1
|
Punia R, Mor S, Sindhu S, Kumar D, Pradip Das P, Kumar Jindal D, Kumar A, Mohil R, Jakhar K. Design, synthesis, α-amylase and glucose diffusion inhibition, and molecular docking studies of new indenopyrazolones bearing benzothiazole derivatives. Bioorg Med Chem Lett 2024; 103:129692. [PMID: 38452826 DOI: 10.1016/j.bmcl.2024.129692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
An eco-friendly facile synthesis of a series of twenty 1-(4/6-substitutedbenzo[d]thiazol-2-yl)-3-(phenyl/substitutedphenyl)indeno[1,2-c]pyrazol-4(1H)-ones 7a-t was achieved by the reaction of 2-(benzoyl/substitutedbenzoyl)-(1H)-indene-1,3(2H)-dione 3a-t and 2-hydrazinyl-4/6-substitutedbenzo[d]thiazole 6a-t in presence of freshly dried ethanol and glacial acetic acid under reflux conditions in good yields. The newly synthesized derivatives were well characterized using different physical and spectral techniques (FTIR, 1H NMR & 13C NMR, and HRMS). All the compounds were subjected to assess their in vitro α-amylase and glucose diffusion inhibitory activity. Amongst them, the compounds 7i and 7l showed better α-amylase inhibitory activity demonstrating IC50 values of 92.99±1.94 µg/mL and 95.41±3.92 µg/mL, respectively in comparison to the standard drug acarbose (IC50 value of 103.60±2.15 µg/mL). The derivatives 7d and 7k exhibited good glucose diffusion inhibition with values of 2.25±1.16 µg/mL and 2.63±1.45 µg/mL, respectively with standard reference acarbose (2.76±0.55 µg/mL). The observed α-amylase inhibitory activity findings were corroborated through molecular docking investigations, particularly for the highly active compounds 7i (binding energy -8.0 kcal/mol) and 7l (binding energy -8.2 kcal/mol) respectively, in comparison to acarbose with a value of binding energy -6.9 kcal/mol for α-amylase.
Collapse
Affiliation(s)
- Ravinder Punia
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India.
| | - Suchita Sindhu
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | - Priyanku Pradip Das
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | - Deepak Kumar Jindal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Rajni Mohil
- Department of Chemistry, Government College, Nalwa, Hisar, Haryana 125001, India
| | - Komal Jakhar
- Department of Chemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
2
|
Lam TP, Tran NVN, Pham LHD, Lai NVT, Dang BTN, Truong NLN, Nguyen-Vo SK, Hoang TL, Mai TT, Tran TD. Flavonoids as dual-target inhibitors against α-glucosidase and α-amylase: a systematic review of in vitro studies. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:4. [PMID: 38185713 PMCID: PMC10772047 DOI: 10.1007/s13659-023-00424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024]
Abstract
Diabetes mellitus remains a major global health issue, and great attention is directed at natural therapeutics. This systematic review aimed to assess the potential of flavonoids as antidiabetic agents by investigating their inhibitory effects on α-glucosidase and α-amylase, two key enzymes involved in starch digestion. Six scientific databases (PubMed, Virtual Health Library, EMBASE, SCOPUS, Web of Science, and WHO Global Index Medicus) were searched until August 21, 2022, for in vitro studies reporting IC50 values of purified flavonoids on α-amylase and α-glucosidase, along with corresponding data for acarbose as a positive control. A total of 339 eligible articles were analyzed, resulting in the retrieval of 1643 flavonoid structures. These structures were rigorously standardized and curated, yielding 974 unique compounds, among which 177 flavonoids exhibited inhibition of both α-glucosidase and α-amylase are presented. Quality assessment utilizing a modified CONSORT checklist and structure-activity relationship (SAR) analysis were performed, revealing crucial features for the simultaneous inhibition of flavonoids against both enzymes. Moreover, the review also addressed several limitations in the current research landscape and proposed potential solutions. The curated datasets are available online at https://github.com/MedChemUMP/FDIGA .
Collapse
Affiliation(s)
- Thua-Phong Lam
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Uppsala University, 75105, Uppsala, Sweden
| | - Ngoc-Vi Nguyen Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Uppsala University, 75105, Uppsala, Sweden
| | - Long-Hung Dinh Pham
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
| | - Nghia Vo-Trong Lai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Bao-Tran Ngoc Dang
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Ngoc-Lam Nguyen Truong
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Song-Ky Nguyen-Vo
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Thuy-Linh Hoang
- California Northstate University College of Pharmacy, California, 95757, USA
| | - Tan Thanh Mai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam.
| | - Thanh-Dao Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam.
| |
Collapse
|
3
|
Díaz-Rojas M, González-Andrade M, Aguayo-Ortiz R, Rodríguez-Sotres R, Pérez-Vásquez A, Madariaga-Mazón A, Mata R. Discovery of inhibitors of protein tyrosine phosphatase 1B contained in a natural products library from Mexican medicinal plants and fungi using a combination of enzymatic and in silico methods*. Front Pharmacol 2023; 14:1281045. [PMID: 38027024 PMCID: PMC10644722 DOI: 10.3389/fphar.2023.1281045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
This work aimed to discover protein tyrosine phosphatase 1B (PTP1B) inhibitors from a small molecule library of natural products (NPs) derived from selected Mexican medicinal plants and fungi to find new hits for developing antidiabetic drugs. The products showing similar IC50 values to ursolic acid (UA) (positive control, IC50 = 26.5) were considered hits. These compounds were canophyllol (1), 5-O-(β-D-glucopyranosyl)-7-methoxy-3',4'-dihydroxy-4-phenylcoumarin (2), 3,4-dimethoxy-2,5-phenanthrenediol (3), masticadienonic acid (4), 4',5,6-trihydroxy-3',7-dimethoxyflavone (5), E/Z vermelhotin (6), tajixanthone hydrate (7), quercetin-3-O-(6″-benzoyl)-β-D-galactoside (8), lichexanthone (9), melianodiol (10), and confusarin (11). According to the double-reciprocal plots, 1 was a non-competitive inhibitor, 3 a mixed-type, and 6 competitive. The chemical space analysis of the hits (IC50 < 100 μM) and compounds possessing activity (IC50 in the range of 100-1,000 μM) with the BIOFACQUIM library indicated that the active molecules are chemically diverse, covering most of the known Mexican NPs' chemical space. Finally, a structure-activity similarity (SAS) map was built using the Tanimoto similarity index and PTP1B absolute inhibitory activity, which allows the identification of seven scaffold hops, namely, compounds 3, 5, 6, 7, 8, 9, and 11. Canophyllol (1), on the other hand, is a true analog of UA since it is an SAR continuous zone of the SAS map.
Collapse
Affiliation(s)
- Miriam Díaz-Rojas
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Rodrigo Aguayo-Ortiz
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Abraham Madariaga-Mazón
- Instituto de Química Unidad Mérida and Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Unidad Mérida, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rachel Mata
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Guo F, An J, Wang M, Zhang W, Chen C, Mao X, Liu S, Wang P, Ren F. Inhibitory Mechanism of Quercimeritrin as a Novel α-Glucosidase Selective Inhibitor. Foods 2023; 12:3415. [PMID: 37761124 PMCID: PMC10528180 DOI: 10.3390/foods12183415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, 12 flavonoid glycosides were selected based on virtual screening and the literature, and Quercimeritrin was selected as the best selective inhibitor of α-glucosidase through in vitro enzyme activity inhibition experiments. Its IC50 value for α-glucosidase was 79.88 µM, and its IC50 value for α-amylase >250 µM. As such, it could be used as a new selective inhibitor of α-glucosidase. The selective inhibition mechanism of Quercimeritrin on the two starch-digesting enzymes was further explored, and it was confirmed that Quercimeritrin had a strong binding affinity for α-glucosidase and occupied the binding pocket of α-glucosidase through non-covalent binding. Subsequently, animal experiments demonstrated that Quercimeritrin can effectively control postprandial blood glucose in vivo, with the same inhibitory effect as acarbose but without side effects. Our results, therefore, provide insights into how flavone aglycones can be used to effectively control the rate of digestion to improve postprandial blood glucose levels.
Collapse
Affiliation(s)
- Fengyu Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (F.G.); (X.M.)
| | - Jie An
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (J.A.); (M.W.); (W.Z.); (C.C.); (S.L.)
| | - Minlong Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (J.A.); (M.W.); (W.Z.); (C.C.); (S.L.)
| | - Weibo Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (J.A.); (M.W.); (W.Z.); (C.C.); (S.L.)
| | - Chong Chen
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (J.A.); (M.W.); (W.Z.); (C.C.); (S.L.)
| | - Xueying Mao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (F.G.); (X.M.)
| | - Siyuan Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (J.A.); (M.W.); (W.Z.); (C.C.); (S.L.)
- Food Laboratory of Zhongyuan, China Agricultural University, Beijing 100083, China
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (J.A.); (M.W.); (W.Z.); (C.C.); (S.L.)
- Food Laboratory of Zhongyuan, China Agricultural University, Beijing 100083, China
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (F.G.); (X.M.)
| |
Collapse
|
5
|
Rutkowska M, Olszewska MA. Anti-Diabetic Potential of Polyphenol-Rich Fruits from the Maleae Tribe-A Review of In Vitro and In Vivo Animal and Human Trials. Nutrients 2023; 15:3756. [PMID: 37686786 PMCID: PMC10489674 DOI: 10.3390/nu15173756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
The Maleae tribe consists of over one thousand species, including many well-known polyphenol-containing fruit crops with wide-ranging biological properties, e.g., apples (Malus), chokeberries (Aronia), pears (Pyrus), quinces (Cydonia, Chaenomeles), saskatoon (Amelanchier), loquats (Eriobotrya), medlars (Mespilus), rowans (Sorbus), and hawthorns (Crataegus). Considering the current interest in the concept of functional foods and the still-insufficient methods of diabetes management, the anti-diabetic potential of fruits has been studied intensively, including those of the Maleae tribe. This paper is the first comprehensive overview of this selected topic, covering articles published from 2000 to 2023 (131 articles in total). The first part of this review focuses on the potential mechanisms of action of fruits investigated so far (46 species), including their effects on tissue-specific glucose transport and the expression or activity of proteins in the insulin signalling pathway. The second part covers the phytocompounds responsible for particular fruits' activity-primarily polyphenols (e.g., flavonols, dihydrochalcones, proanthocyanidins, anthocyanins, phenolic acids), but also polysaccharides, triterpenes, and their additive and synergistic effects. In summary, fruits from the Maleae tribe seem promising as functional foods and anti-diabetic agents; however, their prospects for more expansive pro-health application require further research, especially more profound in vivo trials.
Collapse
Affiliation(s)
- Magdalena Rutkowska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland;
| | | |
Collapse
|
6
|
Elhady SS, Alshobaki NM, Elfaky MA, Koshak AE, Alharbi M, Abdelhameed RFA, Darwish KM. Deciphering Molecular Aspects of Potential α-Glucosidase Inhibitors within Aspergillus terreus: A Computational Odyssey of Molecular Docking-Coupled Dynamics Simulations and Pharmacokinetic Profiling. Metabolites 2023; 13:942. [PMID: 37623885 PMCID: PMC10456934 DOI: 10.3390/metabo13080942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Hyperglycemia, as a hallmark of the metabolic malady diabetes mellitus, has been an overwhelming healthcare burden owing to its high rates of comorbidity and mortality, as well as prospective complications affecting different body organs. Available therapeutic agents, with α-glucosidase inhibitors as one of their cornerstone arsenal, control stages of broad glycemia while showing definitive characteristics related to their low clinical efficiency and off-target complications. This has propelled the academia and industrial section into discovering novel and safer candidates. Herein, we provided a thorough computational exploration of identifying candidates from the marine-derived Aspergillus terreus isolates. Combined structural- and ligand-based approaches using a chemical library of 275 metabolites were adopted for pinpointing promising α-glucosidase inhibitors, as well as providing guiding insights for further lead optimization and development. Structure-based virtual screening through escalating precision molecular docking protocol at the α-glucosidase canonical pocket identified 11 promising top-docked hits, with several being superior to the market drug reference, acarbose. Comprehensive ligand-based investigations of these hits' pharmacokinetics ADME profiles, physiochemical characterizations, and obedience to the gold standard Lipinski's rule of five, as well as toxicity and mutagenicity profiling, proceeded. Under explicit conditions, a molecular dynamics simulation identified the top-stable metabolites: butyrolactone VI (SK-44), aspulvinone E (SK-55), butyrolactone I 4''''-sulfate (SK-72), and terrelumamide B (SK-173). They depicted the highest free binding energies and steadiest thermodynamic behavior. Moreover, great structural insights have been revealed, including the advent of an aromatic scaffold-based interaction for ligand-target complex stability. The significance of introducing balanced hydrophobic/polar moieties, like triazole and other bioisosteres of carboxylic acid, has been highlighted across docking, ADME/Tox profiling, and molecular dynamics studies for maximizing binding interactions while assuring safety and optimal pharmacokinetics for targeting the intestinal-localized α-glucosidase enzyme. Overall, this study provided valuable starting points for developing new α-glucosidase inhibitors based on nature-derived unique scaffolds, as well as guidance for prospective lead optimization and development within future pre-clinical and clinical investigations.
Collapse
Affiliation(s)
- Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.M.A.); (M.A.E.); (A.E.K.)
| | - Noha M. Alshobaki
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.M.A.); (M.A.E.); (A.E.K.)
| | - Mahmoud A. Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.M.A.); (M.A.E.); (A.E.K.)
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahman E. Koshak
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.M.A.); (M.A.E.); (A.E.K.)
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Reda F. A. Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
7
|
Rashid RSM, Temurlu S, Abourajab A, Karsili P, Dinleyici M, Al-Khateeb B, Icil H. Drug Repurposing of FDA Compounds against α-Glucosidase for the Treatment of Type 2 Diabetes: Insights from Molecular Docking and Molecular Dynamics Simulations. Pharmaceuticals (Basel) 2023; 16:ph16040555. [PMID: 37111312 PMCID: PMC10145898 DOI: 10.3390/ph16040555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Type 2 diabetes mellitus is a chronic health problem that can be controlled by slowing one's carbohydrate metabolism by inhibiting α-glucosidase, an enzyme responsible for carbohydrate degradation. Currently, drugs for type 2 diabetes have limitations in terms of safety, efficiency, and potency, while cases are rapidly increasing. For this reason, the study planned and moved towards drug repurposing by utilizing food and drug administration (FDA)-approved drugs against α-glucosidase, and investigated the molecular mechanisms. The target protein was refined and optimized by introducing missing residues, and minimized to remove clashes to find the potential inhibitor against α-glucosidase. The most active compounds were selected after the docking study to generate a pharmacophore query for the virtual screening of FDA-approved drug molecules based on shape similarity. The analysis was performed using Autodock Vina (ADV)-based on binding affinities (-8.8 kcal/mol and -8.6 kcal/mol) and root-mean-square-deviation (RMSD) values (0.4 Å and 0.6 Å). Two of the most potent lead compounds were selected for a molecular dynamics (MD) simulation to determine the stability and specific interactions between receptor and ligand. The docking score, RMSD values, pharmacophore studies, and MD simulations revealed that two compounds, namely Trabectedin (ZINC000150338708) and Demeclocycline (ZINC000100036924), are potential inhibitors for α-glucosidase compared to standard inhibitors. These predictions showed that the FDA-approved molecules Trabectedin and Demeclocycline are potential suitable candidates for repurposing against type 2 diabetes. The in vitro studies showed that trabectedin was significantly effective with an IC50 of 1.263 ± 0.7 μM. Further investigation in the laboratory is needed to justify the safety of the drug to be used in vivo.
Collapse
Affiliation(s)
- Rebwar Saeed M Rashid
- Department of Chemistry, Faculty of Arts and Science, Eastern Mediterranean University, Famagusta 99628, Northern Cyprus, Mersin 10, Turkey
- Department of Chemistry, Faculty of Education, University of Sulaimani, Sulaymaniyah 46001, Iraq
| | - Selin Temurlu
- Department of Chemistry, Faculty of Arts and Science, Eastern Mediterranean University, Famagusta 99628, Northern Cyprus, Mersin 10, Turkey
| | - Arwa Abourajab
- Department of Chemistry, Faculty of Arts and Science, Eastern Mediterranean University, Famagusta 99628, Northern Cyprus, Mersin 10, Turkey
| | - Pelin Karsili
- Department of Chemistry, Faculty of Arts and Science, Eastern Mediterranean University, Famagusta 99628, Northern Cyprus, Mersin 10, Turkey
| | - Meltem Dinleyici
- Department of Chemistry, Faculty of Arts and Science, Eastern Mediterranean University, Famagusta 99628, Northern Cyprus, Mersin 10, Turkey
| | - Basma Al-Khateeb
- Department of Chemistry, Faculty of Arts and Science, Eastern Mediterranean University, Famagusta 99628, Northern Cyprus, Mersin 10, Turkey
| | - Huriye Icil
- Department of Chemistry, Faculty of Arts and Science, Eastern Mediterranean University, Famagusta 99628, Northern Cyprus, Mersin 10, Turkey
| |
Collapse
|
8
|
Dong Q, Hu N, Yue H, Wang H, Wei Y. Rapid screening of α-glucosidase inhibitors in Hypericum perforatum L. using bio-affinity chromatography coupled with UPLC/MS. Biomed Chromatogr 2023; 37:e5536. [PMID: 36264709 DOI: 10.1002/bmc.5536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2023]
Abstract
α-glucosidase inhibitors (AGIs) are widely used for the treatment of type 2 diabetes, but their side effects have made it to develop novel and alternative AGIs immediately. In this study, the extract of Hypericum perforatum L. (HPE) has been confirmed to have α-glucosidase inhibitory activity in vitro and in vivo. Seven active compounds, rutin, hyperoside, isoquercitrin, avicularin, quercitrin, quercetin, and biapigenin, were screened based on a bio-affinity chromatography column with α-glucosidase enzyme-conjugated solid phase and UPLC/MS, which exhibited excellent α-glycosidase inhibitory effects by the determined IC50 values. The mechanism of α-glycosidase inhibitory activity of biapigenin was studied for the first time. The results showed that biapigenin was a high-potential, reversible, and mixed enzyme inhibitor. Analysis by molecular docking further revealed that hydrophobic interactions were generated by interactions between biapigenin and amino acid residues LYS156, PHE303, PHE314, and LEU313. In addition, hydrogen bonding occurred between biapigenin and α-glucosidase amino acid residues ASP307, SER241, and LYS156. This research identified that biapigenin could be a novel AGI and further applied to the development of potential anti-diabetic drugs. Furthermore, our studies established a rapid in vitro screening method for AGIs from plants.
Collapse
Affiliation(s)
- Qi Dong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| | - Na Hu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| | - Honglun Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| | - Yue Wei
- Henan Natural Product Biotechnology, Co., LTD., Henan, China
| |
Collapse
|
9
|
Khaisaat S, Chancharoensin S, Wipatanawin A, Suphantharika M, Payongsri P. Influence of Degree of Polymerization of Low-Molecular-Weight Chitosan Oligosaccharides on the α-Glucosidase Inhibition. Molecules 2022; 27:molecules27238129. [PMID: 36500221 PMCID: PMC9740910 DOI: 10.3390/molecules27238129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Chitosan oligosaccharide (COS) is a bioactive compound derived from marine by-products. COS consumption has been demonstrated to lower the risk of diabetes. However, there are limited data on the inhibitory effect of low-molecular-weight COSs with different degrees of polymerization (DP) on α-glucosidase. This study investigates the α-glucosidase inhibitory activity of two low-molecular-weight COSs, i.e., S-TU-COS with DP2−4 and L-TU-COS with DP2−5, both of which have different molecular weight distributions. The inhibition constants of the inhibitors binding to free enzymes (Ki) and an enzyme−substrate complex (Kii) were investigated to elucidate the inhibitory mechanism of COSs with different chain lengths. The kinetic inhibition model of S-TU-COS showed non-completive inhibition results which are close to the uncompetitive inhibition results with Ki and Kii values of 3.34 mM and 2.94 mM, respectively. In contrast, L-TU-COS showed uncompetitive inhibition with a Kii value of 5.84 mM. With this behavior, the IC50 values of S-TU-COS and L-TU-COS decreased from 12.54 to 11.84 mM and 20.42 to 17.75 mM, respectively, with an increasing substrate concentration from 0.075 to 0.3 mM. This suggests that S-TU-COS is a more potent inhibitor, and the different DP of COS may cause significantly different inhibition (p < 0.05) on the α-glucosidase activity. This research may provide new insights into the production of a COS with a suitable profile for antidiabetic activity.
Collapse
Affiliation(s)
- Supharada Khaisaat
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Saovanee Chancharoensin
- Global Innovation Centre (GIC), Thai Union Group PCL. S.M. Tower, Phaholyothin Road, Phayathai Sub-District, Phayathai, Bangkok 10400, Thailand
| | - Angkana Wipatanawin
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Manop Suphantharika
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Panwajee Payongsri
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
- Correspondence: ; Tel.: +66-2201-5315
| |
Collapse
|
10
|
Metre TV, Kodasi B, Bayannavar PK, Bheemayya L, Nadoni VB, Hoolageri SR, Shettar AK, Joshi SD, Kumbar VM, Kamble RR. Coumarin-4-yl‐1,2,3‐triazol‐4-yl-methyl-thiazolidine-2,4-diones: Synthesis, Glucose uptake activity and Cytotoxic Evaluation. Bioorg Chem 2022; 130:106235. [DOI: 10.1016/j.bioorg.2022.106235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/20/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
11
|
Elyasi L, Rosenholm JM, Jesmi F, Jahanshahi M. The Antioxidative Effects of Picein and Its Neuroprotective Potential: A Review of the Literature. Molecules 2022; 27:molecules27196189. [PMID: 36234724 PMCID: PMC9571929 DOI: 10.3390/molecules27196189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are the main cause of dementia in the elderly, having no cure to date, as the currently available therapies focus on symptom remission. Most NDDs will progress despite treatment and eventually result in the death of the patient after several years of a burden on both the patient and the caregivers. Therefore, it is necessary to investigate agents that tackle the disease pathogenesis and can efficiently slow down or halt disease progression, with the hope of curing the patients and preventing further burden and mortality. Accordingly, recent research has focused on disease-modifying treatments with neuroregenerative or neuroprotective effects. For this purpose, it is necessary to understand the pathogenesis of NDDs. It has been shown that oxidative stress plays an important role in the damage to the central nervous system and the progression of neurodegenerative disorders. Furthermore, mitochondrial dysfunction and the accumulation of unfolded proteins, including beta-amyloid (Aβ), tau proteins, and α-synuclein, have been suggested. Accordingly, cellular and molecular studies have investigated the efficacy of several natural compounds (herbs and nutritional agents) for their neuroprotective and antioxidative properties. The most popular herbs suggested for the treatment and/or prevention of NDDs include Withania somnifera (ashwagandha), ginseng, curcumin, resveratrol, Baccopa monnieri, and Ginkgo biloba. In some herbs, such as ginseng, preclinical and clinical evidence are available for supporting its effectiveness; however, in some others, only cellular and animal studies are available. In line with the scant literature in terms of the effectiveness of herbal compounds on NDDs, there are also other herbal agents that have been disregarded. Picein is one of the herbal agents that has been investigated in only a few studies. Picein is the active ingredient of several herbs and can be thus extracted from different types of herbs, which makes it more available. It has shown to have anti-inflammatory properties in cellular and plant studies; however, to date, only one study has suggested its neuroprotective properties. Furthermore, some cellular studies have shown no anti-inflammatory effect of picein. Therefore, a review of the available literature is required to summarize the results of studies on picein. To date, no review study seems to have addressed this issue. Thus, in the present study, we gather the available information about the antioxidative and potential neuroprotective properties of picein and its possible effectiveness in treating NDDs. We also summarize the plants from which picein can be extracted in order to guide researchers for future investigations.
Collapse
Affiliation(s)
- Leila Elyasi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan 4917955315, Iran
- Correspondence: ; Tel./Fax: +98-17-32453515
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Fatemeh Jesmi
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran 1415944911, Iran
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan 4917955315, Iran
| |
Collapse
|
12
|
Lianza M, Poli F, Nascimento AMD, Soares da Silva A, da Fonseca TS, Toledo MV, Simas RC, Chaves AR, Leitão GG, Leitão SG. In vitro α-glucosidase inhibition by Brazilian medicinal plant extracts characterised by ultra-high performance liquid chromatography coupled to mass spectrometry. J Enzyme Inhib Med Chem 2022; 37:554-562. [PMID: 35152818 PMCID: PMC8933013 DOI: 10.1080/14756366.2021.2022658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aiming at finding natural sources of antidiabetics agents, 15 extracts from Brazilian medicinal plants of the Atlantic Forest and Amazon region were tested against α-glucosidase enzyme. Plants were selected based on the taxonomic relationships with genera including several species with antidiabetic activity. In this screening, the extracts obtained from the flowers of Hyptis monticola and the leaves of Lantana trifolia and Lippia origanoides resulted endowed with promising anti-α-glucosidase activity. The extracts from H. monticola and from L. origanoides collected in two different areas, were characterised by ultra-high performance liquid chromatography coupled to mass spectrometry. Bioassay-guided fractionation led to the identification of several enzyme inhibiting compounds, among them the mechanism of action of naringenin and pinocembrin was investigated. The two L. origanoides extracts showed differences in bioactivity and in the phytochemical profiles. The fractionation of the extract from H. monticola led to a partial loss of the inhibitory effect.
Collapse
Affiliation(s)
- Mariacaterina Lianza
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Ferruccio Poli
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Alan Menezes do Nascimento
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Soares da Silva
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thamirys Silva da Fonseca
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Vinicius Toledo
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosineide Costa Simas
- Laboratório de Cromatografia e Espectrometria de Massas (LaCEM), Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil
| | - Andréa Rodrigues Chaves
- Laboratório de Cromatografia e Espectrometria de Massas (LaCEM), Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil
| | - Gilda Guimarães Leitão
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suzana Guimarães Leitão
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Saddique FA, Ahmad M, Ashfaq UA, Muddassar M, Sultan S, Zaki MEA. Identification of Cyclic Sulfonamides with an N-Arylacetamide Group as α-Glucosidase and α-Amylase Inhibitors: Biological Evaluation and Molecular Modeling. Pharmaceuticals (Basel) 2022; 15:106. [PMID: 35056163 PMCID: PMC8777765 DOI: 10.3390/ph15010106] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus (DM), a complicated metabolic disorder, is due to insensitivity to insulin function or reduction in insulin secretion, which results in postprandial hyperglycemia. α-Glucosidase inhibitors (AGIs) and α-amylase inhibitors (AAIs) block the function of digestive enzymes, which delays the carbohydrate hydrolysis process and ultimately helps to control the postprandial hyperglycemia. Diversified 2-(3-(3-methoxybenzoyl)-4-hydroxy-1,1-dioxido-2H-benzo[e][1,2]thiazin-2-yl)-N-arylacetamides were synthesized and evaluated for their in vitro inhibitory potential against α-glucosidase and α-amylase enzymes. The compounds with chloro, bromo and methyl substituents demonstrated good inhibition of α-glucosidase enzymes having IC50 values in the range of 25.88-46.25 μM, which are less than the standard drug, acarbose (IC50 = 58.8 μM). Similarly, some derivatives having chloro, bromo and nitro substituents were observed potent inhibitors of α-amylase enzyme, with IC50 values of 7.52 to 15.06 μM, lower than acarbose (IC50 = 17.0 μM). In addition, the most potent compound, N-(4-bromophenyl)-2-(4-hydroxy-3-(3-methoxybenzoyl)-1,1-dioxido-2H-benzo[e][1,2]thiazin-2-yl)acetamide (12i), was found to be a non-competitive and competitive inhibitor of α-glucosidase and α-amylase enzymes, respectively, during kinetic studies. The molecular docking studies provided the binding modes of active compounds and the molecular dynamics simulation studies of compound 12i in complex with α-amylase also showed that the compound is binding in a fashion similar to that predicted by molecular docking studies.
Collapse
Affiliation(s)
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan;
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45500, Pakistan;
| | - Sadia Sultan
- Faculty of Pharmacy, Puncak Alam Campus, Universiti Teknologi MARA, Bandar Puncak Alam 42300, Selangor Darul Ehsan, Malaysia;
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Puncak Alam Campus, Universiti Teknologi MARA, Bandar Puncak Alam 42300, Selangor Darul Ehsan, Malaysia
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
14
|
Farwa U, Raza MA. Heterocyclic compounds as a magic bullet for diabetes mellitus: a review. RSC Adv 2022; 12:22951-22973. [PMID: 36105949 PMCID: PMC9379558 DOI: 10.1039/d2ra02697j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Diabetes mellitus (DM) is a major metabolic disorder due to hyperglycemia, which is increasing all over the world. From the last two decades, the use of synthetic agents has risen due to their major involvement in curing of chronic diseases including DM. The core skeleton of drugs has been studied such as thiazolidinone, azole, chalcone, pyrrole and pyrimidine along with their derivatives. Diabetics assays have been performed in consideration of different enzymes such as α-glycosidase, α-amylase, and α-galactosidase against acarbose standard drug. The studied moieties were depicted in both models: in vivo as well as in vitro. Molecular docking of the studied compounds as antidiabetic molecules was performed with the help of Auto Dock and molecular operating environment (MOE) software. Amino acid residues Asp349, Arg312, Arg439, Asn241, Val303, Glu304, Phe158, His103, Lys422 and Thr207 that are present on the active sites of diabetic related enzymes showed interactions with ligand molecules. In this review data were organized for the synthesis of heterocyclic compounds through various routes along with their antidiabetic potential, and further studies such as pharmacokinetic and toxicology studies should be executed before going for clinical trials. Diabetes mellitus (DM) is a major metabolic disorder due to hyperglycemia, which is increasing all over the world.![]()
Collapse
Affiliation(s)
- Umme Farwa
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | | |
Collapse
|
15
|
Inhibitory Effect of Fisetin on α-Glucosidase Activity: Kinetic and Molecular Docking Studies. Molecules 2021; 26:molecules26175306. [PMID: 34500738 PMCID: PMC8434554 DOI: 10.3390/molecules26175306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022] Open
Abstract
The inhibition of α-glucosidase is a clinical strategy for the treatment of type 2 diabetes mellitus (T2DM), and many natural plant ingredients have been reported to be effective in alleviating hyperglycemia by inhibiting α-glucosidase. In this study, the α-glucosidase inhibitory activity of fisetin extracted from Cotinus coggygria Scop. was evaluated in vitro. The results showed that fisetin exhibited strong inhibitory activity with an IC50 value of 4.099 × 10−4 mM. Enzyme kinetic analysis revealed that fisetin is a non-competitive inhibitor of α-glucosidase, with an inhibition constant value of 0.01065 ± 0.003255 mM. Moreover, fluorescence spectrometric measurements indicated the presence of only one binding site between fisetin and α-glucosidase, with a binding constant (lgKa) of 5.896 L·mol−1. Further molecular docking studies were performed to evaluate the interaction of fisetin with several residues close to the inactive site of α-glucosidase. These studies showed that the structure of the complex was maintained by Pi-Sigma and Pi-Pi stacked interactions. These findings illustrate that fisetin extracted from Cotinus coggygria Scop. is a promising therapeutic agent for the treatment of T2DM.
Collapse
|
16
|
Proença C, Ribeiro D, Freitas M, Fernandes E. Flavonoids as potential agents in the management of type 2 diabetes through the modulation of α-amylase and α-glucosidase activity: a review. Crit Rev Food Sci Nutr 2021; 62:3137-3207. [PMID: 33427491 DOI: 10.1080/10408398.2020.1862755] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Type 2 diabetes (T2D) is one of the most prevalent metabolic diseases worldwide and is characterized by increased postprandial hyperglycemia (PPHG). α-Amylase and α-glucosidase inhibitors have been shown to slow the release of glucose from starch and oligosaccharides, resulting in a delay of glucose absorption and a reduction in postprandial blood glucose levels. Since current α-glucosidase inhibitors used in the management of T2D, such as acarbose, have been associated to strong gastrointestinal side effects, the search for novel and safer drugs is considered a hot topic of research. Flavonoids are phenolic compounds widely distributed in the Plant Kingdom and important components of the human diet. These compounds have shown promising antidiabetic activities, including the inhibition of α-amylase and α-glucosidase. The aim of this review is to provide an overview on the scientific literature concerning the structure-activity relationship of flavonoids in inhibiting α-amylase and α-glucosidase, including their type of inhibition and experimental procedures applied. For this purpose, a total of 500 compounds is covered in this review. Available data may be considered of high value for the design and development of novel flavonoid derivatives with effective and potent inhibitory activity against those carbohydrate-hydrolyzing enzymes, to be possibly used as safer alternatives for the regulation of PPHG in T2D.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Promyos N, Temviriyanukul P, Suttisansanee U. Investigation of Anthocyanidins and Anthocyanins for Targeting α-Glucosidase in Diabetes Mellitus. Prev Nutr Food Sci 2020; 25:263-271. [PMID: 33083375 PMCID: PMC7541926 DOI: 10.3746/pnf.2020.25.3.263] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/27/2020] [Indexed: 12/04/2022] Open
Abstract
Anthocyanidins are bioactive compounds found mostly in colored plants and fruits. Consumption of anthocyanidin-rich foods has been shown to reduce the risk of diabetes. However, limited information is available regarding the inhibitory effect and interactions of anthocyanidins on α-glucosidase, the key enzyme that controls diabetes through degrading carbohydrate. Therefore, we used computational docking analysis to investigate the degree and type of inhibition by α-glucosidase, and the structural interactions of enzyme-selected anthocyanidins. The results suggested that anthocyanidins exhibit half maximal inhibitory concentration of 4∼55 μM; the strongest and weakest α-glucosidase inhibitors were delphinidin and malvidin, respectively. Indeed, delphinidin inhibits α-glucosidase in a mixed type, close to non-competitive manner with an inhibitory constant of 78 nM. Addition of a glycoside (glucoside or galactoside) at C3 on the C ring of delphinidin significantly decreased inhibitory activity, and addition of glycosides at C3 on the C ring and C5 on the A ring of delphinidin prevented all inhibitory activity. Molecular docking and free binding energy accurately confirmed the mode of inhibition determined by enzyme kinetics. These data will inform the use of alternative sources of anthocyanidins in functional foods and dietary supplements for prevention of diabetes. The results provide useful information for evaluating possible molecular models using anthocyanins/anthocyanidins as templates and α-glucosidase as the key enzyme in management of diabetes.
Collapse
Affiliation(s)
- Natnicha Promyos
- Institute of Nutrition, Mahidol University, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Uthaiwan Suttisansanee
- Institute of Nutrition, Mahidol University, Phutthamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
18
|
Tafesse TB, Moghadam ES, Bule MH, Abadian N, Abdollahi M, Faramarzi MA, Amini M. Synthesis and biological evaluation of 2-(2-methyl-1H-pyrrol-3-yl)-2-oxo-N-(pyridine-3-yl) acetamide derivatives: in vitro α-glucosidase inhibition, and kinetic and molecular docking study. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00999-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Hussain F, Khan Z, Jan MS, Ahmad S, Ahmad A, Rashid U, Ullah F, Ayaz M, Sadiq A. Synthesis, in-vitro α-glucosidase inhibition, antioxidant, in-vivo antidiabetic and molecular docking studies of pyrrolidine-2,5-dione and thiazolidine-2,4-dione derivatives. Bioorg Chem 2019; 91:103128. [DOI: 10.1016/j.bioorg.2019.103128] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/04/2019] [Accepted: 07/17/2019] [Indexed: 01/19/2023]
|
20
|
Nakagawa T, Ashour A, Amen Y, Koba Y, Ohnuki K, Shimizu K. α-Glucosidase Inhibitory Activity of Resin From Sakhalin fir Tree ( Abies sachalinensis) and its Bioactive Compounds. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19858460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study investigated in vitro the α-glucosidase inhibitory activity of resin from the Sakhalin fir tree ( Abies sachalinensis). The resin showed extremely high activity (IC50 of 17.3 µg/mL). We isolated 8 compounds from the resin and identified them. All of the compounds isolated from A. sachalinensis resin are reported for the first time in the present study. In an α-glucosidase inhibitory assay, 6 compounds—(holophyllane C (1), (−) -(24 E)-23-oxo-3,4- seco-9β H-lanosta-4(28),6,8(14),24-tetraen-3,26-dioic acid (2), abiesonic acid (3), (−) -(24 E)-23-oxo-3,4- seco-9β H-lanosta-4(28),7,24-triene-3,26-dioic acid (4), 3,4- seco-4(28),6,8(14),22Z,24-mariesapentaen-26,23-olide-3-oic acid (5), and (−) -abiesonic acid 3-methyl ester (6))—showed high activity (their IC50 values were 25.1, 20.9, 82.4, 20.5, 27.3, and 20.5 µg/mL, respectively). These compounds should contribute to the resin’s α-glucosidase inhibitory activity. From an industrial point of view, these findings provide new data to support that the resin of A. sachalinensis is a rich source of α-glucosidase inhibitors, which are highly valuable for their potential to be developed as functional health foods.
Collapse
Affiliation(s)
- Toshinori Nakagawa
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Department of Biological Resources Management, The University of Shiga Prefecture, Japan
| | - Ahmed Ashour
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Faculty of Pharmacy, Mansoura University, Egypt
| | - Yhiya Amen
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Faculty of Pharmacy, Mansoura University, Egypt
| | - Yurie Koba
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Koichiro Ohnuki
- Department of Biological and Environmental Chemistry, Kinki University, Fukuoka, Japan
| | | |
Collapse
|
21
|
In vitro and in silico elucidation of antidiabetic and anti-inflammatory activities of bioactive compounds from Momordica charantia L. Bioorg Med Chem 2019; 27:3097-3109. [PMID: 31196754 DOI: 10.1016/j.bmc.2019.05.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
Bitter melon (Momordica charantia) has been used to manage diabetes and related conditions in various parts of the world. In the present study, ten compounds were isolated from acetone and methanol extracts of bitter melon. The chemical structures of compounds were unambiguously elucidated by 1D, 2D NMR, and high-resolution mass spectra. Identified compounds 1-7 exhibited significant inhibition of α-amylase and moderate inhibition of α-glucosidase activities. Momordicoside G and gentisic acid 5-O-β-d-xyloside showed the highest inhibition of α-amylase (70.5%), and α-glucosidase (56.4%), respectively. Furthermore, molecular docking studies of isolated compounds 1-7 were able to bind to the active sites of both enzymes. Additionally, the isolated compounds 1-7 significantly attenuated lipopolysaccharide (LPS)-induced inflammation, downregulating the expression of pro-inflammatory markers NF-κB, INOS, IL-6, IL-1β, TNF-α, and Cox-2 in murine macrophage RAW 264.7 cells. One phenolic derivative, gentisic acid 5-O-β-d-xyloside, was isolated and identified for the first time from bitter melon, and significantly suppressed the expression of Cox-2 and IL-6 compared to the LPS-treated group. α-Amylase and α-glucosidase are targets of anti-diabetes drugs, our findings suggest that compounds purified from bitter melon may have potential to use as functional food ingredients for the prevention of type 2 diabetes and related inflammatory conditions.
Collapse
|
22
|
Conversion of Plant Secondary Metabolites upon Fermentation of Mercurialis perennis L. Extracts with two Lactobacteria Strains. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5020042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Microbial fermentation of plant extracts with Lactobacteria is an option to obtain microbiologically stable preparations, which may be applied in complementary medicine. We investigated the metabolic conversion of constituents from Mercurialis perennis L. extracts, which were prepared for such applications. For this purpose, aqueous extracts were inoculated with two Lactobacteria strains, namely Pediococcus sp. (PP1) and Lactobacillus sp. (LP1). Both were isolated from a fermented M. perennis extract and identified by 16S rRNA sequencing. After 1 day of fermentation, an almost complete conversion of the genuine piperidine-2,6-dione alkaloids hermidine quinone (3) and chrysohermidin (4)—both of them being oxidation products of hermidin (1) —was observed by GC-MS analysis, while novel metabolites such as methylhermidin (6) and methylhermidin quinone (7) were formed. Surprisingly, a novel compound plicatanin B (bis-(3-methoxy-1N-methylmaleimide); 8) was detected after 6 days, obviously being formed by ring contraction of 4. An intermediate of a postulated reaction mechanism, isochrysohermidinic acid (14), could be detected by LC-MS. Furthermore, an increase in contents of the metabolite mequinol (4-methoxyphenol; 9) upon fermentation points to a precursor glycoside of 9, which could be subsequently detected by GC-MS after silylation and identified as methylarbutin (15). 15 is described here for M. perennis for the first time.
Collapse
|
23
|
Shivanagoudra SR, Perera WH, Perez JL, Athrey G, Sun Y, Jayaprakasha GK, Patil BS. Cucurbitane-type compounds from Momordica charantia: Isolation, in vitro antidiabetic, anti-inflammatory activities and in silico modeling approaches. Bioorg Chem 2019; 87:31-42. [PMID: 30856374 DOI: 10.1016/j.bioorg.2019.02.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 01/03/2023]
Abstract
Momordica charantia L., commonly known as bitter melon, belongs to the Cucurbitaceae family. Various in vitro and in vivo studies have indicated that extracts of bitter melons have anti-diabetic properties. However, very little is known about the specific purified compounds responsible for these antidiabetic properties. In the present study, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al, charantal, charantoside XI, and 25ξ-isopropenylchole-5, 6-ene-3-O-d-glucopyranoside were isolated from bitter melon fruit. The structures of the purified compounds were elucidated by HR-ESIMS, 1D, and 2D NMR experiments. All compounds exhibited significant inhibition of α-amylase and α-glucosidase comparable to acarbose. Molecular docking studies demonstrated that purified compounds were able to bind to the active sites of proteins. Additionally, the purified compounds showed significant anti-inflammatory activity, downregulating the expression of NF-κB, iNOS, IL-6, IL-1β, TNF-α, and Cox-2 in lipopolysaccharide-activated macrophage RAW 264.7 cells. Our findings suggest that the purified compounds have potential anti-diabetic and anti-inflammatory activities and therefore hold promise for the development of plant-based management for diabetic and inflammatory conditions.
Collapse
Affiliation(s)
- Siddanagouda R Shivanagoudra
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX 77845, United States
| | - Wilmer H Perera
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX 77845, United States
| | - Jose L Perez
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX 77845, United States
| | - Giridhar Athrey
- Department of Poultry Science, Texas A&M University, College Station, TX 77845, United States
| | - Yuxiang Sun
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX 77843, United States
| | - G K Jayaprakasha
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX 77845, United States.
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX 77845, United States.
| |
Collapse
|
24
|
Xu L, Li W, Chen Z, Guo Q, Wang C, Santhanam RK, Chen H. Inhibitory effect of epigallocatechin-3-O-gallate on α-glucosidase and its hypoglycemic effect via targeting PI3K/AKT signaling pathway in L6 skeletal muscle cells. Int J Biol Macromol 2018; 125:605-611. [PMID: 30529552 DOI: 10.1016/j.ijbiomac.2018.12.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/28/2022]
Abstract
Epigallocatechin-3-O-gallate (EGCG), a tea polyphenol is renowned for its anti-diabetic properties, however limited studies elucidate its hypoglycemic mechanism from multi-perspectives. In the present study, the interaction between EGCG and α-glucosidase was investigated through kinetics analysis, fluorescence spectra, Fourier transform infrared (FT-IR) spectra and molecular docking studies. Additionally, the effect of EGCG on glucose uptake and its related signaling pathway in L6 muscle cells were also investigated. The results showed that the α-glucosidase inhibitory activity of EGCG (IC50 = 19.5 ± 0.3 μM) was higher than that acarbose (IC50 = 278.7 ± 1.1 μM). EGCG inhibited α-glucosidase in a reversible and non-competitive manner. EGCG quenched the fluorescence of α-glucosidase due to the complex formation between EGCG and α-glucosidase, where the hydrogen bonds played a critical role. Microenvironment and the secondary structure of α-glucosidase were highly influenced by EGCG. Molecular docking results indicated that the binding sites on α-glucosidase for EGCG were close to the active site pocket of the enzyme. EGCG was also found to enhance the glucose uptake and promote GLUT4 translocation to plasma membrane via PI3K/AKT signaling pathway in L6 skeletal muscle cells. Overall, these results revealed the possible hypoglycemic mechanism of EGCG.
Collapse
Affiliation(s)
- Leilei Xu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Weiwei Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhongqin Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Qingwen Guo
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Chunli Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ramesh Kumar Santhanam
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
25
|
Ali M, Ali S, Khan M, Rashid U, Ahmad M, Khan A, Al-Harrasi A, Ullah F, Latif A. Synthesis, biological activities, and molecular docking studies of 2-mercaptobenzimidazole based derivatives. Bioorg Chem 2018; 80:472-479. [DOI: 10.1016/j.bioorg.2018.06.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/14/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
|
26
|
Alhassan AM, Ahmed QU, Latip J, Shah SAA. A new sulphated flavone and other phytoconstituents from the leaves of Tetracera indica Merr. and their alpha-glucosidase inhibitory activity. Nat Prod Res 2018; 33:1-8. [DOI: 10.1080/14786419.2018.1437427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Alhassan Muhammad Alhassan
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Qamar Uddin Ahmed
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Jalifah Latip
- Faculty of Science and Technology, School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, Bandar Baru Bangi, Malaysia
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA, Bandar Puncak Alam, Malaysia
| |
Collapse
|
27
|
Pulbutr P, Saweeram N, Ittisan T, Intrama H, Jaruchotik A, Cushnie B. In vitro α-amylase and α-glucosidase Inhibitory Activities of Coccinia grandis Aqueous Leaf and Stem Extracts. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/jbs.2017.61.68] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Kashchenko NI, Chirikova NK, Olennikov DN. Agrimoniin, an Active Ellagitannin from Comarum palustre Herb with Anti-α-Glucosidase and Antidiabetic Potential in Streptozotocin-Induced Diabetic Rats. Molecules 2017; 22:E73. [PMID: 28045450 PMCID: PMC6155588 DOI: 10.3390/molecules22010073] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 01/28/2023] Open
Abstract
Naturally existing α-glucosidase inhibitors from traditional herbal medicines have attracted considerable interest to treat type 2 diabetes mellitus (DM). The present study aimed to evaluate the anti-α-glucosidase activity of extracts from marsh cinquefoil (Comarum palustre L.), their hypoglycaemic action and detection of the responsible compounds. A 60% ethanol extract from C. palustre herb revealed the highest inhibitory activity against α-glucosidase (IC50 52.0 μg/mL). The HPLC analysis of the major compounds resulted in detection of 15 compounds, including ellagitannins, flavonoids, catechin and other compounds. Using HPLC activity-based profiling a good inhibitory activity of agrimoniin-containing eluates against α-glucosidase was demonstrated. The removal of ellagitannins from the C. palustre extract significantly decreased α-glucosidase inhibition (IC50 204.7 μg/mL) due to the high enzyme-inhibiting activity of the dominant agrimoniin (IC50 21.8 μg/mL). The hypoglycaemic effect of C. palustre extracts before and after ellagitannin removal, agrimoniin and insulin was evaluated on streptozotocin-induced experimental model. Diabetic rats treated with agrimoniin and C. palustre extract before ellagitannin removal showed significant increases in the levels of plasma glucose and glycosylated hemoglobin and significant decreases in the levels of plasma insulin and hemoglobin. The data obtained confirm the leading role of agrimoniin in the antidiabetic activity of the herb C. palustre and allows us to suggest the use of this plant as a possible dietary adjunct in the treatment of DM and a source of new oral hypoglycaemic agents.
Collapse
Affiliation(s)
- Nina I Kashchenko
- Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, Sakh'yanovoy Street 6, Ulan-Ude 670047, Russia.
| | - Nadezhda K Chirikova
- Department of Biochemistry and Biotechnology, North-Eastern Federal University, 58 Belinsky Street, Yakutsk 677027, Russia.
| | - Daniil N Olennikov
- Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, Sakh'yanovoy Street 6, Ulan-Ude 670047, Russia.
- Department of Biochemistry and Biotechnology, North-Eastern Federal University, 58 Belinsky Street, Yakutsk 677027, Russia.
| |
Collapse
|
29
|
Exploring molecular flexibility and the interactions of Quercetin derivatives in the active site of α-glucosidase using molecular docking and charge density analysis. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
High-Resolution α-Glucosidase Inhibition Profiling Combined with HPLC-HRMS-SPE-NMR for Identification of Antidiabetic Compounds in Eremanthus crotonoides (Asteraceae). Molecules 2016; 21:molecules21060782. [PMID: 27322221 PMCID: PMC6273868 DOI: 10.3390/molecules21060782] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 11/24/2022] Open
Abstract
α-Glucosidase inhibitors decrease the cleavage- and absorption rate of monosaccharides from complex dietary carbohydrates, and represent therefore an important class of drugs for management of type 2 diabetes. In this study, a defatted ethyl acetate extract of Eremanthus crotonoides leaves with an inhibitory concentration (IC50) of 34.5 μg/mL towards α-glucosidase was investigated by high-resolution α-glucosidase inhibition profiling combined with HPLC-HRMS-SPE-NMR. This led to identification of six α-glucosidase inhibitors, namely quercetin (16), trans-tiliroside (17), luteolin (19), quercetin-3-methyl ether (20), 3,5-di-O-caffeoylquinic acid n-butyl ester (26) and 4,5-di-O-caffeoylquinic acid n-butyl ester (29). In addition, nineteen other metabolites were identified. The most active compounds were the two regioisomeric di-O-caffeoylquinic acid derivatives 26 and 29, with IC50 values of 5.93 and 5.20 μM, respectively. This is the first report of the α-glucosidase inhibitory activity of compounds 20, 26, and 29, and the findings support the important role of Eremanthus species as novel sources of new drugs and/or herbal remedies for treatment of type 2 diabetes.
Collapse
|