1
|
Qiu Z, Huang R, Wu Y, Li X, Sun C, Ma Y. Decoding the Structural Diversity: A New Horizon in Antimicrobial Prospecting and Mechanistic Investigation. Microb Drug Resist 2024; 30:254-272. [PMID: 38648550 DOI: 10.1089/mdr.2023.0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
The escalating crisis of antimicrobial resistance (AMR) underscores the urgent need for novel antimicrobials. One promising strategy is the exploration of structural diversity, as diverse structures can lead to diverse biological activities and mechanisms of action. This review delves into the role of structural diversity in antimicrobial discovery, highlighting its influence on factors such as target selectivity, binding affinity, pharmacokinetic properties, and the ability to overcome resistance mechanisms. We discuss various approaches for exploring structural diversity, including combinatorial chemistry, diversity-oriented synthesis, and natural product screening, and provide an overview of the common mechanisms of action of antimicrobials. We also describe techniques for investigating these mechanisms, such as genomics, proteomics, and structural biology. Despite significant progress, several challenges remain, including the synthesis of diverse compound libraries, the identification of active compounds, the elucidation of complex mechanisms of action, the emergence of AMR, and the translation of laboratory discoveries to clinical applications. However, emerging trends and technologies, such as artificial intelligence, high-throughput screening, next-generation sequencing, and open-source drug discovery, offer new avenues to overcome these challenges. Looking ahead, we envisage an exciting future for structural diversity-oriented antimicrobial discovery, with opportunities for expanding the chemical space, harnessing the power of nature, deepening our understanding of mechanisms of action, and moving toward personalized medicine and collaborative drug discovery. As we face the continued challenge of AMR, the exploration of structural diversity will be crucial in our search for new and effective antimicrobials.
Collapse
Affiliation(s)
- Ziying Qiu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Rongkun Huang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yuxuan Wu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xinghao Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chunyu Sun
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yunqi Ma
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
2
|
Matysiak BM, Monreal Santiago G, Otto S. Teaching an Old Compound New Tricks: Reversible Transamidation in Maleamic Acids. Chemistry 2022; 28:e202201043. [PMID: 35488794 PMCID: PMC9401040 DOI: 10.1002/chem.202201043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 12/03/2022]
Abstract
Dynamic combinatorial chemistry is a method widely used for generating responsive libraries of compounds, with applications ranging from chemical biology to materials science. It relies on dynamic covalent bonds that are able to form in a reversible manner in mild conditions, and therefore requires the discovery of new types of these bonds in order to progress. Amides, due to their high stability, have been scarcely used in this field and typically require an external catalyst or harsh conditions for exchange. Compounds able to undergo uncatalysed transamidation at room temperature are still rare exceptions. In this work, we describe reversible amide formation and transamidation in a class of compounds known as maleamic acids. Due to the presence of a carboxylic acid in β-position, these compounds are in equilibrium with their anhydride and amine precursors in organic solvents at room temperature. First, we show that this equilibrium is responsive to external stimuli: by alternating the additions of a Brønsted acid and a base, we can switch between amide and anhydride several times without side-reactions. Next, we prove that this equilibrium provides a pathway for reversible transamidation without any added catalyst, leading to thermodynamic distributions of amides at room temperature. Lastly, we use different preparation conditions and concentrations of Brønsted acid to access different library distributions, easily controlling the transition between kinetic and thermodynamic regimes. Our results show that maleamic acids can undergo transamidation in mild conditions in a reversible and tunable way, establishing them as a new addition to the toolbox of dynamic combinatorial chemistry.
Collapse
Affiliation(s)
- Bartosz M. Matysiak
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747AGGroningenNetherlands
| | - Guillermo Monreal Santiago
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747AGGroningenNetherlands
| | - Sijbren Otto
- Centre for Systems ChemistryStratingh InstituteUniversity of GroningenNijenborgh 49747AGGroningenNetherlands
| |
Collapse
|
3
|
Caillaud K, Ladavière C. Water‐soluble (poly)acylhydrazones: Syntheses and Applications. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kilian Caillaud
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet Villeurbanne Cédex F‐69622 France
| | - Catherine Ladavière
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet Villeurbanne Cédex F‐69622 France
| |
Collapse
|
4
|
Shi B, Zhou Y, Li X. Recent advances in DNA-encoded dynamic libraries. RSC Chem Biol 2022; 3:407-419. [PMID: 35441147 PMCID: PMC8985084 DOI: 10.1039/d2cb00007e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
The DNA-encoded chemical library (DEL) has emerged as a powerful technology platform in drug discovery and is also gaining momentum in academic research. The rapid development of DNA-/DEL-compatible chemistries has greatly expanded the chemical space accessible to DELs. DEL technology has been widely adopted in the pharmaceutical industry and a number of clinical drug candidates have been identified from DEL selections. Recent innovations have combined DELs with other legacy and emerging techniques. Among them, the DNA-encoded dynamic library (DEDL) introduces DNA encoding into the classic dynamic combinatorial libraries (DCLs) and also integrates the principle of fragment-based drug discovery (FBDD), making DEDL a novel approach with distinct features from static DELs. In this Review, we provide a summary of the recently developed DEDL methods and their applications. Future developments in DEDLs are expected to extend the application scope of DELs to complex biological systems with unique ligand-discovery capabilities.
Collapse
Affiliation(s)
- Bingbing Shi
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Jining Medical University Jining Shandong 272067 P. R. China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission Units 1503-1511 15/F. Building 17W Hong Kong SAR China
| |
Collapse
|
5
|
Wu Y, Zhao S, Hu L. Identification of potent α-amylase inhibitors via dynamic combinatorial chemistry. Bioorg Med Chem 2022; 55:116609. [PMID: 35021143 DOI: 10.1016/j.bmc.2022.116609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 11/30/2022]
Abstract
In this study, we report for the first time the discovery of potent α-amylase inhibitors using principle of dynamic combinatorial chemistry. The best compound identified exhibited not only high inhibitory efficiency but also low cytotoxicity. The binding mode and possible mechanism are determined in the subsequent kinetic and molecular docking studies.
Collapse
Affiliation(s)
- Yao Wu
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, China
| | - Shuang Zhao
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, China
| | - Lei Hu
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, China.
| |
Collapse
|
6
|
Li Z, Zhang L, Zhou Y, Zha D, Hai Y, You L. Dynamic Covalent Reactions Controlled by Ring‐Chain Tautomerism of 2‐Formylbenzoic Acid. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ziyi Li
- College of Chemistry and Material Science Fujian Normal University Fuzhou Fujian 350007 China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Ling Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yuntao Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Daijun Zha
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lei You
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| |
Collapse
|
7
|
Jumde RP, Guardigni M, Gierse RM, Alhayek A, Zhu D, Hamid Z, Johannsen S, Elgaher WAM, Neusens PJ, Nehls C, Haupenthal J, Reiling N, Hirsch AKH. Hit-optimization using target-directed dynamic combinatorial chemistry: development of inhibitors of the anti-infective target 1-deoxy-d-xylulose-5-phosphate synthase. Chem Sci 2021; 12:7775-7785. [PMID: 34168831 PMCID: PMC8188608 DOI: 10.1039/d1sc00330e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/21/2021] [Indexed: 01/12/2023] Open
Abstract
Target-directed dynamic combinatorial chemistry (tdDCC) enables identification, as well as optimization of ligands for un(der)explored targets such as the anti-infective target 1-deoxy-d-xylulose-5-phosphate synthase (DXPS). We report the use of tdDCC to first identify and subsequently optimize binders/inhibitors of the anti-infective target DXPS. The initial hits were also optimized for their antibacterial activity against E. coli and M. tuberculosis during subsequent tdDCC runs. Using tdDCC, we were able to generate acylhydrazone-based inhibitors of DXPS. The tailored tdDCC runs also provided insights into the structure-activity relationship of this novel class of DXPS inhibitors. The competition tdDCC runs provided important information about the mode of inhibition of acylhydrazone-based inhibitors. This approach holds the potential to expedite the drug-discovery process and should be applicable to a range of biological targets.
Collapse
Affiliation(s)
- Ravindra P Jumde
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
| | - Melissa Guardigni
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- D3-PharmaChemistry, Istituto Italiano di Tecnologia Via Morego 30 16163 Genoa Italy
| | - Robin M Gierse
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Alaa Alhayek
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Di Zhu
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Zhoor Hamid
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Sandra Johannsen
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Walid A M Elgaher
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
| | - Philipp J Neusens
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Christian Nehls
- RG Biophysics, Research Center Borstel, Leibniz Lung Center Borstel Germany
| | - Jörg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
| | - Norbert Reiling
- RG Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center Borstel Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems Borstel Germany
| | - Anna K H Hirsch
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| |
Collapse
|
8
|
Zhao S, Xu J, Zhang S, Han M, Wu Y, Li Y, Hu L. Multivalent butyrylcholinesterase inhibitor discovered by exploiting dynamic combinatorial chemistry. Bioorg Chem 2021; 108:104656. [PMID: 33548731 DOI: 10.1016/j.bioorg.2021.104656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022]
Abstract
In this study, we report the generation of a polymer-based dynamic combinatorial library (DCL) incorporating exchangeable side chains using acylhydrazone formation reaction. In combination with tetrameric butyrylcholinesterase (BChE), the most potent binding side chain was identified, and the information obtained was further used for the synthesis of a multivalent BChE inhibitor. In the in vitro biological evaluation, this multivalent inhibitor exhibited not only better inhibitory effect than the commercial reference but also high selectivity on BChE over acetylcholinesterase (AChE).
Collapse
Affiliation(s)
- Shuang Zhao
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, China
| | - Jintao Xu
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, China
| | - Shixin Zhang
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, China
| | - Maochun Han
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, China
| | - Yao Wu
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, China
| | - Yusi Li
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, China
| | - Lei Hu
- School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, China.
| |
Collapse
|
9
|
Biomimetic selenocystine based dynamic combinatorial chemistry for thiol-disulfide exchange. Nat Commun 2021; 12:163. [PMID: 33420034 PMCID: PMC7794297 DOI: 10.1038/s41467-020-20415-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
Dynamic combinatorial chemistry applied to biological environments requires the exchange chemistry of choice to take place under physiological conditions. Thiol-disulfide exchange, one of the most popular dynamic combinatorial chemistries, usually needs long equilibration times to reach the required equilibrium composition. Here we report selenocystine as a catalyst mimicking Nature's strategy to accelerate thiol-disulfide exchange at physiological pH and low temperatures. Selenocystine is able to accelerate slow thiol-disulfide systems and to promote the correct folding of an scrambled RNase A enzyme, thus broadening the practical range of pH conditions for oxidative folding. Additionally, dynamic combinatorial chemistry target-driven self-assembly processes are tested using spermine, spermidine and NADPH (casting) and glucose oxidase (molding). A non-competitive inhibitor is identified in the glucose oxidase directed dynamic combinatorial library.
Collapse
|
10
|
Gao K, Nguyen DD, Tu M, Wei GW. Generative Network Complex for the Automated Generation of Drug-like Molecules. J Chem Inf Model 2020; 60:5682-5698. [PMID: 32686938 PMCID: PMC8142330 DOI: 10.1021/acs.jcim.0c00599] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Current drug discovery is expensive and time-consuming. It remains a challenging task to create a wide variety of novel compounds that not only have desirable pharmacological properties but also are cheaply available to low-income people. In this work, we develop a generative network complex (GNC) to generate new drug-like molecules based on the multiproperty optimization via the gradient descent in the latent space of an autoencoder. In our GNC, both multiple chemical properties and similarity scores are optimized to generate drug-like molecules with desired chemical properties. To further validate the reliability of the predictions, these molecules are reevaluated and screened by independent 2D fingerprint-based predictors to come up with a few hundreds of new drug candidates. As a demonstration, we apply our GNC to generate a large number of new BACE1 inhibitors, as well as thousands of novel alternative drug candidates for eight existing market drugs, including Ceritinib, Ribociclib, Acalabrutinib, Idelalisib, Dabrafenib, Macimorelin, Enzalutamide, and Panobinostat.
Collapse
Affiliation(s)
- Kaifu Gao
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Duc Duy Nguyen
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Meihua Tu
- Pfizer Medicine Design, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
11
|
Affiliation(s)
- Matthew D. Lloyd
- Drug & Target Development, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
12
|
Jia C, Qi D, Zhang Y, Rissanen K, Li J. Strategies for Exploring Functions from Dynamic Combinatorial Libraries. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.202000019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chunman Jia
- Hainan Provincial Key Lab of Fine ChemKey laboratory of Advanced Materials of Tropical Island Resources of Ministry of EducationHainan University Haikou 570228 China
| | - Dawei Qi
- MediCity Research LaboratoryUniversity of Turku Tykistökatu 6 20520 Turku Finland
| | - Yucang Zhang
- Hainan Provincial Key Lab of Fine ChemKey laboratory of Advanced Materials of Tropical Island Resources of Ministry of EducationHainan University Haikou 570228 China
| | - Kari Rissanen
- Department of ChemistryUniversity of Jyväskylä P.O. Box 35 40014 Jyväskylä Finland
| | - Jianwei Li
- Hainan Provincial Key Lab of Fine ChemKey laboratory of Advanced Materials of Tropical Island Resources of Ministry of EducationHainan University Haikou 570228 China
- MediCity Research LaboratoryUniversity of Turku Tykistökatu 6 20520 Turku Finland
| |
Collapse
|
13
|
Chen W, Tian X, He W, Li J, Feng Y, Pan G. Emerging functional materials based on chemically designed molecular recognition. ACTA ACUST UNITED AC 2020. [DOI: 10.1186/s42833-019-0007-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractThe specific interactions responsible for molecular recognition play a crucial role in the fundamental functions of biological systems. Mimicking these interactions remains one of the overriding challenges for advances in both fundamental research in biochemistry and applications in material science. However, current molecular recognition systems based on host–guest supramolecular chemistry rely on familiar platforms (e.g., cyclodextrins, crown ethers, cucurbiturils, calixarenes, etc.) for orienting functionality. These platforms limit the opportunity for diversification of function, especially considering the vast demands in modern material science. Rational design of novel receptor-like systems for both biological and chemical recognition is important for the development of diverse functional materials. In this review, we focus on recent progress in chemically designed molecular recognition and their applications in material science. After a brief introduction to representative strategies, we describe selected advances in these emerging fields. The developed functional materials with dynamic properties including molecular assembly, enzyme-like and bio-recognition abilities are highlighted. We have also selected materials with dynamic properties in contract to traditional supramolecular host–guest systems. Finally, the current limitations and some future trends of these systems are discussed.
Collapse
|
14
|
Prasher P, Sharma M. Tailored therapeutics based on 1,2,3-1 H-triazoles: a mini review. MEDCHEMCOMM 2019; 10:1302-1328. [PMID: 31534652 PMCID: PMC6748286 DOI: 10.1039/c9md00218a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Contemporary drug discovery approaches rely on library synthesis coupled with combinatorial methods and high-throughput screening to identify leads. However, due to the multitude of components involved, a majority of optimization techniques face persistent challenges related to the efficiency of synthetic processes and the purity of compound libraries. These methods have recently found an upgradation as fragment-based approaches for target-guided synthesis of lead molecules with active involvement of their biological target. The click chemistry approach serves as a promising tool for tailoring the therapeutically relevant biomolecules of interest, improving their bioavailability and bioactivity and redirecting them as efficacious drugs. 1,2,3-1H-Triazole nucleus, being a planar and biologically acceptable scaffold, plays a crucial role in the design of biomolecular mimetics and tailor-made molecules with therapeutic relevance. This versatile scaffold also forms an integral part of the current fragment-based approaches for drug design, kinetic target guided synthesis and bioorthogonal methodologies.
Collapse
Affiliation(s)
- Parteek Prasher
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India . ;
- Department of Chemistry , University of Petroleum & Energy Studies , Dehradun 248007 , India
| | - Mousmee Sharma
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India . ;
| |
Collapse
|
15
|
van der Vlag R, Guo H, Hapko U, Eleftheriadis N, Monjas L, Dekker FJ, Hirsch AK. A combinatorial approach for the discovery of drug-like inhibitors of 15-lipoxygenase-1. Eur J Med Chem 2019; 174:45-55. [DOI: 10.1016/j.ejmech.2019.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 12/27/2022]
|
16
|
Insights into real-time chemical processes in a calcium sensor protein-directed dynamic library. Nat Commun 2019; 10:2798. [PMID: 31243268 PMCID: PMC6595003 DOI: 10.1038/s41467-019-10627-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 05/22/2019] [Indexed: 12/12/2022] Open
Abstract
Dynamic combinatorial chemistry (DCC) has proven its potential in drug discovery speeding the identification of modulators of biological targets. However, the exchange chemistries typically take place under specific reaction conditions, with limited tools capable of operating under physiological parameters. Here we report a catalyzed protein-directed DCC working at low temperatures that allows the calcium sensor NCS-1 to find the best ligands in situ. Ultrafast NMR identifies the reaction intermediates of the acylhydrazone exchange, tracing the molecular assemblies and getting a real-time insight into the essence of DCC processes at physiological pH. Additionally, NMR, X-ray crystallography and computational methods are employed to elucidate structural and mechanistic aspects of the molecular recognition event. The DCC approach leads us to the identification of a compound stabilizing the NCS-1/Ric8a complex and whose therapeutic potential is proven in a Drosophila model of disease with synaptic alterations. Dynamic combinatorial chemistry (DCC) is instrumental in the discovery of ligands for pharmaceutical targets. Here, the authors adapted DCC to work at 4 degrees Celsius and used it to identify a ligand for Neuronal Calcium Sensor-1 that promotes NCS-1/Ric8a protein-protein interaction.
Collapse
|
17
|
Qiu C, Fang Z, Zhao L, He W, Yang Z, Liu C, Guo K. Microflow-based dynamic combinatorial chemistry: a microscale synthesis and screening platform for the rapid and accurate identification of bioactive molecules. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00327k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first flow-based synthesis and screening platform that integrates both microflow chemistry and protein-directed dynamic combinatorial chemistry into a single modular unit was disclosed and validated by a case study.
Collapse
Affiliation(s)
- Chuanhong Qiu
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- PR China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- PR China
| | - Lihuan Zhao
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- PR China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- PR China
| | - Zhao Yang
- College of Engineering
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- PR China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- PR China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| |
Collapse
|
18
|
Grow C, Gao K, Nguyen DD, Wei GW. Generative network complex (GNC) for drug discovery. COMMUNICATIONS IN INFORMATION AND SYSTEMS 2019; 19:241-277. [PMID: 34257523 PMCID: PMC8274326 DOI: 10.4310/cis.2019.v19.n3.a2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It remains a challenging task to generate a vast variety of novel compounds with desirable pharmacological properties. In this work, a generative network complex (GNC) is proposed as a new platform for designing novel compounds, predicting their physical and chemical properties, and selecting potential drug candidates that fulfill various druggable criteria such as binding affinity, solubility, partition coefficient, etc. We combine a SMILES string generator, which consists of an encoder, a drug-property controlled or regulated latent space, and a decoder, with verification deep neural networks, a target-specific three-dimensional (3D) pose generator, and mathematical deep learning networks to generate new compounds, predict their drug properties, construct 3D poses associated with target proteins, and reevaluate druggability, respectively. New compounds were generated in the latent space by either randomized output, controlled output, or optimized output. In our demonstration, 2.08 million and 2.8 million novel compounds are generated respectively for Cathepsin S and BACE targets. These new compounds are very different from the seeds and cover a larger chemical space. For potentially active compounds, their 3D poses are generated using a state-of-the-art method. The resulting 3D complexes are further evaluated for druggability by a championing deep learning algorithm based on algebraic topology, differential geometry, and algebraic graph theories. Performed on supercomputers, the whole process took less than one week. Therefore, our GNC is an efficient new paradigm for discovering new drug candidates.
Collapse
Affiliation(s)
- Christopher Grow
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
| | - Kaifu Gao
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
| | - Duc Duy Nguyen
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
19
|
Frei P, Hevey R, Ernst B. Dynamic Combinatorial Chemistry: A New Methodology Comes of Age. Chemistry 2018; 25:60-73. [DOI: 10.1002/chem.201803365] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Priska Frei
- Institute of Molecular Pharmacy, PharmacenterUniversity of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Rachel Hevey
- Institute of Molecular Pharmacy, PharmacenterUniversity of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Beat Ernst
- Institute of Molecular Pharmacy, PharmacenterUniversity of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| |
Collapse
|
20
|
Das M, Yang T, Dong J, Prasetya F, Xie Y, Wong KHQ, Cheong A, Woon ECY. Multiprotein Dynamic Combinatorial Chemistry: A Strategy for the Simultaneous Discovery of Subfamily-Selective Inhibitors for Nucleic Acid Demethylases FTO and ALKBH3. Chem Asian J 2018; 13:2854-2867. [PMID: 29917331 DOI: 10.1002/asia.201800729] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/12/2018] [Indexed: 12/18/2022]
Abstract
Dynamic combinatorial chemistry (DCC) is a powerful supramolecular approach for discovering ligands for biomolecules. To date, most, if not all, biologically templated DCC systems employ only a single biomolecule to direct the self-assembly process. To expand the scope of DCC, herein, a novel multiprotein DCC strategy has been developed that combines the discriminatory power of a zwitterionic "thermal tag" with the sensitivity of differential scanning fluorimetry. This strategy is highly sensitive and could differentiate the binding of ligands to structurally similar subfamily members. Through this strategy, it was possible to simultaneously identify subfamily-selective probes against two clinically important epigenetic enzymes: FTO (7; IC50 =2.6 μm) and ALKBH3 (8; IC50 =3.7 μm). To date, this is the first report of a subfamily-selective ALKBH3 inhibitor. The developed strategy could, in principle, be adapted to a broad range of proteins; thus it is of broad scientific interest.
Collapse
MESH Headings
- AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase/antagonists & inhibitors
- AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase/chemistry
- AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase/genetics
- AlkB Homolog 5, RNA Demethylase/antagonists & inhibitors
- AlkB Homolog 5, RNA Demethylase/chemistry
- AlkB Homolog 5, RNA Demethylase/genetics
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/antagonists & inhibitors
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/chemistry
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics
- Catalysis
- Combinatorial Chemistry Techniques/methods
- Enzyme Inhibitors/chemistry
- Fluorometry/methods
- Humans
- Hydrazones/chemistry
- Kinetics
- Ligands
- Molecular Structure
- Oxidoreductases, O-Demethylating/antagonists & inhibitors
- Oxidoreductases, O-Demethylating/chemistry
- Oxidoreductases, O-Demethylating/genetics
- Peptides/chemistry
- Peptides/genetics
- Protein Denaturation
- Protein Engineering
- Protein Structure, Secondary
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Transition Temperature
Collapse
Affiliation(s)
- Mohua Das
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Tianming Yang
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Jinghua Dong
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Fransisca Prasetya
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Yiming Xie
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Kendra H Q Wong
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Adeline Cheong
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Esther C Y Woon
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
21
|
Tabuchi Y, Taki M. Fluorescent "keep-on" type pharmacophore obtained from dynamic combinatorial library of Schiff bases. Anal Bioanal Chem 2018; 410:6713-6717. [PMID: 30099565 DOI: 10.1007/s00216-018-1303-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/31/2018] [Indexed: 12/30/2022]
Abstract
We established a novel principle for fluorescence detection of a target protein. A low-molecular-weight fluorescent pharmacophore, as a targeted probe, was selected from a dynamic combinatorial library of Schiff bases. The pharmacophore retains its fluorescence when bound to the hydrophobic site of the target, whereas it loses it because of hydrolysis when unbound. Graphical abstract We describe a novel concept for detection of a target protein (i.e., HSA) by using a keep-on-type fluorescent pharmacophore which is discovered from a dynamic combinatorial library of Schiff bases. When the target is absent, the keep-on-pharmacophore is degraded by hydrolysis, with the result that we can see no fluorescence.
Collapse
Affiliation(s)
- Yudai Tabuchi
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Masumi Taki
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan.
| |
Collapse
|
22
|
Putin E, Asadulaev A, Vanhaelen Q, Ivanenkov Y, Aladinskaya AV, Aliper A, Zhavoronkov A. Adversarial Threshold Neural Computer for Molecular de Novo Design. Mol Pharm 2018; 15:4386-4397. [PMID: 29569445 DOI: 10.1021/acs.molpharmaceut.7b01137] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this article, we propose the deep neural network Adversarial Threshold Neural Computer (ATNC). The ATNC model is intended for the de novo design of novel small-molecule organic structures. The model is based on generative adversarial network architecture and reinforcement learning. ATNC uses a Differentiable Neural Computer as a generator and has a new specific block, called adversarial threshold (AT). AT acts as a filter between the agent (generator) and the environment (discriminator + objective reward functions). Furthermore, to generate more diverse molecules we introduce a new objective reward function named Internal Diversity Clustering (IDC). In this work, ATNC is tested and compared with the ORGANIC model. Both models were trained on the SMILES string representation of the molecules, using four objective functions (internal similarity, Muegge druglikeness filter, presence or absence of sp3-rich fragments, and IDC). The SMILES representations of 15K druglike molecules from the ChemDiv collection were used as a training data set. For the different functions, ATNC outperforms ORGANIC. Combined with the IDC, ATNC generates 72% of valid and 77% of unique SMILES strings, while ORGANIC generates only 7% of valid and 86% of unique SMILES strings. For each set of molecules generated by ATNC and ORGANIC, we analyzed distributions of four molecular descriptors (number of atoms, molecular weight, logP, and tpsa) and calculated five chemical statistical features (internal diversity, number of unique heterocycles, number of clusters, number of singletons, and number of compounds that have not been passed through medicinal chemistry filters). Analysis of key molecular descriptors and chemical statistical features demonstrated that the molecules generated by ATNC elicited better druglikeness properties. We also performed in vitro validation of the molecules generated by ATNC; results indicated that ATNC is an effective method for producing hit compounds.
Collapse
Affiliation(s)
- Evgeny Putin
- Pharma.AI Department , Insilico Medicine, Inc. , Baltimore , Maryland 21218 , United States.,Computer Technologies Lab , ITMO University , St. Petersburg 197101 , Russia
| | - Arip Asadulaev
- Computer Technologies Lab , ITMO University , St. Petersburg 197101 , Russia
| | - Quentin Vanhaelen
- Pharma.AI Department , Insilico Medicine, Inc. , Baltimore , Maryland 21218 , United States
| | - Yan Ivanenkov
- Pharma.AI Department , Insilico Medicine, Inc. , Baltimore , Maryland 21218 , United States.,Moscow Institute of Physics and Technology (State University) , 9 Institutskiy Lane , Dolgoprudny City , Moscow Region 141700 , Russian Federation.,Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS) Ufa Scientific Centre , Oktyabrya Prospekt 71 , 450054 Ufa , Russian Federation
| | - Anastasia V Aladinskaya
- Pharma.AI Department , Insilico Medicine, Inc. , Baltimore , Maryland 21218 , United States.,Moscow Institute of Physics and Technology (State University) , 9 Institutskiy Lane , Dolgoprudny City , Moscow Region 141700 , Russian Federation
| | - Alex Aliper
- Pharma.AI Department , Insilico Medicine, Inc. , Baltimore , Maryland 21218 , United States
| | - Alex Zhavoronkov
- Pharma.AI Department , Insilico Medicine, Inc. , Baltimore , Maryland 21218 , United States.,The Biogerontology Research Foundation , OX1 1RU Oxford , U.K
| |
Collapse
|
23
|
Worrell BT, Mavila S, Wang C, Kontour TM, Lim CH, McBride MK, Musgrave CB, Shoemaker R, Bowman CN. A user's guide to the thiol-thioester exchange in organic media: scope, limitations, and applications in material science. Polym Chem 2018. [DOI: 10.1039/c8py01031e] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The dynamic exchange of thiols and thioesters in organic media was explored, leading to room temperature plasticity in crosslinked polymers.
Collapse
Affiliation(s)
- Brady T. Worrell
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Sudheendran Mavila
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Chen Wang
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Taylor M. Kontour
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Chern-Hooi Lim
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Matthew K. McBride
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Charles B. Musgrave
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Richard Shoemaker
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering
- University of Colorado – Boulder
- Boulder
- USA
- Material Science and Engineering Program
| |
Collapse
|
24
|
Monjas L, Swier LJYM, Setyawati I, Slotboom DJ, Hirsch AKH. Dynamic Combinatorial Chemistry to Identify Binders of ThiT, an S-Component of the Energy-Coupling Factor Transporter for Thiamine. ChemMedChem 2017; 12:1693-1696. [PMID: 28960943 PMCID: PMC5698757 DOI: 10.1002/cmdc.201700440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/13/2017] [Indexed: 02/05/2023]
Abstract
We applied dynamic combinatorial chemistry (DCC) to identify ligands of ThiT, the S-component of the energy-coupling factor (ECF) transporter for thiamine in Lactococcus lactis. We used a pre-equilibrated dynamic combinatorial library (DCL) and saturation-transfer difference (STD) NMR spectroscopy to identify ligands of ThiT. This is the first report in which DCC is used for fragment growing to an ill-defined pocket, and one of the first reports for its application with an integral membrane protein as target.
Collapse
Affiliation(s)
- Leticia Monjas
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747AGGroningenThe Netherlands
| | - Lotteke J. Y. M. Swier
- Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Inda Setyawati
- Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
- Biochemistry DepartmentBogor Agricultural UniversityBogorIndonesia
| | - Dirk J. Slotboom
- Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Anna K. H. Hirsch
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747AGGroningenThe Netherlands
- Current address: Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Department of Drug Design and Optimization66123SaarbrückenGermany
- Department of Pharmacy, Medicinal ChemistrySaarland UniversityCampus Building E8.166123SaarbrückenGermany
| |
Collapse
|
25
|
Davis AM, Plowright AT, Valeur E. Directing evolution: the next revolution in drug discovery? Nat Rev Drug Discov 2017; 16:681-698. [PMID: 28935911 DOI: 10.1038/nrd.2017.146] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The strong biological rationale to pursue challenging drug targets such as protein-protein interactions has stimulated the development of novel screening strategies, such as DNA-encoded libraries, to allow broader areas of chemical space to be searched. There has also been renewed interest in screening natural products, which are the result of evolutionary selection for a function, such as interference with a key signalling pathway of a competing organism. However, recent advances in several areas, such as understanding of the biosynthetic pathways for natural products, synthetic biology and the development of biosensors to detect target molecules, are now providing new opportunities to directly harness evolutionary pressure to identify and optimize compounds with desired bioactivities. Here, we describe innovations in the key components of such strategies and highlight pioneering examples that indicate the potential of the directed-evolution concept. We also discuss the scientific gaps and challenges that remain to be addressed to realize this potential more broadly in drug discovery.
Collapse
Affiliation(s)
- Andrew M Davis
- AstraZeneca R&D Gothenburg, Pepparedsleden 1, Mölndal, 43150, Sweden
| | - Alleyn T Plowright
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Eric Valeur
- AstraZeneca R&D Gothenburg, Pepparedsleden 1, Mölndal, 43150, Sweden
| |
Collapse
|
26
|
Chen C, Wu J, Zhu P, Xu C, Yao L. Investigating isoquinoline derivatives for inhibition of inhibitor of apoptosis proteins for ovarian cancer treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2697-2707. [PMID: 28979099 PMCID: PMC5602439 DOI: 10.2147/dddt.s137608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Objective To discover novel isoquinoline derivatives for inhibition of inhibitor of apoptosis proteins (IAP) for the treatment of ovarian cancer. Methods We first synthesized 533 isoquinoline derivatives, and screened them using CCK-8 to measure their antiproliferative activity. These compounds were further tested by Hoechst staining and flow cytometric analysis to assess proapoptotic activity. The in vivo antitumor efficacy and safety of the screened compounds were evaluated on the xenograft mouse model. Ki-67 staining and TUNEL assay were used to evaluate proliferation and apoptosis in the resected tumors, respectively. Western blot and polymerase chain reaction (PCR) were conducted to evaluate the levels of proliferating cell nuclear antigen (PCNA), caspase-3, PARP, and IAP in resected tumors. Results Compound B01002 and C26001 displayed antiproliferative and proapoptotic activity on SKOV3 ovarian cancer with an IC50 of 7.65 and 11.68 µg/mL, respectively. Both compounds inhibited tumor growth in a xenografted mouse model with good safety profiles, and tumor growth inhibition (TGI) of B01002 and C26001 was 99.53% and 84.23%, respectively. Resected tumors showed that both compounds inhibited tumor cell proliferation and induced apoptosis in vivo. Caspase-3 and PARP were activated, whereas IAP proteins were downregulated at the protein level. Conclusion Compound B01002 and C26001 could inhibit ovarian tumor growth and promote tumor apoptosis, partly by downregulating the IAPs, and, thus, might be promising candidates for treatment of ovarian cancer.
Collapse
Affiliation(s)
- Chen Chen
- Obstetrics and Gynecology Hospital and Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Jie Wu
- Department of Chemistry, Fudan University, Shanghai
| | - Pengfei Zhu
- Department of Obstetrics and Gynecology, Shangyu City Hospital, Shangyu, Zhejiang Province, People's Republic of China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital and Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Liangqing Yao
- Obstetrics and Gynecology Hospital and Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| |
Collapse
|
27
|
Frei P, Pang L, Silbermann M, Eriş D, Mühlethaler T, Schwardt O, Ernst B. Target-directed Dynamic Combinatorial Chemistry: A Study on Potentials and Pitfalls as Exemplified on a Bacterial Target. Chemistry 2017; 23:11570-11577. [PMID: 28654733 DOI: 10.1002/chem.201701601] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Indexed: 12/28/2022]
Abstract
Target-directed dynamic combinatorial chemistry (DCC) is an emerging technique for the efficient identification of inhibitors of pharmacologically relevant targets. In this contribution, we present an application for a bacterial target, the lectin FimH, a crucial virulence factor of uropathogenic E. coli being the main cause of urinary tract infections. A small dynamic library of acylhydrazones was formed from aldehydes and hydrazides and equilibrated at neutral pH in presence of aniline as nucleophilic catalyst. The major success factors turned out to be an accordingly adjusted ratio of scaffolds and fragments, an adequate sample preparation prior to HPLC analysis, and the data processing. Only then did the ranking of the dynamic library constituents correlate well with affinity data. Furthermore, as a support of DCC applications especially to larger libraries, a new protocol for improved hit identification was established.
Collapse
Affiliation(s)
- Priska Frei
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Lijuan Pang
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Marleen Silbermann
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Deniz Eriş
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Tobias Mühlethaler
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Oliver Schwardt
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Beat Ernst
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|
28
|
Jaegle M, Wong EL, Tauber C, Nawrotzky E, Arkona C, Rademann J. Proteintemplat-gesteuerte Fragmentligationen - von der molekularen Erkennung zur Wirkstofffindung. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 129:7464-7485. [PMID: 32313319 PMCID: PMC7159557 DOI: 10.1002/ange.201610372] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/10/2017] [Indexed: 12/28/2022]
Abstract
AbstractProteintemplat‐gesteuerte Fragmentligationen sind ein neuartiges Konzept zur Unterstützung der Wirkstofffindung und können dazu beitragen, die Wirksamkeit von Proteinliganden zu verbessern. Es handelt sich dabei um chemische Reaktionen zwischen niedermolekularen Verbindungen (“Fragmenten”), die die Oberfläche eines Proteins als Reaktionsgefäß verwenden, um die Bildung eines Proteinliganden mit erhöhter Bindungsaffinität zu katalysieren. Die Methode nutzt die molekulare Erkennung kleiner reaktiver Fragmente durch die Proteine sowohl zur Assemblierung der Liganden als auch zur Identifizierung bioaktiver Fragmentkombinationen. Chemische Synthese und Bioassay werden dabei in einem Schritt vereint. Dieser Aufsatz diskutiert die biophysikalischen Grundlagen der reversiblen und irreversiblen Fragmentligationen und gibt einen Überblick über die Methoden, mit denen die durch das Proteintemplat gebildeten Ligationsprodukte detektiert werden können. Der chemische Reaktionsraum und aktuelle Anwendungen wie auch die Bedeutung dieses Konzeptes für die Wirkstofffindung werden erörtert.
Collapse
Affiliation(s)
- Mike Jaegle
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Ee Lin Wong
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Carolin Tauber
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Eric Nawrotzky
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Christoph Arkona
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| | - Jörg Rademann
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Straße 2+4Berlin14195Deutschland
| |
Collapse
|
29
|
Jaegle M, Wong EL, Tauber C, Nawrotzky E, Arkona C, Rademann J. Protein-Templated Fragment Ligations-From Molecular Recognition to Drug Discovery. Angew Chem Int Ed Engl 2017; 56:7358-7378. [PMID: 28117936 PMCID: PMC7159684 DOI: 10.1002/anie.201610372] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/10/2017] [Indexed: 12/14/2022]
Abstract
Protein-templated fragment ligation is a novel concept to support drug discovery and can help to improve the efficacy of protein ligands. Protein-templated fragment ligations are chemical reactions between small molecules ("fragments") utilizing a protein's surface as a reaction vessel to catalyze the formation of a protein ligand with increased binding affinity. The approach exploits the molecular recognition of reactive small-molecule fragments by proteins both for ligand assembly and for the identification of bioactive fragment combinations. In this way, chemical synthesis and bioassay are integrated in one single step. This Review discusses the biophysical basis of reversible and irreversible fragment ligations and gives an overview of the available methods to detect protein-templated ligation products. The chemical scope and recent applications as well as future potential of the concept in drug discovery are reviewed.
Collapse
Affiliation(s)
- Mike Jaegle
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Ee Lin Wong
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Carolin Tauber
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Eric Nawrotzky
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Christoph Arkona
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| | - Jörg Rademann
- Freie Universität BerlinMedicinal ChemistryKönigin-Luise-Strasse 2+4Berlin14195Germany
| |
Collapse
|
30
|
Bartus É, Hegedüs Z, Wéber E, Csipak B, Szakonyi G, Martinek TA. De Novo Modular Development of a Foldameric Protein-Protein Interaction Inhibitor for Separate Hot Spots: A Dynamic Covalent Assembly Approach. ChemistryOpen 2017; 6:236-241. [PMID: 28413758 PMCID: PMC5390796 DOI: 10.1002/open.201700012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 01/27/2023] Open
Abstract
Protein-protein interactions stabilized by multiple separate hot spots are highly challenging targets for synthetic scaffolds. Surface-mimetic foldamers bearing multiple recognition segments are promising candidate inhibitors. In this work, a modular bottom-up approach is implemented by identifying short foldameric recognition segments that interact with the independent hot spots, and connecting them through dynamic covalent library (DCL) optimization. The independent hot spots of a model target (calmodulin) are mapped with hexameric β-peptide helices using a pull-down assay. Recognition segment hits are subjected to a target-templated DCL ligation through thiol-disulfide exchange. The most potent derivative displays low nanomolar affinity towards calmodulin and effectively inhibits the calmodulin-TRPV1 interaction. The DCL assembly of the folded segments offers an efficient approach towards the de novo development of a high-affinity inhibitor of protein-protein interactions.
Collapse
Affiliation(s)
- Éva Bartus
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research GroupUniversity of Szeged4 Somogyi Str.6720SzegedHungary
| | - Zsófia Hegedüs
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research GroupUniversity of Szeged4 Somogyi Str.6720SzegedHungary
| | - Edit Wéber
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research GroupUniversity of Szeged4 Somogyi Str.6720SzegedHungary
| | - Brigitta Csipak
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research GroupUniversity of Szeged4 Somogyi Str.6720SzegedHungary
| | - Gerda Szakonyi
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research GroupUniversity of Szeged4 Somogyi Str.6720SzegedHungary
| | - Tamás A. Martinek
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research GroupUniversity of Szeged4 Somogyi Str.6720SzegedHungary
| |
Collapse
|
31
|
Foreword: Pacific Fragments. Molecules 2016; 21:molecules21070926. [PMID: 27438812 PMCID: PMC6273443 DOI: 10.3390/molecules21070926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 11/24/2022] Open
|