1
|
Chen S, Zhi Z, Wong WL, Yuan W, Sun N. Understanding the synergistic sensitization of natural products and antibiotics: An effective strategy to combat MRSA. Eur J Med Chem 2024; 281:117012. [PMID: 39509947 DOI: 10.1016/j.ejmech.2024.117012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common multi-resistant organisms found in hospital-acquired infections and is associated with high morbidity and mortality. The development of new drugs and promising therapeutic strategies against MRSA is thus an urgent request. In recent years, some natural products have been demonstrated to show great potential in improving the efficacy of antibiotics to treat various drug-resistant bacteria, particularly MRSA. In this context, we aimed to analyze systematically from the prior arts that investigated the synergy between natural products and antibiotics against MRSA. These findings not only give us a better understanding on the mechanism of actions but also shed light on the bioactive molecular scaffolds identified from diverse natural products. In the present study, we concentratedly reviewed the studies that utilized natural products to enhance the potency of conventional antibiotics against MRSA in the last decade. The timely information reported herein may give meaningful insights into the molecular design of novel and potent antibacterial agents and/or effective therapeutics to combat MRSA for practical applications.
Collapse
Affiliation(s)
- Sisi Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, PR China
| | - Ziling Zhi
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, PR China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, PR China.
| | - Ning Sun
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, PR China.
| |
Collapse
|
2
|
He Q, Meneely J, Grant IR, Chin J, Fanning S, Situ C. Phytotherapeutic potential against MRSA: mechanisms, synergy, and therapeutic prospects. Chin Med 2024; 19:89. [PMID: 38909250 PMCID: PMC11193263 DOI: 10.1186/s13020-024-00960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Rising resistance to antimicrobials, particularly in the case of methicillin-resistant Staphylococcus aureus (MRSA), represents a formidable global health challenge. Consequently, it is imperative to develop new antimicrobial solutions. This study evaluated 68 Chinese medicinal plants renowned for their historical applications in treating infectious diseases. METHODS The antimicrobial efficacy of medicinal plants were evaluated by determining their minimum inhibitory concentration (MIC) against MRSA. Safety profiles were assessed on human colorectal adenocarcinoma (Caco-2) and hepatocellular carcinoma (HepG2) cells. Mechanistic insights were obtained through fluorescence and transmission electron microscopy (FM and TEM). Synergistic effects with vancomycin were investigated using the Fractional Inhibitory Concentration Index (FICI). RESULTS Rheum palmatum L., Arctium lappa L. and Paeonia suffructicosaas Andr. have emerged as potential candidates with potent anti-MRSA properties, with an impressive low MIC of 7.8 µg/mL, comparable to the 2 µg/mL MIC of vancomycin served as the antibiotic control. Crucially, these candidates demonstrated significant safety profiles when evaluated on Caco-2 and HepG2 cells. Even at 16 times the MIC, the cell viability ranged from 83.3% to 95.7%, highlighting their potential safety. FM and TEM revealed a diverse array of actions against MRSA, such as disrupting the cell wall and membrane, interference with nucleoids, and inducing morphological alterations resembling pseudo-multicellular structures in MRSA. Additionally, the synergy between vancomycin and these three plant extracts was evident against MRSA (FICI < 0.5). Notably, aqueous extract of R. palmatum at 1/4 MIC significantly reduced the vancomycin MIC from 2 µg/mL to 0.03 µg/mL, making a remarkable 67-fold decrease. CONCLUSIONS This study unveil new insights into the mechanistic actions and pleiotropic antibacterial effectiveness of these medicinal plants against resistant bacteria, providing robust evidence for their potential use as standalone or in conjunction with antibiotics, to effectively combat antimicrobial resistance, particularly against MRSA.
Collapse
Affiliation(s)
- Qiqi He
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Julie Meneely
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Irene R Grant
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Jason Chin
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Séamus Fanning
- University College Dublin Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Dublin, Republic of Ireland
| | - Chen Situ
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK.
| |
Collapse
|
3
|
Pacyga K, Pacyga P, Topola E, Viscardi S, Duda-Madej A. Bioactive Compounds from Plant Origin as Natural Antimicrobial Agents for the Treatment of Wound Infections. Int J Mol Sci 2024; 25:2100. [PMID: 38396777 PMCID: PMC10889580 DOI: 10.3390/ijms25042100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The rising prevalence of drug-resistant bacteria underscores the need to search for innovative and nature-based solutions. One of the approaches may be the use of plants that constitute a rich source of miscellaneous compounds with a wide range of biological properties. This review explores the antimicrobial activity of seven bioactives and their possible molecular mechanisms of action. Special attention was focused on the antibacterial properties of berberine, catechin, chelerythrine, cinnamaldehyde, ellagic acid, proanthocyanidin, and sanguinarine against Staphylococcus aureus, Enterococcus spp., Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, Serratia marcescens and Pseudomonas aeruginosa. The growing interest in novel therapeutic strategies based on new plant-derived formulations was confirmed by the growing number of articles. Natural products are one of the most promising and intensively examined agents to combat the consequences of the overuse and misuse of classical antibiotics.
Collapse
Affiliation(s)
- Katarzyna Pacyga
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Paweł Pacyga
- Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| |
Collapse
|
4
|
New Insights into the Antimicrobial Potential of Polyalthia longifolia-Antibiofilm Activity and Synergistic Effect in Combination with Penicillin against Staphylococcus aureus. Microorganisms 2022; 10:microorganisms10101943. [PMID: 36296219 PMCID: PMC9609894 DOI: 10.3390/microorganisms10101943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023] Open
Abstract
Widespread antibiotic resistance has led to the urgent need for the identification of new antimicrobials. Plants are considered a valuable potential resource for new effective antimicrobial compounds. Therefore, in the present study, we focused on the antimicrobial activity of Polyalthia longifolia plants harvested from Cameroon using the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and time-kill assays. The mechanism of action was investigated by employing fluorescence and scanning electron microscopy. The anti-Staphylococcus aureus activity was studied using biofilm inhibition and checkerboard assays. Our results revealed that the tested extracts possess important antimicrobial activities, notably against Gram positive bacteria (MICs as low as 0.039 mg/mL). P. longifolia leaf extracts exhibited a significant bactericidal effect, with a total kill effect recorded after only 2 h of exposure at concentrations equivalent to MBC (0.078 and 0.156 mg/mL). The extracts showed a synergistic antibacterial activity in combination with penicillin against a MRSA clinical isolate and significantly inhibited S. aureus biofilm formation. The mechanism of action is related to the impairment of cell membrane integrity and cell lysis. All these findings suggest that P. longifolia could be an important source of reliable compounds used to develop new antimicrobials.
Collapse
|
5
|
Fabbrini M, D’Amico F, Barone M, Conti G, Mengoli M, Brigidi P, Turroni S. Polyphenol and Tannin Nutraceuticals and Their Metabolites: How the Human Gut Microbiota Influences Their Properties. Biomolecules 2022; 12:875. [PMID: 35883431 PMCID: PMC9312800 DOI: 10.3390/biom12070875] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Nutraceuticals have been receiving increasing attention in the last few years due to their potential role as adjuvants against non-communicable chronic diseases (cardiovascular disease, diabetes, cancer, etc.). However, a limited number of studies have been performed to evaluate the bioavailability of such compounds, and it is generally reported that a substantial elevation of their plasma concentration can only be achieved when they are consumed at pharmacological levels. Even so, positive effects have been reported associated with an average dietary consumption of several nutraceutical classes, meaning that the primary compound might not be solely responsible for all the biological effects. The in vivo activities of such biomolecules might be carried out by metabolites derived from gut microbiota fermentative transformation. This review discusses the structure and properties of phenolic nutraceuticals (i.e., polyphenols and tannins) and the putative role of the human gut microbiota in influencing the beneficial effects of such compounds.
Collapse
Affiliation(s)
- Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Federica D’Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
| | - Gabriele Conti
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Mariachiara Mengoli
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.F.); (F.D.); (M.B.); (G.C.); (M.M.)
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
6
|
Guo Q, Ren CW, Cai JH, Zhang CY, Li YT, Xu B, Farooq MA. The synergistic inhibition and mechanism of epicatechin gallate and Chitosan against Methicillin-resistant Staphylococcus aureus and the application in pork preservation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Dou J, Ilina P, Hemming J, Malinen K, Mäkkylä H, Oliveira de Farias N, Tammela P, de Aragão Umbuzeiro G, Räisänen R, Vuorinen T. Effect of Hybrid Type and Harvesting Season on Phytochemistry and Antibacterial Activity of Extracted Metabolites from Salix Bark. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2948-2956. [PMID: 35200036 PMCID: PMC8915259 DOI: 10.1021/acs.jafc.1c08161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Hundreds of different fast-growing Salix hybrids have been developed mainly for energy crops. In this paper, we studied water extracts from the bark of 15 willow hybrids and species as potential antimicrobial additives. Treatment of ground bark in water under mild conditions extracted 12-25% of the dry material. Preparative high-performance liquid chromatography is proven here as a fast and highly efficient tool in the small-scale recovery of raffinose from Salix bark crude extracts for structural elucidation. Less than half of the dissolved material was assigned by chromatographic (gas chromatography and liquid chromatography) and spectroscopic (mass spectrometry and nuclear magnetic resonance spectroscopy) techniques for low-molecular-weight compounds, including mono- and oligosaccharides (sucrose, raffinose, and stachyose) and aromatic phytochemicals (triandrin, catechin, salicin, and picein). The composition of the extracts varied greatly depending on the hybrid or species and the harvesting season. This information generated new scientific knowledge on the variation in the content and composition of the extracts between Salix hybrids and harvesting season depending on the desired molecule. The extracts showed high antibacterial activity on Staphylococcus aureus with a minimal inhibitory concentration (MIC) of 0.6-0.8 mg/mL; however, no inhibition was observed against Escherichia coli, Enterococcus faecalis, and Salmonella typhimurium. MIC of triandrin (i.e., 1.25 mg/mL) is reported for the first time. Although antibacterial triandrin and (+)-catechin were present in extracts, clear correlation between the antibacterial effect and the chemical composition was not established, which indicates that antibacterial activity of the extracts mainly originates from some not yet elucidated substances. Aquatic toxicity and mutagenicity assessments showed the safe usage of Salix water extracts as possible antibacterial additives.
Collapse
Affiliation(s)
- Jinze Dou
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Polina Ilina
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Jarl Hemming
- Johan
Gadolin Process Chemistry Centre, c/o Laboratory of Natural Materials
Technology, Åbo Akademi University, Turku 20500, Finland
| | - Kiia Malinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Heidi Mäkkylä
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Natália Oliveira de Farias
- Laboratory
of Ecotoxicology and Genotoxicity—LAEG, School of Technology, University of Campinas, Campinas 13083-970, Brazil
| | - Päivi Tammela
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Gisela de Aragão Umbuzeiro
- Laboratory
of Ecotoxicology and Genotoxicity—LAEG, School of Technology, University of Campinas, Campinas 13083-970, Brazil
| | - Riikka Räisänen
- HELSUS
Helsinki Institute of Sustainability Science, Craft Studies, University of Helsinki, Helsinki 00014, Finland
| | - Tapani Vuorinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| |
Collapse
|
8
|
Can M, Sahiner M, Sahiner N. Colloidal bioactive nanospheres prepared from natural biomolecules, catechin and L-lysine. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Cibikkarthik T, Smiline Girija AS, Vijayashree Priyadharsini J. Protein targets in red complex pathogens for catechin. Bioinformation 2021; 17:1105-1108. [PMID: 35291341 PMCID: PMC8900166 DOI: 10.6026/973206300171105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/23/2022] Open
Abstract
The development of antimicrobial drug resistance has encouraged scientists to develop alternate methods to combat infectious pathogens associated with dental diseases. Therefore, it is of interest to predict interactions for catechin (a plant derived compound) with protein targets in the red complex pathogens using computer aided network tools. However, in vitro and in vivo studies are warranted to confirm the antimicrobial effect of catechin (gallocatechin, epicatechin, epigallactocatechin (EGC) and gallolyl catechins) on the dental pathogens.
Collapse
Affiliation(s)
- T Cibikkarthik
- Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - A S Smiline Girija
- Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - J Vijayashree Priyadharsini
- Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| |
Collapse
|
10
|
Teng H, Zheng Y, Cao H, Huang Q, Xiao J, Chen L. Enhancement of bioavailability and bioactivity of diet-derived flavonoids by application of nanotechnology: a review. Crit Rev Food Sci Nutr 2021; 63:378-393. [PMID: 34278842 DOI: 10.1080/10408398.2021.1947772] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Flavonoids, which are a class of polyphenols widely existing in food and medicine, have enormous pharmacological effects. The functional properties of flavonoids are mainly distributed to their anti-oxidative, anticancer, and anti-inflammatoryeffects, etc. However, flavonoids' low bioavailability limits their clinical application, which is closely related to their intestinal absorption and metabolism. In addition, because of the short residence time of oral bioactive molecules in the stomach, low permeability and low solubility in the gastrointestinal tract, flavonoids are easy to be decomposed by the external environment and gastrointestinal tract after digestion. To tackle these obstacles, technological approaches like microencapsulation have been developed and applied for the formulation of flavonoid-enriched food products. In the light of these scientific advances, the objective of this review is to establish the structural requirements of flavonoids for appreciable anticancer, anti-inflammatory, and antioxidant effects, and elucidate a comprehensive mechanism that can explain their activity. Furthermore, the novelty in application of nanotechnology for the safe delivery of flavonoids in food matrices is discussed. After a literature on the flavonoids and their health attributes, the encapsulation methods and the coating materials are presented.
Collapse
Affiliation(s)
- Hui Teng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Yimei Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Qun Huang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China.,Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
11
|
Önem E, Sarısu HC, Özaydın AG, Muhammed MT, Ak A. Phytochemical profile, antimicrobial, and anti-quorum sensing properties of fruit stalks of Prunus avium L. Lett Appl Microbiol 2021; 73:426-437. [PMID: 34173244 DOI: 10.1111/lam.13528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
The aim of this study is to investigate the phytochemical contents and antibacterial properties of 2-year Prunus avium L. standard cultivars [Cristalina (Cr), 0900 Ziraat (Zr)] and to elucidate the mechanism of action of the extracts on the quorum sensing (QS) system by using homology modelling and molecular docking. Phenolic contents of methanol extract of Cr and Zr stalks were detected by HPLC. As a result, catechin hydrate (6364·67-8127·93 µg g-1 ) and chlorogenic acid (998·81-1273·4 µg g-1 ) were found to be the highest in stalk extracts in the two varieties in 2017. All extracts had inhibitory effect on Gram-positive bacteria. Stalk extract of Zr showed higher inhibition rate (86%) on swarming motility. Stalk samples of Zr collected in 2017 and 2018 also reduced biofilm formation by 75 and 73%, respectively. The computational analysis revealed that one of the major component of the extracts, chlorogenic acid, was able to bind to the QS system receptors, LasR, RhlR, and PqsR. Therefore, the mechanism of decreasing the production of virulence factors by the extracts might be through inhibiting these receptors and thus interfering with the QS system.
Collapse
Affiliation(s)
- E Önem
- Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - H C Sarısu
- Republic of Turkey Ministry of Food Agriculture and Livestock, Fruit Research Institute, Isparta, Turkey
| | - A G Özaydın
- YETEM-Innovative Technology Application and Research Center, Suleyman Demirel University, Isparta, Turkey
| | - M T Muhammed
- Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - A Ak
- Vocational School of Health Services, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
12
|
Swolana D, Kępa M, Kabała-Dzik A, Dzik R, Wojtyczka RD. Sensitivity of Staphylococcal Biofilm to Selected Compounds of Plant Origin. Antibiotics (Basel) 2021; 10:607. [PMID: 34065384 PMCID: PMC8161300 DOI: 10.3390/antibiotics10050607] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/18/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus epidermidis is a bacterium that belongs to the human microbiota. It is most plentiful on the skin, in the respiratory system, and in the human digestive tract. Moreover, it is the most frequently isolated microorganism belonging to the group of Coagulase Negative Staphylococci (CoNS). In recent years, it has been recognized as an important etiological factor of mainly nosocomial infections and infections related to the cardiovascular system. On the other hand, Staphylococcus aureus, responsible for in-hospital and out-of-hospital infections, is posing an increasing problem for clinicians due to its growing resistance to antibiotics. Biofilm produced by both of these staphylococcal species in the course of infection significantly impedes therapy. The ability to produce biofilm hinders the activity of chemotherapeutic agents-the only currently available antimicrobial therapy. This also causes the observed significant increase in bacterial resistance. For this reason, we are constantly looking for new substances that can neutralize microbial cells. In the present review, 58 substances of plant origin with antimicrobial activity against staphylococcal biofilm were replaced. Variable antimicrobial efficacy of the substances was demonstrated, depending on the age of the biofilm. An increase in the activity of the compounds occurred in proportion to increasing their concentration. Appropriate use of the potential of plant-derived compounds as an alternative to antibiotics may represent an important direction of change in the support of antimicrobial therapy.
Collapse
Affiliation(s)
- Denis Swolana
- Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland; (D.S.); (M.K.)
| | - Małgorzata Kępa
- Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland; (D.S.); (M.K.)
| | - Agata Kabała-Dzik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, ul. Ostrogórska 30, 41-200 Sosnowiec, Poland;
| | - Radosław Dzik
- Department of Biosensors and Processing of Biomedical Signals, Faculty of Biomedical Engineering, Silesian University of Technology, ul. Roosevelta 40, 41-800 Zabrze, Poland;
| | - Robert D. Wojtyczka
- Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland; (D.S.); (M.K.)
| |
Collapse
|
13
|
Renzetti A, Betts JW, Fukumoto K, Rutherford RN. Antibacterial green tea catechins from a molecular perspective: mechanisms of action and structure-activity relationships. Food Funct 2021; 11:9370-9396. [PMID: 33094767 DOI: 10.1039/d0fo02054k] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes the mechanisms of antibacterial action of green tea catechins, discussing the structure-activity relationship (SAR) studies for each mechanism. The antibacterial activity of green tea catechins results from a variety of mechanisms that can be broadly classified into the following groups: (1) inhibition of virulence factors (toxins and extracellular matrix); (2) cell wall and cell membrane disruption; (3) inhibition of intracellular enzymes; (4) oxidative stress; (5) DNA damage; and (6) iron chelation. These mechanisms operate simultaneously with relative importance differing among bacterial strains. In all SAR studies, the highest antibacterial activity is observed for galloylated compounds (EGCG, ECG, and theaflavin digallate). This observation, combined with numerous experimental and theoretical evidence, suggests that catechins share a common binding mode, characterized by the formation of hydrogen bonds and hydrophobic interactions with their target.
Collapse
Affiliation(s)
- Andrea Renzetti
- Global Education Institute, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| | | | | | | |
Collapse
|
14
|
Sadeer NB, Mahomoodally MF. Antibiotic Potentiation of Natural Products: A Promising Target to Fight Pathogenic Bacteria. Curr Drug Targets 2021; 22:555-572. [PMID: 32972338 DOI: 10.2174/1389450121666200924113740] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/29/2020] [Accepted: 07/08/2020] [Indexed: 01/13/2023]
Abstract
Pathogenic microorganisms should be considered as the number one foe of human, as witnessed by recent outbreaks of coronavirus disease (COVID-19) and with bacteria no longer sensitive to existing antibiotics. The resistance of pathogenic bacteria and deaths attributable to bacterial infections is increasing exponentially. Bacteria used different mechanisms to counterattack to existing antibiotics, namely (i) enzymatic inhibition, (ii) penicillin-binding protein modification, (iii) porin mutations, (iv) efflux pumps and (v) molecular modifications of antibiotic targets. Developing new antibiotics would be time-consuming to address such a situation, thus one of the promising approaches is by potentiating existing antibiotics. Plants used synergism to naturally defend and protect themselves from microbes. Using the same strategy, several studies have shown that the combinations of natural products and antibiotics could effectively prolong the lifespan of existing antibiotics and minimize the impact and emergence of antibiotic resistance. Combining essential oils constituents, namely uvaol, ferruginol, farnesol and carvacrol, with antibiotics, have proved to be efficient efflux pump inhibitors. Plant-derived compounds such as gallic acid and tannic acid are effective potentiators of various antibiotics, including novobiocin, chlorobiocin, coumermycin, fusidic acid, and rifampicin, resulting in a 4-fold increase in the potencies of these antibiotics. Several lines of research, as discussed in this review, have demonstrated the effectiveness of natural products in potentiating existing antibiotics. For this reason, the search for more efficient combinations should be an ongoing process with the aim to extend the life of the ones that we have and may preserve the life for the ones that are yet to come.
Collapse
Affiliation(s)
- Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Science, University of Mauritius, 230Reduit, Mauritius
| | - Mohamad Fawzi Mahomoodally
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
15
|
Rama JLR, Mallo N, Biddau M, Fernandes F, de Miguel T, Sheiner L, Choupina A, Lores M. Exploring the powerful phytoarsenal of white grape marc against bacteria and parasites causing significant diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24270-24278. [PMID: 31939019 DOI: 10.1007/s11356-019-07472-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Natural extracts containing high polyphenolic concentration possess antibacterial, anti-parasitic and fungicidal activities. The present research characterises two extracts based on white grape marc, a winemaking by-product, describing their physicochemical features and antimicrobial capacities. The main components of these extracts are phenolic acids, flavan-3-ols and their gallates and flavonols and their glycosides. As a result of this complex composition, the extracts showed pronounced bioactivities with potential uses in agricultural, pharmaceutical and cosmetic industries. Polyphenol compounds were extracted by using hydro-organic solvent mixtures from the by-product of Albariño white wines (Galicia, NW Spain) production. The in vitro antimicrobial activity of these extracts was evaluated on Gram-positive and Gram-negative bacteria and Apicomplexan and Oomycota parasites. Microbial species investigated are causing agents of several human and animal diseases, such as foodborne illnesses (Bacillus cereus, Escherichia coli, Salmonella enterica, and Toxoplasma gondii), skin infections and/or mastitis (Staphylococcus aureus and Streptococcus uberis), malaria (Plasmodium falciparum) and plant infections as "chestnut ink" or "root rot" (Phytophthora cinnamomi). Both extracts showed activity against all the tested species, being nontoxic for the host. So, they could be used for the development of biocides to control a wide range of pathogenic agents and contribute to the enhancement of winemaking industry by-products.
Collapse
Affiliation(s)
- José-Luis Rodríguez Rama
- Department of Microbiology and Parasitology, University of Santiago de Compostela, Santiago de Compostela, E-15782, A Coruña, Spain
| | - Natalia Mallo
- Wellcome Centre for Integrative Parasitology. Department of Infection, Immunity and Inflamation., University of Glasgow, 120 University Place, Glasgow, UK
| | - Marco Biddau
- Wellcome Centre for Integrative Parasitology. Department of Infection, Immunity and Inflamation., University of Glasgow, 120 University Place, Glasgow, UK
| | - Francisco Fernandes
- Department of Socioeconomical systems, I. Politécnico Bragança, 5300-253, Terras Trás-os-Montes, Portugal
| | - Trinidad de Miguel
- Department of Microbiology and Parasitology, University of Santiago de Compostela, Santiago de Compostela, E-15782, A Coruña, Spain.
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology. Department of Infection, Immunity and Inflamation., University of Glasgow, 120 University Place, Glasgow, UK
| | - Altino Choupina
- Department of Socioeconomical systems, I. Politécnico Bragança, 5300-253, Terras Trás-os-Montes, Portugal
| | - Marta Lores
- Department of Analytical Chemistry, Nutrition and Food Science, Laboratory of Research and Development of Analytical Solutions (LIDSA), University of Santiago de Compostela, Santiago de Compostela, E-15782, A Coruña, Spain
| |
Collapse
|
16
|
Kart D, Reçber T, Nemutlu E, Sagiroglu M. Sub-Inhibitory Concentrations of Ciprofloxacin Alone and Combinations with Plant-Derived Compounds against P. aeruginosa Biofilms and Their Effects on the Metabolomic Profile of P. aeruginosa Biofilms. Antibiotics (Basel) 2021; 10:antibiotics10040414. [PMID: 33918895 PMCID: PMC8070142 DOI: 10.3390/antibiotics10040414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Alternative anti-biofilm agents are needed to combat Pseudomonas aeruginosa infections. The mechanisms behind these new agents also need to be revealed at a molecular level. MATERIALS AND METHODS The anti-biofilm effects of 10 plant-derived compounds on P. aeruginosa biofilms were investigated using minimum biofilm eradication concentration (MBEC) and virulence assays. The effects of ciprofloxacin and compound combinations on P. aeruginosa in mono and triple biofilms were compared. A metabolomic approach and qRT-PCR were applied to the biofilms treated with ciprofloxacin in combination with baicalein, esculin hydrate, curcumin, and cinnamaldehyde at sub-minimal biofilm inhibitory concentration (MBIC) concentrations to highlight the specific metabolic shifts between the biofilms and to determine the quorum sensing gene expressions, respectively. RESULTS The combinations of ciprofloxacin with curcumin, baicalein, esculetin, and cinnamaldehyde showed more reduced MBICs than ciprofloxacin alone. The quorum sensing genes were downregulated in the presence of curcumin and cinnamaldehyde, while upregulated in the presence of baicalein and esculin hydrate rather than for ciprofloxacin alone. The combinations exhibited different killing effects on P. aeruginosa in mono and triple biofilms without affecting its virulence. The findings of the decreased metabolite levels related to pyrimidine and lipopolysaccharide synthesis and to down-regulated alginate and lasI expressions strongly indicate the role of multifactorial mechanisms for curcumin-mediated P. aeruginosa growth inhibition. CONCLUSIONS The use of curcumin, baicalein, esculetin, and cinnamaldehyde with ciprofloxacin will help fight against P. aeruginosa biofilms. To the best of our knowledge, this is the first study of its kind to define the effect of plant-based compounds as possible anti-biofilm agents with low MBICs for the treatment of P. aeruginosa biofilms through metabolomic pathways.
Collapse
Affiliation(s)
- Didem Kart
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey;
- Correspondence: ; Tel.: +90-533-690-7637
| | - Tuba Reçber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey; (T.R.); (E.N.)
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey; (T.R.); (E.N.)
- Bioanalytic and Omics Laboratory, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - Meral Sagiroglu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey;
| |
Collapse
|
17
|
The Relationship between Fruit Size and Phenolic and Enzymatic Composition of Avocado Byproducts (Persea americana Mill.): The Importance for Biorefinery Applications. HORTICULTURAE 2020. [DOI: 10.3390/horticulturae6040091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Avocado byproducts are a rich source of health-promoting biomolecules. The purpose of this work is to study three groups of statistically different avocado fruit sizes (Persea americana Mill.) (small (S), medium (M), and large (L)), and their relationship with total phenolic and flavonoid contents (TPC and TFC, respectively), DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging capacity and individual phenolics, and the activities of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and polyphenol oxidase (PPO) in avocado peel extract (APE). The results indicated that TPC, TFC, and antioxidant and enzymatic activities were higher in the APE of the S group (p < 0.05). The flavonoids (flavanols and flavonols) and phenolic acids were also significatively concentrated in S group’s APE. Overall, the phenolic content was significantly lower in the L group. Positive correlations (p < 0.0001 and p < 0.05) were observed between TPC, TPF, DPPH, and enzymatic activity, and negative correlations resulted for avocado weight and volume. The outstanding phenolic content and enzymatic activity of avocado peels from low-cost avocado byproducts are ideal for biorefinery applications, thereby increasing the bioeconomy of the avocado industry.
Collapse
|
18
|
Catechin isolated from cashew nut shell exhibits antibacterial activity against clinical isolates of MRSA through ROS-mediated oxidative stress. Appl Microbiol Biotechnol 2020; 104:8279-8297. [PMID: 32857200 DOI: 10.1007/s00253-020-10853-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Accepted: 08/23/2020] [Indexed: 01/16/2023]
Abstract
Staphylococcus aureus causes severe infections and among all methicillin-resistant S. aureus (MRSA) remains a great challenge in spite of decade research of antibacterial compounds. Even though some synthetic antibiotics have been developed, they are not effective against MRSA, and hence, there is a search for natural, alternative and plant-based antibacterial compound. In this connection, catechin isolated from cashew nut shell was investigated for its antibacterial potential against MRSA. Catechin exhibited zone of inhibition (ZOI) and minimum inhibitory concentration (MIC) in a range of 15.1-19.5 mm and 78.1-156.2 μg/ml, respectively, against ATCC and clinical isolates of MRSA. Among all clinical isolates, clinical isolate-3 exhibited highest sensitivity to catechin. Catechin has arrested the growth of MRSA strains and also caused toxicity by membrane disruption which was illustrated by AO/EB fluorescence staining. Increased nucleic acid leakage (1.58-28.6-fold) and protein leakage (1.40-23.50-fold) was noticed in MRSA due to catechin treatment when compared to methicillin. Bacteria treated with catechin at its MIC showed 1.52-, 1.87- and 1.74-fold increase of ROS production in methicillin susceptible S. aureus (MSSA), MRSA and clinical isolate-3 strains, respectively, as compared to control. Superoxide dismutase (5.31-9.63 U/mg protein) and catalase (1573-3930 U/mg protein) were significantly decreased as compared to control in catechin-treated S. aureus. Thus, catechin exhibited antibacterial activity through oxidative stress by increased production of ROS and decreased antioxidant enzymes. Altogether results suggest that catechin is a promising lead compound with antibacterial potential against MRSA. KEY POINTS: • Catechin was isolated and identified as active compound in cashew nut shell. • Catechin exhibited antimicrobial activity against clinical isolates of MRSA. • Bacterial cell wall damage was caused by catechin in MRSA strains. • Catechin increased the oxidative stress in MRSA by intracellular ROS production.
Collapse
|
19
|
Role of symbiosis in the discovery of novel antibiotics. J Antibiot (Tokyo) 2020; 73:490-503. [PMID: 32499556 DOI: 10.1038/s41429-020-0321-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/18/2020] [Accepted: 04/26/2020] [Indexed: 12/16/2022]
Abstract
Antibiotic resistance has been an ongoing challenge that has emerged almost immediately after the initial discovery of antibiotics and requires the development of innovative new antibiotics and antibiotic combinations that can effectively mitigate the development of resistance. More than 35,000 people die each year from antibiotic resistant infections in just the United States. This signifies the importance of identifying other alternatives to antibiotics for which resistance has developed. Virtually, all currently used antibiotics can trace their genesis to soil derived bacteria and fungi. The bacteria and fungi involved in symbiosis is an area that still remains widely unexplored for the discovery and development of new antibiotics. This brief review focuses on the challenges and opportunities in the application of symbiotic microbes and also provides an interesting platform that links natural product chemistry with evolutionary biology and ecology.
Collapse
|
20
|
Moldovan ML, Carpa R, Fizeșan I, Vlase L, Bogdan C, Iurian SM, Benedec D, Pop A. Phytochemical Profile and Biological Activities of Tendrils and Leaves Extracts from a Variety of Vitis vinifera L. Antioxidants (Basel) 2020; 9:antiox9050373. [PMID: 32365793 PMCID: PMC7278858 DOI: 10.3390/antiox9050373] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Winery industry by-products have a great reuse potential in the pharmaceutical and cosmetic fields due to their bioactive compounds. This study investigates the phytochemical profile and the bioactivity of Vitis vinifera variety Fetească neagră tendrils extract (TE) and leaves extract (LE), intended to be used in oral hygiene products recommended in periodontal disease. The evaluation of the phenolic content was performed by colorimetric analysis. Liquid chromatography coupled with mass spectrometry was used to determine the chemical profile of the two extracts obtained from V. vinifera. Moreover, the antioxidant activity of the extracts was determined by spectrophotometric methods, as well as on human gingival fibroblasts (HGF) cell line. The cytocompatibility and cytoprotective effect against nicotine-induced cytotoxicity were tested, as well as the anti-inflammatory and antimicrobial effects. The TE showed higher total polyphenolic content, rich in rutin, compared to the leaves extract that displayed important amounts of isoquercitrin. The antioxidant effect was confirmed by both non-cellular and cellular tests. The cytocompatibility of the extracts was confirmed at a wide range of concentrations. The cytoprotective effect was demonstrated in HGF exposed to cytotoxic doses of nicotine; 300 µg/mL of both tested extracts decreased nicotine toxicity by approximately 20%. When challenged with E. coli polysaccharides, in HGF cells co-exposed to TE and LE, a reduction in the release of proinflammatory cytokines (IL-8, IL-6 and IL-1β) was observed. The extracts were both able to reduce the levels of reactive oxygen species and inflammatory cytokines, and had notable antimicrobial effects on pathogenic bacteria associated with periodontitis.
Collapse
Affiliation(s)
- Mirela L. Moldovan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 I. Creangă Street, 400010 Cluj-Napoca, Romania; (M.L.M.); (C.B.)
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, “Babeș-Bolyai” University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania;
| | - Ionel Fizeșan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 L. Pasteur Street, 400349 Cluj-Napoca, Romania; (I.F.); (A.P.)
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 V. Babeș Street, 400012 Cluj-Napoca, Romania; (L.V.); (S.M.I.)
| | - Cătălina Bogdan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 I. Creangă Street, 400010 Cluj-Napoca, Romania; (M.L.M.); (C.B.)
| | - Sonia M. Iurian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 V. Babeș Street, 400012 Cluj-Napoca, Romania; (L.V.); (S.M.I.)
| | - Daniela Benedec
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 I. Creangă Street, 400010 Cluj-Napoca, Romania
- Correspondence:
| | - Anca Pop
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 L. Pasteur Street, 400349 Cluj-Napoca, Romania; (I.F.); (A.P.)
| |
Collapse
|
21
|
Improved oral bioavailability of the anticancer drug catechin using chitosomes: Design, in-vitro appraisal and in-vivo studies. Int J Pharm 2019; 565:488-498. [DOI: 10.1016/j.ijpharm.2019.05.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/28/2019] [Accepted: 05/13/2019] [Indexed: 02/08/2023]
|
22
|
Miklasińska-Majdanik M, Kępa M, Wojtyczka RD, Idzik D, Wąsik TJ. Phenolic Compounds Diminish Antibiotic Resistance of Staphylococcus Aureus Clinical Strains. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102321. [PMID: 30360435 PMCID: PMC6211117 DOI: 10.3390/ijerph15102321] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 11/16/2022]
Abstract
There is a growing body of evidence that flavonoids show antibacterial activity against both Gram-positive and Gram-negative bacteria. The mechanisms of action of phenolic compounds on bacterial cell have been partially attributed to damage to the bacterial membrane, inhibition of virulence factors such as enzymes and toxins, and suppression of bacterial biofilm formation. What is more, some natural polyphenols, aside from direct antibacterial activity, exert a synergistic effect when combined with common chemotherapeutics. Many studies have proved that in synergy with antibiotics plant flavonoids pose a promising alternative for therapeutic strategies against drug resistant bacteria. In this review most recent reports on antimicrobial action of polyphenols on Staphylococcus aureus strains are described, highlighting where proven, the mechanisms of action and the structure–activity relationships. Since many reports in this field are, to some extent, conflicting, a unified in vitro and in vivo susceptibility testing algorithms should be introduced to ensure the selection of effective antibacterial polyphenolic compounds with low cytotoxicity and minimal side effects.
Collapse
Affiliation(s)
- Maria Miklasińska-Majdanik
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Małgorzata Kępa
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Robert D Wojtyczka
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Danuta Idzik
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Tomasz J Wąsik
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland.
| |
Collapse
|
23
|
Vazquez L, Teixeira da Silva Ferreira A, Cavalcante FS, Garcia IJP, Dos Santos KRN, Barbosa LADO, Almeida MDS, Mignaco JA, Fontes CFL. Properties of novel surfactin-derived biosurfactants obtained through solid-phase synthesis. J Pept Sci 2018; 24:e3129. [PMID: 30325566 DOI: 10.1002/psc.3129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 08/28/2018] [Accepted: 09/09/2018] [Indexed: 12/19/2022]
Abstract
Eight molecules, four peptides (SPs) and four lipopeptides (LPs) derived by rational design from surfactin, a well-known secreted biosurfactant from Bacillus subtilis, were produced employing Fmoc-based solid-phase synthesis. These new peptides were tested to evaluate their potential biosurfactant and biological activities, aiming at possible applications in industrial, biological, pharmaceutical, and medical use. Five molecules (SP1, SP2, SP4, LP5, and LP8) presented potential for medical uses, mainly due to their drug delivery properties as suggested by their synergistic activity with the antibiotic vancomycin against Staphylococcus aureus. All synthetic peptides showed low toxicity against Vero cell cultures, in assays of hemolysis, and in different cytotoxicity assays. In addition, we found that three peptides (SP1, LP6, and LP7) had potential technological and industrial use because of their emulsifying capacity, low toxicity, and ability to physically stabilize solutions. These novel molecules retained some properties of the parental molecule (surfactin, which was originally obtained through nonribosomal synthesis in Bacillus subtilis) but have the advantage of being linear peptides, which can be produced at large scales through the use of conventional heterologous protein expression protocols.
Collapse
Affiliation(s)
- Leonardo Vazquez
- Programa de Biologia Estrutural, Lab. Est. e Reg. de Proteínas e ATPases, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Fernanda Sampaio Cavalcante
- Departamento de Microbiologia, Campus Macaé, Depto. Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Israel José P Garcia
- Department of Biochemistry, Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, São João del Rei, Brazil
| | | | - Leandro Augusto de Oliveira Barbosa
- Department of Biochemistry, Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, São João del Rei, Brazil
| | - Marcius da Silva Almeida
- Programa de Biologia Estrutural, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Alberto Mignaco
- Programa de Biologia Estrutural, Lab. Est. e Reg. de Proteínas e ATPases, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Frederico Leite Fontes
- Programa de Biologia Estrutural, Lab. Est. e Reg. de Proteínas e ATPases, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Antimicrobial Potential of Caffeic Acid against Staphylococcus aureus Clinical Strains. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7413504. [PMID: 30105241 PMCID: PMC6076962 DOI: 10.1155/2018/7413504] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/03/2018] [Indexed: 02/01/2023]
Abstract
Phenolic compounds constitute one of the most promising and ubiquitous groups with many biological activities. Synergistic interactions between natural phenolic compounds and antibiotics could offer a desired alternative approach to the therapies against multidrug-resistant bacteria. The objective of the presented study was to assess the antibacterial potential of caffeic acid (CA) alone and in antibiotic-phytochemical combination against Staphylococcus aureus reference and clinical strains isolated from infected wounds. The caffeic acid tested in the presented study showed diverse effects on S. aureus strains with the minimum inhibitory concentration (MIC) varied from 256 μg/mL to 1024 μg/mL. The supplementation of Mueller-Hinton agar (MHA) with 1/4 MIC of CA resulted in augmented antibacterial effect of erythromycin, clindamycin, and cefoxitin and to the lesser extent of vancomycin. The observed antimicrobial action of CA seemed to be rather strain than antibiotic dependent. Our data support the notion that CA alone exerts antibacterial activity against S. aureus clinical strains and has capacity to potentiate antimicrobial effect in combination with antibiotics. The synergy between CA and antibiotics demonstrates its potential as a novel antibacterial tool which could improve the treatment of intractable infections caused by multidrug-resistant strains.
Collapse
|
25
|
Yang MJ, Hung YA, Wong TW, Lee NY, Yuann JMP, Huang ST, Wu CY, Chen IZ, Liang JY. Effects of Blue-Light-Induced Free Radical Formation from Catechin Hydrate on the Inactivation of Acinetobacter baumannii, Including a Carbapenem-Resistant Strain. Molecules 2018; 23:molecules23071631. [PMID: 29973539 PMCID: PMC6100571 DOI: 10.3390/molecules23071631] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 01/22/2023] Open
Abstract
Catechin is a flavan-3-ol, a derivative of flavans, with four phenolic hydroxyl groups, which exhibits a wide range of physiological properties. Chromatographic analyses were employed to examine the effects of blue light irradiation on the changes of catechin hydrate in an alkaline condition. In particular, the detection of a superoxide anion radical (O2•−), a reactive oxygen species (ROS), and the inactivation of Acinetobacter baumannii (A. baumannii)—including a carbapenem-resistant A. baumannii (CRAB)—was investigated during the photoreaction of catechin hydrate. Following basification with blue light irradiation, the transparent solution of catechin hydrate turned yellowish, and a chromogenic catechin dimer was separated and identified as a proanthocyanidin. Adding ascorbic acid during the photolytic treatment of catechin hydrate decreased the dimer formation, suggesting that ascorbic acid can suppress the photosensitive oxidation of catechin. When catechin hydrate was irradiated by blue light in an alkaline solution, O2•− was produced via photosensitized oxidation, enhancing the inactivation of A. baumannii and CRAB. The present findings on the photon-induced oxidation of catechin hydrate provides a safe practice for the inactivation of environmental microorganisms.
Collapse
Affiliation(s)
- Meei-Ju Yang
- Tea Research and Extension Station, Taoyuan 32654, Taiwan.
| | - Yi-An Hung
- Department of Biotechnology, Ming-Chuan University, Gui-Shan 33343, Taiwan.
| | - Tak-Wah Wong
- Department of Dermatology, Department of Biochemistry and Molecular Biology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Nan-Yao Lee
- Division of Infection, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Jeu-Ming P Yuann
- Department of Biotechnology, Ming-Chuan University, Gui-Shan 33343, Taiwan.
| | - Shiuh-Tsuen Huang
- Department of Science Education and Application, National Taichung University of Education, Taichung 40306, Taiwan.
| | - Chun-Yi Wu
- Department of Biotechnology, Ming-Chuan University, Gui-Shan 33343, Taiwan.
| | - Iou-Zen Chen
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan.
| | - Ji-Yuan Liang
- Department of Biotechnology, Ming-Chuan University, Gui-Shan 33343, Taiwan.
| |
Collapse
|
26
|
Rao H, Lai P, Gao Y. Chemical Composition, Antibacterial Activity, and Synergistic Effects with Conventional Antibiotics and Nitric Oxide Production Inhibitory Activity of Essential Oil from Geophila repens (L.) I.M. Johnst. Molecules 2017; 22:molecules22091561. [PMID: 28926976 PMCID: PMC6151674 DOI: 10.3390/molecules22091561] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 11/17/2022] Open
Abstract
Geophila repens (L.) I.M. Johnst, a perennial herb, belongs to the Rubiaceae family. In this study, we identified the chemical composition of the Geophila repens essential oil (GR-EO) for the first time. Totally, seventy-seven compounds were identified according to GC and GC-MS, which represent 98.0% of the oil. And the major components of GR-EO were β-caryophyllene (23.3%), β-elemene (8.0%), farnesyl butanoate (7.4%), myrcene (3.5%), and trans-nerolidol (3.3%). Then we evaluated the antibacterial activities of GR-EO and the synergistic effects of GR-EO in combination with commercial antibiotics using the microdilution and Checkerboard method. The results demonstrated that GR-EO possessed an excellent broad spectrum antibacterial activity, especially against Pseudomonas aeruginosa and Bacillus subtilis. It also showed that the combined application of GR-EO with antibiotics led to synergistic effects in most cases. And the most prominent synergistic effect was noticed when GR-EO was in combination with Streptomycin and tested against Escherichia coli (fractional inhibitory concentration indices (FICI) of 0.13). Additionally, the results of a Griess assay revealed that GR-EO exhibited a potent inhibitory effect on NO production in lipopolysaccharide (LPS)-activated RAW 264.7 (murine macrophage) cells. In conclusion, the combination of GR-EO and the commercial antibiotics has significant potential for the development of new antimicrobial treatment and reduction of drug resistance.
Collapse
Affiliation(s)
- Huijuanzi Rao
- Marine College, Shandong University, Weihai 264209, China.
| | - Pengxiang Lai
- Marine College, Shandong University, Weihai 264209, China.
| | - Yang Gao
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|