is by far the most actively investigated form of PTMs in the regulation of transporters. Further, studies in recent years also found that protein kinases coordinate with other PTMs for the dynamic control of these membrane proteins. Here we summarized the regulation of major drug transporters by protein kinases and their cross-talking with other PTMs that may generate a complex regulatory network for fine-tuning the function of these important drug processing modulators. SIGNIFICANCE STATEMENT: Kinases regulate drug transporters in versatile manners; Kinase regulation cross-talks with other PTMs, forming a complex network for transporter regulation; Pathological and/or pharmacological conditions may alter PTMs and affect transporter function with different molecular mechanisms.
Collapse
Affiliation(s)
- Xuyang Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China (X.W. and M.H.), and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China (M.H.)
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou, China (X.W. and M.H.), and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China (M.H.)
| |
Collapse
|
12
|
Todosenko N, Yurova K, Khaziakhmatova O, Malashchenko V, Khlusov I, Litvinova L. Heparin and Heparin-Based Drug Delivery Systems: Pleiotropic Molecular Effects at Multiple Drug Resistance of Osteosarcoma and Immune Cells. Pharmaceutics 2022; 14:pharmaceutics14102181. [PMID: 36297616 PMCID: PMC9612132 DOI: 10.3390/pharmaceutics14102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
One of the main problems of modern health care is the growing number of oncological diseases both in the elderly and young population. Inadequately effective chemotherapy, which remains the main method of cancer control, is largely associated with the emergence of multidrug resistance in tumor cells. The search for new solutions to overcome the resistance of malignant cells to pharmacological agents is being actively pursued. Another serious problem is immunosuppression caused both by the tumor cells themselves and by antitumor drugs. Of great interest in this context is heparin, a biomolecule belonging to the class of glycosaminoglycans and possessing a broad spectrum of biological activity, including immunomodulatory and antitumor properties. In the context of the rapid development of the new field of “osteoimmunology,” which focuses on the collaboration of bone and immune cells, heparin and delivery systems based on it may be of intriguing importance for the oncotherapy of malignant bone tumors. Osteosarcoma is a rare but highly aggressive, chemoresistant malignant tumor that affects young adults and is characterized by constant recurrence and metastasis. This review describes the direct and immune-mediated regulatory effects of heparin and drug delivery systems based on it on the molecular mechanisms of (multiple) drug resistance in (onco) pathological conditions of bone tissue, especially osteosarcoma.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Department of Morphology and General Pathology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Correspondence:
| |
Collapse
|
13
|
Feyzizadeh M, Barfar A, Nouri Z, Sarfraz M, Zakeri-Milani P, Valizadeh H. Overcoming multidrug resistance through targeting ABC transporters: lessons for drug discovery. Expert Opin Drug Discov 2022; 17:1013-1027. [PMID: 35996765 DOI: 10.1080/17460441.2022.2112666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The argument around cancer therapy is an old one. Using chemotherapeutic drugs, as one of the most effective strategies in treatment of malignancies, is restricted by various issues that progress during therapy and avoid achieving clinical endpoints. Multidrug resistance (MDR), frequently mediated by ATP-binding cassette (ABC) transporters, is one of the most recognized obstacles in the success of pharmacological anticancer approaches. These transporters efflux diverse drugs to extracellular environment, causing MDR and responsiveness of tumor cells to chemotherapy diminishes. AREAS COVERED Several strategies have been used to overcome MDR phenomenon. Succession in this field requires complete knowledge about features and mechanism of ABC transporters. In this review, conventional synthetic and natural inhibitors are discussed first and then novel approaches including RNA, monoclonal antibodies, nanobiotechnology, and structural modification techniques are represented. EXPERT OPINION With increasing frequency of MDR in cancer cells, it is essential to develop new drugs to inhibit MDR. Using knowledge acquired about ABC transporter's structure, rational design of inhibitors is possible. Also, some herbal products have shown to be potential lead compounds in drug discovery for reversal of MDR.
Collapse
Affiliation(s)
- Mohammad Feyzizadeh
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashkan Barfar
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Nouri
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
14
|
Updated chemical scaffolds of ABCG2 inhibitors and their structure-inhibition relationships for future development. Eur J Med Chem 2022; 241:114628. [DOI: 10.1016/j.ejmech.2022.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022]
|
15
|
Tyner JW, Haderk F, Kumaraswamy A, Baughn LB, Van Ness B, Liu S, Marathe H, Alumkal JJ, Bivona TG, Chan KS, Druker BJ, Hutson AD, Nelson PS, Sawyers CL, Willey CD. Understanding Drug Sensitivity and Tackling Resistance in Cancer. Cancer Res 2022; 82:1448-1460. [PMID: 35195258 PMCID: PMC9018544 DOI: 10.1158/0008-5472.can-21-3695] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022]
Abstract
Decades of research into the molecular mechanisms of cancer and the development of novel therapeutics have yielded a number of remarkable successes. However, our ability to broadly assign effective, rationally targeted therapies in a personalized manner remains elusive for many patients, and drug resistance persists as a major problem. This is in part due to the well-documented heterogeneity of cancer, including the diversity of tumor cell lineages and cell states, the spectrum of somatic mutations, the complexity of microenvironments, and immune-suppressive features and immune repertoires, which collectively require numerous different therapeutic approaches. Here, we describe a framework to understand the types and biological causes of resistance, providing translational opportunities to tackle drug resistance by rational therapeutic strategies.
Collapse
Affiliation(s)
- Jeffrey W. Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Franziska Haderk
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | | | - Linda B. Baughn
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Brian Van Ness
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Himangi Marathe
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Joshi J. Alumkal
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Trever G. Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Keith Syson Chan
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Brian J. Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Alan D. Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Peter S. Nelson
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, New York
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Christopher D. Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
16
|
Zhang R, Huang L, Pan D, Zhang W. Sunitinib induced resistance of endothelial cells by up-regulating P-glycoprotein and PI3K/Akt pathway. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e191102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - Limin Huang
- People’s Hospital of Guizhou Province, China
| | - Di Pan
- Guizhou Medical University, China
| | | |
Collapse
|
17
|
Mansi M, Howley R, Chen B. Methods to Measure the Inhibition of ABCG2 Transporter and Ferrochelatase Activity to Enhance Aminolevulinic Acid-Protoporphyrin IX Fluorescence-Guided Tumor Detection and Resection. Methods Mol Biol 2022; 2394:823-835. [PMID: 35094360 DOI: 10.1007/978-1-0716-1811-0_43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aminolevulinic acid (ALA) has been clinically used as an intraoperative fluorescence probe for protoporphyrin IX (PpIX) fluorescence-guided tumor resection and a PDT agent for cancer treatment. Although tumor tissues often show increased ALA-PpIX fluorescence compared with normal tissues, which enables the use of ALA for tumor imaging and targeting, weak tumor PpIX fluorescence as well as the heterogeneity in tumor fluorescence severely limits its clinical application. Intracellular PpIX in tumor cells is reduced by two major mechanisms, efflux by ATP-binding cassette (ABC) transporters such as ABCG2 and bioconversion to form heme by ferrochelatase (FECH) in the heme biosynthesis pathway. Targeting these two predominant PpIX-reducing mechanisms for the enhancement of ALA-PpIX have yielded a plethora of promising results and stimulated the clinical exploration of these enhancement strategies. Here we describe our methods of evaluating chemicals for the inhibition of ABCG2 transporter and FECH activity. Our goal is to further encourage research and development of novel ABCG2 and FECH inhibitors and promote a rational use of these inhibitors to optimize ALA-based tumor detection and treatment.
Collapse
Affiliation(s)
- Matthew Mansi
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Richard Howley
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA. .,Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Andrabi Q, Ramalingam S. Role of Notch Signalling in Oxidative Stress and Stem Cell Self-Renewal During Colitis and Colon Cancer. HANDBOOK OF OXIDATIVE STRESS IN CANCER: THERAPEUTIC ASPECTS 2022:1623-1637. [DOI: 10.1007/978-981-16-5422-0_82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
19
|
Patel H, Wu ZX, Chen Y, Bo L, Chen ZS. Drug resistance: from bacteria to cancer. MOLECULAR BIOMEDICINE 2021; 2:27. [PMID: 35006446 PMCID: PMC8607383 DOI: 10.1186/s43556-021-00041-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
The phenomenon of drug resistance has been a hindrance to therapeutic medicine since the late 1940s. There is a plethora of factors and mechanisms contributing to progression of drug resistance. From prokaryotes to complex cancers, drug resistance is a prevailing issue in clinical medicine. Although there are numerous factors causing and influencing the phenomenon of drug resistance, cellular transporters contribute to a noticeable majority. Efflux transporters form a huge family of proteins and are found in a vast number of species spanning from prokaryotes to complex organisms such as humans. During the last couple of decades, various approaches in analyses of biochemistry and pharmacology of transporters have led us to understand much more about drug resistance. In this review, we have discussed the structure, function, potential causes, and mechanisms of multidrug resistance in bacteria as well as cancers.
Collapse
Affiliation(s)
- Harsh Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Yanglu Chen
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA.
| |
Collapse
|
20
|
Gupta P, Kumar RV, Kwon CH, Chen ZS. Synthesis and anticancer evaluation of sulfur containing 9-anilinoacridines. Recent Pat Anticancer Drug Discov 2021; 17:102-119. [PMID: 34323200 DOI: 10.2174/1574892816666210728122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 04/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND DNA topoisomerases are a class of enzymes that play a critical role in fundamental biological processes of replication, transcription, recombination, repair and chromatin remodeling. Amsacrine (m-AMSA), the best-known compound of 9-anilinoacridines series was one of the first DNA-intercalating agents to be considered as a Topoisomerase II inhibitor. OBJECTIVE A series of sulfur containing 9-anilinoacridines related to amsacrine were synthesized and evaluated for their anticancer activity. METHODS Cell viability was assessed by the MTT assay. The topoisomerase II inhibitory assay was performed using the Human topoisomerase II Assay kit and flow cytometry was used to evaluate the effects on cell cycle of K562 cells. Molecular docking was performed using Schrödinger Maestro program. RESULTS Compound 36 was found to be the most cytotoxic of the sulfide series against SW620, K562, and MCF-7. The limited SAR suggested the importance of the methansulfonamidoacetamide side chain functionality, the lipophilicity and relative metabolic stability of 36 in contributing to the cytotoxicity. Topoisomerase II α inhibitory activity appeared to be involved in the cytotoxicity of 36 through inhibition of decatenation of kinetoplast DNA (kDNA) in a concentration dependent manner. Cell cycle analysis further showed the Topo II inhibition through accumulation of K562 cells in G2/M phase of cell cycle. Docking of 36 into the Topo II α-DNA complex suggested that it may be an allosteric inhibitor of Topo II α. CONCLUSION Compound 36 exhibits anticancer activity by inhibiting topoisomerase II and it could further be evaluated in in vivo models.
Collapse
Affiliation(s)
- Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Radhika V Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Chul-Hoon Kwon
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| |
Collapse
|
21
|
Kaehler M, Cascorbi I. Pharmacogenomics of Impaired Tyrosine Kinase Inhibitor Response: Lessons Learned From Chronic Myelogenous Leukemia. Front Pharmacol 2021; 12:696960. [PMID: 34262462 PMCID: PMC8273252 DOI: 10.3389/fphar.2021.696960] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/17/2021] [Indexed: 12/25/2022] Open
Abstract
The use of small molecules became one key cornerstone of targeted anti-cancer therapy. Among them, tyrosine kinase inhibitors (TKIs) are especially important, as they were the first molecules to proof the concept of targeted anti-cancer treatment. Since 2001, TKIs can be successfully used to treat chronic myelogenous leukemia (CML). CML is a hematologic neoplasm, predominantly caused by reciprocal translocation t(9;22)(q34;q11) leading to formation of the so-called BCR-ABL1 fusion gene. By binding to the BCR-ABL1 kinase and inhibition of downstream target phosphorylation, TKIs, such as imatinib or nilotinib, can be used as single agents to treat CML patients resulting in 80 % 10-year survival rates. However, treatment failure can be observed in 20-25 % of CML patients occurring either dependent or independent from the BCR-ABL1 kinase. Here, we review approved TKIs that are indicated for the treatment of CML, their side effects and limitations. We point out mechanisms of TKI resistance focusing either on BCR-ABL1-dependent mechanisms by summarizing the clinically observed BCR-ABL1-mutations and their implications on TKI binding, as well as on BCR-ABL1-independent mechanisms of resistances. For the latter, we discuss potential mechanisms, among them cytochrome P450 implications, drug efflux transporter variants and expression, microRNA deregulation, as well as the role of alternative signaling pathways. Further, we give insights on how TKI resistance could be analyzed and what could be learned from studying TKI resistance in CML in vitro.
Collapse
Affiliation(s)
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
22
|
Cheng F, Pan Q, Gao W, Pu Y, Luo K, He B. Reversing Chemotherapy Resistance by a Synergy between Lysosomal pH-Activated Mitochondrial Drug Delivery and Erlotinib-Mediated Drug Efflux Inhibition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29257-29268. [PMID: 34130450 DOI: 10.1021/acsami.1c03196] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mitochondrial drug delivery has attracted increasing attention in various mitochondrial dysfunction-associated disorders such as cancer owing to the important role of energy production. Herein, we report a lysosomal pH-activated mitochondrial-targeting polymer nanoparticle to overcome drug resistance by a synergy between mitochondrial delivery of doxorubicin (DOX, an anticancer drug) and erlotinib-mediated inhibition of drug efflux. The obtained nanoparticles, DE-NPs could maintain negative charge and have long blood circulation while undergoing charge reversal at lysosomal pH after internalization by cancer cells. Thereafter, the acidity-activated polycationic and hydrophobic polypeptide domains boost lysosomal escape and mitochondrial-targeting drug delivery, leading to mitochondrial dysfunction, ATP suppression, and cell apoptosis. Moreover, the suppressed ATP supply and erlotinib enabled dual inhibition of drug efflux by DOX-resistant MCF-7/ADR cells, leading to significantly augmented intracellular DOX accumulation and a synergistic anticancer effect with a 17-fold decrease of IC50 relative to DOX. In vivo antitumor study demonstrates that DE-NPs efficiently suppressed the tumor burden in MCF-7/ADR tumor-bearing mice and led to negligible toxicity. This work establishes that a combination of mitochondrial drug delivery and drug efflux inhibition could be a promising strategy for combating multidrug resistance.
Collapse
Affiliation(s)
- Furong Cheng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Center for Translational Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
- Department of Pharmaceutics, College of Pharmacy, Virginia Commonwealth University, Richmond 23219, Virginia, United States
| | - Qingqing Pan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Kui Luo
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
23
|
Gao J, Hou D, Hu P, Mao G. Curcumol increases the sensitivity of colon cancer to 5-FU by regulating Wnt/β-catenin signaling. Transl Cancer Res 2021; 10:2437-2450. [PMID: 35116559 PMCID: PMC8798486 DOI: 10.21037/tcr-21-689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022]
Abstract
Background 5-fluorouracil (5-FU) resistance is the leading cause of treatment failure in colon cancer. Combination therapy is an effective strategy to inhibit cancer cells and prevent drug resistance. Therefore, we studied the antitumor effect of curcumol alone or combined with 5-FU on human colon cancer drug-resistant cells. Methods The 5-FU resistant HCT116 cell line (HCT116/5-FU) was established by repeated exposure to gradually increasing concentrations of 5-FU; Cell viability was measured by cell counting kit-8 (CCK-8); apoptosis rate of HCT116 cells was detected using Annexin V-fluorescein isothiocyanate (FITC) assay kit; cell proliferation and invasion were detected using colony formation assays, wound healing assay and transwell invasion assays; activity of transplanted tumor in vivo in specific pathogen free (SPF) BALB/c nude mice (6 weeks old, male) was monitored by bioluminescence imaging, immunohistochemistry and western blot analysis. Results Our study showed the potent antitumor effect of curcumol by induction of apoptosis, inhibition of proliferation, invasion, migration, and improvement of the therapeutic efficacy of 5-FU toward human colon cancer HCT116 cells. From our results, curcumol could chemosensitize 5-FU-resistant HCT116 cells. The combination of curcumol and 5-FU exerted a synergistic inhibitory effect on the induction of apoptosis. Also, this combination inhibited the proliferation, invasion, and migration of both chemo-resistant and sensitive cells. Curcumol treatment decreased multidrug resistance-associated protein 2 (MRP-2), P-glycoprotein (P-gp), survivin, and β-catenin expression, which correlated with multidrug resistance (MDR) and the target genes of Wnt/β-catenin. It significantly increased the p-β-catenin level and Bad/Bcl-2 ratio in HCT116/5-FU cells compared with 5-FU treatment. In vivo, curcumol significantly inhibited the growth of transplanted tumors and the expression of Ki-67, proliferating cell nuclear antigen (PCNA), and vascular endothelial growth factor (VEGF) in colon cancer cells. Conclusions Curcumol as a potential chemotherapeutic agent combined with 5-FU can overcome colon cancer resistance.
Collapse
Affiliation(s)
- Jinfeng Gao
- Department of Oncology, Affiliated Nanjing Jiangbei Hospital to Nantong University, Nanjing, China
| | - Daorong Hou
- Animal Core Facility, Nanjing Medical University, Nanjing, China
| | - Ping Hu
- Department of Oncology, Affiliated Nanjing Jiangbei Hospital to Nantong University, Nanjing, China
| | - Guoxin Mao
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
24
|
Zhu YX, Jia HR, Duan QY, Wu FG. Nanomedicines for combating multidrug resistance of cancer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1715. [PMID: 33860622 DOI: 10.1002/wnan.1715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Chemotherapy typically involves the use of specific chemodrugs to inhibit the proliferation of cancer cells, but the frequent emergence of a variety of multidrug-resistant cancer cells poses a tremendous threat to our combat against cancer. The fundamental causes of multidrug resistance (MDR) have been studied for decades, and can be generally classified into two types: one is associated with the activation of diverse drug efflux pumps, which are responsible for translocating intracellular drug molecules out of the cells; the other is linked with some non-efflux pump-related mechanisms, such as antiapoptotic defense, enhanced DNA repair ability, and powerful antioxidant systems. To overcome MDR, intense efforts have been made to develop synergistic therapeutic strategies by introducing MDR inhibitors or combining chemotherapy with other therapeutic modalities, such as phototherapy, gene therapy, and gas therapy, in the hope that the drug-resistant cells can be sensitized toward chemotherapeutics. In particular, nanotechnology-based drug delivery platforms have shown the potential to integrate multiple therapeutic agents into one system. In this review, the focus was on the recent development of nanostrategies aiming to enhance the efficiency of chemotherapy and overcome the MDR of cancer in a synergistic manner. Different combinatorial strategies are introduced in detail and the advantages as well as underlying mechanisms of why these strategies can counteract MDR are discussed. This review is expected to shed new light on the design of advanced nanomedicines from the angle of materials and to deepen our understanding of MDR for the development of more effective anticancer strategies. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
25
|
Moosavi F, Giovannetti E, Peters GJ, Firuzi O. Combination of HGF/MET-targeting agents and other therapeutic strategies in cancer. Crit Rev Oncol Hematol 2021; 160:103234. [PMID: 33497758 DOI: 10.1016/j.critrevonc.2021.103234] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/29/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
MET receptor has emerged as a druggable target across several human cancers. Agents targeting MET and its ligand hepatocyte growth factor (HGF) including small molecules such as crizotinib, tivantinib and cabozantinib or antibodies including rilotumumab and onartuzumab have proven their values in different tumors. Recently, capmatinib was approved for treatment of metastatic lung cancer with MET exon 14 skipping. In this review, we critically examine the current evidence on how HGF/MET combination therapies may take advantage of synergistic effects, overcome primary or acquired drug resistance, target tumor microenvironment, modulate drug metabolism or tackle pharmacokinetic issues. Preclinical and clinical studies on the combination of HGF/MET-targeted agents with conventional chemotherapeutics or molecularly targeted treatments (including EGFR, VEGFR, HER2, RAF/MEK, and PI3K/Akt targeting agents) and also the value of biomarkers are examined. Our deeper understanding of molecular mechanisms underlying successful pharmacological combinations is crucial to find the best personalized treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
26
|
Wang W, Liang Z, Ma P, Zhao Q, Dai M, Zhu J, Han X, Xu H, Chang Q, Zhen Y. Application of CRISPR/Cas9 System to Reverse ABC-Mediated Multidrug Resistance. Bioconjug Chem 2021; 32:73-81. [PMID: 33393280 DOI: 10.1021/acs.bioconjchem.0c00627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multidrug resistance (MDR) is the main obstacle in cancer chemotherapy. ATP-binding cassette (ABC) transporters can transport a wide range of antitumor drugs out of cells, which is the most common reason in the development of resistance to drugs. Currently, various therapeutic strategies are used to reverse MDR, among which CRISPR/Cas9 gene editing technique is expected to be an effective way. Here, we reviewed the research progress of reversing ABC-mediated drug resistance by CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Wei Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Ze Liang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Pengfei Ma
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Qi Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Mengyuan Dai
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Jie Zhu
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Hong Xu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Qingyan Chang
- Pharmacy Department, Dalian Sixth People Hospital of Dalian Medical University, Dalian 116031, China
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|
27
|
Chen C, Ai QD, Wei YH. Kanglaite enhances the efficacy of cisplatin in suppression of hepatocellular carcinoma via inhibiting CKLF1 mediated NF-κB pathway and regulating transporter mediated drug efflux. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113388. [PMID: 32918990 DOI: 10.1016/j.jep.2020.113388] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kanglaite (KLT) is an active extract of the Coix lacryma-jobi seed, which can benefit Qi and nourish Yin, and disperse the accumulation of evils. It is used as a biphasic broad-spectrum anti-cancer drug, and shows synergistic effects with radiotherapy and chemotherapy. However, the mechanism of KLT combined with cisplatin (CDDP) against hepatocellular carcinoma (HCC) has not been elucidated. AIM OF THE STUDY The aim of present study was to investigate the potential synergistic effects of KLT and CDDP on HepG2 cells, discussing the possible mechanisms from the perspective of CKLF1 and NF-κB mediated inflammatory response and chemoresistance, and the involvement of drug efflux transporters. MATERIALS AND METHODS CDDP injured HepG2 cells were used to investigate the effects of KLT on chemotherapeutics treated HCC. Effects of KLT pretreatment on CDDP injured HepG2 cells were determined by MTT, wound healing assay, and transwell assay. Expression of chemokine-like factor 1 (CKLF1) and activation of nuclear factor κB (NF-κB) were examined by qPCR, western blot, and immunofluorescence staining. Furthermore, to study the role of CKLF1 in KLT mediated effects on this CDDP injured HCC cell model, HepG2 cells overexpressed with CKLF1 gene were used. Cell viability and NF-κB activation were investigated. Moreover, TNF-α and IL-1β levels were measured by Elisa analysis and western blot to evaluate the inflammatory response. Additionally, ATP-binding cassette (ABC) drug efflux transporters, MDR1, MRP2, and BCRP were also determined in present study. RESULTS KLT pretreatment followed by CDDP treatment was found to show synergistic effects, which showed by decreased cell viability, migration and invasion ability of HepG2 cells. Expression of CKLF1 enhanced significantly in CDDP treated HepG2 cells, and KLT decreased this elevation obviously. Furthermore, CDDP activated NF-κΒ and promoted translocation of NF-κB toward the nucleus. KLT inhibited the activation of NF-κΒ, which sensitized cancer cells. Overexpression of CKLF1 reversed the effects of KLT on CDDP injured HepG2 cells, which exhibited by increased cell viability and enhanced activation of NF-κΒ. CDDP induced NF-κΒ activation could also lead to excessive inflammatory response, and KLT can suppress the aggravating inflammation which may be beneficial for tumor progression. Furthermore, we found that ABC drug efflux transporters MDR1, MRP2, and BCRP in CDDP treated HepG2 cells were decreased when pretreated with KLT. CONCLUSIONS KLT pretreatment may increase the effects of CDDP on HepG2 cells, by exhibiting cooperative effects on suppression of HepG2 cells. The mechanisms may partly by inhibiting CKLF1 mediated NF-κB pathway, which may contribute to inflammation of tumor microenvironment and chemoresistance of CDDP. Inhibition of transporter-mediated drug efflux is also involved in KLT mediated sensitization effects of CDDP.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Qi-di Ai
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, China.
| | - Yu-Hui Wei
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
28
|
Seelig A. P-Glycoprotein: One Mechanism, Many Tasks and the Consequences for Pharmacotherapy of Cancers. Front Oncol 2020; 10:576559. [PMID: 33194688 PMCID: PMC7649427 DOI: 10.3389/fonc.2020.576559] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022] Open
Abstract
P-glycoprotein or multidrug resistance protein (MDR1) is an adenosine triphosphate (ATP) binding cassette transporter (ABCB1) intensely investigated because it is an obstacle to successful pharmacotherapy of cancers. P-glycoprotein prevents cellular uptake of a large number of structurally and functionally diverse compounds, including most cancer therapeutics and in this way causes multidrug resistance (MDR). To overcome MDR, and thus improve cancer treatment, an understanding of P-glycoprotein inhibition at the molecular level is required. With this goal in mind, we propose rules that predict whether a compound is a modulator, substrate, inhibitor, or inducer of P-glycoprotein. This new set of rules is derived from a quantitative analysis of the drug binding and transport properties of P-glycoprotein. We further discuss the role of P-glycoprotein in immune surveillance and cell metabolism. Finally, the predictive power of the proposed rules is demonstrated with a set of FDA approved drugs which have been repurposed for cancer therapy.
Collapse
Affiliation(s)
- Anna Seelig
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
29
|
Li Y, Li D, Wang P, Zhu W, Yin W. Tetrandrine partially reverses multidrug resistance of human laryngeal cancer cells. J Int Med Res 2020; 48:300060520944706. [PMID: 32776811 PMCID: PMC7418264 DOI: 10.1177/0300060520944706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/29/2020] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Studies have demonstrated that tetrandrine reverses multidrug resistance (MDR) in animal models or cell lines derived from multiple cancer types. We examined the potential MDR reversal activity of tetrandrine in a multidrug-resistant variant of a human laryngeal cancer Hep-2 cell line and explored potential mechanisms involved. METHODS We developed the multidrug-resistant variant cell line (Hep-2/v) by exposing Hep-2 cells to stepwise increasing concentrations of vincristine (VCR). After Hep-2 or Hep-2/v cells were treated with tetrandrine (2.52 µg/mL), MDR was measured by MTT assay, rhodamine 123 retention was measured by flow cytometry, and mRNA and protein expression of multidrug resistance 1 (MDR1), regulator of G-protein signaling 10 (RGS10), high-temperature requirement protein A1 (HTRA1), and nuclear protein 1 (NUPR1) were detected by real-time reverse transcription-PCR and western blotting, respectively. RESULTS Tetrandrine significantly lowered the half-maximal inhibitory concentration (IC50) of VCR in Hep-2/v cells, resulting in a 2.22-fold reversal of MDR. Treatment with tetrandrine increased rhodamine 123 retention, downregulated the mRNA and protein expression of MDR1 and RGS10, and upregulated expression of HTRA1 in Hep-2/v cells. CONCLUSION We showed that tetrandrine exerts anti-MDR activity in Hep-2/v cells, possibly by inhibiting MDR1 overexpression-mediated drug efflux and by altering expression of HTRA1 and RGS10.
Collapse
Affiliation(s)
- Yachun Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Clinical Hospital, Norman Bethune College of Medicine of Jilin University, Changchun, China
| | - Dongjie Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Clinical Hospital, Norman Bethune College of Medicine of Jilin University, Changchun, China
| | - Ping Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Clinical Hospital, Norman Bethune College of Medicine of Jilin University, Changchun, China
| | - Wei Zhu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Clinical Hospital, Norman Bethune College of Medicine of Jilin University, Changchun, China
| | - Wanzhong Yin
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Clinical Hospital, Norman Bethune College of Medicine of Jilin University, Changchun, China
| |
Collapse
|
30
|
The Multidrug Resistance-Reversing Activity of a Novel Antimicrobial Peptide. Cancers (Basel) 2020; 12:cancers12071963. [PMID: 32707710 PMCID: PMC7409168 DOI: 10.3390/cancers12071963] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 11/16/2022] Open
Abstract
The overexpression of ATP-binding cassette (ABC) transporters is a common cause of multidrug resistance (MDR) in cancers. The intracellular drug concentration of cancer cells can be decreased relative to their normal cell counterparts due to increased expression of ABC transporters acting as efflux pumps of anticancer drugs. Over the past decades, antimicrobial peptides have been investigated as a new generation of anticancer drugs and some of them were reported to have interactions with ABC transporters. In this article, we investigated several novel antimicrobial peptides to see if they could sensitize ABCB1-overexpressing cells to the anticancer drugs paclitaxel and doxorubicin, which are transported by ABCB1. It was found that peptide XH-14C increased the intracellular accumulation of ABCB1 substrate paclitaxel, which demonstrated that XH-14C could reverse ABCB1-mediated MDR. Furthermore, XH-14C could stimulate the ATPase activity of ABCB1 and the molecular dynamic simulation revealed a stable binding pose of XH-14C-ABCB1 complex. There was no change on the expression level or the location of ABCB1 transporter with the treatment of XH-14C. Our results suggest that XH-14C in combination with conventional anticancer agents could be used as a novel strategy for cancer treatment.
Collapse
|
31
|
Kansara S, Pandey V, Lobie PE, Sethi G, Garg M, Pandey AK. Mechanistic Involvement of Long Non-Coding RNAs in Oncotherapeutics Resistance in Triple-Negative Breast Cancer. Cells 2020; 9:cells9061511. [PMID: 32575858 PMCID: PMC7349003 DOI: 10.3390/cells9061511] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most lethal forms of breast cancer (BC), with a significant disease burden worldwide. Chemoresistance and lack of targeted therapeutics are major hindrances to effective treatments in the clinic and are crucial causes of a worse prognosis and high rate of relapse/recurrence in patients diagnosed with TNBC. In the last decade, long non-coding RNAs (lncRNAs) have been found to perform a pivotal role in most cellular functions. The aberrant functional expression of lncRNAs plays an ever-increasing role in the progression of diverse malignancies, including TNBC. Therefore, lncRNAs have been recently studied as predictors and modifiers of chemoresistance. Our review discusses the potential involvement of lncRNAs in drug-resistant mechanisms commonly found in TNBC and highlights various therapeutic strategies to target lncRNAs in this malignancy.
Collapse
Affiliation(s)
- Samarth Kansara
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India;
| | - Vijay Pandey
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518005, China; (V.P.); (P.E.L.)
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Peter E. Lobie
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518005, China; (V.P.); (P.E.L.)
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (G.S.); (A.K.P.)
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, India;
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India;
- Correspondence: (G.S.); (A.K.P.)
| |
Collapse
|
32
|
Analysis of the Circadian Regulation of Cancer Hallmarks by a Cross-Platform Study of Colorectal Cancer Time-Series Data Reveals an Association with Genes Involved in Huntington's Disease. Cancers (Basel) 2020; 12:cancers12040963. [PMID: 32295075 PMCID: PMC7226183 DOI: 10.3390/cancers12040963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence points to a link between circadian clock dysfunction and the molecular events that drive tumorigenesis. Here, we investigated the connection between the circadian clock and the hallmarks of cancer in an in vitro model of colorectal cancer (CRC). We used a cross-platform data normalization method to concatenate and compare available microarray and RNA-sequencing time series data of CRC cell lines derived from the same patient at different disease stages. Our data analysis suggests differential regulation of molecular pathways between the CRC cells and identifies several of the circadian and likely clock-controlled genes (CCGs) as cancer hallmarks and circadian drug targets. Notably, we found links of the CCGs to Huntington’s disease (HD) in the metastasis-derived cells. We then investigated the impact of perturbations of our candidate genes in a cohort of 439 patients with colon adenocarcinoma retrieved from the Cancer Genome Atlas (TCGA). The analysis revealed a correlation of the differential expression levels of the candidate genes with the survival of patients. Thus, our study provides a bioinformatics workflow that allows for a comprehensive analysis of circadian properties at different stages of colorectal cancer, and identifies a new association between cancer and HD.
Collapse
|
33
|
Zajdel A, Wolny D, Kałucka-Janik M, Wilczok A. Paclitaxel in breast cancer – drug resistance and strategies to counteract it. POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.5251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite significant progress in the last few decades in breast cancer biology and the use of different therapeutic strategies, this cancer remains a serious clinical problem. Paclitaxel (PTX) is used to treat breast cancer both as a monotherapy and in combination with other anticancer drugs depending on the severity of the cancer, the presence of metastases and previous therapeutic management. It is characterized by high effectiveness both in early breast cancer and in metastatic breast cancer. Primary or acquired drug resistance of tumour cells to taxanes is a significant clinical problem in the treatment of various histological types of breast cancer. The main problem of resistance of tumour cells is the complexity and multifactorial nature of this phenomenon, which is conditioned by numerous different mechanisms that interact with each other. Among the known mechanisms of breast cancer cells resistance to PTX, the most important are the active removal of the drug from the cell related to the increased activity of ABC family membrane transporters, enhanced drug detoxification by cytochrome P450, CYP3A4/5 and CYP2C8 enzymes, changes within the molecular targets of PTX, microtubule and disorders of microtubule associated protein (MAPs) or apoptosis. This paper presents the latest reports on the mechanisms of drug resistance of breast cancer cells to PTX, pointing to modern strategies to counteract this adverse phenomenon.
Collapse
Affiliation(s)
- Alicja Zajdel
- Katedra i Zakład Biofarmacji, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej w Sosnowcu, Śląski Uniwersytet Medyczny, Katowice, Polska
| | - Daniel Wolny
- Katedra i Zakład Biofarmacji, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej w Sosnowcu, Śląski Uniwersytet Medyczny, Katowice, Polska
| | - Magdalena Kałucka-Janik
- Katedra i Zakład Biofarmacji, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej w Sosnowcu, Śląski Uniwersytet Medyczny, Katowice, Polska
| | - Adam Wilczok
- Katedra i Zakład Biofarmacji, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej w Sosnowcu, Śląski Uniwersytet Medyczny, Katowice, Polska
| |
Collapse
|
34
|
Amawi H, Sim HM, Tiwari AK, Ambudkar SV, Shukla S. ABC Transporter-Mediated Multidrug-Resistant Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:549-580. [PMID: 31571174 DOI: 10.1007/978-981-13-7647-4_12] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette (ABC) transporters are involved in active pumping of many diverse substrates through the cellular membrane. The transport mediated by these proteins modulates the pharmacokinetics of many drugs and xenobiotics. These transporters are involved in the pathogenesis of several human diseases. The overexpression of certain transporters by cancer cells has been identified as a key factor in the development of resistance to chemotherapeutic agents. In this chapter, the localization of ABC transporters in the human body, their physiological roles, and their roles in the development of multidrug resistance (MDR) are reviewed. Specifically, P-glycoprotein (P-GP), multidrug resistance-associated proteins (MRPs), and breast cancer resistance protein (BCRP/ABCG2) are described in more detail. The potential of ABC transporters as therapeutic targets to overcome MDR and strategies for this purpose are discussed as well as various explanations for the lack of efficacy of ABC drug transporter inhibitors to increase the efficiency of chemotherapy.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Hong-May Sim
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
35
|
Assaraf YG, Brozovic A, Gonçalves AC, Jurkovicova D, Linē A, Machuqueiro M, Saponara S, Sarmento-Ribeiro AB, Xavier CP, Vasconcelos MH. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat 2019; 46:100645. [PMID: 31585396 DOI: 10.1016/j.drup.2019.100645] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
|
36
|
Chk1 Inhibitor MK-8776 Restores the Sensitivity of Chemotherapeutics in P-glycoprotein Overexpressing Cancer Cells. Int J Mol Sci 2019; 20:ijms20174095. [PMID: 31443367 PMCID: PMC6747525 DOI: 10.3390/ijms20174095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
P-glycoprotein (P-gp), which is encoded by the ATP-binding cassette (ABC) transporter subfamily B member 1 (ABCB1) gene, is one of the most pivotal ABC transporters that transport its substrates across the cell membrane. Its overexpression is one of the confirmed causes of multidrug resistance (MDR), which results in the failure of cancer treatment. Here, we report that checkpoint kinase (Chk) 1 inhibitor MK-8776, a drug candidate in clinical trial, can restore the sensitivity of chemotherapeutics that are substrates of P-gp in KB-C2, SW620/Ad300 cells and human embryonic kidney (HEK)293/ABCB1 cells that overexpress P-gp. MK-8776 remarkably enhanced the cellular [3H]-paclitaxel accumulation and suppressed the efflux function of P-gp without reducing its expression and affecting its cellular localization in cancer cells. Furthermore, MK-8776 (0–40 μM) stimulated the activity of ATPase in P-gp, which was 4.1-fold greater than the control. In addition, MK-8776 formed a cation–π bond and π–π interaction with key residues of the substrate-binding site in P-gp, as indicated by computer-aided molecular docking study. Our study indicated that MK-8776 may significantly enhance the sensitivity of chemotherapeutics that are substrates of P-gp, providing important information for its application in the reversal of MDR.
Collapse
|
37
|
Singh K, Dwivedi GR, Sanket AS, Pati S. Therapeutic Potential of Endophytic Compounds: A Special Reference to Drug Transporter Inhibitors. Curr Top Med Chem 2019; 19:754-783. [DOI: 10.2174/1568026619666190412095105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/11/2022]
Abstract
From the discovery to the golden age of antibiotics (miracle), millions of lives have been saved. The era of negligence towards chemotherapeutic agents gave birth to drug resistance. Among all the regulators of drug resistance, drug transporters are considered to be the key regulators for multidrug resistance. These transporters are prevalent from prokaryotes to eukaryotes. Endophytes are one of the unexplored wealths of nature. Endophytes are a model mutualistic partner of plants. They are the reservoir of novel therapeutics. The present review deals with endophytes as novel drug resistance reversal agents by inhibiting the drug transporters across the genera. This review also focuses on drug transporters, and mutualistic chemical diversity, exploring drug transporter modulating potential of endophytes.
Collapse
Affiliation(s)
- Khusbu Singh
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Gaurav Raj Dwivedi
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - A. Swaroop Sanket
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Sanghamitra Pati
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| |
Collapse
|
38
|
Wu KJ, Liu X, Wong SY, Zhou Y, Ma DL, Leung CH. Synthesis and Evaluation of Dibenzothiophene Analogues as Pin1 Inhibitors for Cervical Cancer Therapy. ACS OMEGA 2019; 4:9228-9234. [PMID: 31460012 PMCID: PMC6648297 DOI: 10.1021/acsomega.9b00281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/08/2019] [Indexed: 05/03/2023]
Abstract
The peptidyl-prolyl isomerase Pin1 is correlated with the progression of cervical cancer via regulating numerous oncogenic and tumor suppressor pathways. p65 is a crucial regulator of tumorigenesis that is regulated by Pin1, and p65 signaling suppression can enhance the antitumor efficacy of doxorubicin (DOX). Here, we utilized a structural mimicry approach to synthesize a series of dibenzothiophene analogues and evaluated their ability to inhibit Pin1 activity. Compound 1a was identified as a potent Pin1 inhibitor that inhibited p65 signaling in vitro and in cervical cancer cells. Moreover, compound 1a enhanced the cytotoxicity of DOX in cervical cancer cells via reducing p65 nuclear accumulation and enhancing DOX uptake. These compounds are promising scaffolds for developing more potent Pin1 inhibitors against cervical cancer, either alone or in combination with anticancer drugs such as DOX.
Collapse
Affiliation(s)
- Ke-Jia Wu
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Macao, 999078, China
| | - Xie Liu
- School
of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou New District, Suzhou, Jiangsu 215009, China
| | - Suk-Yu Wong
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| | - Yuyang Zhou
- School
of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou New District, Suzhou, Jiangsu 215009, China
| | - Dik-Lung Ma
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| | - Chung-Hang Leung
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Macao, 999078, China
| |
Collapse
|
39
|
Gao HL, Xia YZ, Zhang YL, Yang L, Kong LY. Vielanin P enhances the cytotoxicity of doxorubicin via the inhibition of PI3K/Nrf2-stimulated MRP1 expression in MCF-7 and K562 DOX-resistant cell lines. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152885. [PMID: 31009836 DOI: 10.1016/j.phymed.2019.152885] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/01/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cancer cells that are resistant to structurally and mechanically unrelated anticancer drugs are said to have multidrug resistance (MDR). The overexpression of the ATP-binding cassette (ABC) transporter is one of the most important mechanisms of MDR. Vielanin P (VP), a dimeric guaiane from the leaves of Xylopia vielana, has the potential to reverse multidrug resistance. PURPOSE To evaluate the meroterpenoid compound VP as a low cytotoxicity MDR regulator and the related mechanisms. METHODS Cell viability was determined by CCK-8 and MTT assays. Apoptosis and the accumulation of doxorubicin (DOX) and 5(6)-carboxyfluorescein diacetate (CFDA) were determined by flow cytometry. We determined mRNA levels by quantitative real-time polymerase chain reaction (qRT-PCR). Protein levels were analyzed by Western blotting and immunofluorescence. RESULTS In the MCF-7 and K562 DOX-resistant cell lines, VP treatment (10 μM or 20 μM) enhanced the activity of chemotherapeutic agents. We found that VP selectively inhibited MRP1 mRNA but not MDR1 mRNA. VP enhanced DOX-induced apoptosis and reduced colony formation in the presence of DOX in drug-resistant cells. Moreover, VP increased the accumulation of DOX and the MRP1-specific substrate CFDA. In addition, VP reversed MRP1 protein levels and the accumulation of DOX and CFDA in MRP1-overexpressing MCF-7 and K562 cells. Thus, the mechanism of MDR reversal by VP is MRP1-dependent. Furthermore, we found that the inhibitory effect of VP on MRP1 is PI3K/Nrf2-dependent. CONCLUSION These results support the potential therapeutic value of VP as an MDR-reversal agent by inhibiting MRP1 via PI3K/Nrf2 signaling.
Collapse
Affiliation(s)
- Hong-Liang Gao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Ya-Long Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| |
Collapse
|
40
|
Yunus M, Jansson PJ, Kovacevic Z, Kalinowski DS, Richardson DR. Tumor-induced neoangiogenesis and receptor tyrosine kinases - Mechanisms and strategies for acquired resistance. Biochim Biophys Acta Gen Subj 2019; 1863:1217-1225. [PMID: 31029846 DOI: 10.1016/j.bbagen.2019.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Angiogenesis is essential for tumor growth, proliferation and metastasis. Tumor-related angiogenesis is complex and involves multiple signaling pathways. Controlling angiogenesis is a promising strategy for limiting cancer progression. SCOPE OF REVIEW Several receptor tyrosine kinases influence the angiogenic response via multiple signaling molecules and pathways. Understanding the functional interaction of kinases in the angiogenic process and development of resistance to kinase inhibition is essential for future successful therapeutic strategies. MAJOR CONCLUSIONS Strategies that target receptor tyrosine kinases and other tumor microenvironment factors simultaneously, or sequentially, are required for achieving an efficient and robust anti-angiogenic response. GENERAL SIGNIFICANCE Understanding the molecular mechanism of angiogenesis has improved, and has led, to the clinical development and approval of anti-angiogenic drugs. While many patients have benefited from these agents, their limited efficacy and the development of resistance remains a challenge. This review highlights current therapies and challenges associated with targeting angiogenesis in cancer.
Collapse
Affiliation(s)
- Madiha Yunus
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, New South Wales 2006, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, New South Wales 2006, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
41
|
Cytotoxic Effect of Paclitaxel and Lapatinib Co-Delivered in Polylactide- co-Poly(ethylene glycol) Micelles on HER-2-Negative Breast Cancer Cells. Pharmaceutics 2019; 11:pharmaceutics11040169. [PMID: 30959904 PMCID: PMC6523169 DOI: 10.3390/pharmaceutics11040169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022] Open
Abstract
To find better strategies to enhance the cytotoxic effect of paclitaxel (PTX) and lapatinib (LAP) against breast cancer cells, we analyzed the efficacy of a novel delivery system containing polylactide-co-poly(ethylene glycol) (PLA-PEG) filomicelles of over 100 nm in length and spherical micelles of approximately 20 nm in diameter. The 1H NMR measurements confirmed the incorporation of PTX and LAP into micelles. Analysis of the drug release mechanism revealed the diffusion-controlled release of LAP and anomalous transport of PTX. Drug content analysis in lyophilized micelles and micellar solution showed their good storage stability for at least 6 weeks. Blank micelles, LAP-loaded micelles and free LAP did not affect MCF-7 breast cancer cell proliferation, suggesting that the cytotoxicity of PTX-, PTX/LAP-loaded micelles, and the binary mixture of free PTX and LAP was solely caused by PTX. PTX/LAP-loaded micelles showed greater toxicity compared to the binary mixture of PTX and LAP after 48 h and 72 h. Only free PTX alone induced P-gp activity. This study showed the feasibility of using a LAP and PTX combination to overcome MDR in MCF-7 cells, particularly when co-loaded into micelles. We suggest that PTX/LAP micelles can be applicable not only for the therapy of HER-2-positive, but also HER-2-negative breast cancers.
Collapse
|
42
|
Feng W, Su Z, Yin Q, Zong W, Shen X, Ju S. ncRNAs associated with drug resistance and the therapy of digestive system neoplasms. J Cell Physiol 2019; 234:19143-19157. [PMID: 30941775 DOI: 10.1002/jcp.28551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 12/19/2022]
Abstract
Digestive system cancer remains a common cancer and the main cause of cancer-related death worldwide. Drug resistance is a major challenge in the therapy of digestive system cancer, and represents a primary obstacle in the treatment of cancer by restricting the efficiency of both traditional chemotherapy and biological therapies. Existing studies indicate that noncoding RNAs play an important role in the evolution and progression of drug resistance in digestive system cancer, mainly by modulating drug transporter-related proteins, DNA damage repair, cell-cycle-related proteins, cell apoptosis-related proteins, drug target-related proteins, and the tumor microenvironment. In this review, we address the potential mechanisms of ncRNAs underlying drug resistance in digestive system tumors and discuss the possible application of ncRNAs against drug resistance in digestive system tumors.
Collapse
Affiliation(s)
- Wei Feng
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhangyao Su
- School of Medicine, Nantong University, Nantong, China
| | - Qingqing Yin
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Zong
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xianjuan Shen
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
43
|
Narayanan S, Gupta P, Nazim U, Ali M, Karadkhelkar N, Ahmad M, Chen ZS. Anti-cancer effect of Indanone-based thiazolyl hydrazone derivative on colon cancer cell lines. Int J Biochem Cell Biol 2019; 110:21-28. [PMID: 30794858 DOI: 10.1016/j.biocel.2019.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/26/2019] [Accepted: 02/19/2019] [Indexed: 11/17/2022]
Abstract
Colorectal cancer is the third leading cause of cancer related deaths in the United States. Currently, Irinotecan, a topoisomerase I inhibitor, is an approved anti-cancer drug for the treatment of patients with advanced or recurrent colorectal cancer. Considering low response rate and events of high toxicity caused by irinotecan, we evaluated a series of thirteen thiazolyl hydrazone derivatives of 1-indanone for their potential antineoplastic activity and four compounds showed promising anti-cancer activity against most of the tested colon cancer cell lines with IC50 values ranging from 0.41 ± 0.19 to 6.85 ± 1.44 μM. It is noteworthy that the compound, N-Indan-1-ylidene-N'-(4-Biphenyl-4-yl-thiazol-2-yl)-hydrazine (ITH-6) is found to be more effective than irinotecan against colon cancer cells, HT-29, COLO 205, and KM 12. Mechanistic studies reveal that ITH-6 arrests these cancer cell lines in G2/M phase of the cell cycle, induces apoptosis and causes an increase in ROS level with a significant reduction in the GSH level. The mechanism of inhibition relates to the inhibition of tubulin polymerization in the mitotic phase. These findings suggest that ITH-6 is a novel drug candidate for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Silpa Narayanan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Urooj Nazim
- Department of Pharmaceutical Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Mohsin Ali
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Nishant Karadkhelkar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Mansoor Ahmad
- Department of Pharmaceutical Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
44
|
The Phenolic compound Kaempferol overcomes 5-fluorouracil resistance in human resistant LS174 colon cancer cells. Sci Rep 2019; 9:195. [PMID: 30655588 PMCID: PMC6336835 DOI: 10.1038/s41598-018-36808-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023] Open
Abstract
Resistance to 5-Fluorouracil chemotherapy is a major cause of therapeutic failure in colon cancer cure. Development of combined therapies constitutes an effective strategy to inhibit cancer cells and prevent the emergence of drug resistance. For this purpose, we investigated the anti-tumoral effect of thirteen phenolic compounds, from the Tunisian quince Cydonia oblonga Miller, alone or combined to 5-FU, on the human 5-FU-resistant LS174-R colon cancer cells in comparison to parental cells. Our results showed that only Kaempferol was able to chemo-sensitize 5-FU-resistant LS174-R cells. This phenolic compound combined with 5-FU exerted synergistic inhibitory effect on cell viability. This combination enhanced the apoptosis and induced cell cycle arrest of both chemo-resistant and sensitive cells through impacting the expression levels of different cellular effectors. Kaempferol also blocked the production of reactive oxygen species (ROS) and modulated the expression of JAK/STAT3, MAPK, PI3K/AKT and NF-κB. In silico docking analysis suggested that the potent anti-tumoral effect of Kaempferol, compared to its two analogs (Kaempferol 3-O-glucoside and Kampferol 3-O-rutinoside), can be explained by the absence of glucosyl groups. Overall, our data propose Kaempferol as a potential chemotherapeutic agent to be used alone or in combination with 5-FU to overcome colon cancer drug resistance.
Collapse
|
45
|
Ciprofloxacin Enhances the Chemosensitivity of Cancer Cells to ABCB1 Substrates. Int J Mol Sci 2019; 20:ijms20020268. [PMID: 30641875 PMCID: PMC6358874 DOI: 10.3390/ijms20020268] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/21/2022] Open
Abstract
ABCB1 is one of the major drug efflux transporters that is known to cause multidrug resistance (MDR) in cancer patients receiving chemotherapy for the treatment of solid tumors and hematological malignancies. Inhibition of ABCB1 efflux function is important for maintaining the intracellular concentration of chemotherapeutic drugs. Here, we evaluated ciprofloxacin for its ability to reverse MDR caused by the overexpression of ABCB1. Cytotoxicity of ciprofloxacin was determined by the MTT assay. The chemosensitizing effects of ciprofloxacin were determined in combination with ABCB1 substrates. The intracellular accumulation and efflux of ABCB1 substrates was measured by a scintillation counter, and protein expression was determined by the Western blotting. Vanadate-sensitive ATPase assay was performed to determine the effect of ciprofloxacin on the ATPase activity of ABCB1, and docking analysis was done to determine the interaction of ciprofloxacin with ABCB1. Ciprofloxacin significantly potentiated the cytotoxic effects of ABCB1 substrates in ABCB1-overexpressing cells. Furthermore, ciprofloxacin increased the intracellular accumulation and decreased the efflux of [³H]-paclitaxel without altering the expression of ABCB1. Ciprofloxacin stimulated the ATPase activity of ABCB1 in a concentration-dependent manner. Our findings showed that ciprofloxacin potently inhibits the ABCB1 efflux function and it has potential to be developed as a combination anticancer therapy.
Collapse
|
46
|
Transporter and Lysosomal Mediated (Multi)drug Resistance to Tyrosine Kinase Inhibitors and Potential Strategies to Overcome Resistance. Cancers (Basel) 2018; 10:cancers10120503. [PMID: 30544701 PMCID: PMC6315453 DOI: 10.3390/cancers10120503] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022] Open
Abstract
Tyrosine kinase inhibitors are a class of chemotherapeutic drugs that target specific protein kinases. These tyrosine kinase inhibitors constitute a relatively new class of drugs which target for instance Bcr-Abl, Epidermal Growth Factor Receptor (EGFR) and Vascular Endothelial Growth Factor Receptor (VEGFR). Despite some initial successes, the overall therapeutic benefit of tyrosine kinase inhibitors in the clinic has been mixed. Next to mutations in the target, multidrug resistance is a major obstacle for which still no clinically effective strategies have been developed. Major mechanisms of multidrug resistance are mediated by drug efflux transporter proteins. Moreover, there is accumulating evidence that multidrug resistance can also be caused by lysosomal sequestration of drugs, effectively trapping tyrosine kinase inhibitors and preventing them from reaching their target. Lysosomal drug sequestration seems to work together with ATP-binding cassette transporters, increasing the capacity of lysosomes to mediate sequestration. Both membrane efflux transporter proteins and lysosomes present potential therapeutic targets that could reverse multidrug resistance and increase drug efficacy in combination therapy. This review describes both mechanisms and discusses a number of proposed strategies to circumvent or reverse tyrosine kinase inhibitor-related multidrug resistance.
Collapse
|
47
|
A Novel Synthetic Dihydroindeno[1,2-b] Indole Derivative (LS-2-3j) Reverses ABCB1- and ABCG2-Mediated Multidrug Resistance in Cancer Cells. Molecules 2018; 23:molecules23123264. [PMID: 30544754 PMCID: PMC6321174 DOI: 10.3390/molecules23123264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 01/23/2023] Open
Abstract
10-oxo-5-(3-(pyrrolidin-1-yl) propyl)-5,10-dihydroindeno [1,2-b] indol-9-yl propionate (LS-2-3j) is a new chemically synthesized indole compound and some related analogues are known to be inhibitors (such as alectinib and Ko143) of ATP-binding cassette (ABC) transporters, especially the ABC transporter subfamily B member 1 (ABCB1) and the ABC transporter subfamily G member 2 (ABCG2). This study aimed to evaluate the multidrug resistance (MDR) reversal effects and associated mechanisms of LS-2-3j in drug-resistant cancer cells. The inhibition of cell proliferation in tested agents was evaluated by the 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay. Accumulation or efflux of chemotherapy drugs was analyzed by flow cytometry. The ATPase activity was measured using an ATPase activity assay kit. The mRNA transcripts and protein expression levels were detected by real-time PCR and Western blot, respectively. In this connection, LS-2-3j significantly enhanced the activity of chemotherapeutic drugs in MDR cells and could significantly increase the intracellular accumulation of doxorubicin (DOX) and mitoxantrone (MITX) by inhibiting the function of the efflux pumps in ABCB1- or ABCG2-overexpressing cells. Furthermore, reduced ATPase activity, mRNA transcription, and protein expression levels of ABCB1 and ABCG2 were observed in a concentration dependent manner in MDR cancer cells.
Collapse
|
48
|
Zhang W, Fan YF, Cai CY, Wang JQ, Teng QX, Lei ZN, Zeng L, Gupta P, Chen ZS. Olmutinib (BI1482694/HM61713), a Novel Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor, Reverses ABCG2-Mediated Multidrug Resistance in Cancer Cells. Front Pharmacol 2018; 9:1097. [PMID: 30356705 PMCID: PMC6189370 DOI: 10.3389/fphar.2018.01097] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 09/07/2018] [Indexed: 12/25/2022] Open
Abstract
The main characteristic of tumor cell resistance is multidrug resistance (MDR). MDR is the principle cause of the decline in clinical efficacy of chemotherapeutic drugs. There are several mechanisms that could cause MDR. Among these, one of the most important mechanisms underlying MDR is the overexpression of adenosine triphosphate (ATP)-binding cassette (ABC) super-family of transporters, which effectively pump out cytotoxic agents and targeted anticancer drugs across the cell membrane. In recent years, studies found that ABC transporters and tyrosine kinase inhibitors (TKIs) interact with each other. TKIs may behave as substrates or inhibitors depending on the expression of specific pumps, drug concentration, their affinity for the transporters and types of co-administered agents. Therefore, we performed in vitro experiments to observe whether olmutinib could reverse MDR in cancer cells overexpressing ABCB1, ABCG2, or ABCC1 transporters. The results showed that olmutinib at 3 μM significantly reversed drug resistance mediated by ABCG2, but not by ABCB1 and ABCC1, by antagonizing the drug efflux function in ABCG2-overexpressing cells. In addition, olmutinib at reversal concentration affected neither the protein expression level nor the localization of ABCG2. The results observed from the accumulation/efflux study of olmutinib showed that olmutinib reversed ABCG2-mediated MDR with an increasing intracellular drug accumulation due to inhibited drug efflux. We also had consistent results with the ATPase assay that olmutinib stimulated ATPase activity of ABCG2 up to 3.5-fold. Additionally, the molecular interaction between olmutinib and ABCG2 was identified by docking simulation. Olmutinib not only interacts directly with ABCG2 but also works as a competitive inhibitor of the transport protein. In conclusion, olmutinib could reverse ABCG2-mediated MDR. The reversal effect of olmutinib on ABCG2-mediated MDR cells is not due to ABCG2 expression or intracellular localization, but rather related to its interaction with ABCG2 protein resulting in drug efflux inhibition and ATPase stimulation.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Plastic Surgery, Weifang Medical University, Weifang, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Ying-Fang Fan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Leli Zeng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| |
Collapse
|
49
|
Feng SQ, Wang GJ, Zhang JW, Xie Y, Sun RB, Fei F, Huang JQ, Wang Y, Aa JY, Zhou F. Combined treatment with apatinib and docetaxel in A549 xenograft mice and its cellular pharmacokinetic basis. Acta Pharmacol Sin 2018; 39:1670-1680. [PMID: 29770798 DOI: 10.1038/aps.2018.16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022] Open
Abstract
Apatinib, a small-molecule inhibitor of VEGFR-2, has attracted much attention due to its encouraging anticancer activity in third-line clinical treatment for many malignancies, including non-small cell lung cancer (NSCLC). Its usage in second-line therapy with chemotherapeutic drugs is still under exploration. In this study we investigated the antitumor effect of apatinib combined with docetaxel against NSCLC and its cellular pharmacokinetic basis. A549 xenograft nude mice were treated with apatinib (100 mg/kg every day for 20 days) combined with docetaxel (8 mg/kg, ip, every four days for 5 times). Apatinib significantly enhanced the antitumor effect of docetaxel and alleviated docetaxel-induced liver damage as well as decreased serum transaminases (ALT and AST). LC-MS/MS analysis revealed that apatinib treatment significantly increased the docetaxel concentration in tumors (up to 1.77 times) without enhancing the docetaxel concentration in the serum, heart, liver, lung and kidney. Furthermore, apatinib decreased docetaxel-induced upregulation of P-glycoprotein in tumors. The effects of apatinib on the uptake, efflux and subcellular distribution of docetaxel were investigated in A549 and A549/DTX (docetaxel-resistant) cells in vitro. A cellular pharmacokinetic study revealed that apatinib significantly increased cellular/subcellular accumulation (especially in the cytosol) and decreased the efflux of docetaxel in A549/DTX cells through P-gp, while apatinib exerted no significant effect on the cellular pharmacokinetics of docetaxel in A549 cells. Consequently, the IC50 value of docetaxel in A549/DTX cells was more significantly decreased by apatinib than that in A549 cells. These results demonstrate that apatinib has potential for application in second-line therapy combined with docetaxel for NSCLC patients, especially for docetaxel-resistant or multidrug-resistant patients.
Collapse
|
50
|
Borsetti F, Dal Piaz F, D'Alessio F, Stefan A, Brandimarti R, Sarkar A, Datta A, Montón Silva A, den Blaauwen T, Alberto M, Spisni E, Hochkoeppler A. Manganese is a Deinococcus radiodurans growth limiting factor in rich culture medium. MICROBIOLOGY-SGM 2018; 164:1266-1275. [PMID: 30052171 DOI: 10.1099/mic.0.000698] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To understand the effects triggered by Mn2+ on Deinococcus radiodurans, the proteome patterns associated with different growth phases were investigated. In particular, under physiological conditions we tested the growth rate and the biomass yield of D. radiodurans cultured in rich medium supplemented or not with MnCl2. The addition of 2.5-5.0 µM MnCl2 to the medium neither altered the growth rate nor the lag phase, but significantly increased the biomass yield. When higher MnCl2 concentrations were used (10-250 µM), biomass was again found to be positively affected, although we did observe a concentration-dependent lag phase increase. The in vivo concentration of Mn2+ was determined in cells grown in rich medium supplemented or not with 5 µM MnCl2. By atomic absorption spectroscopy, we estimated 0.2 and 0.75 mM Mn2+ concentrations in cells grown in control and enriched medium, respectively. We qualitatively confirmed this observation using a fluorescent turn-on sensor designed to selectively detect Mn2+in vivo. Finally, we investigated the proteome composition of cells grown for 15 or 19 h in medium to which 5 µM MnCl2 was added, and we compared these proteomes with those of cells grown in the control medium. The presence of 5 µM MnCl2 in the culture medium was found to alter the pI of some proteins, suggesting that manganese affects post-translational modifications. Further, we observed that Mn2+ represses enzymes linked to nucleotide recycling, and triggers overexpression of proteases and enzymes linked to the metabolism of amino acids.
Collapse
Affiliation(s)
- Francesca Borsetti
- 1Department of Biology, Geology and Environmental Sciences, University of Bologna, Via Selmi 3, 40125 Bologna, Italy
| | - Fabrizio Dal Piaz
- 2Department of Medicine, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano SA, Italy
| | - Federico D'Alessio
- 3Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Alessandra Stefan
- 3Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.,4CSGI, University of Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino FI, Italy
| | - Renato Brandimarti
- 3Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Anindita Sarkar
- 5Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Ankona Datta
- 5Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Alejandro Montón Silva
- 6Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Tanneke den Blaauwen
- 6Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Mucchi Alberto
- 7Department of Industrial Chemistry "Toson Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Enzo Spisni
- 1Department of Biology, Geology and Environmental Sciences, University of Bologna, Via Selmi 3, 40125 Bologna, Italy
| | - Alejandro Hochkoeppler
- 4CSGI, University of Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino FI, Italy.,3Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|