1
|
Singh G, Famta P, Shah S, Vambhurkar G, Pandey G, Kumar R, Kumar P, Mourya A, Madan J, Srivastava S, Khatri DK. Nanoparticle-enhanced delivery of resveratrol for targeted therapy of glioblastoma: Modulating the Akt/GSK-3β/NF-kB pathway in C6 glioma cells. Brain Res 2025; 1848:149411. [PMID: 39716595 DOI: 10.1016/j.brainres.2024.149411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/29/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
OBJECTIVE The study aims to explore Resveratrol (RES) as a potential therapeutic agent for Glioblastoma multiforme (GBM), a challenging brain cancer. RES, a polyphenolic compound with known benefits in various diseases including cancer, has shown promise in inhibiting glioma progression through its effects on the AKT signaling pathways. However, its limited ability to cross the blood-brain barrier restricts its clinical application in GBM treatment. This study seeks to enhance efficacy of RES by developing RES-loaded nanoparticles designed to improve penetration into glioma cells and potentially overcome the blood-brain barrier, thereby enhancing therapeutic outcomes. METHODS Albumin nanoparticles were prepared and characterized using FT-IR, X-RD, and SEM to determine particle size. In vitro experiments were conducted using the C6 glioma cell line, employing MTT assays, Immunofluorescence, DC-FDA staining, and western blot analysis. Molecular docking studies were also performed to assess ability of RES to inhibit the AKT/GSK-3β/NF-kB pathway. RESULTS In vitro results demonstrated that RES-loaded nanoparticles induced apoptosis and reduced proliferation of C6 glioma cells compared to controls. Molecular docking studies confirmed RES's potential as an inhibitor targeting the AKT/GSK-3β/NF-kB pathway. Western blot analysis revealed downregulation of AKT and GSK-3β expression in cells treated with RES-loaded nanoparticles, accompanied by increased caspase 1 levels and decreased bcl2 expression, indicative of apoptosis. CONCLUSION The findings suggest that RES effectively targets the AKT/GSK-3β/NF-kB signaling pathway in glioma cells. Furthermore, RES-loaded albumin nanoparticles significantly enhance therapeutic efficacy by improving cellular penetration, highlighting their potential in advancing GBM treatment strategies.
Collapse
Affiliation(s)
- Gurpreet Singh
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rahul Kumar
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Prakash Kumar
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Atul Mourya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| | - Dharmendra Kumar Khatri
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, 303121, India.
| |
Collapse
|
2
|
Kang L, Han X, Chang X, Su Z, Fu F, Shan Y, Guo J, Li G. Redox-sensitive self-assembling polymer micelles based on oleanolic modified hydroxyethyl starch: Synthesis, characterisation, and oleanolic release. Int J Biol Macromol 2024; 266:131211. [PMID: 38552688 DOI: 10.1016/j.ijbiomac.2024.131211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Our study aimed at developing polymer micelles that possess redox sensitivity and excellent controlled release properties. 3,3'-dithiodipropionic acid (DTDPA, Abbreviation in synthetic polymers: SS) was introduced as ROS (Reactive oxygen species)response bond and connecting arm to couple hydroxyethyl starch (HES) with oleanolic acid (OA), resulting in the synthesis of four distinct grafting ratios of HES-SS-OA. FTIR (Fourier Transform infrared spectroscopy) and 1H NMR (1H Nuclear magnetic resonance spectra) were used to verify the triumphant combination of HES-SS-OA. Polymer micelles were found to encapsulate OA in an amorphous form, as indicated by the results of XRD (X-ray diffraction) and DSC (Differential scanning calorimetry). When the OA grafting rate on HES increased from 7.72 % to 11.75 %, the particle size decreased from 297.79 nm to 201.39 nm as the polymer micelles became compact due to enhanced hydrophobicity. In addition, the zeta potential changed from -16.42 mv to -25.78 mv, the PDI (polydispersity index) decreased from 0.3649 to 0.2435, and the critical micelle concentration (CMC) decreased from 0.0955 mg/mL to 0.0123 mg/mL. Results of erythrocyte hemolysis, cytotoxicity and cellular uptake illustrated that HES-SS-OA had excellent biocompatibility and minimal cytotoxicity for AML-12 cells. Disulfide bond breakage of HES-SS-OA in the presence of H2O2 and GSH confirmed the redox sensitivity of the HES-SS-OA micelles and their excellent controlled release properties for OA. These findings suggest that HES-SS-OA can be potentially used in the future as a healthcare drug and medicine for the prevention or adjuvant treatment of inflammation.
Collapse
Affiliation(s)
- Lingtao Kang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Xiaolei Han
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Zhipeng Su
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Fuhua Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Jiajing Guo
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China.
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China.
| |
Collapse
|
3
|
Potz BA, Sabe SA, Scrimgeour LA, Sabe AA, Harris DD, Abid MR, Clements RT, Sellke FW. Calpain inhibition decreases oxidative stress via mitochondrial regulation in a swine model of chronic myocardial ischemia. Free Radic Biol Med 2023; 208:700-707. [PMID: 37748718 PMCID: PMC10598262 DOI: 10.1016/j.freeradbiomed.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 09/27/2023]
Abstract
INTRODUCTION Calpain overexpression is implicated in mitochondrial damage leading to tissue oxidative stress and myocardial ischemic injury. The aim of this study was to determine the effects of calpain inhibition (CI) on mitochondrial impairment and oxidative stress in a swine model of chronic myocardial ischemia and metabolic syndrome. METHODS Yorkshire swine were fed a high-fat diet for 4 weeks to induce metabolic syndrome then underwent placement of an ameroid constrictor to the left circumflex artery. Three weeks later, animals received: no drug (control, "CON"; n= 7); a low-dose calpain inhibitor (0.12 mg/kg; "LCI", n= 7); or high-dose calpain inhibitor (0.25 mg/kg; "HCI", n=7). Treatment continued for 5 weeks, followed by tissue harvest. Cardiac tissue was assayed for protein carbonyl content, as well as antioxidant and mitochondrial protein expression. Reactive oxygen species (ROS) and mitochondrial respiration was measured in H9c2 cells following exposure to normoxia or hypoxia (1%) for 24 h with or without CI. RESULTS In ischemic myocardial tissue, CI was associated with decreased total oxidative stress compared to control. CI was also associated with increased expression of mitochondrial proteins superoxide dismutase 1, SDHA, and pyruvate dehydrogenase compared to control. 100 nM of calpain inhibitor decreased ROS levels and respiration in both normoxic and hypoxic H9c2 cardiomyoblasts. CONCLUSIONS In the setting of metabolic syndrome, CI improves oxidative stress in chronically ischemic myocardial tissue. Decreased oxidative stress may be via modulation of mitochondrial proteins involved in free radical scavenging and production.
Collapse
Affiliation(s)
- Brittany A Potz
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, USA
| | - Sharif A Sabe
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, USA
| | - Laura A Scrimgeour
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, USA
| | - Ashraf A Sabe
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, USA
| | - Dwight D Harris
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, USA
| | - M Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, USA
| | - Richard T Clements
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, USA
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, USA.
| |
Collapse
|
4
|
Ghufran M, Ullah M, Khan HA, Ghufran S, Ayaz M, Siddiq M, Abbas SQ, Hassan SSU, Bungau S. In-Silico Lead Druggable Compounds Identification against SARS COVID-19 Main Protease Target from In-House, Chembridge and Zinc Databases by Structure-Based Virtual Screening, Molecular Docking and Molecular Dynamics Simulations. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010100. [PMID: 36671672 PMCID: PMC9854631 DOI: 10.3390/bioengineering10010100] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/14/2023]
Abstract
Pharmacological strategies to lower the viral load among patients suffering from severe diseases were researched in great detail during the SARS-CoV-2 outbreak. The viral protease Mpro (3CLpro) is necessary for viral replication and is among the main therapeutic targets proposed, thus far. To stop the pandemic from spreading, researchers are working to find more effective Mpro inhibitors against SARS-CoV-2. The 33.8 kDa Mpro protease of SARS-CoV-2, being a nonhuman homologue, has the possibility of being utilized as a therapeutic target against coronaviruses. To develop drug-like compounds capable of preventing the replication of SARS-main CoV-2's protease (Mpro), a computer-aided drug design (CADD) approach is extremely viable. Using MOE, structure-based virtual screening (SBVS) of in-house and commercial databases was carried out using SARS-CoV-2 proteins. The most promising hits obtained during virtual screening (VS) were put through molecular docking with the help of MOE. The virtual screening yielded 3/5 hits (in-house database) and 56/66 hits (commercial databases). Finally, 3/5 hits (in-house database), 3/5 hits (ZINC database), and 2/7 hits (ChemBridge database) were chosen as potent lead compounds using various scaffolds due to their considerable binding affinity with Mpro protein. The outcomes of SBVS were then validated using an analysis based on molecular dynamics simulation (MDS). The complexes' stability was tested using MDS and post-MDS. The most promising candidates were found to exhibit a high capacity for fitting into the protein-binding pocket and interacting with the catalytic dyad. At least one of the scaffolds selected will possibly prove useful for future research. However, further scientific confirmation in the form of preclinical and clinical research is required before implementation.
Collapse
Affiliation(s)
- Mehreen Ghufran
- Department of Pathology, Medical Teaching Institution Bacha Khan Medical College (BKMC) Mardan, Mardan 23200, Pakistan
| | - Mehran Ullah
- District Medical Officer, Sehat Sahulat Program (SSP), KPK, Mardan 23200, Pakistan
- Mardan Medical Complex (MMC) Mardan, Medical Teaching Institution Bacha Khan Medical College (BKMC), Mardan 23200, Pakistan
| | - Haider Ali Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Correspondence: (H.A.K.); (S.S.u.H.)
| | - Sabreen Ghufran
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara 18000, Pakistan
| | - Muhammad Siddiq
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Syed Qamar Abbas
- Department of Pharmacy, Sarhad University of Science and technology, Peshawar 25000, Pakistan
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (H.A.K.); (S.S.u.H.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
5
|
C S, S. DK, Ragunathan V, Tiwari P, A. S, P BD. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J Biomol Struct Dyn 2022; 40:585-611. [PMID: 32897178 PMCID: PMC7573242 DOI: 10.1080/07391102.2020.1815584] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/21/2020] [Indexed: 12/31/2022]
Abstract
The study aims to evaluate the potency of two hundred natural antiviral phytocompounds against the active site of the Severe Acquired Respiratory Syndrome - Coronavirus - 2 (SARS-CoV-2) Main-Protease (Mpro) using AutoDock 4.2.6. The three- dimensional crystal structure of the Mpro (PDB Id: 6LU7) was retrieved from the Protein Data Bank (PDB), the active site was predicted using MetaPocket 2.0. Food and Drug Administration (FDA) approved viral protease inhibitors were used as standards for comparison of results. The compounds theaflavin-3-3'-digallate, rutin, hypericin, robustaflavone, and (-)-solenolide A with respective binding energy of -12.41 (Ki = 794.96 pM); -11.33 (Ki = 4.98 nM); -11.17 (Ki = 6.54 nM); -10.92 (Ki = 9.85 nM); and -10.82 kcal/mol (Ki = 11.88 nM) were ranked top as Coronavirus Disease - 2019 (COVID-19) Mpro inhibitors. The interacting amino acid residues were visualized using Discovery Studio 3.5 to elucidate the 2-dimensional and 3-dimensional interactions. The study was validated by i) re-docking the N3-peptide inhibitor-Mpro and superimposing them onto co-crystallized complex and ii) docking decoy ligands to Mpro. The ligands that showed low binding energy were further predicted for and pharmacokinetic properties and Lipinski's rule of 5 and the results are tabulated and discussed. Molecular dynamics simulations were performed for 50 ns for those compounds using the Desmond package, Schrödinger to assess the conformational stability and fluctuations of protein-ligand complexes during the simulation. Thus, the natural compounds could act as a lead for the COVID-19 regimen after in-vitro and in- vivo clinical trials.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shivanika C
- Department of Bio-Engineering, School of
Engineering, Vels Institute of Science Technology and Advanced Studies,
Chennai, Tamil Nadu, India
| | - Deepak Kumar S.
- Department of Biotechnology, Rajalakshmi
Engineering College, Thandalam, Tamil Nadu,
India
| | - Venkataraghavan Ragunathan
- Department of Chemical Engineering, Alagappa
College of Technology, Anna University, Chennai, Tamil
Nadu, India
| | - Pawan Tiwari
- Department of Pharmaceutical Science, Kumaun
University, Nainital, Uttarakhand,
India
| | - Sumitha A.
- Department of Pharmacology, ACS Medical
College and Hospital, Chennai, Tamil Nadu,
India
| | - Brindha Devi P
- Department of Bio-Engineering, School of
Engineering, Vels Institute of Science Technology and Advanced Studies,
Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Samantaray S, Knaryan VH, M Del Re A, Woodward JJ, Shields DC, Azuma M, Inoue J, Ray SK, Banik NL. Cell-Permeable Calpain Inhibitor SJA6017 Provides Functional Protection to Spinal Motoneurons Exposed to MPP . Neurotox Res 2020; 38:640-649. [PMID: 32761446 PMCID: PMC9453439 DOI: 10.1007/s12640-020-00264-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 12/30/2022]
Abstract
Extra-nigral central nervous system sites have been found to be affected in Parkinson's disease (PD). In addition to substantia nigra, degeneration of spinal cord motor neurons may play a role in the motor symptoms of PD. To this end, hybrid rodent VSC 4.1 cells differentiated into motoneurons were used as a cell culture model following exposure to Parkinsonian neurotoxicant MPP+. SJA6017, a cell-permeable calpain inhibitor, was tested for its neuroprotective efficacy against the neurotoxicant. SJA6017 attenuated MPP+-induced rise in intracellular free Ca2+ and concomitant increases in the active form of calpain. It also significantly prevented increased levels of proteases and their activities, as shown by reduced levels of 145 kDa calpain-specific and 120 kDa caspase-3-specific spectrin breakdown products. Exposure to MPP+ elevated the levels of reactive oxygen species in VSC 4.1 motoneurons; this was significantly diminished with SJA6017. The motor proteins in spinal motoneurons, i.e., dynein and kinesin, were also impaired following exposure to MPP+ through calpain-mediated mechanisms; this process was partially ameliorated by SJA6017 pretreatment. Cytoprotection provided by SJA6017 against MPP+-induced damage to VSC 4.1 motoneurons was confirmed by restoration of membrane potential via whole-cell patch-clamp assay. This study demonstrates that calpain inhibition is a prospective route for neuroprotection in experimental PD; moreover, calpain inhibitor SJA6017 appears to be an effective neuroprotective agent against MPP+-induced damage in spinal motoneurons.
Collapse
Affiliation(s)
- Supriti Samantaray
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., MSC606 Suite 301, Charleston, SC, 29425, USA
| | - Varduhi H Knaryan
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., MSC606 Suite 301, Charleston, SC, 29425, USA
| | - Angelo M Del Re
- Division of Neuroscience Research and Center for Drug & Alcohol Programs, Medical University of South Carolina, Charleston, SC, USA
| | - John J Woodward
- Division of Neuroscience Research and Center for Drug & Alcohol Programs, Medical University of South Carolina, Charleston, SC, USA
| | - Donald C Shields
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., MSC606 Suite 301, Charleston, SC, 29425, USA
| | - Mitsuyoshi Azuma
- Kobe Creative Center, Senju Pharmaceutical Corporation Limited, Kobe, 651-2241, Japan
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR, USA
| | - Jun Inoue
- Kobe Creative Center, Senju Pharmaceutical Corporation Limited, Kobe, 651-2241, Japan
| | - Swapan K Ray
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Naren L Banik
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., MSC606 Suite 301, Charleston, SC, 29425, USA.
| |
Collapse
|
7
|
Kuche K, Bhargavi N, Dora CP, Jain S. Drug-Phospholipid Complex-a Go Through Strategy for Enhanced Oral Bioavailability. AAPS PharmSciTech 2019; 20:43. [PMID: 30610392 DOI: 10.1208/s12249-018-1252-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Among many, the oral route of delivery is considered to be the most favorable route with the highest patient compliance. The main issue with oral delivery is the environmental vulnerability of gastro intestinal tract (G.I.T). The bioavailability could further decrease when drug has poor aqueous solubility and permeability through biological membrane. This drawback could be resolved by employing drug-phospholipid complex strategy, as they utilize mechanism which is similar to the absorption mechanism of nutritional constituents form G.I.T. The drug-phospholipid complexes are considered ideal for oral delivery as they are biodegradable and non-toxic, which enable them to be employed as solubilizer, emulsifier, and as a matrix forming excipient for dugs with poor solubility and/or permeability. The present review compiles the basic know how about the phospholipids and the mechanism through which it improves the bioavailability of drugs. Further, it also compiles the crucial formulation aspects and methods of preparations of drug-phospholipid complex along with its physical and in silico characterization techniques. The increase in number of recent reports involving the utilization of drug-phospholipid complex to improve oral bioavailability of drugs thus explains how vital the strategy is for a successful oral delivery.
Collapse
|
8
|
Mundlia J, Ahuja M, Kumar P, Pillay V. Pectin–curcumin composite: synthesis, molecular modeling and cytotoxicity. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2538-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Structure-based design of allosteric calpain-1 inhibitors populating a novel bioactivity space. Eur J Med Chem 2018; 157:1264-1275. [DOI: 10.1016/j.ejmech.2018.08.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
|
10
|
Kumar P, Choonara YE, Pillay V. In silico analytico-mathematical interpretation of biopolymeric assemblies: Quantification of energy surfaces and molecular attributes via atomistic simulations. Bioeng Transl Med 2018; 3:222-231. [PMID: 30377662 PMCID: PMC6195908 DOI: 10.1002/btm2.10105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 01/11/2023] Open
Abstract
Static-lattice atomistic simulations, in vacuum and solvent phase, have been recently employed to quantify the "in vitro-in vivo-in silico" performance-correlation profile of various drug delivery systems and biomaterial scaffolds. The reactional profile of biopolymers was elucidated by exploring the spatial disposition of the molecular components with respect to the formulation conditions and the final release medium. This manuscript provides a brief overview of recently completed and published studies related to molecular tectonics of: (a) the nanoformation and solvation properties of the surfactant-emulsified polymeric systems; (b) the formation and chemistry of polyelectrolyte complexes; (c) the effect of a plasticizer and/or drug on the physicomechanical properties of biomedical archetypes; (d) the molecular modeling templates to predict stimuli- and environmentally esponsive systems; and (e) the polymer-mucopeptide complexes and intermacromolecular networks. Furthermore, this report provides a detailed account of the role of molecular mechanics energy relationships toward the interpretation and understanding of the mechanisms that control the formation, fabrication, selection, design, performance, complexation, interaction, stereospecificity, and preference of various biopolymeric systems for biomedical applications.
Collapse
Affiliation(s)
- Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and PharmacologySchool of Therapeutic Sciences, Faculty of Health Sciences, University of the WitwatersrandJohannesburgSouth Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and PharmacologySchool of Therapeutic Sciences, Faculty of Health Sciences, University of the WitwatersrandJohannesburgSouth Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and PharmacologySchool of Therapeutic Sciences, Faculty of Health Sciences, University of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
11
|
Akilo OD, Kumar P, Choonara YE, Pradeep P, du Toit LC, Pillay V. Hypothesis: apo-lactoferrin-Galantamine Proteo-alkaloid Conjugate for Alzheimer's disease Intervention. J Cell Mol Med 2018; 22:1957-1963. [PMID: 29377514 PMCID: PMC5824407 DOI: 10.1111/jcmm.13484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/01/2017] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is known to be caused by the accumulation of deformed beta amyloid and hyperphosphorylated tau proteins resulting into formation and aggregation of senile plaques and neurofibrillary tangles in the brain. Additionally, AD is associated with the accumulation of iron or metal ions in the brain which causes oxidative stress. Galantamine (Gal) is one of the therapeutic agents that has been approved for the treatment of AD, but still saddled with numerous side effects and could not address the issue of iron accumulation in the brain. The use of metal chelators to address the iron accumulation has not been successful due to toxicity and inability to address the aggregation of the plaques. We therefore hypothesize a combinatorial antioxidant-metal-chelator approach by formulating a single dosage form that has the ability to prevent the formation of free radicals, plaques and accumulation of iron in the brain. This can be achieved by conjugating Gal with apo-lactoferrin (ApoLf), a natural compound that has high binding affinity for iron, to form an apo-lactoferrin-galantamine proteo-alkaloid conjugate (ApoLf-Gal) as a single dosage form for AD management. The conjugation is achieved through self-assembly of ApoLf which results in encapsulation of Gal. ApoLf changes its conformational structure in the presence of iron; therefore, ApoLf-Gal is proposed to deliver Gal and pick up excess iron when in contact with iron. This strategy has the potential to proffer a dual neuroprotection and neurotherapeutic interventions for the management of AD.
Collapse
Affiliation(s)
- Olufemi D. Akilo
- Wits Advanced Drug Delivery Platform Research UnitDepartment of Pharmacy and PharmacologySchool of Therapeutic SciencesFaculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research UnitDepartment of Pharmacy and PharmacologySchool of Therapeutic SciencesFaculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research UnitDepartment of Pharmacy and PharmacologySchool of Therapeutic SciencesFaculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Priyamvada Pradeep
- Wits Advanced Drug Delivery Platform Research UnitDepartment of Pharmacy and PharmacologySchool of Therapeutic SciencesFaculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Lisa C. du Toit
- Wits Advanced Drug Delivery Platform Research UnitDepartment of Pharmacy and PharmacologySchool of Therapeutic SciencesFaculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research UnitDepartment of Pharmacy and PharmacologySchool of Therapeutic SciencesFaculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
12
|
Dora CP, Kushwah V, Katiyar SS, Kumar P, Pillay V, Suresh S, Jain S. Improved oral bioavailability and therapeutic efficacy of erlotinib through molecular complexation with phospholipid. Int J Pharm 2017; 534:1-13. [PMID: 28970115 DOI: 10.1016/j.ijpharm.2017.09.071] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/25/2017] [Accepted: 09/29/2017] [Indexed: 12/18/2022]
Abstract
The current study was aimed to prepare a molecular complex of erlotinib (ERL) with phospholipid (PC) for enhancement of solubility and thus bioavailability, therapeutic efficacy and reducing the toxicity of erlotinib. Phospholipid complex of drug was prepared by solvent evaporation method and characterized by differential scanning calorimetry (DSC), Fourier transform infra-red spectroscopy (FT-IR), proton and phosphorus nuclear magnetic resonance spectroscopy (1H NMR and 31P NMR), powder X-ray diffraction (P-XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which all explained the interactions of two components, validating the complexation phenomenon. In silico study also supported the phase change and molecular interactions for the establishment of ERL-PC. Spherical shaped nanostructures with 183.37±28.61nm size, -19.52±6.94mV potential and 28.59±2.66% loading efficiency were formed following dispersion of ERL-PC in aqueous media. In vitro release study revealed the higher release of ERL-PC due to amorphization and solubilization of drug. Caco-2 cell uptake resulted in ∼2 fold higher uptake of ERL-PC than free drug. In vitro cell culture studies were performed using human pancreatic adenocarcinoma cell lines, which demonstrated the higher cytotoxicity and apoptosis in case of ERL-PC. In vivo pharmacokinetics also supported the in vitro observations and showed ∼1.7 fold higher bioavailability with ERL-PC than ERL. Finally, in vivo efficacy and toxicity studies explained the superiority of ERL-PC over the free drug. Based on the results, phospholipid complex appears to be a promising tool to enhance bioavailability, efficacy, cytotoxicity and safety of erlotinib.
Collapse
Affiliation(s)
- Chander Parkash Dora
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Varun Kushwah
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Sameer S Katiyar
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Parktown, 2193, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Parktown, 2193, South Africa
| | - Sarasija Suresh
- Institute for Drug Delivery and Biomedical Research (IDBR), Bangalore, Karnataka, 560068, India; RGV Research & Innovations Pvt. Ltd (RGVRI), Bangalore, Karnataka, 560010, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India.
| |
Collapse
|
13
|
Dora CP, Kushwah V, Katiyar SS, Kumar P, Pillay V, Suresh S, Jain S. Improved metabolic stability and therapeutic efficacy of a novel molecular gemcitabine phospholipid complex. Int J Pharm 2017; 530:113-127. [PMID: 28739504 DOI: 10.1016/j.ijpharm.2017.07.060] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023]
Abstract
The aim of the present research is to increase lipid solubility, metabolic stability and therapeutic efficacy of water soluble gemcitabine (GEM) via phospholipid complex (PC) formation. A novel phospholipid complex of GEM was successfully prepared and optimized. Physical interaction of GEM with phospholipid was evaluated by DSC, FT-IR, 1H NMR, 31P-NMR and P-XRD. SEM images of GEM-PC showed rough structure and TEM images of diluted aqueous dispersion of GEM-PC showed micellar structure. In silico study also revealed the significant interaction between drug and phospholipid. GEM-PC demonstrated sustained drug release pattern and high plasma stability (∼2.2 fold) in vitro as compared to GEM. Increased in vitro cytotoxicity and apoptosis were observed with GEM-PC, when incubated with human pancreas adenocarcinoma cell lines. In vivo pharmacokinetics showed the almost 2 fold increase in AUC0-∞ (area under curve) with phospholipid complex (8983.26ngh/ml) as compared with GEM (4371.18ngh/ml) and GEMITA (4689.29ngh/ml). Toxicity studies signify the safety of GEM-PC over GEMITA. Pharmacodynamics studies in pancreatic tumor model further revealed higher efficacy of GEM-PC than GEMITA. These findings suggested the higher potential of phospholipid based technology for the enhancement of metabolic stability and therapeutic efficacy of GEM.
Collapse
Affiliation(s)
- Chander Parkash Dora
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India; Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Varun Kushwah
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Sameer S Katiyar
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Parktown 2193, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Parktown 2193, South Africa
| | - Sarasija Suresh
- Institute for Drug Delivery and Biomedical Research (IDBR), Bangalore, Karnataka, 560068, India; RGV Research & Innovations Pvt. Ltd (RGVRI), Bangalore, Karnataka, 560010, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India.
| |
Collapse
|
14
|
Potz BA, Sabe AA, Elmadhun NY, Clements RT, Abid MR, Sodha NR, Sellke FW. Calpain inhibition modulates glycogen synthase kinase 3β pathways in ischemic myocardium: A proteomic and mechanistic analysis. J Thorac Cardiovasc Surg 2016; 153:342-357. [PMID: 27986275 DOI: 10.1016/j.jtcvs.2016.09.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/15/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Calpain inhibition has an enhancing effect on myocardial perfusion and improves myocardial density by inhibiting glycogen synthase kinase 3β (GSK-3β) and up-regulating downstream signaling pathways, including the insulin/PI3K and WNT/β-catenin pathways, in a pig model of chronic myocardial ischemia in the setting of metabolic syndrome. METHODS Pigs were fed a high-fat diet for 4 weeks, then underwent placement of an ameroid constrictor to the left circumflex artery. Three weeks later, the animals received no drug (high-cholesterol controls [HCC]), a high-dose calpain inhibitor (HCI), a low-dose calpain inhibitor (LCI), or a GSK-3β inhibitor (GSK-3βI). The diets and drug regimens were continued for 5 weeks and the myocardial tissue was harvested. RESULTS Calpain and GSK-3β inhibition caused an increase in myocardial perfusion ratios at rest and during pacing compared with controls. Pigs in the LCI and HCI groups had increased vessel density in the ischemic myocardium, and pigs in the GSK-3βI group had increased vessel density in the ischemic and nonischemic myocardium compared with the HCC group. Calpain inhibition modulates proteins involved in the insulin/PI3K and WNT/β-catenin pathways. Quantitative proteomics revealed that calpain and GSK-3β inhibition significantly modulated the expression of proteins enriched in cytoskeletal regulation, metabolism, respiration, and calcium-binding pathways. CONCLUSIONS In the setting of metabolic syndrome, calpain or GSK-3β inhibition increases vessel density in both ischemic and nonischemic myocardial tissue. Calpain inhibition may exert these effects through the inhibition of GSK-3β and up-regulation of downstream signaling pathways, including the insulin/PI3K and WNT/β-catenin pathways.
Collapse
Affiliation(s)
- Brittany A Potz
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Ashraf A Sabe
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Nassrene Y Elmadhun
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Richard T Clements
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - M Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Neel R Sodha
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI.
| |
Collapse
|
15
|
Liao JH, Huang YS, Lin YC, Huang FY, Wu SH, Wu TH. Anticataractogenesis Mechanisms of Curcumin and a Comparison of Its Degradation Products: An in Vitro Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2080-2086. [PMID: 26905955 DOI: 10.1021/acs.jafc.6b00430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Curcumin (Cur) exhibits anticataractogenesis activity. This study aimed to compare the activities of Cur with those of its degradation products in a series of in vitro lens protein turbidity assays. The results show that Cur (200 μM) ameliorates selenite-induced crystallin aggregation, and the mean OD value was 0.10 ± 0.02 (p < 0.05), which was significantly different from controls (0.15 ± 0.01) after incubating for 3 days. However, Cur did not significantly inhibit calcium-induced proteolysis after incubating for 3 days. Such results were supported by isothermal titration calorimetry observation that Cur binds with selenite but not with calcium. Presence of Cur and the degradation products examined (ferulic acid, cinnamic acid, vanillin, and vanillic acid) indicates significantly protective activities on lens γ-crystallins after UVC exposure for 3 h. Among the compounds examined, only ferulic acid exhibited a significant inhibitory effect against UVB-induced turbidity with a mean OD of 0.32 ± 0.01 (p < 0.05), which was significantly different from controls (0.49 ± 0.02). The previously reported anticataract effects of Cur may stem not only from Cur but also from its degradation products through various cataractogenesis mechanisms in vitro.
Collapse
Affiliation(s)
- Jiahn-Haur Liao
- Institute of Biological Chemistry, Academia Sinica , Taipei, 11529, Taiwan
| | - Yi-Shiang Huang
- Institute of Biological Chemistry, Academia Sinica , Taipei, 11529, Taiwan
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University , Taipei 110, Taiwan
| | - Yu-Ching Lin
- Institute of Biological Chemistry, Academia Sinica , Taipei, 11529, Taiwan
| | - Fu-Yung Huang
- Department of Chemistry, National Cheng Kung University , Tainan 701, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica , Taipei, 11529, Taiwan
| | - Tzu-Hua Wu
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University , Taipei 110, Taiwan
| |
Collapse
|
16
|
Potz BA, Abid MR, Sellke FW. Role of Calpain in Pathogenesis of Human Disease Processes. JOURNAL OF NATURE AND SCIENCE 2016; 2:e218. [PMID: 27747292 PMCID: PMC5065022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Calpains are a 15-member class of calcium activated nonlysosomal neutral proteases which are involved in a broad range of cellular function. Calpains are usually localized to the cytosol and within mitochondria. Calpastatin is an endogenous protein that specifically binds to and inhibits calpain. Overactivation of calpain has been implicated in a number of disease processes of the brain, eyes, heart, lungs, pancreas, kidneys, vascular system and skeletal muscle. Therefore, calpain may serve as a potential therapeutic target for a wide variety of disease processes. This review briefly outlines the current literature regarding the involvement of calpain overactivation in the pathogenesis of almost every organ in the body.
Collapse
Affiliation(s)
| | | | - Frank W. Sellke
- Corresponding Author. Frank W Sellke, M.D., Division of Cardiothoracic Surgery, Cardiovascular Research Center Warren Alpert Medical School Brown University, 2 Dudley Street MOC 360, Providence, RI 02905, USA.
| |
Collapse
|