1
|
Shu L, Zhang S, Qian J, Liu S, Qiu H, Zhao Q, Deng Y, Li Y. Systematic Characterization of the Chemical Constituents of in Vitro and in Vivo of Astragali Radix-Salvia miltiorrhiza Herb Pair by Ultra-High-Performance-Liquid Chromatography-Orbitrap Mass Spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e9977. [PMID: 39789959 DOI: 10.1002/rcm.9977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/04/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025]
Abstract
RATIONALE Astragali radix-Salvia miltiorrhiza (AR-SM) is an herb pair with good therapeutic effects and is widely used. In this study, the in vitro and in vivo components of AR-SM were quickly classified and identified based on UHPLC-orbital mass spectrometry. This provided a basis for clarifying the bioactive substances after compatibility of AR and SM. METHODS Firstly, the related literature of AR and SM were searched through PubMed and CNKI databases, and the molecular formula, retention time, mass spectrum fragments, and other information of its chemical components were sorted out to establish a component database. Extract, blank plasma and drug-containing plasma were analyzed by UHPLC orbital mass spectrometry technology, and then the data were processed by Xcalibur software. Combined with databases and literature, the in vivo and in vitro components of AR-SM were comprehensively analyzed. RESULTS A total of 142 components were identified in the extract of AR-SM. The cleavage patterns of flavonoids, terpenoids, phenolic acids, organic acids, saponins, and phenylpropanoids were summarized. Meanwhile, 89 compounds were tentatively identified in rat plasma, including 73 prototypes and 16 metabolites. The main metabolic pathways included oxidation, reduction, methylation, glucuronidation, and sulfation.
Collapse
Affiliation(s)
- Lexin Shu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shumin Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Qian
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sitong Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huixin Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiduo Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanru Deng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Zhang X, Li J, Zhang L, Wu X, Wang Y, Zhang L, Zhou Y, Han L, Wang L, Liu E. Integration WGCNA with LC-MS data for evaluating the processing status and transformation rules of Ligustri Lucidi Fructus: A novel strategy for evaluating the processing technology of traditional Chinese medicines. Talanta 2025; 282:127029. [PMID: 39418977 DOI: 10.1016/j.talanta.2024.127029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Ligustri Lucidi Fructus (LLF) is a traditional Chinese medicine (TCM) to treat hepatopathy and osteopathy. Wine-processed LLF (WLLF) was much more widely used than raw LLF (RLLF) in clinical practice, however, there is no consensus on processing time. To investigate the processing status of WLLF and transformation rules during processing, a UHPLC-Q-Orbitrap-MS method combined with data-independent acquisition (DIA) mode was firstly established and 227 compounds were identified or tentatively identified. Subsequently, a novel strategy using integration weighted gene co-expression network analysis (WGCNA) with LC-MS data was proposed. A total of 73 differential metabolites were screened out between RLLF and WLLF (wine steaming for 18 h). Meanwhile, the concentration of 11 differential compounds for WLLF was quantified. Finally, correlations between compounds were analyzed by WGCNA and the top five compounds negatively correlated with salidroside were validated, revealing that G13, specnuezhenide, oleuropein, acteoside, and neonuzhenide could be transformed into salidroside and its analogues during processing, respectively. The results indicated that our proposed strategy could be effectively employed to evaluate the processing status of TCMs.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jinyan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaolin Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yijun Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lele Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ying Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Erwei Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
3
|
Kobryń J, Demski P, Raszewski B, Zięba T, Musiał W. Effect of Co-Solvents, Modified Starch and Physical Parameters on the Solubility and Release Rate of Cryptotanshinone from Alcohologels. Molecules 2024; 29:5877. [PMID: 39769966 PMCID: PMC11678525 DOI: 10.3390/molecules29245877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
(1) Background: The aim of the work was to investigate the influence of selected physico-chemical factors on the solubility and release rate of CT (cryptotanshinone) in alcohologels. (2) Methods: The alcohologels of methylcellulose (MC), hydroksyethylcellulose (HEC), polyacrylic acid (PA) and polyacrylic acid crosspolymer (PACP) with CT were prepared and/or doped with native potato starch (SN) and modified citrate starches (SM2.5 and SM10). The analytical methods included evaluation of CT release profiles, Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and electrospray ionization mass spectrometry (ESI-MS), and scanning electron microscope (SEM) images were performed. (3) Results: The release and decomposition kinetics of CT in relation to the phosphate buffer solution (PBS) and methanol were observed. The amount of cryptotanshinone (CT) released into PBS was significantly lower (2.5%) compared to its release into methanol, where 22.5% of the CT was released into the model medium. The addition of SM2.5 to the alcohologel significantly increased the CT content to 70% in the alcohologel preparation containing NaOH (40%), and this enhanced stability was maintained for up to two months. The ATR-FTIR exhibited interactions between PA and 2-amino-2-methyl-1,3-propanediol (AMPD) as well as between PA and NaOH in case of the alcohologels. Moreover, it indicated the interaction between CT and NaOH. PXRD diffractograms confirmed the FTIR study. (4) Conclusions: The study observed the influence of a number of factors on the solubility and release rate of CT, as: alkalizers and their concentration, SM2.5 addition. The transition of CT in the presence of NaOH to the tanshinone V sodium (T-V sodium) form was suspected.
Collapse
Affiliation(s)
- Justyna Kobryń
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (P.D.)
| | - Patryk Demski
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (P.D.)
| | - Bartosz Raszewski
- Department of Food Storage and Technology, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wroclaw, Poland; (B.R.); (T.Z.)
| | - Tomasz Zięba
- Department of Food Storage and Technology, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wroclaw, Poland; (B.R.); (T.Z.)
| | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (P.D.)
| |
Collapse
|
4
|
Lin M, Xu CL, Pan HY, Song YB, Ma YW, Liu XY, Yao JB, Wang RW. Quality Evaluation of Shexiang Tongxin Dropping Pill Based on HPLC Fingerprints Combined with HPLC-Q-TOF-MS/MS Method. J Chromatogr Sci 2024; 62:732-741. [PMID: 38553778 DOI: 10.1093/chromsci/bmae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 11/10/2023] [Accepted: 03/14/2024] [Indexed: 10/03/2024]
Abstract
Shexiang Tongxin Dropping Pill (STP) is a composite formula of traditional Chinese medicine that is widely used for the treatment of cardiovascular diseases. It consists of seven medicinal extracts thereof or materials, including Bufonis venenum, synthetic Moschus, Panax ginseng, Bovis calculus artifactus, Bear bile powder, Salvia miltiorrhiza Bge and synthetic borneol. However, it is considerably difficult to evaluate the quality of STP due to its complex chemical compositions. This paper was designed to explore a comprehensive and systematic method combining fingerprints and chemical identification for quality assessment of STP samples. Twenty batches of STP samples were analyzed by high-performance liquid chromatography (HPLC) and high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry. Ten common peaks were detected by HPLC fingerprint similarity evaluation system. Meanwhile, 100 compounds belonging to 4 structural characteristics, including 23 bufadienolides, 36 organic acids, 34 saponins and 7 other types, were systematically identified as the basic components in STP. This study could be used for clarifying the multiple bioactive substances and developing a comprehensive quality evaluation method of STP.
Collapse
Affiliation(s)
- Ming Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang District, Hangzhou 310053, People's Republic of China
- Zhejiang Conba Pharmaceutical Co., Ltd, Binkang Road, Binjiang District, Hangzhou 310051, People's Republic of China
| | - Chun-Ling Xu
- Zhejiang Conba Pharmaceutical Co., Ltd, Binkang Road, Binjiang District, Hangzhou 310051, People's Republic of China
| | - Hong-Ye Pan
- Zhejiang Conba Pharmaceutical Co., Ltd, Binkang Road, Binjiang District, Hangzhou 310051, People's Republic of China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Binkang Road, Binjiang District, Hangzhou 310051, People's Republic of China
- College of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road, Xihu District, Hangzhou 310058, People's Republic of China
| | - Yong-Biao Song
- Inner Mongolia Conba Pharmaceutical Co., Ltd, Sini Town, Hangjin Banner, Erdos City, Inner Mongolia Autonomous Region, 017418, People's Republic of China
| | - Yi-Wen Ma
- Inner Mongolia Conba Pharmaceutical Co., Ltd, Sini Town, Hangjin Banner, Erdos City, Inner Mongolia Autonomous Region, 017418, People's Republic of China
| | - Xing-Yu Liu
- Zhejiang Conba Pharmaceutical Co., Ltd, Binkang Road, Binjiang District, Hangzhou 310051, People's Republic of China
| | - Jian-Biao Yao
- Zhejiang Conba Pharmaceutical Co., Ltd, Binkang Road, Binjiang District, Hangzhou 310051, People's Republic of China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Binkang Road, Binjiang District, Hangzhou 310051, People's Republic of China
| | - Ru-Wei Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang District, Hangzhou 310053, People's Republic of China
| |
Collapse
|
5
|
Li Y, Gao C, Zhao J, Zhao Z, Xie B, Zuo H, Zhang S, Dong J, Chen X, Li H, Bian Y. Screening of peptidyl arginine deiminase 4 inhibitors in traditional herbal medicines. Fitoterapia 2024; 177:106095. [PMID: 38942299 DOI: 10.1016/j.fitote.2024.106095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Peptidyl arginine deiminase 4 (PAD4) is a promising target for the treatment of metabolic diseases associated with autoimmune and central nervous system disease. By now there are limited numbers of PAD4 inhibitors, and no one is ready for clinical use. This study aims to find efficient and specific PAD4 inhibitors from traditional herbal medicines and to investigate their inhibitory mechanisms. The inhibitory effects of forty-eight extracts from sixteen traditional herbal medicines which are widely used in traditional herbal medicines were investigated. Salvia miltiorrhiza was found to have the most potent PAD4 inhibitory activity. After that, a practical bioactivity-guided fractionation coupling with a chemical profiling strategy was used to identify the fractions from Salvia miltiorrhiza with strong PAD4 inhibition activity, and the major constituents in these bioactive fractions were characterized by LC-MS/MS. Seven compounds were found to have inhibition on PAD4 with IC50 values ranging from 33.52 μM to 667 μM, in which salvianolic acid A showed the most potent inhibitory activity, with an IC50 value of 33.52 μM. Inhibition kinetic analyses indicated that salvianolic acid A effectively inhibited PAD4 in a mixed inhibitory manner, and computer simulation analyses demonstrated that salvianolic acid A binds to PAD4 mainly using hydrogen bonding. Overall, our results suggest that salvianolic acid A from Salvia miltiorrhiza is a potent inhibitor of PAD4, and that salvianolic acid A can be used as a promising lead compound for the development of more potent PAD4 inhibitors.
Collapse
Affiliation(s)
- Yanfeng Li
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Chunli Gao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Juanjuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Zeyuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Binxi Xie
- Chongqing Cigarette Factory, China Tobacco Chongqing Industrial Co, Ltd, Chongqing 400060, PR China
| | - Haiyue Zuo
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Shengxiang Zhang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Jianhui Dong
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Xufei Chen
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Hui Li
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street 2, Zhengzhou, Henan 450001, PR China.
| | - Yangyang Bian
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China.
| |
Collapse
|
6
|
Hou M, Gao D, Chen W, Jiang W, Yu D, Li X. UHPLC-QTOF-MS-Based Targeted Metabolomics Provides Novel Insights into the Accumulative Mechanism of Soil Types on the Bioactive Components of Salvia miltiorrhiza. Molecules 2024; 29:4016. [PMID: 39274864 PMCID: PMC11396046 DOI: 10.3390/molecules29174016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
The root of Salvia miltiorrhiza Bunge (SMB) has been widely used to treat cardiovascular diseases. However, the contents of secondary metabolites in the roots from different production areas are significantly different, and the impact of soil factors on this accumulation remains unclear. Therefore, this study aimed to elucidate the regularity of variation between the active components and soil factors through targeted metabolomics and chemical dosimetry. Soils were collected from five different cities (A, B, C, D, and E) and transplanted into the study area. The results showed that there were significant differences in the soil fertility characteristics and heavy metal pollution levels in different soils. Ten water- and twelve lipid-soluble metabolites were identified in SMBs grown in all soil types. SMBs from D cities exhibited the highest total tanshinone content (p < 0.05). The salvianolic acid B content in SMBs from E cities was the highest (p < 0.05). Interestingly, correlation analysis revealed a significant negative correlation between the accumulation of lipid-soluble and water-soluble metabolites. Double-matrix correlation analysis demonstrated that available potassium (AK) was significantly negatively correlated with salvianolic acid B (r = -0.80, p = 0.0004) and positively correlated with tanshinone IIA (r = 0.66, p = 0.008). Conversely, cadmium (Cd) and cuprum (Cu) were significantly positively and negatively correlated with salvianolic acid B (r = 0.96, p < 0.0001 and r = 0.72, p = 0.0024) and tanshinone IIA (r = 0.40, p = 0.14 and r = 0.73, p = 0.0018), respectively. Mantel's test indicated that AK (r > 0.52, p < 0.001), Cu (r > 0.60, p < 0.005), and Cd (r > 0.31, p < 0.05) were the primary drivers of the differences in the active components of SMBs. These findings provide a theoretical framework for modulating targeted metabolites of SMB through soil factors, with significant implications for the cultivation and quality control of medicinal plants.
Collapse
Affiliation(s)
- Mengmeng Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- College of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Dan Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weixu Chen
- China Shangyao Huayu (Linyi) Traditional Chinese Medicine Resources Co., Ltd., Linyi 273300, China
| | - Wenjun Jiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dade Yu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
7
|
Sheng Y, Meng G, Zhang M, Chen X, Chai X, Yu H, Han L, Wang Q, Wang Y, Jiang M. Dan-shen Yin promotes bile acid metabolism and excretion to prevent atherosclerosis via activating FXR/BSEP signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118209. [PMID: 38663779 DOI: 10.1016/j.jep.2024.118209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dan-shen Yin (DSY), a traditional prescription, has been demonstrated to be effective in decreasing hyperlipidemia and preventing atherosclerosis (AS), but its mechanism remains unknown. We hypothesized that DSY activates farnesoid X receptor (FXR) to promote bile acid metabolism and excretion, thereby alleviating AS. AIM OF THE STUDY This study was designed to explore whether DSY reduces liver lipid accumulation and prevents AS by activating FXR and increasing cholesterol metabolism and bile acid excretion. MATERIALS AND METHODS The comprehensive chemical characterization of DSY was analyzed by UHPLC-MS/MS. The AS models of ApoE-/- mice and SD rats was established by high-fat diet and high-fat diet combined with intraperitoneal injection of vitamin D3, respectively. The aortic plaque and pathological changes were used to evaluate AS. Lipid levels, H&E staining and oil red O staining were used to evaluate liver lipid accumulation. The cholesterol metabolism and bile acid excretion were evaluated by enzyme-linked immunosorbent assay, UPLC-QQQ/MS. In vitro, the lipid and FXR/bile salt export pump (BSEP) levels were evaluated by oil red O staining, real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting. RESULTS A total of 36 ingredients in DSY were identified by UPLC-MS/MS analysis. In vivo, high-dose DSY significantly inhibited aortic intimal thickening, improved arrangement disorder, tortuosity, and rupture of elastic fibers, decreased lipid levels, and reduced the number of fat vacuoles and lipid droplets in liver tissue in SD rats and ApoE-/- mice. Further studies found that high-dose DSY significantly reduced liver lipid and total bile acids levels, increased liver ursodeoxycholic acid (UDCA) and other non-conjugated bile acids levels, increased fecal total cholesterol (TC) levels, and augmented FXR, BSEP, cholesterol 7-alpha hydroxylase (CYP7A1), ATP binding cassette subfamily G5/G8 (ABCG5/8) expression levels, while decreasing ASBT expression levels. In vitro studies showed that DSY significantly reduced TC and TG levels, as well as lipid droplets, while also increasing the expression of ABCG5/8, FXR, and BSEP in both HepG2 and Nr1h4 knockdown HepG2 cells. CONCLUSION This study demonstrated that DSY promotes bile acid metabolism and excretion to prevent AS by activating FXR. For the prevent of AS and drug discovery provided experimental basis.
Collapse
Affiliation(s)
- Yingkun Sheng
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guibing Meng
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Min Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xiaopeng Chen
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xin Chai
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Haiyang Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Lifeng Han
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qilong Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yuefei Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Miaomiao Jiang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
8
|
Sheng Y, Meng G, Zhang M, Chen X, Chai X, Yu H, Han L, Wang Q, Wang Y, Jiang M. Dan-shen Yin promotes bile acid metabolism and excretion to prevent atherosclerosis via activating FXR/BSEP signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118209. [DOI: https:/doi.org/10.1016/j.jep.2024.118209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
|
9
|
Xu Q, Yu Z, Zhang M, Feng T, Song F, Tang H, Wang S, Li H. Danshen-Shanzha formula for the treatment of atherosclerosis: ethnopharmacological relevance, preparation methods, chemical constituents, pharmacokinetic properties, and pharmacological effects. Front Pharmacol 2024; 15:1380977. [PMID: 38910885 PMCID: PMC11190183 DOI: 10.3389/fphar.2024.1380977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Danshen-Shanzha Formula (DSF) is a well-known herbal combination comprising Radix Salvia Miltiorrhiza (known as Danshen in Chinese) and Fructus Crataegi (known as Shanzha in Chinese), It has been documented to exhibit considerable benefits for promoting blood circulation and removing blood stasis, and was used extensively in the treatment of atherosclerotic cardiac and cerebral vascular diseases over decades. Despite several breakthroughs achieved in the basic research and clinical applications of DSF over the past decades, there is a lack of comprehensive reviews summarizing its features and research, which hinders further exploration and exploitation of this promising formula. This review aims to provide a comprehensive interpretation of DSF in terms of its ethnopharmacological relevance, preparation methods, chemical constituents, pharmacokinetic properties and pharmacological effects. The related information on Danshen, Shanzha, and DSF was obtained from internationally recognized online scientific databases, including Web of Science, PubMed, Google Scholar, China National Knowledge Infrastructure, Baidu Scholar, ScienceDirect, ACS Publications, Online Library, Wan Fang Database as well as Flora of China. Data were also gathered from documentations, printed works and classics, such as the Chinese Pharmacopoeia, Chinese herbal classics, etc. Three essential avenues for future studies were put forward as follows: a) Develop and unify the standard preparation method of DSF as to achieve optimized pharmacological properties. b) Elucidate the functional mechanisms as well as the rationality and rule for the compatibility art of DSF by focusing on the clinic syndromes together with the subsequent development of preclinic study system in vitro and in vivo with consistent pathological features, pharmacokinetical behaviour and biomarkers. c) Perform more extensive clinical studies towards the advancement of mechanism-based on evidence-based medicine on the safety application of DSF. This review will provide substantial data support and broader perspective for further research on the renowned formula.
Collapse
Affiliation(s)
- Qiong Xu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Zhe Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Meng Zhang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
- School of Graduate Studies, Air Force Medical University, Xi’an, China
| | - Tian Feng
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Fan Song
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Haifeng Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Siwang Wang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Hua Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| |
Collapse
|
10
|
Wang J, Zhang X, Li S, Zhang T, Sui W, Zhang M, Yang S, Chen H. Physical properties, phenolic profile and antioxidant capacity of Java tea (Clerodendranthus spicatus) stems as affected by steam explosion treatment. Food Chem 2024; 440:138190. [PMID: 38113648 DOI: 10.1016/j.foodchem.2023.138190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/19/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Java tea (Clerodendranthus spicatus) has been favored for its various health benefits and abundance of phenolic substances. Steam explosion (SE) treatment was performed in the pretreatment of Java tea stems and the physical properties, phenolic profile and antioxidant capacity were investigated. Extraction kinetics study showed that the phenolics yields of Java tea stems treated at 2.4 MPa for 10 min reached the maximum in 40 min, which was approximately 3 times the yields of raw stems in 180 min. The antioxidant activities of the extracts of Java tea stems were also significantly increased after SE treatment (P < 0.05). In addition, 19 phenolics were detected in Java tea stems by HPLC/QTOF-MS/MS, and rosmarinic acid was found to be hydrolyzed to danshensu during the SE process. SE could be an efficient pretreatment technology to improve the extraction rates of phenolics and conversions of their high-value hydrolyzed products, which could facilitate further research of Java tea products.
Collapse
Affiliation(s)
- Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China; School of Medicine, Shanxi Datong University, Shanxi, Datong 037009, PR China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Wenjie Sui
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Min Zhang
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Tianjin Agricultural University, Tianjin 300384, PR China
| | - Shuyu Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
11
|
Xu T, Li X, Sun G, Wei W, Huo J, Wang W. Identifying chemical markers in wine-processed Salvia miltiorrhiza using ultrahigh-performance liquid chromatography-quadrupole-time-of-flight-tandem mass spectrometry. Biomed Chromatogr 2024; 38:e5842. [PMID: 38354732 DOI: 10.1002/bmc.5842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/29/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
To find the chemical markers of wine-processed Salvia miltiorrhiza (WSM), 76 constituents, including diterpenoid quinones and phenolic acids in Salvia miltiorrhiza (SM) and WSM, were profiled using ultrahigh-performance liquid chromatography-quadrupole-time-of-flight-tandem mass spectrometry (UPLC-Q-TOF-MS/MS) in positive- and the negative-ion modes. Thirty compounds were screened out as candidate differential components using chemometrics analysis, and the concentration of most compounds increased after processing with wine. Seven compounds, namely tanshinone IIA, magnesium lithospermate B, salvianolic acid G, cryptotanshinone, isocryptotanshinone, salvianolic acid B, and rosmarinic acid, were selected as chemical markers of WSM using variable importance of the project. This study revealed the chemical markers of WSM and confirmed that WSM can improve the extraction and solubility effect of chemical constituents.
Collapse
Affiliation(s)
- Tingting Xu
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, Heilongjiang, China
| | - Xiuwei Li
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, Heilongjiang, China
| | - Guodong Sun
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, Heilongjiang, China
| | - Wenfeng Wei
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, Heilongjiang, China
| | - Jinhai Huo
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, Heilongjiang, China
| | - Weiming Wang
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Zhang X, Dong X, Zhang R, Zhou S, Wang W, Yang Y, Wang Y, Yu H, Ma J, Chai X. Compounds identification and mechanism prediction of YuXueBi capsule in the treatment of arthritis by integrating UPLC/IM-QTOF-MS and network pharmacology. Heliyon 2024; 10:e28736. [PMID: 38586342 PMCID: PMC10998111 DOI: 10.1016/j.heliyon.2024.e28736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that seriously affects the life quality of patients. As a patent medicine of Chinese traditional medicine, YuXueBi capsule (YXBC) is widely used for treating RA with significant effects. However, its active compounds and therapeutic mechanisms are not fully illuminated, encumbering the satisfactory clinical application. In this study, we developed a method for identifying the chemical compounds of YXBC and the absorbed compounds into blood of rats using ultra performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (UPLC/IM-QTOF-MS) combined with UNIFI analysis software. A total of 58 compounds in YXBC were unambiguously or tentatively identified, 16 compounds from which were found in serum of rats after administration of YXBC. By network pharmacology, these prototype compounds identified in serum were predicted to regulate 30 main pathways (including HIF-1 signaling pathway, neuroactive ligand-receptor interaction, IL-17 signaling pathway, and so on) through 146 targets, resulting in promoting blood circulation and removing blood stasis, analgesia, and anti-inflammatory activities. This study provides a scientific basis for the clinical efficacy of YXBC in the treatment of RA.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xueyuan Dong
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ruihu Zhang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shufan Zhou
- Liaoning Good Nurse Pharmaceutical (Group) Co., Ltd., Liaoning, 117201, China
| | - Wei Wang
- Liaoning Good Nurse Pharmaceutical (Group) Co., Ltd., Liaoning, 117201, China
| | - Yu Yang
- Liaoning Good Nurse Pharmaceutical (Group) Co., Ltd., Liaoning, 117201, China
| | - Yuefei Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Huijuan Yu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Jing Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Xin Chai
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
13
|
Shao J, Zheng Y, Wang Y, Li G, Wei J, Cheng W, Li Y. Rapid classification and identification of chemical compositions of Pu-zhi-hui-ling decoction by UHPLC-Q-Orbitrap HRMS. Nat Prod Res 2024:1-10. [PMID: 38166578 DOI: 10.1080/14786419.2023.2299302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/19/2023] [Indexed: 01/04/2024]
Abstract
Pu-zhi-hui-ling decoction (PZHLD) is a traditional Chinese medicine (TCM) formula for the treatment of Alzheimer's disease (AD), but its chemical composition has not been reported. In this study, we aimed to establish a mass spectrometry (MS) analysis method for rapid classification and identification of the chemical constituents in PZHLD. The sample was analysed by ultrahigh-performance liquid chromatography coupled to quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS). The chemical constituents of PZHLD were identified based on accurate MS data, fragmentation characteristics of MS/MS, and reference information described in the literature. A total of 123 chemical constituents were identified. In addition, we summarised the fragmentation pathways of the chemical constituents in PZHLD. Our finding might lay the foundation for the further pharmacodynamic study and clinical application of PZHLD.
Collapse
Affiliation(s)
- Jia Shao
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin, China
| | - Yanxue Zheng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanyuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guohui Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinxia Wei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenbo Cheng
- Mass Spectrometry Application Center, Tianjin Key Laboratory of Medical Mass Spectrometry for Accurate Diagnosis, Tianjin, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
14
|
Cui L, Ma C, Shi W, Yang C, Wu J, Wu Z, Lou Y, Fan G. A Systematic Study of Yiqi Qubai Standard Decoction for Treating Vitiligo Based on UPLC-Q-TOF/MS Combined with Chemometrics, Molecular Docking, and Cellular and Zebrafish Assays. Pharmaceuticals (Basel) 2023; 16:1716. [PMID: 38139842 PMCID: PMC10747336 DOI: 10.3390/ph16121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The Yiqi Qubai (YQ) formula is a hospital preparation for treating vitiligo in China that has had reliable efficacy for decades. The formula consists of four herbs; however, the extraction process to produce the formula is obsolete and the active ingredients and mechanisms remain unknown. Therefore, in this paper, fingerprints were combined with the chemometrics method to screen high-quality herbs for the preparation of the YQ standard decoction (YQD). Then, the YQD preparation procedure was optimized using response surface methodology. A total of 44 chemical constituents, as well as 36 absorption components (in rat plasma) of YQD, were identified via UPLC-Q-TOF/MS. Based on the ingredients, the quality control system of YQD was optimized by establishing the SPE-UPLC-Q-TOF/MS identification method and the HPLC quantification method. Network pharmacological analysis and molecular docking showed that carasinaurone, calycosin-7-O-β-d-glucoside, methylnissolin-3-O-glucoside, genkwanin, akebia saponin D, formononetin, akebia saponin B, and apigenin may be the key active components for treating vitiligo; the core targets associated with them were AKT1, MAPK1, and mTOR, whereas the related pathways were the PI3K-Akt, MAPK, and FoxO signaling pathways. Cellular assays showed that YQD could promote melanogenesis and tyrosinase activity, as well as the transcription and expression of tyrosinase-associated proteins (i.e., TRP-1) in B16F10 cells. In addition, YQD also increased extracellular tyrosinase activity. Further efficacy validation showed that YQD significantly promotes melanin production in zebrafish. These may be the mechanisms by which YQD improves the symptoms of vitiligo. This is the first systematic study of the YQ formula that has optimized the standard decoction preparation method and investigated the active ingredients, quality control, efficacy, and mechanisms of YQD. The results of this study lay the foundations for the clinical application and further development of the YQ formula.
Collapse
Affiliation(s)
- Lijun Cui
- School of Medicine, Tongji University, Shanghai 200331, China;
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Cui Ma
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China (C.Y.); (J.W.); (Z.W.)
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Wenqing Shi
- Department of Pharmacy, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China
| | - Chen Yang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China (C.Y.); (J.W.); (Z.W.)
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiangping Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China (C.Y.); (J.W.); (Z.W.)
| | - Zhenghua Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China (C.Y.); (J.W.); (Z.W.)
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Yuefen Lou
- School of Medicine, Tongji University, Shanghai 200331, China;
- Department of Pharmacy, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China
| | - Guorong Fan
- School of Medicine, Tongji University, Shanghai 200331, China;
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China (C.Y.); (J.W.); (Z.W.)
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| |
Collapse
|
15
|
Li XL, Guo ZF, Wen XD, Li MN, Yang H. A molecular networking-assisted automatic database screening strategy for comprehensive annotation of small molecules in complex matrices. J Chromatogr A 2023; 1710:464417. [PMID: 37778098 DOI: 10.1016/j.chroma.2023.464417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Liquid chromatography-tandem with high-resolution mass spectrometry (LCHRMS) has proven challenging for annotating multiple small molecules within complex matrices due to the complexities of chemical structure and raw LCHRMS data, as well as limitations in previous literatures and reference spectra related to those molecules. In this study, we developed a molecular networking assisted automatic database screening (MN/auto-DBS) strategy to examine the combined effect of MS1 exact mass screening and MS2 similarity analysis. We compiled all previously reported compounds from the relevant literatures. With the development of a Python software, the in-house database (DB) was created by automatically calculating the m/z and data from experimental MS1 hits were rapid screened with DB. We then performed a feature-based molecular network analysis on the auto-MS2 data for supplementary identification of unreported compounds, including clustered FBMN and annotated GNPS compounds. Finally, the results from both strategies were merged and manually curated for correct structural assignment. To demonstrate the applicability of MN/auto-DBS, we selected the Huangqi-Danshen herb pair (HD), commonly used in prescriptions or patent medicines to treat diabetic nephropathy and cerebrovascular disease. A total of 223 compounds were annotated, including 65 molecules not previously reported in HD, such as aromatic polyketides, coumarins, and diarylheptanoids. Using MN/auto-DBS, we can profile and mine a wide range of complex matrices for potentially new compounds.
Collapse
Affiliation(s)
- Xin-Lu Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing 210009, China
| | - Zi-Fan Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing 210009, China
| | - Xiao-Dong Wen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing 210009, China.
| | - Meng-Ning Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing 210009, China.
| |
Collapse
|
16
|
Alves-Silva JM, Pedreiro S, Cruz MT, Salgueiro L, Figueirinha A. Exploring the Traditional Uses of Thymbra capitata Infusion in Algarve (Portugal): Anti-Inflammatory, Wound Healing, and Anti-Aging. Pharmaceuticals (Basel) 2023; 16:1202. [PMID: 37765010 PMCID: PMC10538188 DOI: 10.3390/ph16091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
Inflammation plays a pivotal role in the resolution of infection or tissue damage. In addition, inflammation is considered a hallmark of aging, which in turn compromises wound healing. Thymbra capitata is an aromatic plant, whose infusion is traditionally used as an anti-inflammatory and wound-healing agent. In this study, a T. capitata infusion was prepared and characterized by HPLC-PDA-ESI-MSn and its safety profile determined by the resazurin metabolic assay. The anti-inflammatory potential was revealed in lipopolysaccharide (LPS)-stimulated macrophages by assessing nitric oxide (NO) release and levels of inducible nitric oxide synthase (iNOS) and the interleukin-1β pro-form (pro-IL-1β). Wound-healing capacity was determined using the scratch assay. The activity of senescence-associated β-galactosidase was used to unveil the anti-senescent potential, along with the nuclear accumulation of yH2AX and p21 levels. The antiradical potential was assessed by DPPH and ABTS scavenging assays. The infusion contains predominantly rosmarinic acid and salvianolic acids. The extract decreased NO, iNOS, and pro-IL-1β levels. Interestingly, the extract promoted wound healing and decreased β-galactosidase activity, as well as yH2AX and p21 levels. The present work highlights strong antiradical, anti-inflammatory, and wound healing capacities, corroborating the traditional uses ascribed to this plant. We have described, for the first time for this extract, anti-senescent properties.
Collapse
Affiliation(s)
- Jorge Miguel Alves-Silva
- Univ Coimbra, Institute for Clinical and Biomedical Research, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal;
- Univ Coimbra, Faculty of Pharmacy, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
| | - Sónia Pedreiro
- Univ Coimbra, Faculty of Pharmacy, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| | - Maria Teresa Cruz
- Univ Coimbra, Faculty of Pharmacy, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
- Univ Coimbra, Center for Neuroscience and Cell Biology, Faculty of Medicine, Rua Larga, 3004-504 Coimbra, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
- Univ Coimbra, Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, 3030-790 Coimbra, Portugal
| | - Artur Figueirinha
- Univ Coimbra, Faculty of Pharmacy, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
17
|
Zhang L, Wei Y, Wang W, Fan Y, Li F, Li Z, Lin A, Gu H, Song M, Wang T, Liu G, Li X. Quantitative fingerprint and antioxidative properties of Artemisia argyi leaves combined with chemometrics. J Sep Sci 2023; 46:e2200624. [PMID: 36579954 DOI: 10.1002/jssc.202200624] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
Quantitative fingerprint and differences of Artemisia argyi from different varieties, picking time, aging year, and origins were analyzed combing with chemometrics. The antioxidant activity was determined and antioxidant markers of Artemisia argyi were screened. Variety WA3 was significantly different from that of the other varieties. Fingerprint peak response and antioxidant activity of A. argyi picked in December were lower than samples collected in May and August. Fresh A. argyi leaves were significantly superior to withered leaves and stems. Artemisia argyi aging 1-5 years presented a classification trend. Antioxidant activity of A. argyi produced in Nanyang was generally superior to others origins. Peak 9, isochlorogenic acid A, and 6-methoxyluteolin contributed greatly for classification of A. argyi from different variety, picking time, aging year, and origin. Isochlorogenic acid A, isochlorogenic acid C, 6-methoxyluteolin, and chlorogenic acid were selected as antioxidant marker of A. argyi. The method based on quantitative fingerprint, antioxidant activity evaluation, and chemometrics was reliable to analyze the differences of A. argyi samples from different sources.
Collapse
Affiliation(s)
- Lixian Zhang
- Henan Natural Product Biotechnology Co. Ltd., Zhengzhou, P. R. China.,Henan Academy of Sciences, Zhengzhou, P. R. China
| | - Yue Wei
- Henan Natural Product Biotechnology Co. Ltd., Zhengzhou, P. R. China.,Henan Academy of Sciences, Zhengzhou, P. R. China
| | - Wei Wang
- Henan Natural Product Biotechnology Co. Ltd., Zhengzhou, P. R. China.,Henan Academy of Sciences, Zhengzhou, P. R. China
| | - Yi Fan
- Henan Academy of Sciences, Zhengzhou, P. R. China
| | - Feifei Li
- Henan Natural Product Biotechnology Co. Ltd., Zhengzhou, P. R. China.,Henan Academy of Sciences, Zhengzhou, P. R. China
| | - Zhining Li
- Henan Natural Product Biotechnology Co. Ltd., Zhengzhou, P. R. China.,Henan Academy of Sciences, Zhengzhou, P. R. China
| | - Aiqin Lin
- Zhengzhou Railway Vocational & Technical College, Zhengzhou, P. R. China
| | - Haike Gu
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing, P. R. China
| | - Meifang Song
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing, P. R. China
| | - Tao Wang
- Henan Natural Product Biotechnology Co. Ltd., Zhengzhou, P. R. China
| | - Guijun Liu
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing, P. R. China
| | - Xiao Li
- Henan Natural Product Biotechnology Co. Ltd., Zhengzhou, P. R. China.,Henan Academy of Sciences, Zhengzhou, P. R. China
| |
Collapse
|
18
|
Zhang G, Li H, Sun L, Liu Y, Cao Y, Ren X, Liu Y. Study on the Correlation Between the Appearance Traits and Intrinsic Chemical Quality of Bitter Almonds Based on Fingerprint-Chemometrics. J Chromatogr Sci 2023; 61:110-118. [PMID: 35396599 DOI: 10.1093/chromsci/bmac026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Indexed: 11/14/2022]
Abstract
Bitter almond is a well-known and commonly used traditional Chinese medicine (TCM) for relieving coughs and asthma. However, the bioactive chemical composition of bitter almonds, especially their amygdalin content, which determines their quality for TCM use, is variable and this can cause problems with formulating and prescribing TCMs based on bitter almonds. Therefore, a simple method was developed to evaluate the compositional quality of bitter almonds from their appearance traits, based on a combination of chromatographic fingerprinting and chemometrics. Bitter almonds were analyzed by high-performance liquid chromatography (HPLC). Hierarchical cluster analysis (HCA) and principal components analysis (PCA) were applied to classify bitter almonds, which split the samples into two independent clusters. Three chemical markers (amygdalin, prunasin, and one unidentified component) were found by partial least squares-discriminant analysis (PLS-DA). What's more, a new PLS-DA model was reconstructed to confirm the obtained chemical markers from PLS-DA. Additionally, the appearance trait indices and amygdalin content of bitter almond were determined and the classification was confirmed by one-way analysis of variance. This method can easily determine the quality of bitter almonds from their appearance alone, high quality correlated closely with kernels that were larger, oblong in shape and heavier.
Collapse
Affiliation(s)
- Guoqin Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin 301617, China
| | - Huanhuan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin 301617, China
| | - Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin 301617, China
| | - Yi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin 301617, China
| | - Ying Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin 301617, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin 301617, China
| | - Yanan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin 301617, China
| |
Collapse
|
19
|
Alshehade SA, Al Zarzour RH, Murugaiyah V, Lim SYM, El-Refae HG, Alshawsh MA. Mechanism of action of Orthosiphon stamineus against non-alcoholic fatty liver disease: Insights from systems pharmacology and molecular docking approaches. Saudi Pharm J 2022; 30:1572-1588. [PMID: 36465851 PMCID: PMC9715956 DOI: 10.1016/j.jsps.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/03/2022] [Indexed: 11/29/2022] Open
Abstract
UNLABELLED Non-alcoholic fatty liver disease (NAFLD) is one of the most common complications of a metabolic syndrome caused by excessive accumulation of fat in the liver. Orthosiphon stamineus also known as Orthosiphon aristatus is a medicinal plant with possible potential beneficial effects on various metabolic disorders. This study aims to investigate the in vitro inhibitory effects of O. stamineus on hepatic fat accumulation and to further use the computational systems pharmacology approach to identify the pharmacokinetic properties of the bioactive compounds of O. stamineus and to predict their molecular mechanisms against NAFLD. METHODS The effects of an ethanolic extract of O. stamineus leaves on cytotoxicity, fat accumulation and antioxidant activity were assessed using HepG2 cells. The bioactive compounds of O. stamineus were identified using LC/MS and two bioinformatics databases, namely the Traditional Chinese Medicine Integrated Database (TCMID) and the Bioinformatics Analysis Tool for the Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM). Pathway enrichment analysis was performed on the predicted targets of the bioactive compounds to provide a systematic overview of the molecular mechanism of action, while molecular docking was used to validate the predicted targets. RESULTS A total of 27 bioactive compounds corresponding to 50 potential NAFLD-related targets were identified. O. stamineus exerts its anti-NAFLD effects by modulating a variety of cellular processes, including oxidative stress, mitochondrial β-oxidation, inflammatory signalling pathways, insulin signalling, and fatty acid homeostasis pathways. O. stamineus is significantly targeting many oxidative stress regulators, including JNK, mammalian target of rapamycin (mTOR), NFKB1, PPAR, and AKT1. Molecular docking analysis confirmed the expected high affinity for the potential targets, while the in vitro assay indicates the ability of O. stamineus to inhibit hepatic fat accumulation. CONCLUSION Using the computational systems pharmacology approach, the potentially beneficial effect of O. stamineus in NAFLD was indicated through the combination of multiple compounds, multiple targets, and multicellular components.
Collapse
Affiliation(s)
- Salah Abdulrazak Alshehade
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Raghdaa Hamdan Al Zarzour
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
- Department of Pharmacology, Faculty of Pharmacy, Arab International University (AIU), Damascus, Syria
| | - Vikneswaran Murugaiyah
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Sharoen Yu Ming Lim
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Semenyih 43500, Malaysia
| | | | | |
Collapse
|
20
|
Li Q, Qi L, Zhao K, Ke W, Li T, Xia L. Integrative quantitative and qualitative analysis for the quality evaluation and monitoring of Danshen medicines from different sources using HPLC-DAD and NIR combined with chemometrics. FRONTIERS IN PLANT SCIENCE 2022; 13:932855. [PMID: 36325569 PMCID: PMC9618615 DOI: 10.3389/fpls.2022.932855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
The root and rhizome of Salvia miltiorrhiza (Danshen in short) is a well-known herbal medicine used to treat cardiovascular diseases in the world. In China, the roots and rhizomes of several other Salvia species (Non-Danshen in short) are also used as this medicine in traditional folk medicine by local herbalists. Differences have been reported in these medicines originating from different sources, and their quality variation needs to be clearly investigated for effective clinical application. This study presented a comprehensive quality evaluation and monitoring for Danshen from 27 sampling sites and Non-Danshen from other 5 Salvia species based on a high-performance liquid chromatography-diode array detector (HPLC-DAD) and near-infrared (NIR), with the combination of chemometric models. The results showed that cryptotanshinone, tanshinone IIA, tanshinone I, salvianolic acid B, salvianic acid A sodium, dihydrotanshinone I, and rosmarinic acid in these medicines from different sources exhibited great variations. Referring to the standards in Chinese Pharmacopoeia (CP), European Pharmacopeia (EP), and United States Pharmacopeia (USP), Non-Danshen from S. brachyloma, S. castanea, S. trijuga, S. bowleyana, and S. przewalskii were assessed as unqualified, and Danshen in the Shandong Province had the best quality due to the high qualified rate. Based on random forest (RF) and partial least-squares discriminant analysis (PLS-DA), NIR technique could successfully monitor the quality of these medicines by discriminating the species and regions with the accuracies of 100.00 and 99.60%, respectively. Additionally, modified partial least-squares regression (MPLSR) models were successfully constructed to investigate the feasibility of NIR fingerprints for the prediction of the quality indicators in these medicines. The optimized models obtained the best results for the total of tanshinone IIA, tanshinone I, and cryptotanshinone (TTC), tanshinone IIA, and salvianolic acid B, with the relative prediction deviation (RPD) of 4.08, 3.92, and 2.46, respectively. In summary, this study demonstrated that HPLC-DAD and NIR techniques can complement each other and could be simultaneously applied for evaluating and monitoring the quality of Danshen medicines.
Collapse
Affiliation(s)
- Qing Li
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi, China
- Chengdu Institute for Food and Drug Control, Chengdu, China
| | - Luming Qi
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu, China
| | - Kui Zhao
- College of Materials Science and Engineering, Southwest Forestry University, Kunming, China
| | - Wang Ke
- School of Big Data and Artificial Intelligence, Chengdu Technological University, Chengdu, China
| | - Tingting Li
- Chengdu Institute for Food and Drug Control, Chengdu, China
| | - Lina Xia
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu, China
| |
Collapse
|
21
|
Xie T, Ding Q, Feng S, Liu Z, Shi Y. Antioxidant mechanism of modified Qiongyu paste against aging based on network pharmacology and experimental validation. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
22
|
Guo X, Meng X, Li Y, Qu C, Liu Y, Cao M, Yao X, Meng F, Wu J, Peng H, Peng D, Xing S, Jiang W. Comparative proteomics reveals biochemical changes in Salvia miltiorrhiza Bunge during sweating processing. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115329. [PMID: 35490901 DOI: 10.1016/j.jep.2022.115329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza Bunge is a bulk medicinal material used in traditional Chinese medicine, that can cure cardiovascular diseases, neurasthenia, and other conditions. Sweating is a frequently used method of processing S. miltiorrhiza for medical applications. We previously demonstrated changes to the metabolic profile of linoleic acid, glyoxylate, and dicarboxylate after Sweating. However, this alteration has not been explained at the molecular level. MATERIALS AND METHODS Fresh roots of Salvia miltiorrhiza Bunge were treated by the Sweating processing, and then the tandem mass tag technique was used to compare the proteome difference between Sweating S. miltiorrhiza and non-Sweating S. miltiorrhiza. RESULTS We identified a total of 850 differentially expressed proteins after Sweating treatment in S. miltiorrhiza, including 529 upregulated proteins and 321 downregulated proteins. GO enrichment analysis indicated that these differentially expressed proteins are involved in external encapsulating structure, cell wall, oxidoreductase activity, ligase activity, and others. Further analysis showed that CYP450, the pathogenesis-related protein Bet v 1 family, and the peroxidase domain were the major protein domains. KEGG enrichment identified 18 pathways, of which phenylpropanoid biosynthesis is the most important one related to the metabolite profile and is the principal chemical component of S. miltiorrhiza. CONCLUSION This study addressed potential molecular mechanisms in S. miltiorrhiza after Sweating, and the findings provide reasons for the changes in biochemical properties and metabolites changes which might cause pharmacological variation at the proteome level.
Collapse
Affiliation(s)
- Xiaohu Guo
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoxi Meng
- Department of Horticultural Science, University of Minnesota, MN, 55108, USA
| | - Yan Li
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, 421008, China
| | - Changqing Qu
- Engineering Technology Research Center of Anti-aging, Chinese Herbal Medicine, Fuyang Normal University, Fuyang, 236037, China
| | - Yingying Liu
- College of Humanities and International Education Exchange, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Mengyang Cao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoyan Yao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Fei Meng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Huasheng Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China; Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, 230038, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, 230038, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Weimin Jiang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, 421008, China.
| |
Collapse
|
23
|
Xu Y, Deng J, Hao S, Wang B. A Potential In Vitro 3D Cell Model to Study Vascular Diseases by Simulating the Vascular Wall Microenvironment and Its Application. Life (Basel) 2022; 12:427. [PMID: 35330178 PMCID: PMC8951029 DOI: 10.3390/life12030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/22/2022] [Accepted: 03/12/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Current in vitro vascular models are too simple compared with the real vascular environment. In this research, a novel in vitro 3D vascular disease model that simulated the vascular microenvironment was introduced. METHODS This model was mainly established by low shear stress and co-culture of endothelial cells and smooth muscle cells. Characterization and reproduction of the pathological state of the 3D model were determined. The effect of two clinical drugs was verified in this model. The difference of drug screening between a traditional oxidative-damaged cell model and this 3D model was determined by HPLC. RESULTS This model presented many disease markers of vascular diseases: abnormal cellular shape, higher endothelial cell apoptotic rate and smooth muscle cell migration rate, decreased superoxide dismutase level, and increased malondialdehyde and platelet-derived growth factor level. The drugs effectively reduced the disease indices and relieved the damage caused by low shear stress. Compared to the traditional oxidative-damaged cell model, this 3D model screened different active components of Salviae Miltiorrhizae extract, and it is closer to clinical studies. CONCLUSIONS These results suggest that the 3D vascular disease model is a more efficient and selective in vitro study and drug screening platform for vascular diseases than previously reported in vitro vascular disease models.
Collapse
Affiliation(s)
- Yingqian Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (Y.X.); (S.H.)
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Jia Deng
- Chongqing Key Laboratory of Natural Medicine Research, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China;
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (Y.X.); (S.H.)
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (Y.X.); (S.H.)
| |
Collapse
|
24
|
Feng D, Li XR, Wang ZY, Gu NN, Zhang SX, Li CF, Chen Y, Ma ZQ, Lin RC, Zhang HG, Zhao C. Integrated UPLC-MS and Network Pharmacology Approach to Explore the Active Components and the Potential Mechanism of Yiqi Huoxue Decoction for Treating Nephrotic Syndrome. Front Pharmacol 2022; 12:775745. [PMID: 35295738 PMCID: PMC8919777 DOI: 10.3389/fphar.2021.775745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/09/2021] [Indexed: 01/16/2023] Open
Abstract
Background: Yiqi Huoxue Decoction (YQHXD) is a traditional Chinese medicine that promotes blood circulation, removes blood stasis, facilitates diuresis, and alleviates edema. It is composed of 10 herbal medicines and has extensive application in treating nephrotic syndrome (NS). However, the active components and the potential mechanism of YQHXD for treating NS remain unclear. Methods: We set up a sensitive and rapid method based on Ultra-High Performance Liquid Chromatograph-Mass (UPLC-MS) to identify the compounds in YQHXD and constituents absorbed into the blood. Disease genes were collected through GeneCards, DisGeNET, and OMIM database. Genes of compounds absorbed into blood were predicted by the TCMSP database. We constructed Disease-Drug-Ingredient-Gene (DDIG) network using Cytoscape, established a Protein-protein interaction (PPI) network using String, Gene biological process (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed using DAVID. Cellular experiments were performed to validate the results of network pharmacology. Result: A total of 233 compounds in YQHXD and 50 constituents absorbed into the blood of rats were identified. The 36 core targets in the PPI network were clustered in the phosphatidylinositol 3 kinase-RAC serine/threonine-protein kinase (PI3K-AKT) and nuclear factor kappa-B (NF-κB) signaling pathways. Luteolin, Wogonin, Formononetin, and Calycosin were top-ranking components as potentially active compounds. Conclusion: The results of our studies show that YQHXD is able to enhance renal function, alleviate podocyte injury, and improve adriamycin nephrotic syndrome.
Collapse
Affiliation(s)
- Dan Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-Ri Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhao-Yi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Nian-Nian Gu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuang-Xi Zhang
- First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Chao-Feng Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhi-Qiang Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rui-Chao Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Rui-Chao Lin, ; Hong-Gui Zhang, ; Chongjun Zhao,
| | - Hong-Gui Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Rui-Chao Lin, ; Hong-Gui Zhang, ; Chongjun Zhao,
| | - Chongjun Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Rui-Chao Lin, ; Hong-Gui Zhang, ; Chongjun Zhao,
| |
Collapse
|
25
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1230-1240. [DOI: 10.1093/jpp/rgac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/12/2022] [Indexed: 11/14/2022]
|
26
|
Screening of Potential Thrombin and Factor Xa Inhibitors from the Danshen-Chuanxiong Herbal Pair through a Spectrum-Effect Relationship Analysis. Molecules 2021; 26:molecules26237293. [PMID: 34885877 PMCID: PMC8658787 DOI: 10.3390/molecules26237293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 02/05/2023] Open
Abstract
In this study; a spectrum–effect relationship analysis combined with a high-performance liquid chromatography–mass spectrometry (LC–MS) analysis was established to screen and identify active components that can inhibit thrombin and factor Xa (THR and FXa) in Salviae Miltiorrhizae Radix et Rhizoma–Chuanxiong Rhizoma (Danshen–Chuanxiong) herbal pair. Ten potential active compounds were predicted through a canonical correlation analysis (CCA), and eight of them were tentatively identified through an LC–MS analysis. Furthermore; the enzyme inhibitory activity of six available compounds; chlorogenic acid; Z-ligustilide; caffeic acid; ferulic acid; tanshinone I and tanshinone IIA; were tested to verify the feasibility of the method. Among them; chlorogenic acid was validated to possess a good THR inhibitory activity with IC50 of 185.08 µM. Tanshinone I and tanshinone IIA are potential FXa inhibitors with IC50 of 112.59 µM and 138.19 µM; respectively. Meanwhile; molecular docking results show that tanshinone I and tanshinone IIA; which both have binding energies of less than −7.0 kcal·mol−1; can interact with FXa by forming H-bonds with residues of SER214; GLY219 and GLN192. In short; the THR and FXa inhibitors in the Danshen–Chuanxiong herbal pair have been successfully characterized through a spectrum–effect relationship analysis and an LC–MS analysis.
Collapse
|
27
|
Application of UHPLC Fingerprints Combined with Chemical Pattern Recognition Analysis in the Differentiation of Six Rhodiola Species. Molecules 2021; 26:molecules26226855. [PMID: 34833946 PMCID: PMC8618991 DOI: 10.3390/molecules26226855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Rhodiola, especially Rhodiola crenulate and Rhodiola rosea, is an increasingly widely used traditional medicine or dietary supplement in Asian and western countries. Because of the phytochemical diversity and difference of therapeutic efficacy among Rhodiola species, it is crucial to accurately identify them. In this study, a simple and efficient method of the classification of Rhodiola crenulate, Rhodiola rosea, and their confusable species (Rhodiola serrata, Rhodiola yunnanensis, Rhodiola kirilowii and Rhodiola fastigiate) was established by UHPLC fingerprints combined with chemical pattern recognition analysis. The results showed that similarity analysis and principal component analysis (PCA) could not achieve accurate classification among the six Rhodiola species. Linear discriminant analysis (LDA) combined with stepwise feature selection exhibited effective discrimination. Seven characteristic peaks that are responsible for accurate classification were selected, and their distinguishing ability was successfully verified by partial least-squares discriminant analysis (PLS-DA) and orthogonal partial least-squares discriminant analysis (OPLS-DA), respectively. Finally, the components of these seven characteristic peaks were identified as 1-(2-Hydroxy-2-methylbutanoate) β-D-glucopyranose, 4-O-glucosyl-p-coumaric acid, salidroside, epigallocatechin, 1,2,3,4,6-pentagalloyglucose, epigallocatechin gallate, and (+)-isolarisiresinol-4′-O-β-D-glucopyranoside or (+)-isolarisiresinol-4-O-β-D-glucopyranoside, respectively. The results obtained in our study provided useful information for authenticity identification and classification of Rhodiola species.
Collapse
|
28
|
Yin Y, Zhang K, Wei L, Chen D, Chen Q, Jiao M, Li X, Huang J, Gong Z, Kang N, Li F. The Molecular Mechanism of Antioxidation of Huolisu Oral Liquid Based on Serum Analysis and Network Analysis. Front Pharmacol 2021; 12:710976. [PMID: 34790116 PMCID: PMC8591200 DOI: 10.3389/fphar.2021.710976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Huolisu Oral Liquid (HLS), a well-known traditional Chinese medicine (TCM) prescription, is an over-the-counter drug that is registered and approved by the State Food and Drug Administration (Approval No. Z51020381). HLS has been widely applied in the clinical treatment of cognitive disorders and has effects on delaying aging. The antioxidant effects of HLS are closely related to its antiaging activities, but the underlying mechanisms are unclear. In this study, the potential antioxidant ingredients of HLS were screened based on serum pharmacochemistry and network pharmacology, and the potential mechanisms involved in HLS antioxidant effects were preliminarily explored. Further, the antioxidant effects of HLS were verified by in vivo and in vitro experiments. The results showed that potential antioxidant ingredients could affect the toxic advanced glycation end products-receptor for advanced glycation end products (TAGE-RAGE) signaling, mitogen-activated protein kinase (MAPK) signaling, interleukin (IL)-17 signaling, tumor necrosis factor (TNF) signaling, toll-like receptors (TLRs), cyclic adenosine monophosphate (cAMP) signaling, hypoxia-inducible factor (HIF)-1 signaling, and other related pathways by regulating GAPDH, AKT1, TP53, MAPK1, JUN, and other associated targets. Thus, HLS may reduce inflammation, control the release of inflammatory cytokines, and regulate mitochondrial autophagy and metabolic abnormalities to ultimately play an antioxidant role. This is the first study attempting to construct a multilevel network of "HLS-antioxidant targets" based on serum pharmacochemistry and network pharmacology to explore the relationship between HLS and antioxidation and the molecular mechanisms of antioxidation combined with bioinformatics functional analysis and lays a foundation for further elucidating the antioxidant mechanisms of HLS.
Collapse
Affiliation(s)
- Yihui Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Kai Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Longyin Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dongling Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mingjie Jiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinxin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhexi Gong
- School of Management, Beijing University of Chinese Medicine, Beijing, China
| | - Nianxin Kang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
29
|
Rathod NB, Kulawik P, Ozogul F, Regenstein JM, Ozogul Y. Biological activity of plant-based carvacrol and thymol and their impact on human health and food quality. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Kum KY, Kirchhof R, Luick R, Heinrich M. Danshen ( Salvia miltiorrhiza) on the Global Market: What Are the Implications for Products' Quality? Front Pharmacol 2021; 12:621169. [PMID: 33981218 PMCID: PMC8107819 DOI: 10.3389/fphar.2021.621169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/05/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Danshen (Radix et rhizoma Salviae miltiorrhizae; Salvia miltiorrhiza Bunge, Lamiaceae) is commonly used in Asia, including China, Japan, and Korea with markets in America and Europe growing substantially. It is included in multiple pharmacopeias and salvianolic acid B and tanshinone IIA are used as quality markers. However, on the markets, substitutes and different processing methods often are a concern. a concern regarding patients’ safety and expected outcomes. Aims: This study aims at understanding the quality of Danshen-derived products on the market, and the relationship between the chemistry, biological activity and the processing and storage methods. Methods: For heavy metal analysis, inductively coupled plasma optical emission spectrometry was used. High performance thin-layer chromatography and proton nuclear magnetic resonance coupled with principal component analysis were used to understand the variation of metabolite composition. MTT assay and LPS induced NO production assay were used to evaluate the cytotoxicity effect and anti-inflammatory activity, respectively. Result and Discussion: Six out of sixty samples exceed the limits of cadmium according to the Chinese or United States Pharmacopoeia. Arsenic, lead and copper contents are all below pharmacopoeial thresholds. With more complex processing procedure, the risk of heavy metal contamination increases, especially with arsenic and cadmium. The metabolite compositions show a variability linked to processing and storage methods. Authenticated samples and Vietnamese primary samples contain higher salvianolic acid B, and their chemical compositions are more consistent compared to Chinese online store samples. Overall, a significant chemical variation can be observed in Danshen products directly linked to processing and storage method. In the MTT assay, fourteen samples show cytotoxicity while seven samples increase the proliferation of RAW264.7. In the LPS induced NO production of RAW 264.7, only seven samples show significant inhibitory effects. Conclusion: This is the first interdisciplinary investigation focusing on understanding the current market and the quality of Danshen. The quality of Danshen products on the high street are inferior to the authenticated samples. The results of the bioassays selected is not useful to differentiate the quality and composition according to the current definition in the pharmacopoeias. Overall, this approach highlights the tremendous variability of the products linked to processing and the need for more systematic and stringent quality assurance.
Collapse
Affiliation(s)
- Ka Yui Kum
- Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, United Kingdom
| | - Rainer Kirchhof
- University of Applied Sciences, Hochschule Rottenburg, Rottenburg am Neckar, Germany
| | - Rainer Luick
- University of Applied Sciences, Hochschule Rottenburg, Rottenburg am Neckar, Germany
| | - Michael Heinrich
- Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, United Kingdom
| |
Collapse
|
31
|
Xu L, Zhang Y, Zhang Q, Wang X, Chu X, Li X, Sui W, Han F. A simplified strategy for molecular formula determination of chemical constituents in traditional Chinese medicines based on accurate mass, A + 1 and A + 2 isotopic peaks using Fourier transform ion cyclotron resonance mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8933. [PMID: 32851724 DOI: 10.1002/rcm.8933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Recently, isotopic fine structures derived from Fourier transform ion cyclotron resonance mass spectrometry have been used to determine the molecular formula for unknown compounds in many complex systems. However, a simplified strategy for molecular formula determination of chemical constituents in traditional Chinese medicines (TCMs) based on accurate mass, A + 1 and A + 2 isotopic peaks is necessary. METHODS Salviae miltiorrhizae was selected as a representative species. First, the chemical constituents were chromatographically separated and their accurate masses were obtained. The A + 1 and A + 2 isotopic peaks of all chemical constituents were then also acquired. Finally, the chemical formulae of the chemical constituents were determined. RESULTS In the sample of Salviae miltiorrhizae, the formulae of 38 CHO-containing chemical constituents were quickly determined, and all chemical constituents were identified using their tandem mass spectrometric data. Moreover, the method was validated by comparison of the A + 1 and A + 2 isotopic peaks, their fragmentation patterns and the retention times of six selected standard substances. CONCLUSIONS The results demonstrate that the described strategy performs well for molecular formula determination of chemical constituents in TCMs. This also indicates that this method will be meaningful for the structural identification of chemical constituents of TCMs.
Collapse
Affiliation(s)
- Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Qingyu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xue Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiaowen Chu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xintong Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Wenwen Sui
- Shenyang Harmony Health Medical Laboratory, 15 Buildings, 19 Wenhui Street, Jin Penglong Hightech Industry Park, Shenyang, 110016, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| |
Collapse
|
32
|
Wu S, Wang Q, Wang J, Duan B, Tang Q, Sun Z, Han J, Shan C, Wang Z, Hao Z. Protocatechuic aldehyde from Salvia miltiorrhiza exhibits an anti-inflammatory effect through inhibiting MAPK signalling pathway. BMC Complement Med Ther 2020; 20:347. [PMID: 33203388 PMCID: PMC7670718 DOI: 10.1186/s12906-020-03090-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Background The aerial parts of Salvia miltiorrhiza, which was considered to be the waste part and discarded during the root harvest, is rich in protocatechuic aldehyde (PAI). This study investigated the health-promoting effects of extracts and PAI from the aerial parts of Salvia miltiorrhiza, including its anti-inflammatory effects and the underlying mechanisms of action in vitro and in vivo. Method Purification of the sample paste of Salvia miltiorrhiza was accomplished using HPLC analysis. TheMTT (Methylthiazolyldiphenyl-tetrazolium bromide) assay was employed to determine the cell viability. The production of inflammatory factors was detected by ELISA assays. The histopathological analysis was used to analyse the lungs and livers of mice treated with PAI. Western blot was performed to reveal the mechanism of PAI in anti-inflammatory. Results The extracts and PAI from the aerial parts of Salvia miltiorrhiza inhibited TNF-α, IL-6 production and promoted the production of IL-10 in vivo in mice and in vitro in the macrophage cell line RAW264.7. NF-κB and MAPKs kinase phosphorylation were also suppressed by PAI in vivo and in vitro, indicating that PAI exhibited an anti-inflammatory effect. Conclusion These findings suggest that the aerial parts of Salvia miltiorrhiza extract may serve as potential protective agents for inflammatory. Supplementary information Supplementary information accompanies this paper at 10.1186/s12906-020-03090-4.
Collapse
Affiliation(s)
- Shuang Wu
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qingyu Wang
- National Centre for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, Agricultural University, Beijing, 100089, China
| | - Jinquan Wang
- College of Animal Medicine, Xinjiang Agricultural University, Wulumuqi, 830001, China
| | - Baoyu Duan
- College of Medical Technology, Shanghai University of Medical and Health Sciences, Shanghai, 201318, China
| | - Qihe Tang
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhuojian Sun
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jinlong Han
- Agricultural Products Processing Institute of Shandong Academy of Agricultural Sciences, Jinan, 250000, China
| | - Chenggang Shan
- Agricultural Products Processing Institute of Shandong Academy of Agricultural Sciences, Jinan, 250000, China
| | - Zhifen Wang
- Agricultural Products Processing Institute of Shandong Academy of Agricultural Sciences, Jinan, 250000, China.
| | - Zhihui Hao
- National Centre for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, Agricultural University, Beijing, 100089, China. .,Center of Research and Innovation of Chinese Traditional Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100089, China.
| |
Collapse
|
33
|
UPLC/MS-based untargeted metabolomics reveals the changes of metabolites profile of Salvia miltiorrhiza bunge during Sweating processing. Sci Rep 2020; 10:19524. [PMID: 33177654 PMCID: PMC7658355 DOI: 10.1038/s41598-020-76650-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Salvia miltiorrhiza has numerous compounds with extensive clinical application. "Sweating", a processing method of Traditional Chinese Medicine (TCM), results in great changes in pharmacology and pharmacodynamics. Previously, chromatogram of 10 characteristic metabolites in S. miltiorrhiza showed a significant difference after "Sweating". Due to the complexity of TCM, changes in metabolites should be investigated metabolome-wide after "Sweating". An untargeted UPLC/MS-based metabolomics was performed to discover metabolites profile variation of S. miltiorrhiza after "Sweating". Multivariate analysis was conducted to screen differential metabolites. Analysis indicated distinct differences between sweated and non-sweated samples. 10,108 substance peaks had been detected altogether, and 4759 metabolites had been identified from negative and positive ion model. 287 differential metabolites were screened including 112 up-regulated and 175 down-regulated and they belong to lipids and lipid-like molecules, and phenylpropanoid and polyketides. KEGG analysis showed the pathway of linoleic acid metabolism, and glyoxylate and dicarboxylate metabolism were mainly enriched. 31 and 49 identified metabolites were exclusively detected in SSM and NSSM, respectively, which mainly belong to carboxylic acids and derivatives, polyketides and fatty acyls. By mapping tanshinones and salvianolic acids to 4759 identified metabolites library, 23 characteristic metabolites had been identified, among which 11 metabolites changed most. We conclude that "Sweating'' has significant effect on metabolites content and composition of S. miltiorrhiza.
Collapse
|
34
|
Characterization of thrombin/factor Xa inhibitors in Rhizoma Chuanxiong through UPLC-MS-based multivariate statistical analysis. Chin Med 2020; 15:93. [PMID: 32874198 PMCID: PMC7457533 DOI: 10.1186/s13020-020-00376-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background The dry root and rhizome of Ligusticum chuanxiong Hort., or Chuanxiong, has been used as a blood-activating and stasis-removing traditional Chinese medicine for 1000 years. Our previous studies have shown the inhibitory activity on platelet and thrombin (THR) of Chuanxiong. THR and factor Xa (FXa) play significant roles in the coagulation cascade and their inhibitors are of valuable in the treatment of thromboembolic diseases. The aim of the present study is to screen THR and FXa inhibitors from Chuanxiong. Methods Four extracts [ethyl acetate (EA), butanol (BA) and remained extract (RE) from 75% ethanol extract, and water extract (WE)] of Chuanxiong were prepared, and their THR/FXa inhibitory activities were assessed in vitro. Following silica-gel column chromatography (SC), the active EA extract and BA extract was further partitioned, respectively. Their active fractions (EA-SC1 to EA-SC5; BA-SC1 to BA-SC5) were obtained and analyzed by LC–MS. After modeling by the principal component analysis (PCA) and orthogonal partial least squares discriminate analysis (OPLS-DA), the specific marker compounds were predicted and identified. Their enzyme inhibitory was assessed in vitro and interactions with THR/FXa were investigated by molecular docking analysis. Results Chuanxiong EA extract showed strong activity against THR and BA extract was more effective in inhibiting FXa activity, and their fractions exhibited obvious difference in enzyme inhibitory activity. Furthermore, marker compounds a–h were predicted by PCA and OPLS-DA, and their chemical structures were identified. Among them, senkyunolide A, Z-ligustilide, ferulic acid and senkyunolide I (IC50 was determined as 0.77 mM) with potential THR inhibitory activity, as well as isochlorogenic acid A with FXa inhibitory activity were screened out. It was found that the four components could interact with the active site of THR, and the binding energy was lower than − 5 kcal/mol. Isochlorogenic acid A were bound to the active site of FXa, and the binding energy was − 9.39 kcal/mol. The IC50 was determined as 0.56 mM. Conclusions THR/FXa inhibitory components in different extracts of Chuanxiong were successfully characterized by the method of enzyme inhibition activity assays with ultra performance liquid chromatography-quadrupole time of flight mass spectrometry-based multivariate statistical analysis.
Collapse
|
35
|
Li S, Zhu N, Tang C, Duan H, Wang Y, Zhao G, Liu J, Ye Y. Differential distribution of characteristic constituents in root, stem and leaf tissues of Salvia miltiorrhiza using MALDI mass spectrometry imaging. Fitoterapia 2020; 146:104679. [PMID: 32619463 DOI: 10.1016/j.fitote.2020.104679] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 01/04/2023]
Abstract
Segmentation-quantification is the most commonly used method for studying the tissue distribution of bioactive constituents in plant, but this method would bring uncontrollable pollution, compound migration and denaturation. Mass spectrometry imaging (MSI), as a new method developed in the past 20 years, has high sensitivity, high spatial resolution, high degree of visualization, and low risk of contamination and degeneration when studying tissue distribution of compounds. For the first time we applied matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to tissue distribution of characteristic constituents of the medicinal plant Salvia miltiorrhiza. From the collected data, we found the regional differences in root, stem, and leaf tissues, and the ion information with differential distribution characteristics. We also identified 18 bioactive constituents in S. miltiorrhiza with their spatial distribution information. In addition, the plant was divided into five parts, and the identified compounds were analyzed for differences between tissues using LC-MS, which results verified those found from the MSI. It is figured out that MALDI-MSI can be reliably applied to the differential distribution of salvianolic acids and tanshinones.
Collapse
Affiliation(s)
- Shilin Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Natural Product Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Nanlin Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunping Tang
- Natural Product Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haonan Duan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongwei Wang
- Bruker (Beijing) Scientific Technology Co., Ltd., Beijing 100192, China
| | - Guangrong Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yang Ye
- Natural Product Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
36
|
Thumann TA, Pferschy-Wenzig EM, Aziz-Kalbhenn H, Ammar RM, Rabini S, Moissl-Eichinger C, Bauer R. Application of an in vitro digestion model to study the metabolic profile changes of an herbal extract combination by UHPLC-HRMS. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 71:153221. [PMID: 32447246 DOI: 10.1016/j.phymed.2020.153221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/04/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND STW 5 is a fixed herbal combination containing extracts from nine medicinal plants: bitter candytuft, greater celandine, garden angelica roots, lemon balm leaves, peppermint leaves, caraway fruits, licorice roots, chamomile flowers, and milk thistle fruit. STW 5 is a clinically proven treatment for functional dyspepsia and irritable bowel syndrome. PURPOSE Using a static in vitro method, we simulated oral, gastric, and small intestinal digestion and analyzed the metabolic profile changes by UHPLC-HRMS to determine the impact of oro-gastro-intestinal digestion on STW 5 constituents. STUDY DESIGN AND METHODS STW 5 was incubated according to the InfoGest consensus method. Samples of each digestive phase were analyzed by UHPLC-HRMS in ESI positive and negative modes. After data processing, background subtraction, and normalization, the peak areas of detectable compounds were compared to untreated reference samples and recovery ratios were calculated to monitor the metabolic profile of STW 5 during simulated digestion. RESULTS Although the levels of some constituents were reduced, we did not observe complete degradation of any of the constituents of STW 5 upon in vitro digestion. We did not detect any new metabolites beyond increased levels of caffeic acid and liquiritigenin due to degradation of progenitor compounds. Changes observed in intestinal bioaccessibility ratios were mainly a result of isomerization, hydrolysis, protein binding, and low water solubility. CONCLUSION The majority of STW 5 constituents are stable towards simulated in vitro digestion and can reach the colon to interact with gut microbiota if they remain unabsorbed in the upper intestinal tract.
Collapse
Affiliation(s)
- Timo A Thumann
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitätsplatz 4, 8010 Graz, Austria; BioTechMed, Mozartgasse 12, 8010 Graz, Austria
| | - Eva-Maria Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitätsplatz 4, 8010 Graz, Austria; BioTechMed, Mozartgasse 12, 8010 Graz, Austria
| | - Heba Aziz-Kalbhenn
- Steigerwald Arzneimittelwerk GmbH, Bayer Consumer Health, Havelstraße 5, 64295 Darmstadt, Germany
| | - Ramy M Ammar
- Steigerwald Arzneimittelwerk GmbH, Bayer Consumer Health, Havelstraße 5, 64295 Darmstadt, Germany; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, 33511 Kafrelsheikh; Egypt
| | - Sabine Rabini
- Steigerwald Arzneimittelwerk GmbH, Bayer Consumer Health, Havelstraße 5, 64295 Darmstadt, Germany
| | - Christine Moissl-Eichinger
- BioTechMed, Mozartgasse 12, 8010 Graz, Austria; Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitätsplatz 4, 8010 Graz, Austria; BioTechMed, Mozartgasse 12, 8010 Graz, Austria.
| |
Collapse
|
37
|
Yang YY, Wu ZY, Zhang H, Yin SJ, Xia FB, Zhang Q, Wan JB, Gao JL, Yang FQ. LC-MS-based multivariate statistical analysis for the screening of potential thrombin/factor Xa inhibitors from Radix Salvia Miltiorrhiza. Chin Med 2020; 15:38. [PMID: 32351617 PMCID: PMC7183602 DOI: 10.1186/s13020-020-00320-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/20/2020] [Indexed: 02/03/2023] Open
Abstract
Background The dry root and rhizome of Salvia miltiorrhiza Bunge, or Danshen, is a well-known traditional Chinese medicine with anticoagulant activity. Taking into account that thrombin (THR) and factor Xa (FXa) play crucial roles in the coagulation cascade, it is reasonable and meaningful to screening THR and/or FXa inhibitors from Danshen. Methods Four extracts [butanol (BA), ethyl acetate (EA) and remained extract (RE) from 75% ethanol extract, and water extract (WE)] of Danshen were prepared, and their THR/FXa inhibitory activities were assessed in vitro. Then, the active EA extract was further separated by silica-gel column chromatography (SC), and its fractions (SC1–SC5) were analyzed by LC–MS. The principal component analysis (PCA) and orthogonal partial least squares discriminate analysis (OPLS-DA) were employed for predicting the specific marker compounds. The chemical structures of targeted compounds were identified by LC–MS/MS and their interactions with THR/FXa were analyzed by the molecular docking analysis. Results Danshen EA extract showed strong activity against THR and FXa, and its fractions (SC1–SC5) exhibited obvious difference in inhibitory activity against these two enzymes. Furthermore, four marker compounds with potential THR/FXa inhibitory activity were screened by PCA and OPLS-DA, and were identified as cryptotanshinone, tanshinone I, dihydrotanshinone I and tanshinone IIA. The molecular docking study showed that all these four tanshinones can interact with some key amino acid residues of the THR/FXa active cavities, such as HIS57 and SER195, which were considered to be promising candidates targeting THR and/or FXa with low binding energy (< − 7 kcal mol−1). Conclusions LC–MS combined with multivariate statistical analysis can effectively screen potential THR/FXa inhibitory components in Danshen.
Collapse
Affiliation(s)
- Yi-Yao Yang
- 1School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People's Republic of China
| | - Zhao-Yu Wu
- 1School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People's Republic of China
| | - Hao Zhang
- 1School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People's Republic of China
| | - Shi-Jun Yin
- 1School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People's Republic of China
| | - Fang-Bo Xia
- 3State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, People's Republic of China
| | - Qian Zhang
- 1School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People's Republic of China
| | - Jian-Bo Wan
- 3State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, People's Republic of China
| | - Jian-Li Gao
- 2Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053 People's Republic of China
| | - Feng-Qing Yang
- 1School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People's Republic of China
| |
Collapse
|
38
|
Zhang H, Wu X, Liu X, Xu J, Gong S, Han Y, Zhang T, Liu C. Quality transitivity of Danhong Huayu Koufuye: A study on chemical profiles of medicinal herbs, compound preparation and dosed rat plasma using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Biomed Chromatogr 2020; 34:e4813. [PMID: 32080873 DOI: 10.1002/bmc.4813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/14/2020] [Accepted: 02/18/2020] [Indexed: 11/08/2022]
Abstract
Danhong Huayu Koufuye (DHK), an effective Chinese medicine preparation, is mainly used for the treatment of blurred vision and sudden blindness caused by qi stagnation and blood stasis, as well as the absorption period of central retinal vein occlusion. However, the current quality standard is relatively low, only stipulating the content of protocatechualdehyde. Chemical transitivity is the basis for discovering quality markers and is used in quality process control of Chinese medicines. Herein, the chemical profiles of seven medicinal herbs, DHK and dosed rat plasma were comprehensively analyzed using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. As a result, 134 chemical constituents were identified in seven medicinal herbs, including salvianolic acids, diterpene quinones, phenolic acids, phthalides, cyanogenic glycosides, flavonoids and triterpenoid saponins. Among them, 55 chemical constituents were transferred to DHK along with extraction and preparation, and 26 were further absorbed into blood and metabolized to produce 11 metabolites after oral administration. The transitivity of DHK from medicinal herbs to compound preparation and into blood was analyzed for the first time. This article will be valuable to ascertain the quality markers for quality process control and further pharmacokinetic studies.
Collapse
Affiliation(s)
- Hongbing Zhang
- Tianjin Key Laboratory of Quality Markers of Traditional Chinese Medicine, Tianjin Institut e of Pharmaceutical Research, Tianjin, China.,State Key Laboratoty of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Xin Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xinyi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Xu
- Tianjin Key Laboratory of Quality Markers of Traditional Chinese Medicine, Tianjin Institut e of Pharmaceutical Research, Tianjin, China.,State Key Laboratoty of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Suxiao Gong
- Tianjin Key Laboratory of Quality Markers of Traditional Chinese Medicine, Tianjin Institut e of Pharmaceutical Research, Tianjin, China.,State Key Laboratoty of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Yanqi Han
- Tianjin Key Laboratory of Quality Markers of Traditional Chinese Medicine, Tianjin Institut e of Pharmaceutical Research, Tianjin, China.,State Key Laboratoty of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Tiejun Zhang
- Tianjin Key Laboratory of Quality Markers of Traditional Chinese Medicine, Tianjin Institut e of Pharmaceutical Research, Tianjin, China.,State Key Laboratoty of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Changxiao Liu
- Tianjin Key Laboratory of Quality Markers of Traditional Chinese Medicine, Tianjin Institut e of Pharmaceutical Research, Tianjin, China.,State Key Laboratoty of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| |
Collapse
|
39
|
Ma X, Jiang Y, Zhang W, Wang J, Wang R, Wang L, Wei S, Wen J, Li H, Zhao Y. Natural products for the prevention and treatment of cholestasis: A review. Phytother Res 2020; 34:1291-1309. [PMID: 32026542 DOI: 10.1002/ptr.6621] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/26/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
Cholestasis is a common manifestation of decreased bile flow in various liver diseases. It results in fibrosis and even cirrhosis without proper treatment. It is believed that a wide range of factors, including transporter dysfunction, oxidative stress, inflammatory damage, and immune disruption, can cause cholestasis. In recent years, natural products have drawn much attention for specific multiple-target activities in diseases. Many attempts have been made to investigate the anticholestatic effects of natural products with advanced technology. This review summarizes recent studies on the biological activities and mechanisms of recognized compounds for cholestasis treatment. Natural products, including various flavonoids, phenols, acids, quinones, saponins, alkaloids, glycosides, and so on, function as comprehensive regulators via ameliorating oxidative stress, inflammation, and apoptosis, restoring bile acid balance with hepatic transporters, and adjusting immune disruption. Moreover, in this progress, nuclear factor erythroid 2-related factor 2, reactive oxygen species production, heme oxygenase-1, NF-κB, cholesterol 7 alpha-hydroxylase, and farnesoid X receptors are thought as main targets for the activity of natural products. Therefore, this review presents the detailed mechanisms that include multiple targets and diverse signalling pathways. Natural products are the valuable when seeking novel therapeutic agents to treat cholestatic liver diseases.
Collapse
Affiliation(s)
- Xiao Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinxiao Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiabo Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ruilin Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Lifu Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shizhang Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
40
|
Micucci M, Bolchi C, Budriesi R, Cevenini M, Maroni L, Capozza S, Chiarini A, Pallavicini M, Angeletti A. Antihypertensive phytocomplexes of proven efficacy and well-established use: Mode of action and individual characterization of the active constituents. PHYTOCHEMISTRY 2020; 170:112222. [PMID: 31810054 DOI: 10.1016/j.phytochem.2019.112222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Hypertension has become the leading risk factor for worldwide cardiovascular diseases. Conventional pharmacological treatment, after both dietary and lifestyle changes, is generally proposed. In this review, we present the antihypertensive properties of phytocomplexes from thirteen plants, long ago widely employed in ethnomedicines and, in recent years, increasingly evaluated for their activity in vitro and in vivo, also in humans, in comparison with synthetic drugs acting on the same systems. Here, we focus on the demonstrated or proposed mechanisms of action of such phytocomplexes and of their constituents proven to exert cardiovascular effects. Almost seventy phytochemicals are described and scientifically sound pertinent literature, published up to now, is summarized. The review emphasizes the therapeutic potential of these natural substances in the treatment of the 'high normal blood pressure' or 'stage 1 hypertension', so-named according to the most recent European and U.S. guidelines, and as a supplementation in more advanced stages of hypertension, however needing further validation by clinical trial intensification.
Collapse
Affiliation(s)
- M Micucci
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro, 6, 40126, Italy
| | - C Bolchi
- Department of Pharmaceutical Sciences, University of Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - R Budriesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro, 6, 40126, Italy
| | - M Cevenini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40126, Bologna, Italy
| | - L Maroni
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40126, Bologna, Italy
| | - S Capozza
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro, 6, 40126, Italy
| | - A Chiarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro, 6, 40126, Italy
| | - M Pallavicini
- Department of Pharmaceutical Sciences, University of Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| | - A Angeletti
- Unit of Nephrology, Dialysis and Transplantation, Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, S.Orsola Malpighi Hospital, Bologna Italy
| |
Collapse
|
41
|
Wu P, Huang Z, Shan J, Luo Z, Zhang N, Yin S, Shen C, Xing R, Mei W, Xiao Y, Xu B, Mao J, Wang P. Interventional effects of the direct application of "Sanse powder" on knee osteoarthritis in rats as determined from lipidomics via UPLC-Q-Exactive Orbitrap MS. Chin Med 2020; 15:9. [PMID: 31998403 PMCID: PMC6979340 DOI: 10.1186/s13020-020-0290-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/09/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Our previous clinical evidence suggested that the direct application of "Sanse powder" the main ingredient of "Yiceng" might represent an alternative treatment for knee osteoarthritis. However, the mechanism underlying its effect is poorly understood. In this study, we investigated the mechanism of the effect of direct "Sanse powder" application for the treatment of knee osteoarthritis (KOA) in rats by using lipidomics. METHODS KOA rats were established by cutting the anterior cruciate ligament, and the cold pain threshold and mechanical withdrawal threshold (MWT) of seven rats from each group were measured before modelling (0 days) and at 7, 14, 21 and 28 days after modelling. Histopathological evaluation of the synovial tissue was performed by haematoxylin and eosin (H&E) staining after modelling for 28 days. Interleukin-1β (IL-1β), pro-interleukin-1β (pro-IL-1β) and tumor necrosis factor-α (TNF-α) proteins in synovial tissue were measured by western blot, and the mRNA expression levels of IL-1β and TNF-α in synovial tissue were measured using Real-time reverse transcription polymerase chain reaction (qRT-PCR), the levels of IL-1β and TNF-α in rat serum were measured by enzyme-linked immunosorbent assay (ELISA), Serum lipid profiles were obtained by using ultra-performance liquid chromatography combined with quadrupole-Exactive Orbitrap mass spectrometry (UPLC-Q-Exactive Orbitrap MS). RESULTS The results confirmed that the direct application of "Sanse powder" had a significant protective effect against KOA in rats. Treatment with "Sanse powder" not only attenuated synovial tissue inflammation but also increased the levels of the cold pain threshold and MWT. In addition, the lipidomics results showed that the levels of diacylglycerol (DAG), triacylglycerols (TAGs), lysophosphatidylcholine (LPC), phosphatidylcholine (PC), fatty acid esters of hydroxy fatty acids (FAHFAs), and phosphatidylethanolamine (PE) were restored almost to control levels following treatment. CONCLUSIONS Lipidomics provides a better understanding of the actions of direct application "Sanse powder" therapy for KOA.
Collapse
Affiliation(s)
- Peng Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Zhengquan Huang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
| | - Jinjun Shan
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Zichen Luo
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Nongshan Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
| | - Songjiang Yin
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
| | - Cunsi Shen
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Runlin Xing
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
| | - Wei Mei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
| | - Yancheng Xiao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
| | - Bo Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
| | - Jun Mao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
| | - Peimin Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
| |
Collapse
|
42
|
Abstract
It has been reported that Sanoshashinto (SanHuangXieXinTang, 三黃瀉心湯), which is composed of Rhei Rhizoma, Scutellariae Radix, and Coptidis Rhizoma, exhibits vasorelaxant effects in vitro and lowers blood pressure of patients. Based on this discovery, in this study, a mixture containing those three materials and combinations of them were extracted with methanol, and the extracts were fractionated into different parts. Effects of all extracts and fractions on high concentration of potassium chloride (High K+)- or noradrenaline (NA)-induced contractions of isolated rat aortic rings or helical strips were examined. Qualitative and quantitative HPLC analyses of the extracts and the fractions revealed that the contents of baicalin and berberine in Sanoshashinto methanol extract (SHXXTM) were higher than those of the other constituents. All pharmacological and HPLC data were analyzed by principal component analysis (PCA) software and the results indicated that baicalin, berberine, palmatine, baicalein, and wogonoside contributed significantly to the pharmacological activity. Furthermore, spontaneously hypertensive rats (SHRs) that were orally given SHXXTM or a baicalin–berberine combination showed significantly reduced increase in the rate of systolic blood pressure (SBP) compared to the control group. These findings suggested that Sanoshashinto has significant vasorelaxant effects in vitro and antihypertensive effects in vivo, and baicalin and berberine, which were the principal constituents of Scutellariae Radix and Coptidis Rhizoma, were the main antihypertensive constituents in Sanoshashinto. It was speculated that baicalin and berberine produced vasorelaxant effects by activating the NO/cGMP pathway and that the BKCa channel and the DAG/PKC/CPI-17 pathway were also involved.
Collapse
|
43
|
MEIm XD, Cao YF, Che YY, Li J, Shang ZP, Zhao WJ, Qiao YJ, Zhang JY. Danshen: a phytochemical and pharmacological overview. Chin J Nat Med 2019; 17:59-80. [PMID: 30704625 DOI: 10.1016/s1875-5364(19)30010-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Indexed: 12/27/2022]
Abstract
Danshen, the dried root or rhizome of Salvia miltiorrhiza Bge., is a traditional and folk medicine in Asian countries, especially in China and Japan. In this review, we summarized the recent researches of Danshen in traditional uses and preparations, chemical constituents, pharmacological activities and side effects. A total of 201 compounds from Danshen have been reported, including lipophilic diterpenoids, water-soluble phenolic acids, and other constituents, which have showed various pharmacological activities, such as anti-inflammation, anti-oxidation, anti-tumor, anti-atherogenesis, and anti-diabetes. This article intends to provide novel insight information for further development of Danshen, which could be of great value to its improvement of utilization.
Collapse
Affiliation(s)
- Xiao-Dan MEIm
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan-Feng Cao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan-Yun Che
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Jing Li
- College of Basic Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Zhan-Peng Shang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wen-Jing Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan-Jiang Qiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Jia-Yu Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
44
|
Ye T, Qu H, Gong X. Preparation of Salvianolic Acid B Disodium Salt Considering the Water Extract Quality Standard. Molecules 2019; 24:molecules24071269. [PMID: 30939842 PMCID: PMC6479940 DOI: 10.3390/molecules24071269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 11/16/2022] Open
Abstract
A preparation process of salvianolic acid B (SAB) disodium salt from Salvia miltiorrhiza Bunge (Danshen) is provided in this work. A water extract quality standard was also developed to estimate the influences of Danshen quality on SAB disodium salt quality at an early stage of the preparation process. Crude SAB solution was obtained after water extraction, concentration, acidification, 1-butanol extraction, water washing, basification, and water back extraction. Extraction temperature, extraction pH, and back-extraction pH were identified to be key parameters for the preparation of crude SAB solution. These parameters were optimized with Box⁻Behnken designed experiments. Crude SAB solution was further purified with a chromatography process. AMBERCHROW CG161M resin was selected as the best adsorbent. SAB disodium salt could be obtained by drying the eluate. Considering the quality of Danshen may affect the purity and yield of SAB disodium salt, different batches of Danshen were used to prepare SAB disodium salt with the optimized parameters. Water extract indices of phenolic compound purity and phenolic compound yield were measured. By developing models between SAB disodium salt purity and yield with water extract indices, the quality standard of Danshen water extract was obtained. The application of water extract quality standards can improve the quality consistency of SAB disodium salt. The effects of different batches of Danshen raw materials on the final product could be evaluated at the beginning of production stages. The present method could prepare about five grams of high-purity SAB disodium salt (>95%) in one preparation cycle. The method reported in this work can also be used to develop process intermediate quality standards for other natural products.
Collapse
Affiliation(s)
- Tiantian Ye
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xingchu Gong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
45
|
Smoke-Isolated Karrikins Stimulated Tanshinones Biosynthesis in Salvia miltiorrhiza through Endogenous Nitric Oxide and Jasmonic Acid. Molecules 2019; 24:molecules24071229. [PMID: 30934811 PMCID: PMC6479829 DOI: 10.3390/molecules24071229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/23/2019] [Accepted: 03/24/2019] [Indexed: 11/17/2022] Open
Abstract
Although smoke-isolated karrikins (KAR1) could regulate secondary metabolism in medicinal plants, the signal transduction mechanism has not been reported. This study highlights the influence of KAR1 on tanshinone I (T-I) production in Salvia miltiorrhiza and the involved signal molecules. Results showed KAR1-induced generation of nitric oxide (NO), jasmonic acid (JA) and T-I in S. miltiorrhiza hairy root. KAR1-induced increase of T-I was suppressed by NO-specific scavenger (cPTIO) and NOS inhibitors (PBITU); JA synthesis inhibitor (SHAM) and JA synthesis inhibitor (PrGall), which indicated that NO and JA play essential roles in KAR1-induced T-I. NO inhibitors inhibited KAR1-induced generation of NO and JA, suggesting NO was located upstream of JA signal pathway. NO-induced T-I production was inhibited by SHAM and PrGall, implying JA participated in transmitting signal NO to T-I accumulation. In other words, NO mediated the KAR1-induced T-I production through a JA-dependent signaling pathway. The results helped us understand the signal transduction mechanism involved in KAR1-induced T-I production and provided helpful information for the production of S. miltiorrhiza hairy root.
Collapse
|
46
|
Wang YL, Zhang Q, Yin SJ, Cai L, Yang YX, Liu WJ, Hu YJ, Chen H, Yang FQ. Screening of blood-activating active components from Danshen-Honghua herbal pair by spectrum-effect relationship analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:149-158. [PMID: 30668364 DOI: 10.1016/j.phymed.2018.09.176] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/18/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Danshen (Salvia miltiorrhiza, DS) and Honghua (Carthamus tinctorius, HH) are commonly used traditional Chinese medicines for activating blood and removing stasis, and DS-HH (DH) herbal pair had potential synergistic effects on promoting blood circulation. Therefore, it is essential to make clear the active components of this herbal pair for better understanding their potential synergistic effects. PURPOSE To comprehensively evaluate the activity of DH herbal pair on physiological coagulation system of rats, and seek their potential active components by spectrum-effect relationship analysis. METHODS The water extracts of DH herbal pair with different proportions (DS: HH = 1:1, 2:1, 3:1, 5:1, 1:5 and 1:3) were prepared. Male Sprague-Dawley rats were randomly divided into eight groups: blank group, model group, model + 1:1 (DH) group, model + 2:1 group, model + 3:1 group, model + 5:1 group, model + 1:5 group and model + 1:3 group. The intragastric administration was performed for eight times with 12 h intervals. SC40 semi-automatic coagulation analyzer was employed to determine coagulation indices. Meanwhile, HPLC and LC-MS were applied for chemical analyses of DH extracts. Finally, the active ingredients were screened by spectrum-effect relationship analysis and the activities of major predicted compounds were validated in vitro. RESULTS Different proportions of DH extracts could significantly prolong thrombin time (TT) and activated partial thromboplastin time (APTT), increase prothrombin time (PT) and decrease fibrinogen (FIB) content, reduced whole blood viscosity (WBV) and plasma viscosity (PV), decreased erythrocyte sedimentation rate blood (ESR) compared with model group. Furthermore, fifteen highly related components were screened out by the spectrum-effect relationship and LC-MS analysis, of which caffeic acid, salvianolic acid B, hydroxysafflor yellow A and lithospermate acid had significant blood-activing effect by prolong APTT and decrease FIB content at high (0.6 mM), medium (0.3 mM) and low (0.15 mM) (except lithospermate acid) concentrations in vitro. CONCLUSIONS DH herbal pair showed strong blood-activating effect on blood stasis rat through regulating the parameters involved in haemorheology and plasma coagulation system. Four active compounds, caffeic acid, salvianolic acid B, hydroxysafflor yellow A and lithospermate acid predicted by spectrum-effect relationship analysis had good blood-activating effect. Therefore, spectrum-effect relationship analysis is an effective approach for seeking active components in herbal pairs.
Collapse
Affiliation(s)
- Ya-Li Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Shi-Jun Yin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Liang Cai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Yu-Xiu Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Wen-Jing Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China
| | - Hua Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
| |
Collapse
|
47
|
Guo Z, Liang X, Xie Y. Qualitative and quantitative analysis on the chemical constituents in Orthosiphon stamineus Benth. using ultra high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal 2018; 164:135-147. [PMID: 30390555 DOI: 10.1016/j.jpba.2018.10.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/10/2018] [Accepted: 10/13/2018] [Indexed: 12/22/2022]
Abstract
A sensitive and efficient method was established and validated for qualitative and quantitative analysis on the chemical constituents in Orthosiphon stamineus Benth. (O. stamineus) using ultra high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Based on the retention time and MS spectra, 61 compounds were detected by using ultra high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. 52 chemical structures in the O. stamineus extracts including 26 phenolic acids, 11 flavonoids, 6 diterpenoids, 4 fatty acids and 5 tanshinones were tentatively identified without the time-consuming process of isolation. Moreover, five chemical constituents (Danshensu, Caffeic acid, Rosmarinic acid, Sinensetin and Eupatorin) were quantified in three different batches of O. stamineus samples by the developed ultra high-performance liquid chromatography coupled with electrospray ionization triple-quadrupole mass spectrometry method in 10 min. The method validation of the five compounds was performed with acceptable linearity (R2, 0.9930-0.9997), precision (RSD, 1.87-10.36%), repeatability (RSD, 0.59-4.87%) and recovery (105.30-110.53%, RSD ≤ 13.90%).
Collapse
Affiliation(s)
- Zili Guo
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xianrui Liang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuanyuan Xie
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
48
|
Chemical Profiling and Screening of the Marker Components in the Fruit of Cassia fistula by HPLC and UHPLC/LTQ-Orbitrap MS n with Chemometrics. Molecules 2018; 23:molecules23071501. [PMID: 29933591 PMCID: PMC6100387 DOI: 10.3390/molecules23071501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/16/2018] [Accepted: 06/17/2018] [Indexed: 12/17/2022] Open
Abstract
Cassia fistula L. which is known as “Golden Shower”, is used as an ornamental plant due to its flowers, and fruit parts of this plant have a high medicinal value. There are few reports providing a comprehensive overview of the chemical composition of its fruit or explaining the differences between samples from different sources because of the complexity of its chemical components. The purpose of the present study was to establish a fingerprint evaluation system based on Similarity Analysis (SA), Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA) for the composition identification and quality control of this herb. Twelve samples from Xinjiang and Sichuan provinces in China and India were analyzed by HPLC, and there were fifteen common peaks in the twelve batches. Molecular weight and formula information can be derived from thirty-one peaks by UHPLC/LTQ-Orbitrap MSn, molecular structure information of twenty components was obtained, of which ten compounds were identified by comparison with standard materials. Samples of twelve batches were divided according to their similarity into four groups, which were basically consistent with three different C.fistula fruit-producing areas. Five compounds were finally considered to be chemical markers to determine the quality of this herb. A fingerprints method combined with chemometrics was established to differentiate the origin of the fruit of C. fistula which has the advantages of effectivity and convenience, laying the foundation for the quality evaluation of this herb from different sources.
Collapse
|
49
|
Li G, Yu F, Wang Y, Yao L, Qiu Z, Wang T, Wang Z, Yang F, Peng D, Yu N, Chen W. Comparison of the chromatographic fingerprint, multicomponent quantitation and antioxidant activity of Salvia miltiorrhiza
Bge. between sweating and nonsweating. Biomed Chromatogr 2018; 32:e4203. [DOI: 10.1002/bmc.4203] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Guozhuan Li
- Anhui University of Chinese Medicine; Hefei China
| | - Fan Yu
- Anhui University of Chinese Medicine; Hefei China
| | - Yanyan Wang
- Anhui University of Chinese Medicine; Hefei China
| | - Liang Yao
- Anhui University of Chinese Medicine; Hefei China
| | - Zhen Qiu
- Anhui University of Chinese Medicine; Hefei China
| | - Ting Wang
- Anhui University of Chinese Medicine; Hefei China
| | | | - Fanglin Yang
- Anhui University of Chinese Medicine; Hefei China
| | - Daiyin Peng
- Anhui University of Chinese Medicine; Hefei China
| | - Nianjun Yu
- Anhui University of Chinese Medicine; Hefei China
| | - Weidong Chen
- Anhui University of Chinese Medicine; Hefei China
| |
Collapse
|
50
|
Xiang X, Sha X, Su S, Zhu Z, Guo S, Yan H, Qian D, Duan JA. Simultaneous determination of polysaccharides and 21 nucleosides and amino acids in different tissues of Salvia miltiorrhiza
from different areas by UV-visible spectrophotometry and UHPLC with triple quadrupole MS/MS. J Sep Sci 2018; 41:996-1008. [DOI: 10.1002/jssc.201700802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Xiang Xiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Jiangsu Key Laboratory for High Technology Research of TCM Formulae; and State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization; Nanjing University of Chinese Medicine; Nanjing China
| | - Xiuxiu Sha
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Jiangsu Key Laboratory for High Technology Research of TCM Formulae; and State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization; Nanjing University of Chinese Medicine; Nanjing China
| | - Shulan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Jiangsu Key Laboratory for High Technology Research of TCM Formulae; and State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization; Nanjing University of Chinese Medicine; Nanjing China
| | - Zhenhua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Jiangsu Key Laboratory for High Technology Research of TCM Formulae; and State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization; Nanjing University of Chinese Medicine; Nanjing China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Jiangsu Key Laboratory for High Technology Research of TCM Formulae; and State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization; Nanjing University of Chinese Medicine; Nanjing China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Jiangsu Key Laboratory for High Technology Research of TCM Formulae; and State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization; Nanjing University of Chinese Medicine; Nanjing China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Jiangsu Key Laboratory for High Technology Research of TCM Formulae; and State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization; Nanjing University of Chinese Medicine; Nanjing China
| | - Jin-ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Jiangsu Key Laboratory for High Technology Research of TCM Formulae; and State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization; Nanjing University of Chinese Medicine; Nanjing China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy; Nanjing University of Chinese Medicine; Nanjing China
| |
Collapse
|