1
|
Pandey J, Singh BD, Khanam H, Tiwari B, Azaz T, Singh R. Cassia fistula galactomannan stabilized copper nanocatalyst as an efficient, recyclable heterogeneous catalyst for the fast clickable [3+2] Huisgen cycloadditions in water. Int J Biol Macromol 2024; 255:128098. [PMID: 37972839 DOI: 10.1016/j.ijbiomac.2023.128098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
In this study, we have first time investigated the synthesis of copper nanocatalyst by using biopolymer galactomannan, naturally extracted from Cassia fistula pods. The methodology involved for the preparation of copper nanocatalyst is economical, efficient, environment friendly, and did not involve further processing for stabilization or reduction of copper nanoparticles. The morphology and structural characterization of the nanocatalyst was performed by using different techniques such as FT-IR, 1H NMR, SEM, EDX, HR-TEM, XRD, XPS, ICP-MS, BET, and TGA analysis. The prepared copper nanocatalyst is applied for the click [3+2] Huisgen cycloadditions of various azides and alkynes, employing water as environmentally benign solvent. In comparison to earlier reported methods, our method requires lowest catalyst loading, less reaction time, excellent yields and have wide substrate scope. Additionally, the catalyst was easily recovered by simple filtration and recycled at least ten consecutive times without any appreciable loss of efficiency and selectivity. The effect of mannose and galactose (Man/Gal) ratio of Cassia fistula galactomannan on the catalytic activity were also investigated.
Collapse
Affiliation(s)
- Jyoti Pandey
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India.
| | - Bal Dev Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Huda Khanam
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India; Department of Chemistry, University of Lucknow, Lucknow 226007, India
| | - Bhoopendra Tiwari
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Tazeen Azaz
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Ruchi Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| |
Collapse
|
2
|
Wilson GR, Park KC, Thaggard GC, Martin CR, Hill AR, Haimerl J, Lim J, Maldeni Kankanamalage BKP, Yarbrough BJ, Forrester KL, Fischer RA, Pellechia PJ, Smith MD, Garashchuk S, Shustova NB. Cooperative and Orthogonal Switching in the Solid State Enabled by Metal-Organic Framework Confinement Leading to a Thermo-Photochromic Platform. Angew Chem Int Ed Engl 2023; 62:e202308715. [PMID: 37486788 DOI: 10.1002/anie.202308715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Cooperative behavior and orthogonal responses of two classes of coordinatively integrated photochromic molecules towards distinct external stimuli were demonstrated on the first example of a photo-thermo-responsive hierarchical platform. Synergetic and orthogonal responses to temperature and excitation wavelength are achieved by confining the stimuli-responsive moieties within a metal-organic framework (MOF), leading to the preparation of a novel photo-thermo-responsive spiropyran-diarylethene based material. Synergistic behavior of two photoswitches enables the study of stimuli-responsive resonance energy transfer as well as control of the photoinduced charge transfer processes, milestones required to advance optoelectronics development. Spectroscopic studies in combination with theoretical modeling revealed a nonlinear effect on the material electronic structure arising from the coordinative integration of photoresponsive molecules with distinct photoisomerization mechanisms. Thus, the reported work covers multivariable facets of not only fundamental aspects of photoswitch cooperativity, but also provides a pathway to modulate photophysics and electronics of multidimensional functional materials exhibiting thermo-photochromism.
Collapse
Affiliation(s)
- Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Corey R Martin
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Austin R Hill
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Johanna Haimerl
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | - Brandon J Yarbrough
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Kelly L Forrester
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Perry J Pellechia
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Sophya Garashchuk
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
3
|
Khanzadeh A, Ataie S, Baker RT. Tetracopper(I) thiolate- and amido-(SNS) complexes and copper-catalyzed azide-alkyne cycloaddition in water. Dalton Trans 2023; 52:11768-11772. [PMID: 37584163 DOI: 10.1039/d3dt01651j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Two tetranuclear Cu(I) complexes bearing thiolate- and amido-SNS ligands were characterized by X-ray diffraction and mass spectrometry. Although the amido ligand undergoes irreversible N-protonation by the copper-bound alkyne, the thiolate complex demonstrates good activity in the copper-catalyzed azide-alkyne cycloaddition reaction with a variety of substrates. The base-free reactions are performed in water and afford excellent yields over 2 h at 70 °C. DFT calculations suggest a proton-shuttle role for the thiolate donor in formation of the initial dicopper σ,π-alkynyl intermediate.
Collapse
Affiliation(s)
- Atousa Khanzadeh
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - Saeed Ataie
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - R Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
4
|
Taj MB, Raheel A, Alelwani W, Alnajeebi AM, Alnoman RB, Javed T. Mechanochemical Synthesis of Thiazolidinone-Triazoles Derivatives as Antidiabetic Agents: Pharmacokinetics, Molecular Docking, and In Vitro Antidiabetic Properties. RUSS J GEN CHEM+ 2023; 93:912-919. [PMID: 37252637 PMCID: PMC10209927 DOI: 10.1134/s1070363223040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 05/31/2023]
Abstract
Mechanochemistry is an eco-friendly and solventless method. In the present study, the surface of a custom-made closed mortar and pestle is used as a catalyst to synthesize thiazolidinone-triazole derivatives successfully. The compounds were subjected to potential antidiabetic activity. The results showed that para-chloro-substituted derivative (9c) is most active with IC50 values of 10±1.56. All three compounds 9a-9c with a maximum of 20% inhibition for ALR1 represent superior selectivity toward the targeted ALR2 to act as a lead in the search for new antidiabetic agents.
Collapse
Affiliation(s)
- M. B. Taj
- Institute of Chemistry, Islamia University Bahawalpur, 63100 Bahawalpur, Pakistan
| | - A. Raheel
- Department of Chemistry, Quaid-e-Azam University, 44000 Islamabad, Pakistan
| | - W. Alelwani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - A. M. Alnajeebi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - R. B. Alnoman
- Faculty of Science, Chemistry Department, Taibah University, Yanbu Branch, Yanbu, Saudi Arabia
| | - T. Javed
- Department of Chemistry, University of Sahiwal, 57000 Sahiwal, Pakistan
| |
Collapse
|
5
|
Sethi S, Jana NC, Panda S, Maharana SK, Bagh B. Copper(i)-catalyzed click chemistry in deep eutectic solvent for the syntheses of β-d-glucopyranosyltriazoles. RSC Adv 2023; 13:10424-10432. [PMID: 37020881 PMCID: PMC10069229 DOI: 10.1039/d3ra01844j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
In the last two decades, click chemistry has progressed as a powerful tool in joining two different molecular units to generate fascinating structures with a widespread application in various branch of sciences. copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, also known as click chemistry, has been extensively utilized as a versatile strategy for the rapid and selective formation of 1,4-disubstituted 1,2,3-triazoles. The successful use of CuAAC reaction for the preparation of biologically active triazole-attached carbohydrate-containing molecular architectures is an emerging area of glycoscience. In this regard, a well-defined copper(i)-iodide complex (1) with a tridentate NNO ligand (L1) was synthesized and effectively utilized as an active catalyst. Instead of using potentially hazardous reaction media such as DCM or toluene, the use of deep eutectic solvent (DES), an emerging class of green solvent, is advantageous for the syntheses of triazole-glycohybrids. The present work shows, for the first time, the successful use of DES as a reaction medium to click various glycosides and terminal alkynes in the presence of sodium azide. Various 1,4-disubstituted 1,2,3-glucopyranosyltriazoles were synthesized and the pure products were isolated by using a very simple work-up process (filtration). The reaction media was recovered and recycled in five consecutive runs. The presented catalytic protocol generated very minimum waste as reflected by a low E-factor (2.21-3.12). Finally, the optimized reaction conditions were evaluated with the CHEM21 green metrics toolkit.
Collapse
Affiliation(s)
- Subrat Sethi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda Bhubaneswar Odisha PIN 752050 India
| | - Narayan Ch Jana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda Bhubaneswar Odisha PIN 752050 India
| | - Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda Bhubaneswar Odisha PIN 752050 India
| | - Suraj Kumar Maharana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda Bhubaneswar Odisha PIN 752050 India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda Bhubaneswar Odisha PIN 752050 India
| |
Collapse
|
6
|
Brufani G, Valentini F, Rossini G, Rosignoli L, Gu Y, Liu P, Vaccaro L. Waste-minimized continuous flow copper-catalyzed azide-alkyne cycloaddition with low metal contamination. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
7
|
Synthesis of Novel Ferrocene-Benzofuran Hybrids via Palladium- and Copper-Catalyzed Reactions. INORGANICS 2022. [DOI: 10.3390/inorganics10110205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The combination of the ferrocene skeleton with pharmacophores often leads to molecules with interesting biological properties. Five ferrocene-benzofuran hybrids of different structures were synthesized by transition metal catalyzed reactions. The efficiency of both homogeneous and heterogeneous catalytic methods was tested. The products were characterized using 1H, 13C NMR and FTIR spectroscopy, HRMS and cyclic voltammetry. The structure of one of the new compounds was also proved with X-ray crystallography. The new hybrids showed moderate cytotoxicity on MCF-7 and MDA-MB-231 cell lines. It is remarkable that the less curable MDA-MB-231 cell line was more sensitive to treatment with three ferrocene derivatives.
Collapse
|
8
|
Wu Z, Ren B, Shao B, Chen Z, Zhao Z, Liu C, Xiao J, Zhang H. Immobilization of copper(I) iodide on polyaza-ligand-functionalized polyacrylonitrile fibers as highly active catalysts for the 1,3-dipolar cycloaddition reaction. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Nsira A, Mtiraoui H, Chniti S, Al-Ghulikah H, Gharbi R, Msaddek M. Regioselective One-Pot Synthesis, Biological Activity and Molecular Docking Studies of Novel Conjugates N-(p-Aryltriazolyl)-1,5-benzodiazepin-2-ones as Potent Antibacterial and Antifungal Agents. Molecules 2022; 27:4015. [PMID: 35807263 PMCID: PMC9268147 DOI: 10.3390/molecules27134015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Novel 1,2,3-triazolo-linked-1,5-benzodiazepinones were designed and synthesized via a Cu(I)-catalyzed 1,3-dipolar alkyne-azide coupling reaction (CuAAC). The chemical structures of these compounds were confirmed by 1H NMR, 13C NMR, HMBC, HRMS, and elemental analysis. The compounds were screened for their in vitro antibacterial and antifungal activities. Several compounds exhibited good to moderate activities compared to those of established standard drugs. Furthermore, the binding interactions of these active analogs were confirmed through molecular docking.
Collapse
Affiliation(s)
- Asma Nsira
- Laboratory of Heterocyclic Chemistry Natural Products and Reactivity/CHPNR, Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5000, Tunisia; (A.N.); (H.M.); (S.C.); (M.M.)
| | - Hasan Mtiraoui
- Laboratory of Heterocyclic Chemistry Natural Products and Reactivity/CHPNR, Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5000, Tunisia; (A.N.); (H.M.); (S.C.); (M.M.)
| | - Sami Chniti
- Laboratory of Heterocyclic Chemistry Natural Products and Reactivity/CHPNR, Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5000, Tunisia; (A.N.); (H.M.); (S.C.); (M.M.)
| | - Hanan Al-Ghulikah
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rafik Gharbi
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5000, Tunisia;
| | - Moncef Msaddek
- Laboratory of Heterocyclic Chemistry Natural Products and Reactivity/CHPNR, Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5000, Tunisia; (A.N.); (H.M.); (S.C.); (M.M.)
| |
Collapse
|
10
|
Deng B, Yang J, Guo M, Yang R. Highly efficient Catalytic performance on CuAAC reaction by polymer‐like supramolecular self‐assemblies‐Cu (I) in aqueous solution. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bin Deng
- Faculty of Science Kunming University of Science and Technology Kunming P.R. China
| | - Jing Yang
- Faculty of Science Kunming University of Science and Technology Kunming P.R. China
| | - Mengbi Guo
- Industrial Crop Research Institute Yunnan Academy of Agricultural Sciences Kunming Yunnan P. R. China
| | - Rui Yang
- Faculty of Science Kunming University of Science and Technology Kunming P.R. China
| |
Collapse
|
11
|
Moussaoui O, Bhadane R, Sghyar R, Ilaš J, El Hadrami EM, Chakroune S, Salo‐Ahen OMH. Design, Synthesis, in vitro and in silico Characterization of 2-Quinolone-L-alaninate-1,2,3-triazoles as Antimicrobial Agents. ChemMedChem 2022; 17:e202100714. [PMID: 34978160 PMCID: PMC9305408 DOI: 10.1002/cmdc.202100714] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/16/2021] [Indexed: 11/07/2022]
Abstract
Due to the ever-increasing antimicrobial resistance there is an urgent need to continuously design and develop novel antimicrobial agents. Inspired by the broad antibacterial activities of various heterocyclic compounds such as 2-quinolone derivatives, we designed and synthesized new methyl-(2-oxo-1,2-dihydroquinolin-4-yl)-L-alaninate-1,2,3-triazole derivatives via 1,3-dipolar cycloaddition reaction of 1-propargyl-2-quinolone-L-alaninate with appropriate azide groups. The synthesized compounds were obtained in good yield ranging from 75 to 80 %. The chemical structures of these novel hybrid molecules were determined by spectroscopic methods and the antimicrobial activity of the compounds was investigated against both bacterial and fungal strains. The tested compounds showed significant antimicrobial activity and weak to moderate antifungal activity. Despite the evident similarity of the quinolone moiety of our compounds with fluoroquinolones, our compounds do not function by inhibiting DNA gyrase. Computational characterization of the compounds shows that they have attractive physicochemical and pharmacokinetic properties and could serve as templates for developing potential antimicrobial agents for clinical use.
Collapse
Affiliation(s)
- Oussama Moussaoui
- Laboratory of Applied Organic ChemistrySidi Mohamed Ben Abdellah University30000FezMorocco
| | - Rajendra Bhadane
- Structural Bioinformatics Laboratory, BiochemistryÅbo Akademi University20520TurkuFinland
- Pharmaceutical Sciences Laboratory, PharmacyÅbo Akademi University20520TurkuFinland
| | - Riham Sghyar
- Laboratory of Applied Organic ChemistrySidi Mohamed Ben Abdellah University30000FezMorocco
| | - Janez Ilaš
- Faculty of PharmacyUniversity of Ljubljana1000LjubljanaSlovenia
| | - El Mestafa El Hadrami
- Laboratory of Applied Organic ChemistrySidi Mohamed Ben Abdellah University30000FezMorocco
| | - Said Chakroune
- Laboratory of Applied Organic ChemistrySidi Mohamed Ben Abdellah University30000FezMorocco
| | - Outi M. H. Salo‐Ahen
- Structural Bioinformatics Laboratory, BiochemistryÅbo Akademi University20520TurkuFinland
- Pharmaceutical Sciences Laboratory, PharmacyÅbo Akademi University20520TurkuFinland
| |
Collapse
|
12
|
Aflak N, Ben El Ayouchia H, Bahsis L, Anane H, Julve M, Stiriba SE. Recent Advances in Copper-Based Solid Heterogeneous Catalysts for Azide-Alkyne Cycloaddition Reactions. Int J Mol Sci 2022; 23:2383. [PMID: 35216495 PMCID: PMC8874673 DOI: 10.3390/ijms23042383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is considered to be the most representative ligation process within the context of the "click chemistry" concept. This CuAAC reaction, which yields compounds containing a 1,2,3-triazole core, has become relevant in the construction of biologically complex systems, bioconjugation strategies, and supramolecular and material sciences. Although many CuAAC reactions are performed under homogenous conditions, heterogenous copper-based catalytic systems are gaining exponential interest, relying on the easy removal, recovery, and reusability of catalytically copper species. The present review covers the most recently developed copper-containing heterogenous solid catalytic systems that use solid inorganic/organic hybrid supports, and which have been used in promoting CuAAC reactions. Due to the demand for 1,2,3-triazoles as non-classical bioisosteres and as framework-based drugs, the CuAAC reaction promoted by solid heterogenous catalysts has greatly improved the recovery and removal of copper species, usually by simple filtration. In so doing, the solving of the toxicity issue regarding copper particles in compounds of biological interest has been achieved. This protocol is also expected to produce a practical chemical process for accessing such compounds on an industrial scale.
Collapse
Affiliation(s)
- Noura Aflak
- Laboratoire de Chimie Analytique et Moléculaire/LCAM, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Safi 46030, Morocco; (N.A.); (H.B.E.A.); (L.B.); (H.A.)
| | - Hicham Ben El Ayouchia
- Laboratoire de Chimie Analytique et Moléculaire/LCAM, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Safi 46030, Morocco; (N.A.); (H.B.E.A.); (L.B.); (H.A.)
| | - Lahoucine Bahsis
- Laboratoire de Chimie Analytique et Moléculaire/LCAM, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Safi 46030, Morocco; (N.A.); (H.B.E.A.); (L.B.); (H.A.)
- Laboratoire de Chimie de Coordination et d’Analytique/LCCA, Département de Chimie, Faculté des Sciences d’El Jadida, Université Chouaïb Doukkali, El Jadida 24000, Morocco
| | - Hafid Anane
- Laboratoire de Chimie Analytique et Moléculaire/LCAM, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Safi 46030, Morocco; (N.A.); (H.B.E.A.); (L.B.); (H.A.)
| | - Miguel Julve
- Instituto de Ciencia Molecular/ICMol, Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Valencia, Spain;
| | - Salah-Eddine Stiriba
- Instituto de Ciencia Molecular/ICMol, Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Valencia, Spain;
| |
Collapse
|
13
|
Abstract
Nitrogen-containing heterocycles are important scaffolds for a large number of compounds with biological, pharmaceutical, industrial and optoelectronic applications. A wide range of different methodologies for the preparation of N-heterocycles are based on metal-catalyzed cyclization of suitable substrates. Due to the growing interest in Green Chemistry criteria over the past two decades, the use of supported metal catalysts in the preparation of N-heterocycles has become a central topic in Organic Chemistry. Here we will give a critical overview of all the solid supported metal catalysts applied in the synthesis of N-heterocycles, following a systematic approach as a function of the type of support: (i) metal catalysts supported on inorganic matrices; (ii) metal catalysts supported on organic matrices; (iii) metal catalysts supported on hybrid inorganic-organic matrices. In particular, we will try to emphasize the effective heterogeneity and recyclability of the described metal catalysts, specifying which studies were carried out in order to evaluate these aspects.
Collapse
|
14
|
Samuel AG, Subramanian S, Vijendran V, Bhagavathsingh J. Copper(II)-Bis-Cyclen Intercalated Graphene Oxide as an Efficient Two-Dimensional Nanocomposite Material for Copper-Catalyzed Azide–Alkyne Cycloaddition Reaction. Front Chem 2022; 9:754734. [PMID: 35071181 PMCID: PMC8782203 DOI: 10.3389/fchem.2021.754734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/06/2021] [Indexed: 11/18/2022] Open
Abstract
We report stable and heterogeneous graphene oxide (GO)–intercalated copper as an efficient catalyst for the organic transformations in green solvents. The GO-intercalated copper(II) complex of bis(1,4,7,10-tetraazacyclododecane) [Cu(II)-bis-cyclen] was prepared by a facile synthetic approach with a high dilution technique. The as-prepared GO-Cu(II)-bis-cyclen nanocomposite was used as a click catalyst for the 1,3 dipolar Huisgen cycloaddition reaction of terminal alkyne and azide substrates. On directing a great deal of attention toward the feasibility of the rapid electron transfer rate of the catalyst in proliferating the yield of 1,2,3-triazole products, the click catalyst GO-Cu(II)-bis-cyclen nanocomposite was designed and synthesized via non-covalent functionalization. The presence of a higher coordination site in an efficient 2D nanocomposite promotes the stabilization of Cu(I) L-acetylide intermediate during the catalytic cycle initiated by the addition of reductants. From the XRD analysis, the enhancement in the d-interlayer spacing of 1.04 nm was observed due to the intercalation of the Cu(II)-bis-cyclen complex in between the GO basal planes. It was also characterized by XPS, FT-IR, RAMAN, UV, SEM, AFM, and TGA techniques. The recyclability of the heterogeneous catalyst [GO-Cu(II)-cyclen] with the solvent effect has also been studied. This class of GO-Cu(II)-bis-cyclen nanocomposite paves the way for bioconjugation of macromolecules through the click chemistry approach.
Collapse
|
15
|
Veerakumar P, Velusamy N, Thanasekaran P, Lin KC, Rajagopal S. Copper supported silica-based nanocatalysts for CuAAC and cross-coupling reactions. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00095d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recent advances in Cu/SiO2-based heterogeneous catalysts for click reaction, C–N, C–S, and C–O coupling reactions are reviewed and summarized.
Collapse
Affiliation(s)
- Pitchaimani Veerakumar
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Nithya Velusamy
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | | | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | | |
Collapse
|
16
|
Selim A, Neethu KM, Gowri V, Sartaliya S, Kaur S, Jayamurugan G. Thiol‐Functionalized Cellulose Wrapped Copperoxide as a Green Nano Catalyst for Regiospecific Azide‐Alkyne Cycloaddition Reaction: Application in Rufinamide Synthesis. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Abdul Selim
- Institute of Nano Science and Technology (INST) Knowledge City, Sector 81 Mohali Punjab 140306 India
| | - K. M. Neethu
- Institute of Nano Science and Technology (INST) Knowledge City, Sector 81 Mohali Punjab 140306 India
| | - Vijayendran Gowri
- Institute of Nano Science and Technology (INST) Knowledge City, Sector 81 Mohali Punjab 140306 India
| | - Shaifali Sartaliya
- Institute of Nano Science and Technology (INST) Knowledge City, Sector 81 Mohali Punjab 140306 India
| | - Sharanjeet Kaur
- Institute of Nano Science and Technology (INST) Knowledge City, Sector 81 Mohali Punjab 140306 India
| | - Govindasamy Jayamurugan
- Institute of Nano Science and Technology (INST) Knowledge City, Sector 81 Mohali Punjab 140306 India
| |
Collapse
|
17
|
Sakata Y, Yoshida S, Hosoya T. Synthesis of Azidoanilines by the Buchwald-Hartwig Amination. J Org Chem 2021; 86:15674-15688. [PMID: 34694814 DOI: 10.1021/acs.joc.1c02251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a Buchwald-Hartwig amination compatible with azido functionality. Treatment of azidoaryl iodides and amines with fourth-generation Buchwald precatalyst coordinated by CPhos and sodium tert-butoxide in 1,4-dioxane at 50 °C afforded the corresponding azidoanilines while leaving the azido groups intact. The method showed a broad substrate scope and was applicable to the synthesis of diazido compounds as photoaffinity probe candidates of pharmaceutical amines and multiazido platform molecules.
Collapse
Affiliation(s)
- Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo101-0062, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo101-0062, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo101-0062, Japan
| |
Collapse
|
18
|
Khoshnoud A, Pourali AR. Three-Component Synthesis of 1,4-Disubstituted 1,2,3-Triazoles using a Novel and Efficient Nano Alumina Based Cu(II) Catalyst. ORG PREP PROCED INT 2021. [DOI: 10.1080/00304948.2021.1971475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Amin Khoshnoud
- School of Chemistry, Damghan University, Damghan 36715-364, Iran
| | - Ali Reza Pourali
- School of Chemistry, Damghan University, Damghan 36715-364, Iran
| |
Collapse
|
19
|
Giofrè SV, Tiecco M, Ferlazzo A, Romeo R, Ciancaleoni G, Germani R, Iannazzo D. Base‐Free Copper‐Catalyzed Azide‐Alkyne Click Cycloadditions (CuAAc) in Natural Deep Eutectic Solvents as Green and Catalytic Reaction Media**. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Salvatore Vincenzo Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali Università di Messina Viale Annunziata 98168 Messina Italy
| | - Matteo Tiecco
- Dipartimento di Chimica, Biologia e Biotecnologie Università di Perugia Via Elce di Sotto 8 06123 Perugia Italy
| | - Angelo Ferlazzo
- Dipartimento di Ingegneria Università of Messina Contrada Di Dio 98166 Messina Italy
| | - Roberto Romeo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali Università di Messina Viale Annunziata 98168 Messina Italy
| | - Gianluca Ciancaleoni
- Dipartimento di Chimica e Chimica Industriale (DCCI) Università di Pisa Via Giuseppe Moruzzi, 13 56124 Pisa Italy
| | - Raimondo Germani
- Dipartimento di Chimica, Biologia e Biotecnologie Università di Perugia Via Elce di Sotto 8 06123 Perugia Italy
| | - Daniela Iannazzo
- Dipartimento di Ingegneria Università of Messina Contrada Di Dio 98166 Messina Italy
| |
Collapse
|
20
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
21
|
Aimi T, Meguro T, Kobayashi A, Hosoya T, Yoshida S. Nucleophilic transformations of azido-containing carbonyl compounds via protection of the azido group. Chem Commun (Camb) 2021; 57:6062-6065. [PMID: 34036976 DOI: 10.1039/d1cc01143j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nucleophilic transformations of azido-containing carbonyl compounds are discussed. The phosphazide formation from azides and di(tert-butyl)(4-(dimethylamino)phenyl)phosphine (Amphos) enabled transformations of carbonyl groups with nucleophiles such as lithium aluminum hydride and organometallic reagents. The good stability of the phosphazide moiety allowed us to perform consecutive transformations of a diazide through triazole formation and the Grignard reaction.
Collapse
Affiliation(s)
- Takahiro Aimi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | | | | | | | |
Collapse
|
22
|
Talha A, Mourhly A, Tachallait H, Driowya M, El Hamidi A, Arshad S, Karrouchi K, Arsalane S, Bougrin K. One-pot four-component tandem synthesis of novel sulfonamide-1, 2, 3-triazoles catalyzed by reusable copper (II)-adsorbed on mesoporous silica under ultrasound irradiation. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Copper immobilized on biomimetic assembled calcium carbonate/carboxymethylcellulose hybrid: a highly active recoverable catalyst for CuAAC reactions. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04474-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Bahsis L, Ablouh E, Hachim ME, Anane H, Taourirte M, Julve M, Stiriba S. Copper(I)‐chitin biopolymer based: An efficient and recyclable catalyst for click azide–alkyne cycloaddition reactions in water. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Lahoucine Bahsis
- Laboratoire de Chimie de Coordination et d'Analytique (LCCA), Département de Chimie, Faculté des Sciences d'El Jadida Université Chouaïb Doukkali El Jadida Morocco
- Laboratoire de Chimie Analytique et Moléculaire, LCAM, Faculté Polydisciplinaire de Safi Université Cadi Ayyad Safi Morocco
| | - El‐Houssaine Ablouh
- Materials Science and Nanoengineering Department (MSN) Mohammed VI Polytechnic University (UM6P) Ben Guerir Morocco
| | - Mouhi Eddine Hachim
- Équipe de Modélisation Moléculaire et de Spectroscopie, Faculté des sciences Université de Chouaïb Doukkali El Jadida Morocco
| | - Hafid Anane
- Laboratoire de Chimie Analytique et Moléculaire, LCAM, Faculté Polydisciplinaire de Safi Université Cadi Ayyad Safi Morocco
| | - Moha Taourirte
- Laboratoire de Chimie Bioorganique et Macromoléculaire, Faculté des Sciences et Techniques de Marrakech Université Cadi Ayyad Marrakech Morocco
| | - Miguel Julve
- Instituto de Ciencia Molecular/ICMol Universidad de Valencia Valencia Spain
| | | |
Collapse
|
25
|
Mohammadnezhad G, Amirian AM, Görls H, Plass W, Sandleben A, Schäfer S, Klein A. Redox Instability of Copper(II) Complexes of a Triazine‐Based PNP Pincer. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | - Ali Mohammad Amirian
- Department of Chemistry Isfahan University of Technology Isfahan 84156-83111 Iran
- Chemistry Department Faculty of Science Shiraz University Shiraz 71454 Iran
| | - Helmar Görls
- Lehrstuhl für Anorganische Chemie II Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena Humboldtstr. 8 07743 Jena Germany
| | - Winfried Plass
- Lehrstuhl für Anorganische Chemie II Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena Humboldtstr. 8 07743 Jena Germany
| | - Aaron Sandleben
- Department für Chemie Institut für Anorganische Chemie Universität zu Köln Greinstraße 6 50939 Köln Germany
| | - Sascha Schäfer
- Department für Chemie Institut für Anorganische Chemie Universität zu Köln Greinstraße 6 50939 Köln Germany
| | - Axel Klein
- Chemistry Department Faculty of Science Shiraz University Shiraz 71454 Iran
- Department für Chemie Institut für Anorganische Chemie Universität zu Köln Greinstraße 6 50939 Köln Germany
| |
Collapse
|
26
|
Molteni G, Silvani A. Spiro‐2‐oxindoles
via
1,3‐dipolar cycloadditions. A decade update. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100121] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Giorgio Molteni
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Alessandra Silvani
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milan Italy
| |
Collapse
|
27
|
Okuyama Y, Kidena M, Kato E, Kawano S, Ishii K, Maie K, Miura K, Simizu S, Sato T, Chida N. Seven-Step Synthesis of All-Nitrogenated Sugar Derivatives Using Sequential Overman Rearrangements. Angew Chem Int Ed Engl 2021; 60:5193-5198. [PMID: 33252821 DOI: 10.1002/anie.202015141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 11/10/2022]
Abstract
All-nitrogenated sugars (ANSs), in which all hydroxy groups in a carbohydrate are replaced with amino groups, are anticipated to be privileged structures with useful biological activities. However, ANS synthesis has been challenging due to the difficulty in the installation of multi-amino groups. We report herein the development of a concise synthetic route to peracetylated ANSs in seven steps from commercially available monosaccharides. The key to success is the use of the sequential Overman rearrangement, which enables formal simultaneous substitution of four or five hydroxy groups in monosaccharides with amino groups. A variety of ANSs are available through the same reaction sequence starting from different initial monosaccharides by chirality transfer of secondary alcohols. Transformations of the resulting peracetylated ANSs such as glycosylation and deacetylation are also demonstrated. Biological studies reveal that ANS-modified cholesterol show cytotoxicity against human cancer cell lines, whereas each ANS and cholesterol have no cytotoxicity.
Collapse
Affiliation(s)
- Yuya Okuyama
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Mayu Kidena
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Erina Kato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Sayaka Kawano
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Koki Ishii
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kenta Maie
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kazuki Miura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Noritaka Chida
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
28
|
Okuyama Y, Kidena M, Kato E, Kawano S, Ishii K, Maie K, Miura K, Simizu S, Sato T, Chida N. Seven‐Step Synthesis of All‐Nitrogenated Sugar Derivatives Using Sequential Overman Rearrangements. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuya Okuyama
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Mayu Kidena
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Erina Kato
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Sayaka Kawano
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Koki Ishii
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kenta Maie
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kazuki Miura
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Siro Simizu
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Takaaki Sato
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Noritaka Chida
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
29
|
Gao T, Su X, Xu H, Hu H, Zeng C, Gao Y. Construction of the Copper‐Functionalized Covalent Organic Framework Used as a Heterogeneous Catalyst for Click Reaction. ChemistrySelect 2020. [DOI: 10.1002/slct.202004130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tingjun Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Hainan University No 58, Renmin Avenue Haikou 570228 China
| | - Xiaofang Su
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Hainan University No 58, Renmin Avenue Haikou 570228 China
| | - Huanjun Xu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Hainan University No 58, Renmin Avenue Haikou 570228 China
- School of Science Qiongtai Normal University No 1, Xiaoji Road Haikou 571127 China
| | - Hui Hu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Hainan University No 58, Renmin Avenue Haikou 570228 China
| | - Chaoyuan Zeng
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Hainan University No 58, Renmin Avenue Haikou 570228 China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Hainan University No 58, Renmin Avenue Haikou 570228 China
| |
Collapse
|
30
|
García-Lacuna J, Domínguez G, Pérez-Castells J. Flow Chemistry for Cycloaddition Reactions. CHEMSUSCHEM 2020; 13:5138-5163. [PMID: 32662578 DOI: 10.1002/cssc.202001372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Continuous flow reactors form part of a rapidly growing research area that has changed the way synthetic chemistry is performed not only in academia but also at the industrial level. This Review highlights the most recent advances in cycloaddition reactions performed in flow systems. Cycloadditions are atom-efficient transformations for the synthesis of carbo- and heterocycles, involved in the construction of challenging skeletons of complex molecules. The main advantages of translating these processes into flow include using intensified conditions, safer handling of hazardous reagents and gases, easy tuning of reaction conditions, and straightforward scaling up. These benefits are especially important in cycloadditions such as the copper(I)-catalyzed azide alkyne cycloaddition (CuAAC), Diels-Alder reaction, ozonolysis and [2+2] photocycloadditions. Some of these transformations are key reactions in the industrial synthesis of pharmaceuticals.
Collapse
Affiliation(s)
- Jorge García-Lacuna
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Gema Domínguez
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Javier Pérez-Castells
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
31
|
Bahsis L, Ablouh EH, Anane H, Taourirte M, Julve M, Stiriba SE. Cu(ii)-alginate-based superporous hydrogel catalyst for click chemistry azide-alkyne cycloaddition type reactions in water. RSC Adv 2020; 10:32821-32832. [PMID: 35516499 PMCID: PMC9056610 DOI: 10.1039/d0ra06410f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/18/2020] [Indexed: 11/21/2022] Open
Abstract
A novel sustainable hydrogel catalyst based on the reaction of sodium alginate naturally extracted from brown algae Laminaria digitata residue with copper(ii) was prepared as spherical beads, namely Cu(ii)-alginate hydrogel (Cu(ii)-AHG). The morphology and structural characteristics of these beads were elucidated by different techniques such as SEM, EDX, BET, FTIR and TGA analysis. Cu(ii)-AHG and its dried form, namely Cu(ii)-alginate (Cu(ii)-AD), are relatively uniform with an average pore ranging from 200 nm to more than 20 μm. These superporous structure beads were employed for the copper catalyzed [3 + 2] cycloaddition reaction of aryl azides and terminal aryl alkynes (CuAAC) via click chemistry at low catalyst loading, using water as a solvent at room temperature and pressure. The catalytic active copper(i) species was generated by the reduction of copper(ii) by terminal alkyne via the oxidative alkyne homocoupling reaction. The prepared catalysts were found to be efficient (85-92%) and regioselective by affording only 1,4-disubstituted-1,2,3-triazoles. They were also recoverable and reused in their dried form for at least four consecutive times without a clear loss of efficiency. A mechanistic study was performed through density functional theory (DFT) calculations in order to explain the regioselectivity outcome of Cu(ii)-alginate in CuAAC reactions. The analysis of the local electrophilicity (ω k) at the electrophilic reagent and the local nucleophilicity (N k) at the nucleophilic confirms the polar character of CuAAC. This catalyst has the main advantage of being sustainably ligand-free and recyclable.
Collapse
Affiliation(s)
- Lahoucine Bahsis
- Département de Chimie, Faculté des Sciences d'El Jadida, Université Chouaïb Doukkali B.P.: 20 24000 El Jadida Morocco
- Laboratoire de Chimie Analytique et Moléculaire, LCAM, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad 4162 Safi Morocco
| | - El-Houssaine Ablouh
- Laboratoire de Chimie Bioorganique et Macromoléculaire, Faculté des Sciences et Techniques de Marrakech, Université Cadi Ayyad 40000 Marrakech Morocco
- Centre d'Analyse et de Caractérisation, Université Cadi Ayyad 40000 Marrakech Morocco
| | - Hafid Anane
- Laboratoire de Chimie Analytique et Moléculaire, LCAM, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad 4162 Safi Morocco
| | - Moha Taourirte
- Laboratoire de Chimie Bioorganique et Macromoléculaire, Faculté des Sciences et Techniques de Marrakech, Université Cadi Ayyad 40000 Marrakech Morocco
| | - Miguel Julve
- Instituto de Ciencia Molecular/ICMol, Universidad de Valencia C/Catedrático José Beltrán 46980 Paterna Valencia Spain
| | - Salah-Eddine Stiriba
- Laboratoire de Chimie Analytique et Moléculaire, LCAM, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad 4162 Safi Morocco
- Instituto de Ciencia Molecular/ICMol, Universidad de Valencia C/Catedrático José Beltrán 46980 Paterna Valencia Spain
| |
Collapse
|
32
|
Akbar Khandar A, Sheykhi A, Amini M, Ellern A, Keith Woo L. Synthesis, characterization and catalytic properties of a new binuclear copper(II) complex in the azide–alkyne cycloaddition. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Affiliation(s)
- Alessandro Ponti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) Consiglio Nazionale delle Ricerche via G. Fantoli 16/15 20138 Milan Italy
| | - Giorgio Molteni
- Dipartimento di Chimica Università degli Studi di Milano via Golgi 19 20133 Milan Italy
| |
Collapse
|
34
|
Supported Tris-Triazole Ligands for Batch and Continuous-Flow Copper-Catalyzed Huisgen 1,3-Dipolar Cycloaddition Reactions. Catalysts 2020. [DOI: 10.3390/catal10040434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The lack of supported versions of the tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) ligand, suitable for flow-chemistry applications at scale, prompted us to develop a new route for the immobilization of such tris-triazole chelating units on highly cross-linked polystyrene resins. With this aim, the preparation of the known TBTA-type monomer 3 was optimized to develop a high-yield synthetic sequence, devoid of chromatographic purifications at any stage. Then, bead-type (P7) and monolithic (M7) functional resins were obtained by the easy and scalable suspension- or mold-copolymerization of 3 with divinylbenzene. Both types of materials were found to possess a highly porous morphology and specific surface area in the dry state and could be charged with substantial amounts of Cu(I) or Cu(II) salts. After treatment of the latter with a proper reducing agent, the corresponding supported Cu(I) complexes were tested in the copper-catalyzed alkyne-azide cycloaddition reaction (CuAAC). The immobilized catalysts proved active at room temperature and, in batch and with catalyst loadings as low as 0.6 mol%, afforded quantitative conversions within 20 h. Independent of the alkyne structure, extended use of the supported catalyst in flow was also possible. In the reaction of benzylazide and propargyl alcohol, this allowed a total turnover number larger than 400 to be reached.
Collapse
|
35
|
Morisaki T, Shigenaga A, Otaka A. Development of a Turn-On Fluorescent Traceable Linker Employing N-Sulfanylethylcoumarinyl Amide for the Enrichment and Visualization of Target Proteins. Chem Pharm Bull (Tokyo) 2020; 68:216-219. [PMID: 32115528 DOI: 10.1248/cpb.c19-00726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A turn-on fluorescent traceable linker based on N-sulfanylethylcoumarinyl amide (SECmide) has been developed as an advanced cleavable linker. It was successfully employed for the enrichment and selective visualization of a target protein in cell lysate. The results demonstrated that the SECmide-based traceable linker is potentially applicable to the identification of low molecular weight target proteins, a factor which has been problematic for a previously developed N-sulfanylethylanilide-based traceable linker.
Collapse
Affiliation(s)
- Takuya Morisaki
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University
| | - Akira Shigenaga
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University
| | - Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University
| |
Collapse
|
36
|
Rakhshanipour M, Eshghi H, Bakavoli M. New functionalization of graphene oxide with N
2
O
2
ligand for efficient loading of Cu nanostructures as a heterogeneous nanocatalyst for the synthesis of β‐hydroxy‐1,2,3‐triazoles. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mansoureh Rakhshanipour
- Department of Chemistry, Faculty of ScienceFerdowsi University of Mashhad Mashhad 9177948974 Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of ScienceFerdowsi University of Mashhad Mashhad 9177948974 Iran
| | - Mehdi Bakavoli
- Department of Chemistry, Faculty of ScienceFerdowsi University of Mashhad Mashhad 9177948974 Iran
| |
Collapse
|
37
|
Banerjee U, Karney WL, Ault BS, Gudmundsdottir AD. Photolysis of 5-Azido-3-Phenylisoxazole at Cryogenic Temperature: Formation and Direct Detection of a Nitrosoalkene. Molecules 2020; 25:molecules25030543. [PMID: 32012736 PMCID: PMC7037410 DOI: 10.3390/molecules25030543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 01/15/2023] Open
Abstract
To enhance the versatility of organic azides in organic synthesis, a better understanding of their photochemistry is required. Herein, the photoreactivity of azidoisoxazole 1 was characterized in cryogenic matrices with IR and UV-Vis absorption spectroscopy. The irradiation (λ = 254 nm) of azidoisoxazole 1 in an argon matrix at 13 K and in glassy 2-methyltetrahydrofuran (mTHF) at 77 K yielded nitrosoalkene 3. Density functional theory (DFT) and complete active space self-consistent field (CASSCF) calculations were used to aid the characterization of nitrosoalkene 3 and to support the proposed mechanism for its formation. It is likely that nitrosoalkene 3 is formed from the singlet excited state of azidoisoxazole 1 via a concerted mechanism or from cleavage of an intermediate singlet nitrene that does not undergo efficient intersystem crossing to its triplet configuration.
Collapse
Affiliation(s)
- Upasana Banerjee
- Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA; (U.B.); (B.S.A.)
| | - William L. Karney
- Department of Chemistry, University of San Francisco, 2130 Fulton Street, San Francisco, CA 94117, USA;
| | - Bruce S. Ault
- Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA; (U.B.); (B.S.A.)
| | - Anna D. Gudmundsdottir
- Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA; (U.B.); (B.S.A.)
- Correspondence:
| |
Collapse
|
38
|
Kita Y, Kajimoto T, Morimoto K, Yanase K, Ikeda T, Uchikawa C. N-Glycosylation Reaction of Thio-Glycoside Using Hypervalent Iodine(Ill) Reagent. HETEROCYCLES 2020. [DOI: 10.3987/com-19-s(f)53] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Bahsis L, El Himri M, Ben El Ayouchia H, Anane H, Ablouh E, Julve M, Stiriba S. Polyvinylpolypyrrolidone‐Stabilized Copper Nanoparticles as an Efficient and Recyclable Heterogeneous Catalyst for the Click of 1,2,3‐Triazoles in Water. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lahoucine Bahsis
- Laboratoire de Chimie Analytique et MoléculaireFaculté Polydisciplinaire de SafiUniversité Cadi Ayyad 4162 Safi Morocco
| | - Mamoune El Himri
- Laboratoire de Chimie Analytique et MoléculaireFaculté Polydisciplinaire de SafiUniversité Cadi Ayyad 4162 Safi Morocco
| | - Hicham Ben El Ayouchia
- Laboratoire de Chimie Analytique et MoléculaireFaculté Polydisciplinaire de SafiUniversité Cadi Ayyad 4162 Safi Morocco
| | - Hafid Anane
- Laboratoire de Chimie Analytique et MoléculaireFaculté Polydisciplinaire de SafiUniversité Cadi Ayyad 4162 Safi Morocco
| | - El‐Houssaine Ablouh
- Laboratoire de Chimie Bioorganique et MacromoléculaireFaculté des Sciences et Techniques de MarrakechUniversité Cadi Ayyad 40000 Marrakech Morocco
| | - Miguel Julve
- Instituto de Ciencia MolecularUniversidad de ValenciaC/Catedrático José Beltrán N°2 46980 Valencia Spain
| | - Salah‐Eddine Stiriba
- Instituto de Ciencia MolecularUniversidad de ValenciaC/Catedrático José Beltrán N°2 46980 Valencia Spain
| |
Collapse
|
40
|
Yoshida S, Goto S, Nishiyama Y, Hazama Y, Kondo M, Matsushita T, Hosoya T. Effect of Resonance on the Clickability of Alkenyl Azides in the Strain-promoted Cycloaddition with Dibenzo-fused Cyclooctynes. CHEM LETT 2019. [DOI: 10.1246/cl.190400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Sayuri Goto
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yoshitake Nishiyama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yuki Hazama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Masakazu Kondo
- Ichihara Research Center, JNC Petrochemical Corporation, 5-1 Goikaigan, Ichihara, Chiba 290-8551, Japan
| | - Takeshi Matsushita
- Ichihara Research Center, JNC Petrochemical Corporation, 5-1 Goikaigan, Ichihara, Chiba 290-8551, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
41
|
Huang L, Xun X, Zhao M, Xue J, Li G, Hong L. Copper-Catalyzed Regioselective sp3 C–H Azidation of Alkyl Substituents of Indoles and Tetrahydrocarbazoles. J Org Chem 2019; 84:11885-11890. [DOI: 10.1021/acs.joc.9b01742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liwu Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Xudong Xun
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Man Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Jianzhong Xue
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Guofeng Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Liang Hong
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| |
Collapse
|
42
|
|
43
|
Wang F, Zhang Y, Liu Z, Du Z, Zhang L, Ren J, Qu X. A Biocompatible Heterogeneous MOF-Cu Catalyst for In Vivo Drug Synthesis in Targeted Subcellular Organelles. Angew Chem Int Ed Engl 2019; 58:6987-6992. [PMID: 30888728 DOI: 10.1002/anie.201901760] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Indexed: 01/05/2023]
Abstract
As a typical bioorthogonal reaction, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) has been used for drug design and synthesis. However, for localized drug synthesis, it is important to be able to determine where the CuAAC reaction occurs in living cells. In this study, we constructed a heterogeneous copper catalyst on a metal-organic framework that could preferentially accumulate in the mitochondria of living cells. Our system enabled the localized synthesis of drugs through a site-specific CuAAC reaction in mitochondria with good biocompatibility. Importantly, the subcellular catalytic process for localized drug synthesis avoided the problems of the delivery and distribution of toxic molecules. In vivo tumor therapy experiments indicated that the localized synthesis of resveratrol-derived drugs led to greater antitumor efficacy and minimized side effects usually associated with drug delivery and distribution.
Collapse
Affiliation(s)
- Faming Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yan Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhi Du
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Lu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| |
Collapse
|
44
|
Wang F, Zhang Y, Liu Z, Du Z, Zhang L, Ren J, Qu X. A Biocompatible Heterogeneous MOF–Cu Catalyst for In Vivo Drug Synthesis in Targeted Subcellular Organelles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901760] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Faming Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Yan Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Zhi Du
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Lu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
| |
Collapse
|
45
|
Trujillo M, Hull-Crew C, Outlaw A, Stewart K, Taylor L, George L, Duensing A, Tracey B, Schoffstall A. Green Methodologies for Copper(I)-Catalyzed Azide-Alkyne Cycloadditions: A Comparative Study. Molecules 2019; 24:E973. [PMID: 30857343 PMCID: PMC6429464 DOI: 10.3390/molecules24050973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 01/23/2023] Open
Abstract
Successful copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reactions may be achieved by several methods. In this paper, four synthetic protocols were performed for direct comparison of time required for the synthesis, yield, and purity of the 1H-1,2,3-triazole products. The methods with Cu(I) catalysts were conventional, microwave heating, solvent-free, and a method using glycerol solvent. The compounds synthesized in this paper were known non-fluorinated triazoles and new fluorinated triazoles. The results lead to the conclusion that the microwave method should be strongly considered for CuAAC syntheses.
Collapse
Affiliation(s)
- Marissa Trujillo
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA.
| | - Clayton Hull-Crew
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA.
| | - Andrew Outlaw
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA.
| | - Kevin Stewart
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA.
| | - Loren Taylor
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA.
| | - Laura George
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA.
| | - Allison Duensing
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA.
| | - Breanna Tracey
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA.
| | - Allen Schoffstall
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA.
| |
Collapse
|
46
|
Hu H, Ohno A, Sato T, Mase T, Uozumi Y, Yamada YMA. Self-Assembled Polymeric Pyridine Copper Catalysts for Huisgen Cycloaddition with Alkynes and Acetylene Gas: Application in Synthesis of Tazobactam. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hao Hu
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Aya Ohno
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Takuma Sato
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Toshiaki Mase
- Institute for Molecular Science, Okazaki, Aichi 444-8787, Japan
| | - Yasuhiro Uozumi
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Institute for Molecular Science, Okazaki, Aichi 444-8787, Japan
| | | |
Collapse
|
47
|
Yoshida S, Kuribara T, Ito H, Meguro T, Nishiyama Y, Karaki F, Hatakeyama Y, Koike Y, Kii I, Hosoya T. A facile preparation of functional cycloalkynes via an azide-to-cycloalkyne switching approach. Chem Commun (Camb) 2019; 55:3556-3559. [DOI: 10.1039/c9cc01113g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Terminal alkyne-selective click conjugation of diynes bearing strained and terminal alkyne moieties with functional azides has been achieved by transient protection of strained alkynes via complexation with copper to easily afford various functional cycloalkynes.
Collapse
Affiliation(s)
- Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Tomoko Kuribara
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Harumi Ito
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
- Laboratory for Pathophysiological and Health Science
| | - Tomohiro Meguro
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Yoshitake Nishiyama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Fumika Karaki
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Yasutomo Hatakeyama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Yuka Koike
- Common Facilities Unit
- Compass to Healthy Life Research Complex Program
- RIKEN Cluster for Science
- Technology and Innovation Hub
- Kobe 650-0047
| | - Isao Kii
- Laboratory for Pathophysiological and Health Science
- RIKEN Center for Biosystems Dynamics Research (BDR)
- Kobe 650-0047
- Japan
- Common Facilities Unit
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
- Laboratory for Chemical Biology
| |
Collapse
|
48
|
Hosoya T, Yoshida S, Nishiyama Y, Misawa Y, Hazama Y, Oya K. Synthesis of Diverse 3-Azido-5-(azidomethyl)benzene Derivatives via Formal C–H Azidation and Functional Group-Selective Transformations. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)72] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Biewend M, Neumann S, Michael P, Binder WH. Synthesis of polymer-linked copper(i) bis(N-heterocyclic carbene) complexes of linear and chain extended architecture. Polym Chem 2019. [DOI: 10.1039/c8py01751d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Novel PS-based mechanophores of linear and chain-extended architecture are synthesized obtaining bis(NHC) complexes with more than one Cu(i) center per chain and molecular weights of up to 50 000 g mol−1.
Collapse
Affiliation(s)
- Michel Biewend
- Macromolecular Chemistry
- Division of Technical and Macromolecular Chemistry
- Institute of Chemistry
- Faculty of Natural Science II (Chemistry
- Physics and Mathematics)
| | - Steve Neumann
- Macromolecular Chemistry
- Division of Technical and Macromolecular Chemistry
- Institute of Chemistry
- Faculty of Natural Science II (Chemistry
- Physics and Mathematics)
| | - Philipp Michael
- Macromolecular Chemistry
- Division of Technical and Macromolecular Chemistry
- Institute of Chemistry
- Faculty of Natural Science II (Chemistry
- Physics and Mathematics)
| | - Wolfgang H. Binder
- Macromolecular Chemistry
- Division of Technical and Macromolecular Chemistry
- Institute of Chemistry
- Faculty of Natural Science II (Chemistry
- Physics and Mathematics)
| |
Collapse
|
50
|
Tural S, Ece MŞ, Tural B. Synthesis of novel magnetic nano-sorbent functionalized with N-methyl-D-glucamine by click chemistry and removal of boron with magnetic separation method. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:245-252. [PMID: 29990737 DOI: 10.1016/j.ecoenv.2018.06.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/29/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Click chemistry refers to a group of reactions that are fast, simple to use, easy to purify, versatile, regiospecific, and give high product yields. Therefore, a novel, efficient magnetic nano-sorbent based on N-methyl-D-glucamine attached to magnetic nanoparticles was prepared using click coupling method. Its boron sorption capacity was compared with N-methyl-D-glucamine direct attached nano-sorbent. The characterization of the magnetic sorbents was investigated by several techniques such as X-ray diffraction, scanning electron microscope, transmission electron microscope, dynamic light scattering, thermogravimetric analysis, Fourier transform infrared spectrophotometer, and vibrating sample magnetometer. The boron sorption capacity of sorbents was compared by studying various essential factors influencing the sorption, like sorbate concentration, sorbents dosage, pH of the solution, and contact time. Langmuir and Freundlich and Dubinin-Radushkevich adsorption isotherms models were applied. Percent removal and sorption capacities efficiencies of sorbents obtained with direct and click coupling are found to be 49.5%, 98.7% and 6.68 mg/g, 13.44 mg/g respectively. Both sorbents have been found to be compatible with Langmuir isotherm, and the boron sorption kinetics conforms to the pseudo second order kinetics. The reusability study of sorbents was carried out five times for boron sorption and desorption.
Collapse
Affiliation(s)
- Servet Tural
- Department of Chemistry, Faculty of Education, Dicle University, 21280 Diyarbakir, Turkey.
| | - Mehmet Şakir Ece
- Department of Chemistry, Faculty of Education, Dicle University, 21280 Diyarbakir, Turkey; Vocational High School of Health Services, Mardin Artuklu University, 47100 Mardin, Turkey
| | - Bilsen Tural
- Department of Chemistry, Faculty of Education, Dicle University, 21280 Diyarbakir, Turkey
| |
Collapse
|