1
|
Perz M, Szymanowska D, Kostrzewa-Susłow E. The Influence of Flavonoids with -Br, -Cl Atoms and -NO 2, -CH 3 Groups on the Growth Kinetics and the Number of Pathogenic and Probiotic Microorganisms. Int J Mol Sci 2024; 25:9269. [PMID: 39273218 PMCID: PMC11395712 DOI: 10.3390/ijms25179269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/14/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
The pursuit of novel or modified substances based on a natural origin, like flavonoids, is essential in addressing the increasing number of diseases and bacterial resistance to antibiotics, as well as in maintaining intestinal balance and enhancing overall gut health. The primary goal of this research was to evaluate the impact of specific flavonoid compounds-chalcones, flavanones, and flavones-substituted with -Br, -Cl, -CH3, and -NO2 on both pathogenic and probiotic microorganisms. Additionally, this study aimed to understand these compounds' influence on standardized normal and pathologically altered intestinal microbiomes. 8-Bromo-6-chloroflavone 4'-O-β-D-(4″-O-methyl)-glucopyranoside and 8-bromo-6-chloroflavanone showed the most promising results as bactericidal agents. They significantly limited or inhibited the growth of pathogenic bacteria without adversely affecting the probiotic's growth. Digestion in vitro studies indicated that 6-methyl-8-nitroflavone and 8-bromo-6-chloroflavone positively modulated the gut microbiome by increasing beneficial bacteria and reducing potentially pathogenic microbes. This effect was most notable in microbiomes characteristic of older individuals and those recovering from chemotherapy or antibiotic treatments. This study underscores the therapeutic potential of flavonoid compounds, particularly those with specific halogen and nitro substitutions, in enhancing gut health.
Collapse
Affiliation(s)
- Martyna Perz
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Daria Szymanowska
- Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-627 Poznań, Poland
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznań University of Medical Sciences, 60-806 Poznań, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| |
Collapse
|
2
|
Haj Hasan A, Preet G, Astakala RV, Al-Adilah H, Oluwabusola ET, Ebel R, Jaspars M. Antibacterial activity of natural flavones against bovine mastitis pathogens: in vitro, SAR analysis, and computational study. In Silico Pharmacol 2024; 12:78. [PMID: 39184231 PMCID: PMC11344746 DOI: 10.1007/s40203-024-00253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Bovine mastitis is a worldwide disease affecting dairy cattle and causes major economic losses in the dairy industry. Recently, the emergence of microbial resistance to the current antibiotics complicates the treatment protocol which necessitates antibiotic stewardship and further research to find new active compounds. Recently, phytobiotics have gained interest in being used as an alternative to antibiotics in the poultry industry as an antibiotic stewardship intervention. This study evaluated the in vitro antibacterial activity of 16 flavonoids against bovine mastitis pathogens. Two flavones: 2-(4-methoxyphenyl)chromen-4-one (1) and 2-(3-hydroxyphenyl)chromen-4-one (4) showed inhibition of the growth of Klebsiella oxytoca with MIC values range (25-50 µg mL- 1) followed by a structure-activity relationship (SAR) study indicating that the presence of a hydroxyl group at C-3` or methoxy at C-4` increases the activity against Klebsiella oxytoca while the presence of hydroxyl group at C-7 decreases the activity. Furthermore, a structure-based drug development approach was applied using several in silico tools to understand the interactions of active flavones at the active site of the DNA gyrase protein. Compound (4) showed a higher docking score than quercetin (standard) which is known to have antibacterial activity by inhibiting the DNA gyrase. In addition, the structure-based pharmacophores of compound (4) and quercetin showed similar pharmacophoric features and interactions with DNA gyrase. Based on our findings, compounds (1) and (4) are promising for further study as potential anti-microbial phytochemicals that can have a role in controlling bovine mastitis as well as to investigate their mechanism of action further. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00253-w.
Collapse
Affiliation(s)
- Ahlam Haj Hasan
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen, AB24 3UE UK
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110 Jordan
| | - Gagan Preet
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen, AB24 3UE UK
| | | | - Hanan Al-Adilah
- Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat, 13109 Kuwait
| | | | - Rainer Ebel
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen, AB24 3UE UK
| | - Marcel Jaspars
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen, AB24 3UE UK
| |
Collapse
|
3
|
Jorquera B, Valenzuela-Barra G, Mayorga A, Mejía J, Núñez G, Gómez M, Montenegro G, Vera Quezada WE, Echeverría J, Costa de Camargo A, Lino von Poser G, Bridi R. Exudate and Propolis from Escallonia pulverulenta: Phytochemical Characterization and Antibacterial Activity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1971. [PMID: 39065498 PMCID: PMC11281019 DOI: 10.3390/plants13141971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Propolis is a complex mixture formed from exudates that bees collect from plants and then mix with beeswax and their own salivary enzymes. Chilean propolis is characterized by the presence of phenolic compounds, which are considered responsible for the biological activities. The endemic species Escallonia pulverulenta (Ruiz and Pav.) Pers. [Escalloniaceae] is a recognized source of exudate to produce propolis. This study reports for the first time the chemical profile and antibacterial activity of E. pulverulenta exudate and leaves, as well as two samples of Chilean propolis. Palynological and morphological analysis showed the presence of E. pulverulenta as one of the main species in the propolis samples. UPLC-MS/MS analyses enabled the identification of phenolic acids in the leaves and in the propolis. Conversely, flavonoids are mainly present in exudates and propolis. Quercetin is the most abundant flavonol in the exudate, with similar concentrations in the propolis samples. Nevertheless, the main compound present in both samples of propolis was the flavanone pinocembrin. The antibacterial results obtained for exudate and propolis have shown a similar behavior, especially in the inhibition of Streptococcus pyogenes. These results show the importance of the exudates collected by the bees in the chemical composition and antibacterial capacity of propolis.
Collapse
Affiliation(s)
- Bairon Jorquera
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile; (B.J.); (G.V.-B.); (A.M.)
| | - Gabriela Valenzuela-Barra
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile; (B.J.); (G.V.-B.); (A.M.)
| | - Ailin Mayorga
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile; (B.J.); (G.V.-B.); (A.M.)
| | - Jessica Mejía
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (J.M.); (G.N.); (M.G.); (G.M.)
| | - Gabriel Núñez
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (J.M.); (G.N.); (M.G.); (G.M.)
| | - Miguel Gómez
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (J.M.); (G.N.); (M.G.); (G.M.)
| | - Gloria Montenegro
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (J.M.); (G.N.); (M.G.); (G.M.)
| | - Waleska E. Vera Quezada
- Facultad de Farmacia, Escuela Química y Farmacia, Universidad de Valparaíso, Playa Ancha, Valparaíso 2340000, Chile;
- Centro de Investigación, Desarrollo e Innovación de Productos Bioactivos, CInBIO, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile;
| | | | - Gilsane Lino von Poser
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Raquel Bridi
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile; (B.J.); (G.V.-B.); (A.M.)
| |
Collapse
|
4
|
Lee HJ, Lee SH, Hong SK, Gil BI, Lee KA. In Vitro Biological Activities of Hesperidin-Related Compounds with Different Solubility. Antioxidants (Basel) 2024; 13:727. [PMID: 38929166 PMCID: PMC11200626 DOI: 10.3390/antiox13060727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The biological activities of hesperidin-related compounds, such as hesperetin laurate (HTL), hesperetin (HT), hesperidin (HD), and hesperidin glucoside (HDG), were investigated in vitro. The compounds showed different hydrophobicities, and the octanol-water partition coefficient log P were 7.28 ± 0.06 for HTL, 2.59 ± 0.04 for HT, 2.13 ± 0.03 for HD, and -3.45 ± 0.06 for HDG, respectively. In the DPPH assay and β-carotene bleaching assay to determine antioxidant capacity, all compounds tested showed antioxidant activity in a concentration-dependent manner, although to varying degrees. HTL and HT showed similarly high activities compared to HD or HDG. HD and HDG did not show a significant difference despite the difference in solubility between the two. Cytotoxicity was high; in the order of hydrophobicity-HTL > HT > HD > HDL in keratinocyte HaCaT cells. All compounds tested showed reducing effects on cellular inflammatory mediators and cytokines induced by UV irradiation. However, HTL and HT effectively reduced nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6) levels compared to HD and HDG. The inhibitory effects of hesperidin-related compounds on skin-resident microorganisms were evaluated by measuring minimum inhibitory concentration (MIC). HTL showed the highest inhibitory effects against Staphylococcus aureus, Cutibacterium acnes, Candida albicans, and Malassezia furfur, followed by HT, while HD and HDF showed little effect. In conclusion, the hydrophobicity of hesperidin-related compounds was estimated to be important for biological activity in vitro, as was the presence or absence of the sugar moiety.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Graduate School of Biotechnology, College of Life Science, Kyunghee University, Yongin 17104, Republic of Korea
| | - Sun-Hyung Lee
- R&D Center, Youngjin Bio Co., Suwon 16614, Republic of Korea
| | - Sun-Ki Hong
- School of Law, Dongguk University, Seoul 04620, Republic of Korea
| | - Bog-Im Gil
- Department of Food and Nutrition, Anyang University, Anyang 14028, Republic of Korea
| | - Kyung-Ae Lee
- Department of Food and Nutrition, Anyang University, Anyang 14028, Republic of Korea
| |
Collapse
|
5
|
Riasat N, Jadoon M, Akhtar N, Kiani MN, Fatima H, Abdel-Maksoud MA, Ali SM, Alfuraydi AA, Dar MJ, Ul Haq I. Polyphenolic characterization and biological assessment of Acacia nilotica (L.) wild. Ex delilie: An In vitro and In vivo appraisal of wound healing potential. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117842. [PMID: 38310987 DOI: 10.1016/j.jep.2024.117842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acacia nilotica (L.) Wild. Ex Delilie is a shrub with significant ethnomedicinal stature. Therefore, in the undertaken study, its wound healing attributes are determined. AIM OF THE STUDY The current study provided evidence of the traditional use of A. nilotica species and conferred A. nilotica bark extract as a potent candidate for wound healing agents. MATERIALS & METHODS A. nilotica leaves extract (ANL-E); A. nilotica bark extract (ANB-E), and A. nilotica stem extract (ANS-E) were prepared using methanol-chloroform (1:1). Phytochemical analysis was performed using gallic acid equivalent (GAE) total phenolic content (TPC), quercetin equivalent (QE) total flavonoid content (TFC) assays and High-performance liquid chromatography (HPLC). In vitro antioxidant potential (free radical scavenging activity (FRSA), total antioxidant capacity (TAC), and ferric reducing antioxidant power (FRAP) assay), antibacterial activity (broth microdilution method) and hemolytic analysis was carried out. Wound healing proficiency of ANB-E was determined by wound excision model followed by estimating hydroxyproline content and endogenous antioxidant markers. RESULTS Maximum phenolic and flavonoid content were depicted by ANB-E i.e., 50.9 ± 0.34 μg gallic acid equivalent/mg extract and 28.7 ± 0.13 μg quercetin equivalent/mg extract, respectively. HPLC analysis unraveled the presence of a significant amount of catechin in ANL-E, ANB-E and ANS-E (54.66 ± 0.02, 44.9 ± 0.004 and 31.36 ± 0.02 μg/mg extract) respectively. Highest percent free radical scavenging activity, total antioxidant capacity, and ferric reducing action power (i.e., 93.3 ± 0.42 %, 222.10 ± 0.76, and 222.86 ± 0.54 μg ascorbic acid equivalent/mg extract) were exhibited by ANB-E. Maximum antibacterial potential against Staphylococcus aureus was exhibited by ANB-E (MIC 12.5 μg/ml). Two of the extracts i.e., ANL-E and ANB-E were found biocompatible with less than 5 % hemolytic potential. Based upon findings of in vitro analysis, ANB-E (10, 5, and 2.5 % w/w, C1, C2, and C3, respectively) was selected for evaluating its in vivo wound healing potential. Maximum contraction of wound area and fastest epithelization i.e., 98 ± 0.05 % and 11.2 ± 1.00 (day) was exhibited by C1. Maximum hydroxyproline content, glutathione, catalase, and peroxidase were demonstrated by C1 i.e., 15.9 ± 0.52 μg/mg, 9.3 ± 0.17 mmol/mg, 7.2 ± 0.17 and 6.2 ± 0.14 U/mg, respectively. Maximal curbed lipid peroxidation i.e., 0.7 ± 0.15 mmol/mg was also depicted by C1. CONCLUSIONS In a nutshell, the current investigation endorsed the wound healing potential of ANB-E suggesting it to be an excellent candidate for future studies.
Collapse
Affiliation(s)
- Nimra Riasat
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Muniba Jadoon
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Islamabad, 46000, Pakistan.
| | - Marya Nawaz Kiani
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Humaira Fatima
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | | | - Syeda Masooma Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Akram A Alfuraydi
- Botany & Microbiology Department, College of Science, King Saud University, Saudi Arabia.
| | - M Junaid Dar
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43202, USA.
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
6
|
Wei MZ, Zhu YY, Zu WB, Wang H, Bai LY, Zhou ZS, Zhao YL, Wang ZJ, Luo XD. Structure optimizing of flavonoids against both MRSA and VRE. Eur J Med Chem 2024; 271:116401. [PMID: 38640870 DOI: 10.1016/j.ejmech.2024.116401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) cause more than 100,000 deaths each year, which need efficient and non-resistant antibacterial agents. SAR analysis of 162 flavonoids from the plant in this paper suggested that lipophilic group at C-3 was crucial, and then 63 novel flavonoid derivatives were designed and total synthesized. Among them, the most promising K15 displayed potent bactericidal activity against clinically isolated MRSA and VRE (MICs = 0.25-1.00 μg/mL) with low toxicity and high membrane selectivity. Moreover, mechanism insights revealed that K15 avoided resistance by disrupting biofilm and targeting the membrane, while vancomycin caused 256 times resistance against MRSA, and ampicillin caused 16 times resistance against VRE by the same 20 generations inducing. K15 eliminated residual bacteria in mice skin MRSA-infected model (>99 %) and abdominal VRE-infected model (>92 %), which was superior to vancomycin and ampicillin.
Collapse
Affiliation(s)
- Mei-Zhen Wei
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China
| | - Yan-Yan Zhu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China
| | - Wen-Biao Zu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China
| | - Huan Wang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China
| | - Li-Yu Bai
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China
| | - Zhong-Shun Zhou
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China
| | - Zhao-Jie Wang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
7
|
Silva RA, da Silva BF, Pereira MS, Coelho PAT, Costa RA, Chaves AC, Silva IGN, Carneiro VA. Combinatorial effects between aromatic plant compounds and chlorhexidine digluconate against canine otitis-related Staphylococcus spp. Res Vet Sci 2024; 170:105182. [PMID: 38377791 DOI: 10.1016/j.rvsc.2024.105182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/22/2024] [Accepted: 02/11/2024] [Indexed: 02/22/2024]
Abstract
The increasing prevalence of antimicrobial resistance among bacterial pathogens necessitates novel treatment strategies, particularly in veterinary medicine where otitis in dogs is very common in small animals' clinical routines. Considering this challenge, this study explores the efficacy of aromatic plant compounds (APC), including eugenol (EUG), trans-cinnamaldehyde (TC), and geraniol (GER), and their synergistic potential when combined with the antiseptic agent chlorhexidine (CLX), offering insight into alternative therapeutic approaches. The disk diffusion assay revealed differential sensitivity of Staphylococcus spp. strains to the tested compounds, with EUG and GER showing moderate inhibition zones and TC displaying considerably larger inhibition zones. Further analysis through MIC and MBC determinations suggested that EUG required the highest concentrations to inhibit and kill the bacteria, whereas TC and GER were effective at lower concentrations. Combined with CLX, all three plant-derived compounds demonstrated a significant enhancement of antibacterial activity, indicated by reduced MIC values and a predominantly synergistic interaction across the strains tested. GER was the most potent in combination with CLX, presenting the lowest mean FICi values and the highest fold reductions in MIC. This study emphasizes the APC's potential as an adjunct to conventional antimicrobial agents like CLX. The marked synergy observed, especially with GER, suggests that such combinations could be promising alternatives in managing bacterial otitis in dogs, potentially mitigating the impact of antibiotic resistance.
Collapse
Affiliation(s)
- Romério Alves Silva
- Veterinary Sciences Department of State University of Ceará, Campus Itaperi, Fortaleza 60714-903, Ceará, Brazil
| | - Benise Ferreira da Silva
- Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), Laboratory of Biofilms and Antimicrobial Agents (LaBAM), University Center INTA - UNINTA, Sobral 62.050-100, Brazil
| | - Mainara Saraiva Pereira
- Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), Laboratory of Biofilms and Antimicrobial Agents (LaBAM), University Center INTA - UNINTA, Sobral 62.050-100, Brazil
| | - Paulo Adenes Teixeira Coelho
- Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), Laboratory of Biofilms and Antimicrobial Agents (LaBAM), University Center INTA - UNINTA, Sobral 62.050-100, Brazil
| | - Renata Albuquerque Costa
- Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), Laboratory of Biofilms and Antimicrobial Agents (LaBAM), University Center INTA - UNINTA, Sobral 62.050-100, Brazil
| | - Andrey Carvalho Chaves
- Veterinary Sciences Department of State University of Ceará, Campus Itaperi, Fortaleza 60714-903, Ceará, Brazil
| | - Isaac Goes Neto Silva
- Veterinary Sciences Department of State University of Ceará, Campus Itaperi, Fortaleza 60714-903, Ceará, Brazil
| | - Victor Alves Carneiro
- Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), Laboratory of Biofilms and Antimicrobial Agents (LaBAM), University Center INTA - UNINTA, Sobral 62.050-100, Brazil.
| |
Collapse
|
8
|
Alghonmeen RD, Dmour SM, Saghir SA, Abushattal S, Alnaimat S, Al-zharani M, Nasr FA, Althunibat OY. Anti-MRSA and cytotoxic activities of different solvent extracts from Artemisia herba-alba grown in Shubak, Jordan. Open Vet J 2024; 14:990-1001. [PMID: 38808292 PMCID: PMC11128642 DOI: 10.5455/ovj.2024.v14.i4.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/03/2024] [Indexed: 05/30/2024] Open
Abstract
Background Globally, resistance to antimicrobial drugs is a major hazard to public health. Infections that were once easily treatable with antibiotics are becoming harder to control, leading to prolonged illnesses, increased mortality rates, and higher healthcare costs. Aim This study intended to assess the antimicrobial, specifically the anti-Methicillin resistant Staphylococcus aureus (MRSA), and anticancer properties of different extracts obtained from A. herba-alba (AHA). Methods The antibacterial tests of AHA were performed on two Gram-negative bacterial strains (Escherichia coli and Klebsiella pneumonia), two Gram-positive bacterial strains (Methicillin-resistant Staphylococcus aureus (MRSA), and Staphylococcus aureus). Initial screening for antibacterial activities was conducted using the well diffusion technique. Subsequently, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined through the broth-dilution assay. The anticancer test was carried out in vitro on a human colorectal carcinoma cell line (HCT-116) using MTT assay. Results Among all extracts, n-hexane extract of AHA was the most effective against S. aureus with the highest inhibition zone (24.67 mm ± 0.58) compared to standard antibiotic (erythromycin, 24.00 mm) followed by the methanolic extract against MRSA (24.00 mm ± 1.73). The methanol extract of AHA showed the highest antibacterial activity against MRSA. The results of MIC and MBC of the AHA methanol extract against MRSA were 1.17 ± 1.09 and 9.375 ± 0.0 mg/ml, respectively, demonstrating therapeutically significant antibacterial activity. Ethyl acetate extract has no antibacterial activity against E. coli and K. pneumonia. The findings indicated that the methanol extract of AHA exhibited the highest efficacy against the colorectal carcinoma cell line (HCT-116), with an IC50 value of 126.61 ± 13.35 μg/ml. Conclusion These findings suggest that the methanol extract of AHA could be considered as a potential agent to serve as a source of antibacterial and anticancer compounds.
Collapse
Affiliation(s)
- Reham D. Alghonmeen
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma‘an, Jordan
| | - Saif M. Dmour
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma‘an, Jordan
| | - Sultan A.M. Saghir
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma‘an, Jordan
| | - Saqr Abushattal
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma‘an, Jordan
| | - Sulaiman Alnaimat
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma‘an, Jordan
| | - Mohammed Al-zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Fahd A. Nasr
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Osama Y. Althunibat
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma‘an, Jordan
| |
Collapse
|
9
|
Fernandes PO, Dias ALT, Dos Santos Júnior VS, Sá Magalhães Serafim M, Sousa YV, Monteiro GC, Coutinho ID, Valli M, Verzola MMSA, Ottoni FM, Pádua RMD, Oda FB, Dos Santos AG, Andricopulo AD, da Silva Bolzani V, Mota BEF, Alves RJ, de Oliveira RB, Kronenberger T, Maltarollo VG. Machine Learning-Based Virtual Screening of Antibacterial Agents against Methicillin-Susceptible and Resistant Staphylococcus aureus. J Chem Inf Model 2024; 64:1932-1944. [PMID: 38437501 DOI: 10.1021/acs.jcim.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The application of computer-aided drug discovery (CADD) approaches has enabled the discovery of new antimicrobial therapeutic agents in the past. The high prevalence of methicillin-resistantStaphylococcus aureus(MRSA) strains promoted this pathogen to a high-priority pathogen for drug development. In this sense, modern CADD techniques can be valuable tools for the search for new antimicrobial agents. We employed a combination of a series of machine learning (ML) techniques to select and evaluate potential compounds with antibacterial activity against methicillin-susceptible S. aureus (MSSA) and MRSA strains. In the present study, we describe the antibacterial activity of six compounds against MSSA and MRSA reference (American Type Culture Collection (ATCC)) strains as well as two clinical strains of MRSA. These compounds showed minimal inhibitory concentrations (MIC) in the range from 12.5 to 200 μM against the different bacterial strains evaluated. Our results constitute relevant proven ML-workflow models to distinctively screen for novel MRSA antibiotics.
Collapse
Affiliation(s)
- Philipe Oliveira Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Anna Letícia Teotonio Dias
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Valtair Severino Dos Santos Júnior
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Mateus Sá Magalhães Serafim
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Yamara Viana Sousa
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Gustavo Claro Monteiro
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, São Paulo 14.800-900, Brazil
| | - Isabel Duarte Coutinho
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, São Paulo 14.800-900, Brazil
| | - Marilia Valli
- Departamento de Física e Ciência Interdisciplinar, Instituto de Física, Universidade de São Paulo (USP), São Carlos, São Paulo 13.563-120, Brazil
| | - Marina Mol Sena Andrade Verzola
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Flaviano Melo Ottoni
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Rodrigo Maia de Pádua
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Fernando Bombarda Oda
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Araraquara 14.800-903, Brazil
| | - André Gonzaga Dos Santos
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Araraquara 14.800-903, Brazil
| | - Adriano Defini Andricopulo
- Departamento de Física e Ciência Interdisciplinar, Instituto de Física, Universidade de São Paulo (USP), São Carlos, São Paulo 13.563-120, Brazil
| | - Vanderlan da Silva Bolzani
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, São Paulo 14.800-900, Brazil
| | - Bruno Eduardo Fernandes Mota
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Ricardo José Alves
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| |
Collapse
|
10
|
Dong H, Liao L, Yu P, Long B, Che Y, Lu L, Xu B. Total syntheses and antibacterial evaluations of cudraflavones A-C and related Flavones. Bioorg Chem 2023; 140:106764. [PMID: 37573609 DOI: 10.1016/j.bioorg.2023.106764] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
The total syntheses of the natural prenylated flavones cudraflavones A-C (1-3), artoheterophyllin D (28) and artelasticin (29) are reported, along with the evaluations of their antibacterial activities. The key steps of the synthesis involved a Baker-Venkataraman rearrangement and an intramolecular cyclization for the construction of the flavone core and the regioselective formation of the pyran and isopentenyl scaffolds. The tested natural flavones 1-3 and 27-29 exhibited potent activity against S. aureus ATCC 29213, S. epidermidis ATCC 14990, E. faecalis ATCC 29212 and B. subtilis ATCC 6633 with MIC values ranging from 0.125 μg/mL to 16 μg/mL. Compound 3 displayed the strongest potency, with MIC values in the range between 0.125 and 1 μg/mL, as a potential candidate to combat G+ bacterial infections. Preliminary mechanism of action studies suggested that this compound killed bacteria by disrupting bacterial membrane integrity.
Collapse
Affiliation(s)
- Hongbo Dong
- Engineering Research Center for Pharmaceuticals and Equipment of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, PR China; Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Li Liao
- Engineering Research Center for Pharmaceuticals and Equipment of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, PR China; Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Pei Yu
- Engineering Research Center for Pharmaceuticals and Equipment of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Bin Long
- Engineering Research Center for Pharmaceuticals and Equipment of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Yufei Che
- Engineering Research Center for Pharmaceuticals and Equipment of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Lan Lu
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Bing Xu
- Department of Pediatric Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China.
| |
Collapse
|
11
|
Doh AA, Adjouman YD, Nindjin C, Kouamé KA, Solange GA, Ouattara KB, Amani NG. Antioxidant activity and efficacy of Garcinia kola (bitter kola) oil on pathogenic and alteration microorganisms of attiéké. Heliyon 2023; 9:e21152. [PMID: 37954367 PMCID: PMC10632685 DOI: 10.1016/j.heliyon.2023.e21152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/10/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
Attiéké, the most widely consumed cassava product in Côte d'Ivoire, has a short shelf life. This is largely due to microbial contamination. The aim of this study was therefore to assess the antioxidant activity and effectiveness of Garcinia kola seed oil against pathogenic and spoilage strains of attiéké. This was possible through an extraction of Garcinia kola oil by maceration in hexane. The antimicrobial activity of the oil was assessed using an agar diffusion method. The antioxidant activity of Garcinia kola oil was assessed using the DiPhenyl Picryl Hydrazyl (DPPH) free radical scavenging test and the Ferric Reducing Antioxidant Power (FRAP) test. Garcinia kola oil showed significant antioxidant potential. A high percentage of DPPH radical inhibition was observed, with an IC50 of 2.57 mg/mL. Iron-reducing power was highest when the oil was used at a concentration of 100 %. Garcinia kola oil was able to inhibit the bacterial growth of Staphylococcus aureus, Escherichia coli at a concentration of 100, 50 and 25 % respectively from 22 ± 0.05 to 16 ± 0.00 mm and 20 ± 0.05 to 14 ± 0.08 mm and Salmonella typhimurium (12 ± 00 mm) at a concentration of 100 %. Candida albicans (20 ± 0.07 to 18 ± 0.01 mm), Aspergillus flavus (28 ± 1.41 to 16 ± 0.00 mm) and Aspergillus niger (21 ± 1.01 to 15 ± 0.02) were inhibited at concentrations ranging from 100 to 12.5 %. Bacillus cereus, on the other hand, was resistant to Garcinia kola oil. Based on the findings of this study, Garcinia kola seed oil could be used to extend the shelf life of attiéké.
Collapse
Affiliation(s)
| | - Yao Désiré Adjouman
- Université Nangui Abrogoua, Abidjan, Cote d’Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Cote d’Ivoire
| | - Charlemagne Nindjin
- Université Nangui Abrogoua, Abidjan, Cote d’Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Cote d’Ivoire
| | - Kohi Alfred Kouamé
- Université Nangui Abrogoua, Abidjan, Cote d’Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Cote d’Ivoire
| | - Gbezo Aka Solange
- Université Nangui Abrogoua, Abidjan, Cote d’Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Cote d’Ivoire
| | | | - N'Guessan Georges Amani
- Université Nangui Abrogoua, Abidjan, Cote d’Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Cote d’Ivoire
| |
Collapse
|
12
|
Sykuła A, Bodzioch A, Nowak A, Maniukiewicz W, Ścieszka S, Piekarska-Radzik L, Klewicka E, Batory D, Łodyga-Chruścińska E. Encapsulation and Biological Activity of Hesperetin Derivatives with HP-β-CD. Molecules 2023; 28:6893. [PMID: 37836736 PMCID: PMC10574185 DOI: 10.3390/molecules28196893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The encapsulation of insoluble compounds can help improve their solubility and activity. The effects of cyclodextrin encapsulation on hesperetin's derivatives (HHSB, HIN, and HTSC) and the physicochemical properties of the formed complexes were determined using various analytical techniques. The antioxidant (DPPH•, ABTS•+ scavenging, and Fe2+-chelating ability), cytotoxic, and antibacterial activities were also investigated. The inclusion systems were prepared using mechanical and co-evaporation methods using a molar ratio compound: HP-β-CD = 1:1. The identification of solid systems confirmed the formation of two inclusion complexes at hesperetin (CV) and HHSB (mech). The identification of systems of hesperetin and its derivatives with HP-β-CD in solutions at pHs 3.6, 6.5, and 8.5 and at various temperatures (25, 37 and 60 °C) confirmed the effect of cyclodextrin on their solubility. In the DPPH• and ABTS•+ assay, pure compounds were characterized by higher antioxidant activity than the complexes. In the FRAP study, all hesperetin and HHSB complexes and HTSC-HP-β-CD (mech) were characterized by higher values of antioxidant activity than pure compounds. The results obtained from cytotoxic activity tests show that for most of the systems tested, cytotoxicity increased with the concentration of the chemical, with the exception of HP-β-CD. All systems inhibited Escherichia coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Anna Sykuła
- Faculty of Biotechnology and Food Sciences, Institute of Natural Products and Cosmetics, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland;
| | - Agnieszka Bodzioch
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland;
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Lodz, Poland;
| | - Waldemar Maniukiewicz
- Faculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland;
| | - Sylwia Ścieszka
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (S.Ś.); (L.P.-R.); (E.K.)
| | - Lidia Piekarska-Radzik
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (S.Ś.); (L.P.-R.); (E.K.)
| | - Elżbieta Klewicka
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (S.Ś.); (L.P.-R.); (E.K.)
| | - Damian Batory
- Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Elżbieta Łodyga-Chruścińska
- Faculty of Biotechnology and Food Sciences, Institute of Natural Products and Cosmetics, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland;
| |
Collapse
|
13
|
Woo S, Marquez L, Crandall WJ, Risener CJ, Quave CL. Recent advances in the discovery of plant-derived antimicrobial natural products to combat antimicrobial resistant pathogens: insights from 2018-2022. Nat Prod Rep 2023; 40:1271-1290. [PMID: 37439502 PMCID: PMC10472255 DOI: 10.1039/d2np00090c] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Covering: 2018 to 2022Antimicrobial resistance (AMR) poses a significant global health threat. There is a rising demand for innovative drug scaffolds and new targets to combat multidrug-resistant bacteria. Before the advent of antibiotics, infections were treated with plants chosen from traditional medicine practices. Of Earth's 374 000 plant species, approximately 9% have been used medicinally, but most species remain to be investigated. This review illuminates discoveries of antimicrobial natural products from plants covering 2018 to 2022. It highlights plant-derived natural products with antibacterial, antivirulence, and antibiofilm activity documented in lab studies. Additionally, this review examines the development of novel derivatives from well-studied parent natural products, as natural product derivatives have often served as scaffolds for anti-infective agents.
Collapse
Affiliation(s)
- Sunmin Woo
- Center for the Study of Human Health, Emory University, USA
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, USA
| | - William J Crandall
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, USA
| | - Caitlin J Risener
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, USA
| | - Cassandra L Quave
- Center for the Study of Human Health, Emory University, USA
- Department of Dermatology, Emory University School of Medicine, USA.
| |
Collapse
|
14
|
Qin Y, Xu H, Chen Y, Lei J, Sun J, Zhao Y, Lian W, Zhang M. Metabolomics-Based Analyses of Dynamic Changes in Flavonoid Profiles in the Black Mulberry Winemaking Process. Foods 2023; 12:foods12112221. [PMID: 37297465 DOI: 10.3390/foods12112221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
To overcome the fruit's perishability, mulberry wine has been developed as a method of preservation. However, dynamic changes in metabolites during mulberry wine fermentation have not been reported yet. In the present investigation, UHPLC-QE-MS/MS coupled with multivariate statistical analyses was employed to scrutinize the metabolic profiles, particularly the flavonoid profiles, throughout the process of vinification. In general, the major differential metabolites encompassed organic heterocyclic compounds, amino acids, phenylpropanoids, aromatic compounds, and carbohydrates. The contents of total sugar and alcohol play a primary role that drove the composition of amino acids, polyphenol, aromatic compound, and organic acid metabolites based on the Mantel test. Importantly, among the flavonoids, abundant in mulberry fruit, luteolin, luteolin-7-O-glucoside, (-)-epiafzelechin, eriodictyol, kaempferol, and quercetin were identified as the differential metabolic markers during blackberry wine fermentation and ripening. Flavonoid, flavone and flavonol biosynthesis were also identified to be the major metabolic pathways of flavonoids in 96 metabolic pathways. These results will provide new information on the dynamic changes in flavonoid profiles during black mulberry winemaking.
Collapse
Affiliation(s)
- Yanan Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Haotian Xu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Ya Chen
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, China
| | - Jing Lei
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, China
| | - Jingshuai Sun
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Yan Zhao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Weijia Lian
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
15
|
Conceição M, Beserra FP, Aldana Mejia JA, Caldas GR, Tanimoto MH, Luzenti AM, Gaspari PDM, Evans ND, Bastos JK, Pellizzon CH. Guttiferones: An insight into occurrence, biosynthesis, and their broad spectrum of pharmacological activities. Chem Biol Interact 2023; 370:110313. [PMID: 36566914 DOI: 10.1016/j.cbi.2022.110313] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Guttiferones belong to the polyisoprenylated benzophenone, a class of compounds, a very restricted group of natural plant products, especially in the Clusiaceae family. They are commonly found in bark, stem, leaves, and fruits of plants of the genus Garcinia and Symphonia. Guttiferones have the following classifications according to their chemical structure: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, and T. All of them have received growing attention due to its multiple biological activities. This review provides a first comprehensive approach to plant sources, phytochemical profile, specific pharmacological effects, and mechanisms of guttiferones already described. Studies indicate a broad spectrum of pharmacological activities, such as: anti-inflammatory, immunomodulatory, antioxidant, antitumor, antiparasitic, antiviral, and antimicrobial. Despite the low toxicity of these compounds in healthy cells, there is a lack of studies in the literature related to toxicity in general. Given their beneficial effects, guttiferones are expected to be great potential drug candidates for treating cancer and infectious and transmissible diseases. However, further studies are needed to elucidate their toxicity, specific molecular mechanisms and targets, and to perform more in-depth pharmacokinetic studies. This review highlights chemical properties, biological characteristics, and mechanisms of action so far, offering a broad view of the subject and perspectives for the future of guttiferones in therapeutics.
Collapse
Affiliation(s)
- Mariana Conceição
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Fernando Pereira Beserra
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil; Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| | - Jennyfer Andrea Aldana Mejia
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Gabriel Rocha Caldas
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Matheus Hikaru Tanimoto
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Andréia Marincek Luzenti
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Priscyla Daniely Marcato Gaspari
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Nicholas David Evans
- Human Development and Health, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| | - Jairo Kenupp Bastos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Cláudia Helena Pellizzon
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
16
|
Role of Phenylpropanoids and Flavonoids in Plant Resistance to Pests and Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238371. [PMID: 36500459 PMCID: PMC9735708 DOI: 10.3390/molecules27238371] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Phenylpropanoids and flavonoids are specialized metabolites frequently reported as involved in plant defense to biotic or abiotic stresses. Their biosynthetic accumulation may be constitutive and/or induced in response to external stimuli. They may participate in plant signaling driving plant defense responses, act as a physical or chemical barrier to prevent invasion, or as a direct toxic weapon against microbial or insect targets. Their protective action is described as the combinatory effect of their localization during the host's interaction with aggressors, their sustained availability, and the predominance of specific compounds or synergy with others. Their biosynthesis and regulation are partly deciphered; however, a lot of gaps in knowledge remain to be filled. Their mode of action on microorganisms and insects probably arises from an interference with important cellular machineries and structures, yet this is not fully understood for all type of pests and pathogens. We present here an overview of advances in the state of the art for both phenylpropanoids and flavonoids with the objective of paving the way for plant breeders looking for natural sources of resistance to improve plant varieties. Examples are provided for all types of microorganisms and insects that are targeted in crop protection. For this purpose, fields of phytopathology, phytochemistry, and human health were explored.
Collapse
|
17
|
Yuan G, Xia X, Guan Y, Yi H, Lai S, Sun Y, Cao S. Antimicrobial Quantitative Relationship and Mechanism of Plant Flavonoids to Gram-Positive Bacteria. Pharmaceuticals (Basel) 2022; 15:ph15101190. [PMID: 36297302 PMCID: PMC9611191 DOI: 10.3390/ph15101190] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) poses a serious threat to human health, and new antimicrobial agents are desperately needed. Plant flavonoids are increasingly being paid attention to for their antibacterial activities, for the enhancing of the antibacterial activity of antimicrobials, and for the reversing of AMR. To obtain more scientific and reliable equations, another two regression equations, between the minimum inhibitory concentration (MIC) (y) and the lipophilicity parameter ACD/LogP or LogD7.40 (x), were established once again, based on the reported data. Using statistical methods, the best one of the four regression equations, including the two previously reported, with regard to the antimicrobial quantitative relationship of plant flavonoids to Gram-positive bacteria, is y = −0.1285 x6 + 0.7944 x5 + 51.785 x4 − 947.64 x3 + 6638.7 x2 − 21,273 x + 26,087; here, x is the LogP value. From this equation, the MICs of most plant flavonoids to Gram-positive bacteria can be calculated, and the minimum MIC was predicted as approximately 0.9644 μM and was probably from 0.24 to 0.96 μM. This more reliable equation further proved that the lipophilicity is a key factor of plant flavonoids against Gram-positive bacteria; this was further confirmed by the more intuitive evidence subsequently provided. Based on the antibacterial mechanism proposed in our previous work, these also confirmed the antibacterial mechanism: the cell membrane is the major site of plant flavonoids acting on the Gram-positive bacteria, and this involves the damage of the phospholipid bilayers. The above will greatly accelerate the discovery and application of plant flavonoids with remarkable antibacterial activity and the thorough research on their antimicrobial mechanism.
Collapse
Affiliation(s)
- Ganjun Yuan
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence: ; Tel.: +86-0791-83813459
| | - Xuexue Xia
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yingying Guan
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Houqin Yi
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shan Lai
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yifei Sun
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Seng Cao
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
18
|
Sweet R, Kroon PA, Webber MA. Activity of antibacterial phytochemicals and their potential use as natural food preservatives. Crit Rev Food Sci Nutr 2022; 64:2076-2087. [PMID: 36121430 DOI: 10.1080/10408398.2022.2121255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The risk to human health from bacterial foodborne infection is presently controlled by the addition of antimicrobial preservatives to food. However, the use of chemical preservatives such as sodium nitrite poses a health risk in themselves with concerns around carcinogenic effects. This makes the development of improved preservatives a priority for the food industry. One promising source of novel antimicrobial compounds can be found in nature; phytochemicals, in particular polyphenols are secondary metabolites produced by plants for numerous purposes including antimicrobial defence. There has been significant study of phytochemicals; including quantifying their antimicrobial activity, potential to synergise with current antibiotics and the feasibility of their application as natural food preservatives. However, there remains significant uncertainty about the relative antimicrobial efficacy of different phytochemicals, their mechanisms of action (MOA) and the potential for emergence of bacterial resistance to their effects. This review summarizes recent work relevant to the potential development of phytochemicals as antimicrobial agents.
Collapse
Affiliation(s)
- Ryan Sweet
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Paul A Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norwich Medical School, Norwich Research Park, Norwich, UK
| |
Collapse
|
19
|
Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer. Int J Mol Sci 2022; 23:ijms231810479. [PMID: 36142391 PMCID: PMC9499605 DOI: 10.3390/ijms231810479] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, interest in natural products such as alternative sources of pharmaceuticals for numerous chronic diseases, including tumors, has been renewed. Propolis, a natural product collected by honeybees, and polyphenolic/flavonoid propolis-related components modulate all steps of the cancer progression process. Anticancer activity of propolis and its compounds relies on various mechanisms: cell-cycle arrest and attenuation of cancer cells proliferation, reduction in the number of cancer stem cells, induction of apoptosis, modulation of oncogene signaling pathways, inhibition of matrix metalloproteinases, prevention of metastasis, anti-angiogenesis, anti-inflammatory effects accompanied by the modulation of the tumor microenvironment (by modifying macrophage activation and polarization), epigenetic regulation, antiviral and bactericidal activities, modulation of gut microbiota, and attenuation of chemotherapy-induced deleterious side effects. Ingredients from propolis also "sensitize" cancer cells to chemotherapeutic agents, likely by blocking the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In this review, we summarize the current knowledge related to the the effects of flavonoids and other polyphenolic compounds from propolis on tumor growth and metastasizing ability, and discuss possible molecular and cellular mechanisms involved in the modulation of inflammatory pathways and cellular processes that affect survival, proliferation, invasion, angiogenesis, and metastasis of the tumor.
Collapse
|
20
|
Hashim NS, Tan ML, Ooi KL, Sulaiman SF. The effect of flavonols in Anacardium occidentale L. leaf extracts on skin pathogenic microorganisms. Nat Prod Res 2022; 37:2009-2012. [PMID: 35997235 DOI: 10.1080/14786419.2022.2112038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Cashew (Anacardium occidentale L.) leaf is traditionally used to treat skin infections. Although many flavonols have been identified from its leaf extract, their inhibitory effects on skin pathogens are not yet determined. The aims of this study were to determine the antimicrobial (against skin pathogenic microbes) and antioxidant activities of four flavonol glycosides from the crude extract and three flavonol aglycones from the hydrolyzed extract. The hydrolyzed extract was found to show higher activities than the crude extract. Myricetin showed the highest activity against all the tested bacteria and yeast with the lowest Minimum Inhibition Concentration (MIC) of 7.81 μg/mL on Corynebacterium minutissimum ATCC23348. Myricetin also exhibited good primary antioxidant activities with the effective concentration with 50% of activity (EC50) values ranged between 2.23 μg/mL and 6.40 μg/mL. The highest secondary antioxidant activity was indicated by myricetin-3-O-rhamnoside. Thus, myricetin can be considered as a bioactive compound of the hydrolyzed extract.
Collapse
Affiliation(s)
| | - Mei Lan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Kheng Leong Ooi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | |
Collapse
|
21
|
A Comparative Study of Hesperetin, Hesperidin and Hesperidin Glucoside: Antioxidant, Anti-Inflammatory, and Antibacterial Activities In Vitro. Antioxidants (Basel) 2022; 11:antiox11081618. [PMID: 36009336 PMCID: PMC9405481 DOI: 10.3390/antiox11081618] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 12/21/2022] Open
Abstract
The antioxidant, anti-inflammatory and antibacterial activities of hesperetin, hesperidin and hesperidin glucoside with different solubility were compared in vitro. Hesperetin was prepared by enzymatic hydrolysis from hesperidin, and hesperidin glucoside composed of hesperidin mono-glucoside was prepared from hesperidin through enzymatic transglycosylation. Solubility of the compounds was different: the partition coefficient (log P) was 2.85 ± 0.02 for hesperetin, 2.01 ± 0.02 for hesperidin, and −3.04 ± 0.03 for hesperidin glucoside. Hesperetin showed a higher effect than hesperidin and hesperidin glucoside on radical scavenging activity in antioxidant assays, while hesperidin and hesperidin glucoside showed similar activity. Cytotoxicity was low in the order of hesperidin glucoside, hesperidin, and hesperetin in murine macrophage RAW264.7 cells. Treatment of the cells with each compound reduced the levels of inflammatory mediators, nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). Hesperetin was most effective at relatively low concentrations, however, hesperidin glucoside was also effective at higher concentration. Hesperetin showed higher antibacterial activity than hesperidin in both Gram-positive and -negative bacteria, and hesperidin glucoside showed similarly higher activity with hesperetin depending on the bacterial strain. In conclusion, hesperetin in the form of aglycone showed more potent biological activity than hesperidin and hesperidin glucoside. However, hesperidin glucoside, the highly soluble form, has been shown to increase the activity compared to poorly soluble hesperidin.
Collapse
|
22
|
Prenylated Flavonoids in Topical Infections and Wound Healing. Molecules 2022; 27:molecules27144491. [PMID: 35889363 PMCID: PMC9323352 DOI: 10.3390/molecules27144491] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
The review presents prenylated flavonoids as potential therapeutic agents for the treatment of topical skin infections and wounds, as they can restore the balance in the wound microenvironment. A thorough two-stage search of scientific papers published between 2000 and 2022 was conducted, with independent assessment of results by two reviewers. The main criteria were an MIC (minimum inhibitory concentration) of up to 32 µg/mL, a microdilution/macrodilution broth method according to CLSI (Clinical and Laboratory Standards Institute) or EUCAST (European Committee on Antimicrobial Susceptibility Testing), pathogens responsible for skin infections, and additional antioxidant, anti-inflammatory, and low cytotoxic effects. A total of 127 structurally diverse flavonoids showed promising antimicrobial activity against pathogens affecting wound healing, predominantly Staphylococcus aureus strains, but only artocarpin, diplacone, isobavachalcone, licochalcone A, sophoraflavanone G, and xanthohumol showed multiple activity, including antimicrobial, antioxidant, and anti-inflammatory along with low cytotoxicity important for wound healing. Although prenylated flavonoids appear to be promising in wound therapy of humans, and also animals, their activity was measured only in vitro and in vivo. Future studies are, therefore, needed to establish rational dosing according to MIC and MBC (minimum bactericidal concentration) values, test potential toxicity to human cells, measure healing kinetics, and consider formulation in smart drug release systems and/or delivery technologies to increase their bioavailability.
Collapse
|
23
|
The Content of Phenolic Compounds and Mineral Elements in Edible Nuts. Molecules 2022; 27:molecules27144326. [PMID: 35889199 PMCID: PMC9316459 DOI: 10.3390/molecules27144326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Edible nuts are an important component of a healthy diet, and their frequent consumption has beneficial impact on human health, including reducing the risk of cardiovascular and neurodegenerative diseases. Moreover, various factors, including cultivar, climate, soil characteristic, storage and treatment have influence on the chemical composition of nuts. Therefore, nine tree nut types and peanuts commonly available on Polish market were evaluated for phenolic profile and mineral elements content. The concentration of individual phenolic compounds, including flavonoids, aromatic acids and caffeic acid phenethyl ester (CAPE) was determined by ultra-high pressure liquid chromatography, while the content of macro-elements and trace minerals was analyzed by atomic absorption spectrometry. The phenolic profile of analyzed nuts substantially varied depending on the type of nut. The highest total content of all analyzed flavonoids was determined in walnuts (114.861 µg/g), while the lowest in almonds (1.717 µg/g). In turn, the highest total content of all tested aromatic acid was determined in pecans (33.743 µg/g), and the lowest in almonds (0.096 µg/g). Epicatechin and cinnamic acid were detected in the highest concentration in tested nuts. Moreover, in examined nuts (except walnuts and Brazil nuts), the presence of CAPE was confirmed. The tested nuts were also characterized by wide variation in element concentrations. Almonds contained high concentration of macro-elements (13,111.60 µg/g), while high content of trace elements was determined in pine nuts (192.79 µg/g). The obtained results indicate that the tested nuts are characterized by a significant diversity in the content of both phenolic compounds and minerals. However, all types of nuts, apart from the well-known source of fatty acids, are a rich source of various components with beneficial effect on human health.
Collapse
|
24
|
Acaricidal activity of Mexican plants against Rhipicephalus microplus resistant to amitraz and cypermethrin. Vet Parasitol 2022; 307-308:109733. [DOI: 10.1016/j.vetpar.2022.109733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
|
25
|
Song L, Hu X, Ren X, Liu J, Liu X. Antibacterial Modes of Herbal Flavonoids Combat Resistant Bacteria. Front Pharmacol 2022; 13:873374. [PMID: 35847042 PMCID: PMC9278433 DOI: 10.3389/fphar.2022.873374] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/17/2022] [Indexed: 12/21/2022] Open
Abstract
The increasing dissemination of multidrug resistant (MDR) bacterial infections endangers global public health. How to develop effective antibacterial agents against resistant bacteria is becoming one of the most urgent demands to solve the drug resistance crisis. Traditional Chinese medicine (TCM) with multi-target antibacterial actions are emerging as an effective way to combat the antibacterial resistance. Based on the innovative concept of organic wholeness and syndrome differentiation, TCM use in antibacterial therapies is encouraging. Herein, advances on flavonoid compounds of heat-clearing Chinese medicine exhibit their potential for the therapy of resistant bacteria. In this review, we focus on the antibacterial modes of herbal flavonoids. Additionally, we overview the targets of flavonoid compounds and divide them into direct-acting antibacterial compounds (DACs) and host-acting antibacterial compounds (HACs) based on their modes of action. We also discuss the associated functional groups of flavonoid compounds and highlight recent pharmacological activities against diverse resistant bacteria to provide the candidate drugs for the clinical infection.
Collapse
Affiliation(s)
- Lianyu Song
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
| | - Xin Hu
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
| | - Xiaomin Ren
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
| | - Jing Liu
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
| | - Xiaoye Liu
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
- *Correspondence: Xiaoye Liu,
| |
Collapse
|
26
|
Pan Y, Li H, Shahidi F, Luo T, Deng Z. Interactions among dietary phytochemicals and nutrients: Role of cell membranes. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Recent Advancements in Enhancing Antimicrobial Activity of Plant-Derived Polyphenols by Biochemical Means. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050401] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plants are a reservoir of phytochemicals, which are known to possess several beneficial health properties. Along with all the secondary metabolites, polyphenols have emerged as potential replacements for synthetic additives due to their lower toxicity and fewer side effects. However, controlling microbial growth using these preservatives requires very high doses of plant-derived compounds, which limits their use to only specific conditions. Their use at high concentrations leads to unavoidable changes in the organoleptic properties of foods. Therefore, the biochemical modification of natural preservatives can be a promising alternative to enhance the antimicrobial efficacy of plant-derived compounds/polyphenols. Amongst these modifications, low concentration of ascorbic acid (AA)–Cu (II), degradation products of ascorbic acid (DPAA), Maillard reaction products (MRPs), laccase–mediator (Lac–Med) and horse radish peroxidase (HRP)–H2O2 systems standout. This review reveals the importance of plant polyphenols, their role as antimicrobial agents, the mechanism of the biochemical methods and the ways these methods may be used in enhancing the antimicrobial potency of the plant polyphenols. Ultimately, this study may act as a base for the development of potent antimicrobial agents that may find their use in food applications.
Collapse
|
28
|
Andre, Arief II, Apriantini A, Jayanegara A, Budiman C. Antimicrobial Activity of Propolis Extract and Their Application as a Natural Preservative in Livestock Products: A Meta-Analysis. Food Sci Anim Resour 2022; 42:280-294. [PMID: 35310561 PMCID: PMC8907792 DOI: 10.5851/kosfa.2022.e4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/17/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to evaluate the effectiveness of propolis extract as a natural preservative for livestock products in term of chemical and microbiological characteristics by meta-analysis. The stages carried out in this study were identification, selection, checking suitability, and the resulting selected articles were used in the meta-analysis. The selection results obtained a total of 22 selected journal articles consisting of 9 articles for analysis of the antimicrobial activity of propolis extract and 13 articles for analysis of the chemical and mirobiological characteristics of livestock products. The articles were obtained from electronic databases, namely Science Direct and Google Scholar. The model used in this study is the random-effect model involving two groups, control and experimental. Heterogeneity and effect size values were carried out in this study using Hedge's obtained through openMEE software. Forest plot tests and data validation on publication bias was obtained using Kendall's test throught JASP 0.14.1 software. The results showed that there is a significant relationship between propolis extract with the results of the antimicrobial activity (p<0.05). In addition, the results of the application of propolis extract on the livestock products for the test microbes and the value of thiobarbituric acid reactive substances (TBARs) showed significant results (p<0.05). Conclusion based on the random-effect model on the effectiveness of antimicrobial activity of propolis extract and their apllication as a natural preservative of the chemical and microbiological characteristics of livestock products is valid by Kendall's test (p>0.05). Propolis in this case effectively used as natural preservatives in livestock products.
Collapse
Affiliation(s)
- Andre
- Department of Animal Production Science
and Technology, Faculty of Animal Science, IPB University,
Bogor 16680, Indonesia
| | - Irma Isnafia Arief
- Department of Animal Production Science
and Technology, Faculty of Animal Science, IPB University,
Bogor 16680, Indonesia
| | - Astari Apriantini
- Department of Animal Production Science
and Technology, Faculty of Animal Science, IPB University,
Bogor 16680, Indonesia
| | - Anuraga Jayanegara
- Department of Nutrition and Feed Science
and Technology, Faculty of Animal Science, IPB University,
Bogor 16680, Indonesia
| | - Cahyo Budiman
- Department of Animal Production Science
and Technology, Faculty of Animal Science, IPB University,
Bogor 16680, Indonesia
| |
Collapse
|
29
|
Abou Baker DH. An ethnopharmacological review on the therapeutical properties of flavonoids and their mechanisms of actions: A comprehensive review based on up to date knowledge. Toxicol Rep 2022; 9:445-469. [PMID: 35340621 PMCID: PMC8943219 DOI: 10.1016/j.toxrep.2022.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022] Open
Abstract
Flavonoids -a class of low molecular weight secondary metabolites- are ubiquitous and cornucopia throughout the plant kingdom. Structurally, the main structure consists of C6-C3-C6 rings with different substitution patterns so that many sub-classes are obtained, for example: flavonols, flavonolignans, flavonoid glycosides, flavans, anthocyanidins, aurones, anthocyanidins, flavones, neoflavonoids, chalcones, isoflavones, flavones and flavanones. Flavonoids are evaluated to have drug like nature since they possess different therapeutic activities, and can act as cardioprotective, antiviral, antidiabetic, anti-inflammatory, antibacterial, anticancer, and also work against Alzheimer's disease and others. However, information on the relationship between their structure and biological activity is scarce. Therefore, the present review tries to summarize all the therapeutic activities of flavonoids, their mechanisms of action and the structure activity relationship. Latest updated ethnopharmacological review of the therapeutic effects of flavonoids. Flavonoids are attracting attention because of their therapeutic properties. Flavonoids are valuable candidates for drug development against many dangerous diseases. This overview summarizes the most important therapeutic effect and mechanism of action of flavonoids. General knowledge about the structure activity relationship of flavonoids is summarized. Substitution of chemical groups in the structure of flavonoids can significantly change their biological and chemical properties. The chemical properties of the basic flavonoid structure should be considered in a drug-based structural program.
Collapse
|
30
|
Tan Z, Deng J, Ye Q, Zhang Z. The antibacterial activity of natural-derived flavonoids. Curr Top Med Chem 2022; 22:1009-1019. [PMID: 35189804 DOI: 10.2174/1568026622666220221110506] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/31/2021] [Accepted: 01/16/2022] [Indexed: 11/22/2022]
Abstract
Flavonoids, a wide variety of phenolic secondary metabolites, are found in almost all plant families in the leaves, stems, roots, flowers, and seeds. Flavonoids could exert antibacterial activity via damaging the cytoplasmic membrane, inhibiting energy metabolism, and inhibiting the synthesis of nucleic acids, so flavonoids are considered constitutive antibacterial substances. This review aims to outline the recent advances of natural-derived flavonoids, including flavonoid glycosides with antibacterial potential to provide novel antibacterial lead hits/candidates, covering articles published between January 2016 and July 2021.
Collapse
Affiliation(s)
- Zhenyou Tan
- Guangdong Xianqiang Pharmaceutical Co., Ltd, Guangzhou, P. R. China
| | - Jun Deng
- Guangdong Zhongsheng Pharmaceutical Co., Ltd, Dongguan, Guangdong, PR China
| | - Qiongxian Ye
- Guangdong Zhongsheng Pharmaceutical Co., Ltd, Dongguan, Guangdong, PR China
| | - Zhenfeng Zhang
- Guangdong Zhongsheng Pharmaceutical Co., Ltd, Dongguan, Guangdong, PR China
| |
Collapse
|
31
|
Shamsudin NF, Ahmed QU, Mahmood S, Ali Shah SA, Khatib A, Mukhtar S, Alsharif MA, Parveen H, Zakaria ZA. Antibacterial Effects of Flavonoids and Their Structure-Activity Relationship Study: A Comparative Interpretation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041149. [PMID: 35208939 PMCID: PMC8879123 DOI: 10.3390/molecules27041149] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022]
Abstract
According to the latest report released by the World Health Organization, bacterial resistance to well-known and widely available antibacterial drugs has become a significant and severe global health concern and a grim challenge to tackle in order to cure infections associated with multidrug-resistant pathogenic microorganisms efficiently. Consequently, various strategies have been orchestrated to cure the severe complications related to multidrug-resistant bacteria effectively. Some approaches involved the retardation of biofilm formation and multidrug-resistance pumps in bacteria as well as the discovery of new antimicrobial agents demonstrating different mechanisms of action. In this regard, natural products namely alkaloids, terpenoids, steroids, anthraquinone, flavonoids, saponins, tannins, etc., have been suggested to tackle the multidrug-resistant bacterial strains owing to their versatile pharmacological effects. Amongst these, flavonoids, also known as polyphenolic compounds, have been widely evaluated for their antibacterial property due to their tendency to retard the growth of a wide range of pathogenic microorganisms, including multidrug-resistant bacteria. The hydroxylation of C5, C7, C3′, and C4′; and geranylation or prenylation at C6 have been extensively studied to increase bacterial inhibition of flavonoids. On the other hand, methoxylation at C3′ and C5 has been reported to decrease flavonoids’ antibacterial action. Hence, the latest information on the antibacterial activity of flavonoids is summarized in this review, with particular attention to the structure–activity relationship of this broad class of natural compounds to discover safe and potent antibacterial agents as natural products.
Collapse
Affiliation(s)
- Nur Farisya Shamsudin
- Drug Design and Synthesis Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang D. M., Malaysia; (N.F.S.); (A.K.)
| | - Qamar Uddin Ahmed
- Drug Design and Synthesis Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang D. M., Malaysia; (N.F.S.); (A.K.)
- Correspondence: (Q.U.A.); or (Z.A.Z.)
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Department of Pharmaceutical Engineering, Faculty of Engineering Technology (Chemical), Gambang Campus, Universiti Malaysia Pahang (UMP), Kuantan 26300, Pahang D. M., Malaysia
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia;
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
| | - Alfi Khatib
- Drug Design and Synthesis Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang D. M., Malaysia; (N.F.S.); (A.K.)
| | - Sayeed Mukhtar
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.M.); (H.P.)
| | - Meshari A. Alsharif
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia;
| | - Humaira Parveen
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.M.); (H.P.)
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
- Correspondence: (Q.U.A.); or (Z.A.Z.)
| |
Collapse
|
32
|
Umair M, Sultana T, Xiaoyu Z, Senan AM, Jabbar S, Khan L, Abid M, Murtaza MA, Kuldeep D, Al‐Areqi NAS, Zhaoxin L. LC-ESI-QTOF/MS characterization of antimicrobial compounds with their action mode extracted from vine tea ( Ampelopsis grossedentata) leaves. Food Sci Nutr 2022; 10:422-435. [PMID: 35154679 PMCID: PMC8825723 DOI: 10.1002/fsn3.2679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 10/10/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
Vine tea (Ampelopsis grossedentata) is a tea plant cultivated south of the Chinese Yangtze River. It has anti-inflammatory properties and is used to normalize blood circulation and detoxification. The leaves of vine tea are the most abundant source of flavonoids, such as dihydromyricetin and myricetin. However, as the main bioactive flavonoid in vine tea, dihydromyricetin was the main focus of previous research. This study aimed to explore the antibacterial activities of vine tea against selected foodborne pathogens. The antimicrobial activity of vine tea extract was evaluated by the agar well diffusion method. Cell membrane integrity and bactericidal kinetics, along with physical damage to the cell membrane, were also observed. The extract was analyzed using a high-performance liquid chromatography-diode array detector (HPLC-DAD), and the results were confirmed using a modified version of a previously published method that combined liquid chromatography and electrospray-ionized quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF/MS). Cell membrane integrity and bactericidal kinetics were determined by releasing intracellular material in suspension and monitoring it at 260 nm using an ultraviolet (UV) spectrophotometer. A scanning electron microscope (SEM) was used to detect morphological alterations and physical damage to the cell membrane. Six compounds were isolated successfully: (1) myricetin (C15H10O8), (2) myricetin 3-O-rhamnoside (C21H20O12), (3) 5,7,8,3,4-pentahydroxyisoflavone (C15H10O7), (4) dihydroquercetin (C15H12O7), (5) 6,8-dihydroxykaempferol (C15H10O8), and (6) ellagic acid glucoside (C20H16O13). Among these bioactive compounds, C15H10O7 was found to have vigorous antimicrobial activity against Bacillus cereus (AS11846) and Staphylococcus aureus (CMCCB26003). A dose-dependent bactericidal kinetics with a higher degree of absorbance at optical density 260 (OD260) was observed when the bacterial suspension was incubated with C15H10O7 for 8 h. Furthermore, a scanning electron microscope study revealed physical damage to the cell membrane. In addition, the action mode of C15H10O7 was on the cell wall of the target microorganism. Together, these results suggest that C15H10O7 has vigorous antimicrobial activity and can be used as a potent antimicrobial agent in the food processing industry.
Collapse
Affiliation(s)
- Muhammad Umair
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Tayyaba Sultana
- College of Public AdministrationNanjing Agriculture UniversityNanjingChina
| | - Zhu Xiaoyu
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Ahmed M. Senan
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Saqib Jabbar
- Food Science Research Institute (FSRI)National Agricultural Research CentreIslamabadPakistan
| | - Labiba Khan
- Food Science Research Institute (FSRI)National Agricultural Research CentreIslamabadPakistan
| | - Muhammad Abid
- Institute of Food and Nutritional SciencesPir Mehr Ali Shah, Arid Agriculture University RawalpindiRawalpindiPakistan
| | - Mian Anjum Murtaza
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Dhama Kuldeep
- Division of PathologyICAR‐Indian Veterinary, Research InstituteIzatnagarIndia
| | - Niyazi A. S. Al‐Areqi
- Department of ChemistryFaculty of Applied ScienceTaiz UniversityTaizRepublic of Yemen
| | - Lu Zhaoxin
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| |
Collapse
|
33
|
Wrońska N, Szlaur M, Zawadzka K, Lisowska K. The Synergistic Effect of Triterpenoids and Flavonoids-New Approaches for Treating Bacterial Infections? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030847. [PMID: 35164112 PMCID: PMC8838219 DOI: 10.3390/molecules27030847] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
Currently, the pharmaceutical industry is well-developed, and a large number of chemotherapeutics are being produced. These include antibacterial substances, which can be used in treating humans and animals suffering from bacterial infections, and as animal growth promoters in the agricultural industry. As a result of the excessive use of antibiotics and emerging resistance amongst bacteria, new antimicrobial drugs are needed. Due to the increasing trend of using natural, ecological, and safe products, there is a special need for novel phytocompounds. The compounds analysed in the present study include two triterpenoids ursolic acid (UA) and oleanolic acid (OA) and the flavonoid dihydromyricetin (DHM). All the compounds displayed antimicrobial activity against Gram-positive (Staphylococcus aureus ATCC 6538, Staphylococcus epidermidis ATCC 12228, and Listeria monocytogenes ATCC 19115) and Gram-negative bacteria (Escherichia coli ATCC 25922, Proteus hauseri ATCC 15442, and Campylobacter jejuni ATCC 33560) without adverse effects on eukaryotic cells. Both the triterpenoids showed the best antibacterial potential against the Gram-positive strains. They showed synergistic activity against all the tested microorganisms, and a bactericidal effect with the combination OA with UA against both Staphylococcus strains. In addition, the synergistic action of DHM, UA, and OA was reported for the first time in this study. Our results also showed that combination with triterpenoids enhanced the antimicrobial potential of DHM.
Collapse
|
34
|
Alizadeh SR, Ebrahimzadeh MA. Quercetin derivatives: Drug design, development, and biological activities, a review. Eur J Med Chem 2021; 229:114068. [PMID: 34971873 DOI: 10.1016/j.ejmech.2021.114068] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
More studies are needed to develop new drugs for problems associated with drug resistance and unfavorable side effects. The natural flavonoid of quercetin revealed a wide range of biological activities by the modulation of various targets and signaling pathways. However, quercetin's low solubility and poor bioavailability have restricted its applicability; as a result, researchers have attempted to design and synthesize numerous novel quercetin derivatives using various methodologies in order to modify quercetin's constraints; the physico-chemical properties of quercetin's molecular scaffold make it appealing for drug development; low molecular mass and chemical groups are two of these characteristics. Therefore, the biological activities of quercetin derivatives, as well as the relationship between activity and chemical structure and their mechanism of action, were investigated. These quercetin-based molecules could be valuable in the creation and discovery of medications for a number of diseases.
Collapse
Affiliation(s)
- Seyedeh Roya Alizadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
35
|
Oliveira JMDS, Cavalcanti TFS, Leite IF, Dos Santos DMRC, Porto ICCDM, de Aquino FLT, Sonsin AF, Lins RML, Vitti RP, de Freitas JD, Barreto EDO, de Souza ST, Kamiya RU, do Nascimento TG, Tonholo J. Propolis in Oral Healthcare: Antibacterial Activity of a Composite Resin Enriched With Brazilian Red Propolis. Front Pharmacol 2021; 12:787633. [PMID: 34912230 PMCID: PMC8667603 DOI: 10.3389/fphar.2021.787633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/03/2021] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to obtain a Brazilian red propolis (BRP) enriched composite resin and to perform the characterization of its antibacterial activity, mechanical, and physical-chemical properties. Brazilian red propolis ethyl acetate extract (EABRP) was characterized by LC-ESI-Orbitrap-FTMS, UPLC-DAD, antibacterial activity, total flavonoids content, and radical scavenging capacity. BRP was incorporated to a commercial composite resin (RC) to obtain BRP enriched composite at 0.1, 0.15 and 0.25% (RP10, RP15 and RP25, respectively). The antibacterial activity RPs was evaluated against Streptococcus mutans by contact direct test and expressed by antibacterial ratio. The RPs were characterized as its cytotoxicity against 3T3 fibroblasts, flexural strength (FS), Knoop microhardness (KHN), post-cure depth (CD), degree of conversion (DC%), water sorption (Wsp), water solubility (Wsl), average roughness (Ra), and thermal analysis. Were identified 50 chemical compounds from BRP extract by LC-ESI-Orbitrap-FTMS. EABRP was bacteriostatic and bactericide at 125 and 500 μg/ml, respectively. The RP25 exhibited antibacterial ratio of 90.76% after 1 h of direct contact with S. mutans (p < 0.0001) while RC no showed significative antibacterial activity (p = 0.1865), both compared with cell control group. RPs and RC no showed cytotoxicity. RPs exhibited CD from 2.74 to 4.48 mm, DC% from 80.70 to 83.96%, Wsp from 17.15 to 21.67 μg/mm3, Wsl from 3.66 to 4.20 μg/mm3, Ra from 14.48 to 20.76 nm. RPs showed thermal resistance between 448–455°C. The results support that propolis can be used on development of modified composite resins that show antibacterial activity and that have compatible mechanical and physical-chemical properties to the indicate for composite resins.
Collapse
Affiliation(s)
- José Marcos Dos Santos Oliveira
- Postgraduate Program of Chemistry and Biotechnology, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.,Postgraduate Program in Health Research, Cesmac University Center, Maceió, Brazil
| | - Théo Fortes Silveira Cavalcanti
- Postgraduate Program in Materials, Center of Technology, Federal University of Alagoas, Maceió, Brazil.,Faculty of Dentistry, Federal University of Alagoas, Maceió, Brazil
| | | | | | - Isabel Cristina Celerino de Moraes Porto
- Faculty of Dentistry, Federal University of Alagoas, Maceió, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Fernanda Lima Torres de Aquino
- Postgraduate Program in Health Sciences, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Artur Falqueto Sonsin
- Postgraduate Program in Physics, Institute of Physics, Federal University of Alagoas, Maceió, Brazil
| | | | | | | | - Emiliano de Oliveira Barreto
- Postgraduate Program in Health Sciences, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Samuel Teixeira de Souza
- Postgraduate Program in Physics, Institute of Physics, Federal University of Alagoas, Maceió, Brazil
| | - Regianne Umeko Kamiya
- Postgraduate Program in Health Sciences, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Ticiano Gomes do Nascimento
- Postgraduate Program in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Josealdo Tonholo
- Postgraduate Program of Chemistry and Biotechnology, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| |
Collapse
|
36
|
Suppressing Alpha-Hemolysin as Potential Target to Screen of Flavonoids to Combat Bacterial Coinfection. Molecules 2021; 26:molecules26247577. [PMID: 34946657 PMCID: PMC8709385 DOI: 10.3390/molecules26247577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/04/2021] [Accepted: 12/12/2021] [Indexed: 11/21/2022] Open
Abstract
The rapid emergence of bacterial coinfection caused by cytosolic bacteria has become a huge threat to public health worldwide. Past efforts have been devoted to discover the broad-spectrum antibiotics, while the emergence of antibiotic resistance encourages the development of antibacterial agents. In essence, bacterial virulence is a factor in antibiotic tolerance. However, the discovery and development of new antibacterial drugs and special antitoxin drugs is much more difficult in the antibiotic resistance era. Herein, we hypothesize that antitoxin hemolytic activity can serve as a screening principle to select antibacterial drugs to combat coinfection from natural products. Being the most abundant natural drug of plant origins, flavonoids were selected to assess the ability of antibacterial coinfections in this paper. Firstly, we note that four flavonoids, namely, baicalin, catechin, kaempferol, and quercetin, have previously exhibited antibacterial abilities. Then, we found that baicalin, kaempferol, and quercetin have better inhibitions of hemolytic activity of Hla than catechin. In addition, kaempferol and quercetin, have therapeutic effectivity for the coinfections of Staphylococcus aureus and Pseudomonas aeruginosa in vitro and in vivo. Finally, our results indicated that kaempferol and quercetin therapied the bacterial coinfection by inhibiting S. aureus α-hemolysin (Hla) and reduced the host inflammatory response. These results suggest that antitoxins may play a promising role as a potential target for screening flavonoids to combat bacterial coinfection.
Collapse
|
37
|
Nandre VS, Bagade AV, Kasote DM, Lee JH, Kodam KM, Kulkarni MV, Ahmad A. Antibacterial activity of Indian propolis and its lead compounds against multi-drug resistant clinical isolates. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Deblais L, Rajashekara G. Compound Prioritization through Meta-Analysis Enhances the Discovery of Antimicrobial Hits against Bacterial Pathogens. Antibiotics (Basel) 2021; 10:antibiotics10091065. [PMID: 34572646 PMCID: PMC8471430 DOI: 10.3390/antibiotics10091065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
The development of informatic tools to improve the identification of novel antimicrobials would significantly reduce the cost and time of drug discovery. We previously screened several plant (Xanthomonas sp., Clavibacter sp., Acidovorax sp., and Erwinia sp.), animal (Avian pathogenic Escherichia coli and Mycoplasma sp.), and human (Salmonella sp. and Campylobacter sp.) pathogens against a pre-selected small molecule library (n = 4182 SM) to identify novel SM (hits) that completely inhibited the bacterial growth or attenuated at least 75% of the virulence (quorum sensing or biofilm). Our meta-analysis of the primary screens (n = 11) using the pre-selected library (approx. 10.2 ± 9.3% hit rate per screen) demonstrated that the antimicrobial activity and spectrum of activity, and type of inhibition (growth versus virulence inhibitors) correlated with several physico-chemical properties (PCP; e.g., molecular weight, molar refraction, Zagreb group indexes, Kiers shape, lipophilicity, and hydrogen bond donors and acceptors). Based on these correlations, we build an in silico model that accurately classified 80.8% of the hits (n = 1676/2073). Therefore, the pre-selected SM library of 4182 SM was narrowed down to 1676 active SM with predictable PCP. Further, 926 hits affected only one species and 1254 hits were active against specific type of pathogens; however, no correlation was detected between PCP and the type of pathogen (29%, 34%, and 46% were specific for animal, human foodborne and plant pathogens, respectively). In conclusion, our in silico model allowed rational identification of SM with potential antimicrobial activity against bacterial pathogens. Therefore, the model developed in this study may facilitate future drug discovery efforts by accelerating the identification of uncharacterized antimicrobial molecules and predict their spectrum of activity.
Collapse
|
39
|
Pimentel TC, Rosset M, de Sousa JMB, de Oliveira LIG, Mafaldo IM, Pintado MME, de Souza EL, Magnani M. Stingless bee honey: An overview of health benefits and main market challenges. J Food Biochem 2021; 46:e13883. [PMID: 34338341 DOI: 10.1111/jfbc.13883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/14/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022]
Abstract
This review aimed to evaluate the nutraceutical and medicinal effects of stingless bee honey (SBH) by bringing a discussion focused on the main known in vitro/in vivo health-promoting effects. SBH has a high-water content, slight sweetness, acidic flavor, fluid texture, and slow crystallization. The type and concentration of phenolic compounds and consequent antioxidant activity were mainly associated with the floral sources, geographical location, bee species, and processing steps. SBH has anti-inflammatory, antimicrobial (against spoilage and pathogenic microorganisms), anti-diabetic, and skin aging delay activities in in vitro tests. It has also shown antioxidant and hypolipidemic effects, can protect from injuries caused by dyslipidemia, possess anti-inflammatory activity against chronic subclinical systemic inflammation and anti-diabetic properties, and can control and prevent Staphylococcus aureus infection on infected wound healings in in vivo tests (rats). However, clinical trials are crucial for the probation of the medicinal and nutraceutical properties of SBH. Despite this, there are still no general norms and/or quality standards for this type of honey. The information summarized in this review is important to add value to this little-consumed food, providing helpful information to spread knowledge about its benefits, assisting future studies, and raising perspectives for its recognition as a functional food. Furthermore, it may encourage the creation of standard quality for the production and marketing of SBH. PRACTICAL APPLICATIONS: Previous studies have already summarized the chemical profile and physicochemical properties of stingless bee honey (SBH) and its potential health properties. However, no study has performed an overview of the potential nutraceutical and medicinal effects of SBH, presenting results from in vitro and in vivo investigations. Therefore, this review is the first study to overview the potential nutraceutical and medicinal effects of SBH, showing results of in vitro/in vivo health-promoting effects. The bioactivity of SBH is related to bee species and floral sources. The SBH has anti-inflammatory, antimicrobial, anti-diabetic, and antioxidant in vitro activity. It has also shown hypolipidemic effects and protection from injuries caused by dyslipidemia in rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marciane Magnani
- Department of Food Engineering, University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
40
|
Arampatzis AS, Kontogiannopoulos KN, Theodoridis K, Aggelidou E, Rat A, Willems A, Tsivintzelis I, Papageorgiou VP, Kritis A, Assimopoulou AN. Electrospun wound dressings containing bioactive natural products: physico-chemical characterization and biological assessment. Biomater Res 2021; 25:23. [PMID: 34271983 PMCID: PMC8284004 DOI: 10.1186/s40824-021-00223-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023] Open
Abstract
Background Current research on skin tissue engineering has been focusing on novel therapies for the effective management of chronic wounds. A critical aspect is to develop matrices that promote growth and uniform distribution of cells across the wound area, and at the same time offer protection, as well as deliver drugs that help wound healing and tissue regeneration. In this context, we aimed at developing electrospun scaffolds that could serve as carriers for the bioactive natural products alkannin and shikonin (A/S). Methods A series of polymeric nanofibers composed of cellulose acetate (CA) or poly(ε-caprolactone) (PCL) and varying ratios of a mixture of A/S derivatives, has been successfully fabricated and their physico-chemical and biological properties have been explored. Results Scanning electron microscopy revealed a uniform and bead-free morphology for CA scaffolds, while for PCL beads along the fibers were observed. The average diameters for all nanofibers ranged between 361 ± 47 and 487 ± 88 nm. During the assessment of physicochemical characteristics, CA fiber mats exhibited a more favored profile, while the assessment of the biological properties of the scaffolds showed that CA samples containing A/S mixture up to 1 wt.% achieved to facilitate attachment, survival and migration of Hs27 fibroblasts. With respect to the antimicrobial properties of the scaffolds, higher drug-loaded (1 and 5 wt.%) samples succeeded in inhibiting the growth of Staphylococcus epidermidis and S. aureus around the edges of the fiber mats. Finally, carrying out a structure-activity relationship study regarding the biological activities (fibroblast toxicity/proliferation and antibacterial activity) of pure A/S compounds – present in the A/S mixture – we concluded that A/S ester derivatives and the dimeric A/S augmented cell proliferation after 3 days, whereas shikonin proved to be toxic at 500 nM and 1 μM and alkannin only at 1 μM. Additionally, alkannin, shikonin and acetyl-shikonin showed more pronounced antibacterial properties than the other esters, the dimeric derivative and the A/S mixture itself. Conclusions Taken together, these findings indicate that embedding A/S derivatives into CA nanofibers might be an advantageous drug delivery system that could also serve as a potential candidate for biomedical applications in the field of skin tissue engineering. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-021-00223-9.
Collapse
Affiliation(s)
- Athanasios S Arampatzis
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece.,Natural Products Research Center of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), 57001, Thessaloniki, Greece
| | - Konstantinos N Kontogiannopoulos
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece.,Natural Products Research Center of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), 57001, Thessaloniki, Greece
| | - Konstantinos Theodoridis
- Department of Physiology and Pharmacology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece.,cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Eleni Aggelidou
- Department of Physiology and Pharmacology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece.,cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Angélique Rat
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Ioannis Tsivintzelis
- Physical Chemistry Laboratory, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Vassilios P Papageorgiou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece.,Natural Products Research Center of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), 57001, Thessaloniki, Greece
| | - Aristeidis Kritis
- Department of Physiology and Pharmacology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece.,cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Andreana N Assimopoulou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece. .,Natural Products Research Center of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), 57001, Thessaloniki, Greece.
| |
Collapse
|
41
|
Artificial Intelligence Assisted Ultrasonic Extraction of Total Flavonoids from Rosa sterilis. Molecules 2021; 26:molecules26133835. [PMID: 34201870 PMCID: PMC8270336 DOI: 10.3390/molecules26133835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/16/2023] Open
Abstract
Flavonoids in Rosa sterilis were studied. The flavonoids in Rosa sterilis were extracted by ultrasonic method, and the extraction conditions were modeled and optimized by response the surface methodology and the artificial intelligence method. The results show that the ultrasonic method can effectively extract total flavonoids, and the extraction rate is close to the prediction value of ANN-GA algorithm, which proves the rationality of the model. The order of the effects of the parameters on the experiment was material liquid ratio > extraction power > extraction time > ethanol concentration. In addition, the scavenging effects of flavonoids on DPPH, O2−· and ·OH were also determined, and these indicated that flavonoids have strong antioxidant activities. The kinetics of the extraction process was studied by using the data of the extraction process, and it was found that the extraction process conformed to Fick’s first law.
Collapse
|
42
|
Bivalent Ni(II), Co(II) and Cu(II) complexes of [(E)-[(2-methyl-1,3-thiazol-5-yl)methylidene]amino]thiourea: synthesis, spectral characterization, DNA and in-vitro anti-bacterial studies. Heliyon 2021; 7:e06838. [PMID: 33997386 PMCID: PMC8093470 DOI: 10.1016/j.heliyon.2021.e06838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/12/2021] [Accepted: 04/13/2021] [Indexed: 11/26/2022] Open
Abstract
The present work describes the preparation of bivalent Ni(II), Co(II) and Cu(II) complexes of [(E)-[(2-methyl-1,3-thiazol-5-yl)methylidene]amino]thiourea (MTHC) by mixing in 1:2 ratio of corresponding metal salt and Schiff base ligand in ethanolic medium. The prepared ligand and its complexes are confirmed using elemental analysis, magnetic moments, FT-IR, NMR, electronic and ESR spectroscopy techniques. The spectroscopic data reveals that metal complexes are in square planar in nature. In DNA binding studies, the higher intrinsic binding constants (Kb) of Ni(II), Co(II) and Cu(II) complexes are 2.713 × 106 M−1, 5.529 × 106 M−1 and 2.950 × 106 M−1 respectively, evident that complexes are avid binder with DNA base pairs. The moderate anti-bacterial activity (in-vitro) against staphylococcus epidermidis, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli bacterial culture may be due to the high electron density of ligand which prevents the charge reduction of metal ion. In the presence and absence of H2O2, it is notified that there is no appreciable DNA cleavage activity of Ni(II) and Co(II) complexes except Cu(II) complex which is due to aprotonation in the medium.
Collapse
|
43
|
Šuran J, Cepanec I, Mašek T, Radić B, Radić S, Tlak Gajger I, Vlainić J. Propolis Extract and Its Bioactive Compounds-From Traditional to Modern Extraction Technologies. Molecules 2021; 26:molecules26102930. [PMID: 34069165 PMCID: PMC8156449 DOI: 10.3390/molecules26102930] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Propolis is a honeybee product known for its antioxidant, anti-inflammatory, anticancer, and antimicrobial effects. It is rich in bioactive molecules whose content varies depending on the botanical and geographical origin of propolis. These bioactive molecules have been studied individually and as a part of propolis extracts, as they can be used as representative markers for propolis standardization. Here, we compare the pharmacological effects of representative polyphenols and whole propolis extracts. Based on the literature data, polyphenols and extracts act by suppressing similar targets, from pro-inflammatory TNF/NF-κB to the pro-proliferative MAPK/ERK pathway. In addition, they activate similar antioxidant mechanisms of action, like Nrf2-ARE intracellular antioxidant pathway, and they all have antimicrobial activity. These similarities do not imply that we should attribute the action of propolis solely to the most representative compounds. Moreover, its pharmacological effects will depend on the efficacy of these compounds’ extraction. Thus, we also give an overview of different propolis extraction technologies, from traditional to modern ones, which are environmentally friendlier. These technologies belong to an open research area that needs further effective solutions in terms of well-standardized liquid and solid extracts, which would be reliable in their pharmacological effects, environmentally friendly, and sustainable for production.
Collapse
Affiliation(s)
- Jelena Šuran
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Ivica Cepanec
- Director of Research & Development and CTO, Amelia Ltd., Zagorska 28, Bunjani, 10314 Kriz, Croatia;
| | - Tomislav Mašek
- Department of Animal Nutrition and Dietetics, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Božo Radić
- Hedera Ltd., 4. Gardijske Brigade 35, 21311 Split, Croatia; (B.R.); (S.R.)
| | - Saša Radić
- Hedera Ltd., 4. Gardijske Brigade 35, 21311 Split, Croatia; (B.R.); (S.R.)
| | - Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Josipa Vlainić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
44
|
Zhao S, Wu X, Duan X, Zhou C, Zhao Z, Chen H, Tang Z, Wan Y, Xiao Y, Chen H. Optimal extraction, purification and antioxidant activity of total flavonoids from endophytic fungi of Conyza blinii H. Lév. PeerJ 2021; 9:e11223. [PMID: 33889449 PMCID: PMC8040863 DOI: 10.7717/peerj.11223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
Background Flavonoids are widely used in the market because of their antibacterial, antiviral, and antioxidant activities. But the production speed of flavonoids is limited by the growth of plants. CBL9 (Chaetomium cruentum) is a flavonoid-producing endophytic fungi from Conyza blinii H. Lév, which has potential to produce flavonoids. Methods In this study, we isolated total flavonoids from endophytic fungus CBL9 of Conyza blinii H. Lév using macroporous resin D101. The process was optimized by response surface and the best extraction process was obtained. The antioxidant activities of total flavonoids were analyzed in vitro. Results It was found that the best parameters were 25 °C pH 2.80, 1.85 h, and the adsorption ratio reached (64.14 ± 0.04)%. A total of 60% ethanol was the best elution solvent. The elution ratio of total flavonoid reached to (81.54 ± 0.03)%, and the purity was 7.13%, which was increased by 14.55 times compared with the original fermentation broth. Moreover its purity could rise to 13.69% after precipitated by ethanol, which is very close to 14.10% prepared by ethyl acetate extraction. In the antioxidant research, the clearance ratio of L9F-M on DPPH, ABTS, •OH, •O2−, (96.44 ± 0.04)% and (75.33 ± 0.03)%, (73.79 ± 0.02)%, (31.14 ± 0.01)% at maximum mass concentration, was higher than L9F. Conclusion The result indicated using macroporous resin in the extraction of total flavonoid from endophytic fungus is better than organic solvents with higher extraction ratio, safety and lower cost. In vitro testing indicated that the flavonoid extracted by macroporous resin have good antioxidant activity, providing more evidence for the production of flavonoid by biological fermentation method.
Collapse
Affiliation(s)
- Shuheng Zhao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Xulong Wu
- Chengdu Agricultural College, Chengdu, China
| | - Xiaoyu Duan
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Caixia Zhou
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Zhiqiao Zhao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Zizhong Tang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yujun Wan
- Sichuan Food Fermentation Industry Research and Design Institute, Chengdu, China
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Ya'an, China
| | - Hong Chen
- College of Food Sciences, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
45
|
Isolation, Structure Elucidation and In Silico Prediction of Potential Drug-Like Flavonoids from Onosma chitralicum Targeted towards Functionally Important Proteins of Drug-Resistant Bad Bugs. Molecules 2021; 26:molecules26072048. [PMID: 33918531 PMCID: PMC8038373 DOI: 10.3390/molecules26072048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
Admittedly, the disastrous emergence of drug resistance in prokaryotic and eukaryotic human pathogens has created an urgent need to develop novel chemotherapeutic agents. Onosma chitralicum is a source of traditional medicine with cooling, laxative, and anthelmintic effects. The objective of the current research was to analyze the biological potential of Onosma chitralicum, and to isolate and characterize the chemical constituents of the plant. The crude extracts of the plant prepared with different solvents, such as aqueous, hexane, chloroform, ethyl acetate, and butanol, were subjected to antimicrobial activities. Results corroborate that crude (methanol), EtoAc, and n-C6H14 fractions were more active against bacterial strains. Among these fractions, the EtoAc fraction was found more potent. The EtoAc fraction was the most active against the selected microbes, which was subjected to successive column chromatography, and the resultant compounds 1 to 7 were isolated. Different techniques, such as UV, IR, and NMR, were used to characterize the structures of the isolated compounds 1–7. All the isolated pure compounds (1–7) were tested for their antimicrobial potential. Compounds 1 (4′,8-dimethoxy-7-hydroxyisoflavone), 6 (5,3′,3-trihydroxy-7,4′-dimethoxyflavanone), and 7 (5′,7,8-trihydroxy-6,3′,4′-trimethoxyflavanone) were found to be more active against Staphylococcus aureus and Salmonella Typhi. Compound 1 inhibited S. typhi and S. aureus to 10 ± 0.21 mm and 10 ± 0.45 mm, whereas compound 6 showed inhibition to 10 ± 0.77 mm and 9 ± 0.20 mm, respectively. Compound 7 inhibited S. aureus to 6 ± 0.36 mm. Compounds 6 and 7 showed significant antibacterial potential, and the structure–activity relationship also justifies their binding to the bacterial enzymes, i.e., beta-hydroxyacyl dehydratase (HadAB complex) and tyrosyl-tRNA synthetase. Both bacterial enzymes are potential drug targets. Further, the isolated compounds were found to be active against the tested fungal strains. Whereas docking identified compound 7, the best binder to the lanosterol 14α-demethylase (an essential fungal cell membrane synthesizing enzyme), reported as an antifungal fluconazole binding enzyme. Based on our isolation-linked preliminary structure-activity relationship (SAR) data, we conclude that O. chitralicum can be a good source of natural compounds for drug development against some potential enzyme targets.
Collapse
|
46
|
Ballodiolic Acid A and B: Two New ROS, ( •OH), (ONOO -) Scavenging and Potent Antimicrobial Constituents Isolated from Ballota pseudodictamnus (L.) Benth. Pharmaceutics 2021; 13:pharmaceutics13030402. [PMID: 34156396 PMCID: PMC8002906 DOI: 10.3390/pharmaceutics13030402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/04/2023] Open
Abstract
Bioassays guided phytochemical investigations on the ethyl acetate-soluble fraction of the root material of Ballota pseudodictamnus (L.) Benth. led to the isolation of two new compounds, ballodiolic acid A (1) and ballodiolic acid B (2), along with three known compounds ballodiolic acid (3), ballotenic acid (4), and β-amyrin (5), which were also isolated for the first time from this species by using multiple chromatographic techniques. The structures of the compounds (1–5) were determined by modern spectroscopic analysis including 1D and 2D NMR techniques and chemical studies. In three separate experiments, the isolated compounds (1–5) demonstrated potent antioxidant scavenging activity, with IC50 values ranging from 07.22–34.10 μM in the hydroxyl radical (•OH) inhibitory activity test, 58.10–148.55 μM in the total ROS (reactive oxygen species) inhibitory activity test, and 6.23–69.01 μM in the peroxynitrite (ONOO−) scavenging activity test. With IC50 values of (07.22 ± 0.03, 58.10 ± 0.07, 6.23 ± 0.04 μM) for •OH, total ROS, and scavenge ONOO−, respectively, ballodiolic acid B (2) showed the highest scavenging ability. Antibacterial and antifungal behaviors were also exposed to the pure compounds 1–5. In contrast to compounds 4 and 5, compounds 1–3 were active against all bacterial strains studied, with a good zone of inhibition proving these as a potent antibacterial agent. Similarly, compared to compounds 3–5, compounds 1 and 2 with a 47 percent and 45 percent respective inhibition zone were found to be more active against tested fungal strains.
Collapse
|
47
|
Makarewicz M, Drożdż I, Tarko T, Duda-Chodak A. The Interactions between Polyphenols and Microorganisms, Especially Gut Microbiota. Antioxidants (Basel) 2021; 10:188. [PMID: 33525629 PMCID: PMC7911950 DOI: 10.3390/antiox10020188] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
This review presents the comprehensive knowledge about the bidirectional relationship between polyphenols and the gut microbiome. The first part is related to polyphenols' impacts on various microorganisms, especially bacteria, and their influence on intestinal pathogens. The research data on the mechanisms of polyphenol action were collected together and organized. The impact of various polyphenols groups on intestinal bacteria both on the whole "microbiota" and on particular species, including probiotics, are presented. Moreover, the impact of polyphenols present in food (bound to the matrix) was compared with the purified polyphenols (such as in dietary supplements) as well as polyphenols in the form of derivatives (such as glycosides) with those in the form of aglycones. The second part of the paper discusses in detail the mechanisms (pathways) and the role of bacterial biotransformation of the most important groups of polyphenols, including the production of bioactive metabolites with a significant impact on the human organism (both positive and negative).
Collapse
Affiliation(s)
| | | | | | - Aleksandra Duda-Chodak
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, 30-149 Kraków, Poland; (M.M.); (I.D.); (T.T.)
| |
Collapse
|
48
|
Kwesiga G, Kelling A, Kersting S, Sperlich E, von Nickisch-Rosenegk M, Schmidt B. Total Syntheses of Prenylated Isoflavones from Erythrina sacleuxii and Their Antibacterial Activity: 5-Deoxy-3'-prenylbiochanin A and Erysubin F. JOURNAL OF NATURAL PRODUCTS 2020; 83:3445-3453. [PMID: 33170684 DOI: 10.1021/acs.jnatprod.0c00932] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The prenylated isoflavones 5-deoxyprenylbiochanin A (7-hydroxy-4'-methoxy-3'-prenylisoflavone) and erysubin F (7,4'-dihydroxy-8,3'-diprenylisoflavone) were synthesized for the first time, starting from mono- or di-O-allylated chalcones, and the structure of 5-deoxy-3'-prenylbiochanin A was corroborated by single-crystal X-ray diffraction analysis. Flavanones are key intermediates in the synthesis. Their reaction with hypervalent iodine reagents affords isoflavones via a 2,3-oxidative rearrangement and the corresponding flavone isomers via 2,3-dehydrogenation. This enabled a synthesis of 7,4'-dihydroxy-8,3'-diprenylflavone, a non-natural regioisomer of erysubin F. Erysubin F (8), 7,4'-dihydroxy-8,3'-diprenylflavone (27), and 5-deoxy-3'-prenylbiochanin A (7) were tested against three bacterial strains and one fungal pathogen. All three compounds are inactive against Salmonella enterica subsp. enterica (NCTC 13349), Escherichia coli (ATCC 25922), and Candida albicans (ATCC 90028), with MIC values greater than 80.0 μM. The diprenylated natural product erysubin F (8) and its flavone isomer 7,4'-dihydroxy-8,3'-diprenylflavone (27) show in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA, ATCC 43300) at MIC values of 15.4 and 20.5 μM, respectively. In contrast, the monoprenylated 5-deoxy-3'-prenylbiochanin A (7) is inactive against this MRSA strain.
Collapse
Affiliation(s)
- George Kwesiga
- Institut fuer Chemie, Universitaet Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germany
| | - Alexandra Kelling
- Institut fuer Chemie, Universitaet Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germany
| | - Sebastian Kersting
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (Fraunhofer IZI-BB), Am Muehlenberg 13, D-14476 Potsdam-Golm, Germany
| | - Eric Sperlich
- Institut fuer Chemie, Universitaet Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germany
| | - Markus von Nickisch-Rosenegk
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (Fraunhofer IZI-BB), Am Muehlenberg 13, D-14476 Potsdam-Golm, Germany
| | - Bernd Schmidt
- Institut fuer Chemie, Universitaet Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
49
|
Fernandes LDP, Silva JMB, Martins DOS, Santiago MB, Martins CHG, Jardim ACG, Oliveira GS, Pivatto M, Souza RAC, Franca EDF, Deflon VM, Machado AEH, Oliveira CG. Fragmentation Study, Dual Anti-Bactericidal and Anti-Viral Effects and Molecular Docking of Cobalt(III) Complexes. Int J Mol Sci 2020; 21:ijms21218355. [PMID: 33171773 PMCID: PMC7664407 DOI: 10.3390/ijms21218355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/22/2023] Open
Abstract
Considering our previous findings on the remarkable activity exhibited by cobalt(III) with 2-acetylpyridine-N(4)-R-thiosemicarbazone (Hatc-R) compounds against Mycobacterium tuberculosis, the present study aimed to explored new structure features of the complexes of the type [Co(atc--R)2]Cl, where R = methyl (Me, 1) or phenyl (Ph, 2) (13C NMR, high-resolution mass spectrometry, LC-MS/MS, fragmentation study) together with its antibacterial and antiviral biological activities. The minimal inhibitory and minimal bactericidal concentrations (MIC and MBC) were determined, as well as the antiviral potential of the complexes on chikungunya virus (CHIKV) infection in vitro and cell viability. [Co(atc-Ph)2]Cl revealed promising MIC and MBC values which ranged from 0.39 to 0.78 µg/mL in two strains tested and presented high potential against CHIKV by reducing viral replication by up to 80%. The results showed that the biological activity is strongly influenced by the peripheral substituent groups at the N(4) position of the atc-R1- ligands. In addition, molecular docking analysis was performed. The relative binding energy of the docked compound with five bacteria strains was found in the range of -3.45 and -9.55 kcal/mol. Thus, this work highlights the good potential of cobalt(III) complexes and provide support for future studies on this molecule aiming at its antibacterial and antiviral therapeutic application.
Collapse
Affiliation(s)
- Laísa de P. Fernandes
- Instituto de Química, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (L.d.P.F.); (G.S.O.); (M.P.); (R.A.C.S.)
| | - Júlia M. B. Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia 38408-100, MG, Brazil; (J.M.B.S.); (D.O.S.M.); (M.B.S.); (C.H.G.M.); (A.C.G.J.)
| | - Daniel O. S. Martins
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia 38408-100, MG, Brazil; (J.M.B.S.); (D.O.S.M.); (M.B.S.); (C.H.G.M.); (A.C.G.J.)
| | - Mariana B. Santiago
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia 38408-100, MG, Brazil; (J.M.B.S.); (D.O.S.M.); (M.B.S.); (C.H.G.M.); (A.C.G.J.)
| | - Carlos H. G. Martins
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia 38408-100, MG, Brazil; (J.M.B.S.); (D.O.S.M.); (M.B.S.); (C.H.G.M.); (A.C.G.J.)
| | - Ana C. G. Jardim
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia 38408-100, MG, Brazil; (J.M.B.S.); (D.O.S.M.); (M.B.S.); (C.H.G.M.); (A.C.G.J.)
| | - Guedmiller S. Oliveira
- Instituto de Química, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (L.d.P.F.); (G.S.O.); (M.P.); (R.A.C.S.)
| | - Marcos Pivatto
- Instituto de Química, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (L.d.P.F.); (G.S.O.); (M.P.); (R.A.C.S.)
| | - Rafael A. C. Souza
- Instituto de Química, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (L.d.P.F.); (G.S.O.); (M.P.); (R.A.C.S.)
| | - Eduardo de F. Franca
- Laboratório de Cristalografia e Química Computacional, Instituto de Química, Universidade Federal de Uberlândia, UFU, Uberlândia 38408-100, MG, Brazil;
| | - Victor M. Deflon
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil;
| | - Antonio E. H. Machado
- Laboratório de Fotoquímica e Ciências dos Materiais, Instituto de Química, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil;
- Unidade Acadêmica Especial de Física, Programa de Pós-Graduação em Ciências Exatas e Tecnol., Universidade Federal de Catalão, Catalão 75705-220, GO, Brasil
| | - Carolina G. Oliveira
- Instituto de Química, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil; (L.d.P.F.); (G.S.O.); (M.P.); (R.A.C.S.)
- Correspondence: ; Tel.: +55-34-9997-9271
| |
Collapse
|
50
|
Lu H, Qi Y, Zhao Y, Jin N. Effects of Hydroxyl Group on the Interaction of Carboxylated Flavonoid Derivatives with S. Cerevisiae α-Glucosidase. Curr Comput Aided Drug Des 2020; 16:31-44. [PMID: 30345924 PMCID: PMC6967131 DOI: 10.2174/1573409914666181022142553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/23/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023]
Abstract
Introduction Carboxyalkyl flavonoids derivatives are considered as effective inhibitors in reducing post-prandial hyperglycaemia. Methods Combined with Density Functional Theory (DFT) and the theory of Atoms in Molecules (AIM), molecular docking and charge density analysis are carried out to understand the molecular flexibility, charge density distribution and the electrostatic properties of these carboxyalkyl derivatives. Results Results show that the electron density of the chemical bond C14-O17 on B ring of molecule II increases while O17-H18 decreases at the active site, suggesting the existence of weak non-covalent interactions, most prominent of which are H-bonding and electrostatic interaction. When hydroxyl groups are introduced, the highest positive electrostatic potentials are distributed near the B ring hydroxyl hydrogen atom and the carboxyl hydrogen atom on the A ring. It was reported that quercetin has a considerably inhibitory activity to S. cerevisiae α-glucosidase, from the binding affinities, it is suggested that the position and number of hydroxyl groups on the B and C rings are also pivotal to the hypoglycemic activity when the long carboxyalkyl group is introduced into the A ring. Conclusion It is concluded that the presence of three well-defined zones in the structure, both hydrophobicity alkyl, hydrophilicity carboxyl and hydroxyl groups are necessary.
Collapse
Affiliation(s)
- Huining Lu
- Department of Life Sciences and Biological Engineering, Northwest Minzu University, Lanzhou 730124, China
| | - Yanjiao Qi
- Department of Chemical Engineering, Northwest Minzu University, Lanzhou 730124, China.,Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, Lanzhou, China
| | - Yaming Zhao
- Department of Chemical Engineering, Northwest Minzu University, Lanzhou 730124, China
| | - Nengzhi Jin
- Gansu Province Computing Center, Lanzhou 730000, China
| |
Collapse
|