1
|
Nikolić I, Čabarkapa I, Pavlić B, Kravić S, Đilas M, Iličić M, Bulut S, Kocić-Tanackov S. Antibacterial and antibiofilm effect of essential oils on staphylococci isolated from cheese - application of the oil mixture in a cheese model. Int J Food Microbiol 2024; 425:110873. [PMID: 39182346 DOI: 10.1016/j.ijfoodmicro.2024.110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
The aim of the research was to examine the antimicrobial and antibiofilm effects of angelica, immortelle, laurel, hyssop, and sage plant dust essential oils (EOs) against isolated strains of Staphylococcus spp. from cheeses, in vitro and in the model of white cheese. MALDI-TOF MS analysis confirmed two Staphylococcus aureus strains and two coagulase-negative, identified as S. saprophyticus and S. warneri. All isolates produce biofilm, where the strains of S. aureus showed slightly better adherence. The main component of angelica EO was β-phellandrene (48.19 %), while α-pinene (20.33 %) were dominant in immortelle EO, in hyssop EO cis-pinocamphone (37.25 %), in laurel EO 1,8-cineole (43.15 %) and in sage EO epirosmanol (26.25 %). The sage EO exhibited the strongest antistaphylococcal activity against all isolates. Synergism was also detected in combination of sage with hyssop or laurel EO. Better antibiofilm activity was confirmed for sage EO compared to hyssop EO. The mixture of sage/laurel EOs reduced the total number of staphylococci in the cheese after 4 days. Results indicate that in vitro applied EOs showed significant antistaphylococcal and antibiofilm activity, while the oil mixture reduced the initial total number of staphylococci.
Collapse
Affiliation(s)
- Isidora Nikolić
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Ivana Čabarkapa
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102, Novi Sad, Serbia
| | - Snežana Kravić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102, Novi Sad, Serbia
| | - Milan Đilas
- Institute of Public Health of Vojvodina, Centre for Microbiology, Futoška 121, 21000 Novi Sad, Serbia
| | - Mirela Iličić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102, Novi Sad, Serbia
| | - Sandra Bulut
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102, Novi Sad, Serbia
| | - Sunčica Kocić-Tanackov
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102, Novi Sad, Serbia.
| |
Collapse
|
2
|
Guendouz C, Guenane H, Bakchiche B, Ascrizzi R, Flamini G, Bardaweel SK, Sayed AM, Ghareeb MA. Chemical composition and biological activities of nine essential oils obtained from Algerian plants. Nat Prod Res 2024:1-10. [PMID: 39381930 DOI: 10.1080/14786419.2024.2412308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/31/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
The essential oils (EOs) from nine species (Artemisia campestris, A. herba-alba, Juniperus foetidissima, Laurus nobilis, Mentha pulegium, M. spicata, Rosmarinus officinalis, Salvia officinalis, and Thymus vulgaris) of the Algerian flora have been hydrodistilled, analysed, and tested for their antioxidant and antiproliferative properties. A. campestris EO showed a higher content of terpene hydrocarbons; A. herba-alba EO was mainly rich in their oxygenated derivatives. Sesquiterpenes were the most abundant compounds in J. foetidissima EO, while oxygenated monoterpenes and phenylpropanoids prevailed in L. nobilis EO. The other EOs were rich in oxygenated monoterpenes, with quality-quantitative differences. T. vulgaris and L. nobilis performed better in all the antioxidant assays, respectively with IC50 values ranging from 0.0002 and 0.0012 mg/mL in the CUPRAC assay to 2.83 and 3.50 mg/mL in the FRAP assay. T. vulgaris was also the only EO exhibiting an antiproliferative activity towards the human breast (MCF-7) and lung (A549) cancer cell lines.
Collapse
Affiliation(s)
- Chaima Guendouz
- Laboratory of Biological and Agricultural Sciences (LBAS), Amar Telidji University, Laghouat, Algeria
| | - Hadjira Guenane
- Laboratory of Biological and Agricultural Sciences (LBAS), Amar Telidji University, Laghouat, Algeria
| | - Boulanouar Bakchiche
- Laboratory of Biological and Agricultural Sciences (LBAS), Amar Telidji University, Laghouat, Algeria
| | | | - Guido Flamini
- Dipartimento di Farmacia, Università di Pisa, Pisa, Italy
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman, Jordan
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Mosad A Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute Kornaish El Nile, Giza, Egypt
| |
Collapse
|
3
|
De Fazio R, Oppedisano F, Caioni G, Tilocca B, Piras C, Britti D. Plants with Antimicrobial Activity against Escherichia coli, a Meta-Analysis for Green Veterinary Pharmacology Applications. Microorganisms 2024; 12:1784. [PMID: 39338459 PMCID: PMC11434269 DOI: 10.3390/microorganisms12091784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a critical global health threat, necessitating innovative strategies to combat infectious diseases. Plants and their extracts offer alternatives/support to traditional antibiotics, and their diverse phytocomplexes with antimicrobial properties can be exploited. The Mediterranean hosts a high number of biodiverse plant species known for their bioactive compounds. This study focuses on identifying plant species and phytochemical constituents with antimicrobial activity against Escherichia coli (E. coli). Utilizing a systematic literature review and meta-analysis approach, we screened 3037 entries, yielding 70 studies suitable for MIC (minimum inhibitory concentration) annotation. The results highlighted Lavandula spp., Plectranthus spp. and Lupinus jaimehintoniana as the most effective plants with average MICs of, respectively, 0.144 mg/mL, 0.260 mg/mL, and 0.140 mg/mL. These results might help to fight AMR via the discovery of complementary natural antimicrobial agents to support the development of green veterinary pharmacology. Further exploration of these resources promises valuable insights for future support to antimicrobial strategies.
Collapse
Affiliation(s)
- Rosario De Fazio
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (F.O.); (B.T.); (D.B.)
| | - Francesca Oppedisano
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (F.O.); (B.T.); (D.B.)
| | - Giulia Caioni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy;
| | - Bruno Tilocca
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (F.O.); (B.T.); (D.B.)
| | - Cristian Piras
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (F.O.); (B.T.); (D.B.)
- CISVetSUA, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (F.O.); (B.T.); (D.B.)
- CISVetSUA, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Fantasma F, Samukha V, Aliberti M, Colarusso E, Chini MG, Saviano G, De Felice V, Lauro G, Casapullo A, Bifulco G, Iorizzi M. Essential Oils of Laurus nobilis L.: From Chemical Analysis to In Silico Investigation of Anti-Inflammatory Activity by Soluble Epoxide Hydrolase (sEH) Inhibition. Foods 2024; 13:2282. [PMID: 39063366 PMCID: PMC11276180 DOI: 10.3390/foods13142282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Laurus nobilis L. is commonly used in folk medicine in the form of infusion or decoction to treat gastrointestinal diseases and flatulence as a carminative, antiseptic, and anti-inflammatory agent. In this study, the essential oil (EO) composition of wild-grown L. nobilis L. leaves collected from seven different altitudinal locations in the Molise region and adjacent regions (Abruzzo and Campania) was investigated. EOs from the leaves were obtained by hydrodistillation and analyzed by GC-FID and GC/MS, and 78 compounds were identified. The major oil components were 1,8-cineol (43.52-31.31%), methyl-eugenol (14.96-4.07%), α-terpinyl acetate (13.00-8.51%), linalool (11.72-1.08%), sabinene (10.57-4.85%), α-pinene (7.41-3.61%), eugenol (4.12-1.97%), and terpinen-4-ol (2.33-1.25%). Chemometric techniques have been applied to compare the chemical composition. To shed light on the nutraceutical properties of the main hydrophobic secondary metabolites (≥1.0%) of laurel EOs, we assessed the in vitro antioxidant activities based on 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging activity and the reducing antioxidant power by using a ferric reducing power (FRAP) assay. Furthermore, we highlighted the anti-inflammatory effects of seven EOs able to interfere with the enzyme soluble epoxide hydrolase (sEH), a key enzyme in the arachidonic acid cascade, in concentrations ranging from 16.5 ± 4.3 to 8062.3 ± 580.9 mg/mL. Thanks to in silico studies, we investigated and rationalized the observed anti-inflammatory properties, ascribing the inhibitory activity toward the disclosed target to the most abundant volatile phytochemicals (≥1.0%) of seven EOs.
Collapse
Affiliation(s)
- Francesca Fantasma
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| | - Vadym Samukha
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| | - Michela Aliberti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (M.A.); (E.C.); (G.L.); (A.C.)
| | - Ester Colarusso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (M.A.); (E.C.); (G.L.); (A.C.)
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| | - Gabriella Saviano
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| | - Vincenzo De Felice
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (M.A.); (E.C.); (G.L.); (A.C.)
| | - Agostino Casapullo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (M.A.); (E.C.); (G.L.); (A.C.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; (M.A.); (E.C.); (G.L.); (A.C.)
| | - Maria Iorizzi
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, IS, Italy; (F.F.); (V.S.); (G.S.); (V.D.F.); (M.I.)
| |
Collapse
|
5
|
Jaradat N, Hawash M, Qaoud MT, Al-Maharik N, Qadi M, Hussein F, Issa L, Saleh A, Saleh L, Jadallah A. Biological, phytochemical and molecular docking characteristics of Laurus nobilis L. fresh leaves essential oil from Palestine. BMC Complement Med Ther 2024; 24:223. [PMID: 38851735 PMCID: PMC11162004 DOI: 10.1186/s12906-024-04528-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND The historical use of Laurus nobilis L., the plant is native to the Mediterranean region and has been cultivated for its aromatic leaves, which are used as a flavoring agent in cooking and for their potential therapeutic properties. METHODS The purpose of the current investigation was to characterize the essential oil composition of the fresh L. nobilis leaves from Palestine by using the gas chromatography-mass spectrometry (GC-MS) technique. DPPH (2,2-diphenyl-1-picrylhydrazyl), p-nitrophenyl butyrate, and 3,5-dinitro salicylic acid (DNSA) methods were employed to estimate the antioxidant, antiobesity, and antidiabetic effects of the essential oil. While MTS assay were used to evaluate their antiproliferative activities on panels of cell lines. Moreover, the docking studies were aided by the Prime MM GBSA method for estimating binding affinities. RESULTS The GC-MS investigation demonstrated that the fresh L. nobilis leaves essential oil has a variety of chemicals, about 31 different biochemicals were identified, and the major compounds were 1,8-cineole (48.54 ± 0.91%), terpinyl acetate (13.46 ± 0.34%), and α-terpinyl (3.84 ± 0.35%). Furthermore, the investigated oil demonstrated broad-spectrum antimicrobial activity against all tested bacterial and candidal strains and significantly inhibited the growth of MCF-7 cancerous cells more than the chemotherapeutic drug Doxorubicin. Furthermore, it contains robust DPPH free radicals, as well as porcine pancreatic α-amylase and lipase enzymes. Using the 1,8-cineole compound as the predominant biomolecule found in the L. nobilis essential oil, molecular docking studies were performed to confirm these observed fabulous results. The molecular docking simulations proposed that these recorded biological activities almost emanated from its high ability to form strong and effective hydrophobic interactions, this led to the getting of optimal fitting and interaction patterns within the binding sites of the applied crystallographic protein targets. CONCLUSION The results of these experiments showed that the fresh L. nobilis leaves essential oil has outstanding pharmacological capabilities, making this oil a potential source of natural medications.
Collapse
Affiliation(s)
- Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine.
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine.
| | - Mohammed T Qaoud
- Faculty of Pharmacy, Cyprus International University, Nicosia, Cyprus
| | - Nawaf Al-Maharik
- Department of Chemistry, Faculty of Science, An-Najah National University, Nablus, 00970, Palestine
| | - Mohammad Qadi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Fatimah Hussein
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Linda Issa
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Ahmad Saleh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Laith Saleh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Ahmad Jadallah
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| |
Collapse
|
6
|
Zhang C, Zhang J, Xie D, Guo G, Jalili S. The effects of local delivery of laurus nobilis extract and adipose derived stem cells via electrospun gelatin scaffold on spinal cord injury inflammatoradscy response and its regeneration. Regen Ther 2024; 26:879-888. [PMID: 39444416 PMCID: PMC11497134 DOI: 10.1016/j.reth.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
When subjected to injury, the spinal cord's inherent complexity poses significant challenges for effective healing. In this study, gelatin nanofibers loaded with Laurus nobilis extract were developed to serve as a delivery system for adipose-derived stem cells (ADSCs), aiming to explore its potential immunomodulatory effects in a rat model of spinal cord injury. Through a series of in vitro assessments including scanning electron microscopy imaging, cell viability, anti-inflammatory, cell adhesion, biodegradation, and hemocompatibility assays, the characteristics of the delivery system were thoroughly evaluated. The in vitro studies revealed both the biocompatibility of the scaffolds and their notable anti-inflammatory properties, laying the groundwork for further investigation. Subsequent in vivo experiments demonstrated that rats treated with Laurus nobilis extract and ADSCs loaded scaffolds exhibited heightened functional recovery (BBB score of 14.66 ± 1.52 % and hot plate latency time of 8.33 0.26 s) and histological restoration at the 8-week mark post-injury. Notably, ELISA assay results revealed a significant reduction in tissue expression levels of key pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6, suggesting a pronounced immunomodulatory effect of the Laurus nobilis extract-loaded scaffolds. The findings underscore the potential of this novel delivery system to improve clinical outcomes in spinal cord injury by enhancing functional recovery and reducing inflammation. This approach could lead to the development of new, natural-based therapeutic strategies for spinal cord injury, with potential extensions to other inflammatory or degenerative conditions. Future research should focus on optimizing this strategy in larger animal models and eventually translating these findings into human clinical trials.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jin Zhang
- Department of Emergency Traumatology, Gejiu People's Hospital, Yunnan, 661000, China
| | - Daotao Xie
- Norxin International Science and Technology Base, Xi'an, 710032, China
| | - Gang Guo
- Norxin International Science and Technology Base, Xi'an, 710032, China
| | - Saman Jalili
- Department of Materials Science, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
7
|
Fik-Jaskółka M, Mittova V, Motsonelidze C, Vakhania M, Vicidomini C, Roviello GN. Antimicrobial Metabolites of Caucasian Medicinal Plants as Alternatives to Antibiotics. Antibiotics (Basel) 2024; 13:487. [PMID: 38927153 PMCID: PMC11200912 DOI: 10.3390/antibiotics13060487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
This review explores the potential of antimicrobial metabolites derived from Caucasian medicinal plants as alternatives to conventional antibiotics. With the rise of antibiotic resistance posing a global health threat, there is a pressing need to investigate alternative sources of antimicrobial agents. Caucasian medicinal plants have traditionally been used for their therapeutic properties, and recent research has highlighted their potential as sources of antimicrobial compounds. Representatives of 15 families of Caucasian medicinal plant extracts (24 species) have been explored for their efficacy against these pathogens. The effect of these plants on Gram-positive and Gram-negative bacteria and fungi is discussed in this paper. By harnessing the bioactive metabolites present in these plants, this study aims to contribute to the development of new antimicrobial treatments that can effectively combat bacterial infections while minimizing the risk of resistance emergence. Herein we discuss the following classes of bioactive compounds exhibiting antimicrobial activity: phenolic compounds, flavonoids, tannins, terpenes, saponins, alkaloids, and sulfur-containing compounds of Allium species. The review discusses the pharmacological properties of selected Caucasian medicinal plants, the extraction and characterization of these antimicrobial metabolites, the mechanisms of action of antibacterial and antifungal plant compounds, and their potential applications in clinical settings. Additionally, challenges and future directions in the research of antimicrobial metabolites from Caucasian medicinal plants are addressed.
Collapse
Affiliation(s)
- Marta Fik-Jaskółka
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Valentina Mittova
- Teaching University Geomedi, 4 King Solomon II Str., Tbilisi 0114, Georgia; (V.M.)
| | | | - Malkhaz Vakhania
- Teaching University Geomedi, 4 King Solomon II Str., Tbilisi 0114, Georgia; (V.M.)
| | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
8
|
Amssayef A, Soulaimani B, Qabouche A, Abbad A, Eddouks M. Antihyperlipidemic effect and GC-MS analysis of phytoconstituents from Laurus nobilis essential oil in rat. Nat Prod Res 2024:1-7. [PMID: 38597184 DOI: 10.1080/14786419.2024.2340760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/31/2024] [Indexed: 04/11/2024]
Abstract
This study aimed to evaluate the effect of Laurus nobilis (L. nobilis) essential oil (EOs) (80 mg/kg) on Triton WR-1339-induced dyslipidemia in Wistar rats. The effect of L. nobilis essential oil (80 mg/kg) on lipid and lipoprotein profile was examined on Triton WR-1339-induced dyslipidemia in rats. Furthermore, the phytochemical evaluation was performed by GC-MS. In Addition, the acute toxicity of this EO was evaluated at a dose of 2 g/kg. The results revealed that the main constituents of L. nobilis EO were 1,8-cineole (39.5%), linalool (13.09%), and a-terpineol (11.55%). Furthermore, the EO did not cause any signs of toxicity or mortality, and the acute lethal dose 50 (LD50) was estimated to be higher than 2 g/kg. L. nobilis EO ameliorated lipid parameters and atherogenic indices. In conclusion, the study demonstrates that L. nobilis essential oils possess antidyslipidemic activity in acute model of hyperlipidaemia.
Collapse
Affiliation(s)
- Ayoub Amssayef
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Errachidia, Morocco
| | - Bouchra Soulaimani
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Adil Qabouche
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Errachidia, Morocco
| | - Abdelaziz Abbad
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Errachidia, Morocco
| |
Collapse
|
9
|
Saffarian H, Rahimi E, Khamesipour F, Hashemi Dehkordi SM. Antioxidant and antimicrobial effect of sodium alginate nanoemulsion coating enriched with oregano essential oil ( Origanum vulgare L.) and Trachyspermum ammi oil ( Carum cupticum) on food pathogenic bacteria. Food Sci Nutr 2024; 12:2985-2997. [PMID: 38628174 PMCID: PMC11016405 DOI: 10.1002/fsn3.3979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 04/19/2024] Open
Abstract
Today, microbial contamination in food is one of the major problems of the food industry and public health in general around the world. Foodborne illnesses, such as diarrheal diseases, kill many people around the world each year. The general objective of this study was to evaluate the antioxidant and antibacterial activity of sodium alginate nanoemulsion coating incorporated with oregano essential oil (Origanum vulgare L.) and Trachyspermum ammi oil (Carum cupticum) on Escherichia coli, and Listeria monocytogenes. To achieve this study, fresh chicken meat was used for this experiment. Listeria monocytogenes ATCC 19111 and Escherichia coli ATCC 35218 were obtained from the American Type Culture Collection (Manassas, VA, USA). After the preparation of the essential oil, the chemical composition of this essential oil was determined by using (GC-MS). The physicochemical properties of the nanoemulsion essential oil prepared were characterized and their antimicrobial activity was evaluated. The results showed that the GC-MS analysis of the volatile constituents of the Origanum vulgare essential oil compounds allowed the identification of 19 compounds representing 93.72% of the total oil. The major components detected in Origanum vulgare essential oil were pulegone (49.25%), eucalyptol (18.23%), and menthone (12.37%). About the Carum cupticum essential oil, 21 compounds representing 98.5% of the total oil were identified. The major components detected in Origanum vulgare essential oil were thymol (23.3%), p-cymene (17.5%), and γ-terpinene (16.8%). The best z-average (d.nm) is 483.4 nm (Carum cupticum essential oil + nano) followed by 470.1 nm (nanochitosan). The results of the antimicrobial test showed that the different preparations have a good inhibitory activity for the in vitro growth of Escherichia coli and Listeria monocytogenes. According to the MIC and MBC results of this study, the nanoemulsion also presented a good bacteriostatic activity against the two pathogenic bacteria tested in this study.
Collapse
Affiliation(s)
- Hashem Saffarian
- Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Shahrekord Branch Islamic Azad University Shahrekord Iran
| | - Ebrahim Rahimi
- Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Shahrekord Branch Islamic Azad University Shahrekord Iran
| | - Faham Khamesipour
- Faculty of Veterinary Medicine, Shahrekord Branch Islamic Azad University Shahrekord Iran
- Research Center for Hydatid Disease in Iran Kerman University of Medical Sciences Kerman Iran
| | - Seyed Majid Hashemi Dehkordi
- Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Shahrekord Branch Islamic Azad University Shahrekord Iran
| |
Collapse
|
10
|
Peña-Ortiz M, Serrano L, Romero AA, García A. Bay Leaves Extracts as Active Additive for Food Protective Coatings. Foods 2023; 12:3741. [PMID: 37893634 PMCID: PMC10606290 DOI: 10.3390/foods12203741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Ethanolic extracts of bay leaves were obtained using the Soxhlet method (extraction yield of 22.3 ± 1.2%) and further analyzed through different methods, thus determining the chemical composition with gas chromatography, phenolic content with the Folin-Ciocalteu technique (11.8 ± 0.4% wt.) and antioxidant power with the radical 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) method (75.06%). Furthermore, its effect on the growth of two bacteria, Escherichia coli and Bacillus cereus, and on two yeasts, Candida glabrata and Saccharomyces cerevisiae, was determined, showing a minimum inhibitory concentration of 0.65 mg/mL on the growth of B. cereus. Finally, edible films were prepared using different polymers (carboxymethyl cellulose, gum Arabic, polyvinyl pyrrolidone, and polyvinyl alcohol) containing 0, 5, 10, or 15% wt. of bay leaf extract as troubleshooting for perishable fruits, specifically for cultivated strawberry. The prepared composites presented reduced water vapor permeabilities (up to 4.3 × 10-7 g·Pa-1·m-1·h-1), high specific transparencies (≈30%/mm), as well as the effective blocking of ultraviolet radiation (>99.9%). In vivo tests showed that the most suitable treatment for strawberry protection was the impregnation with a composite comprising polyvinyl alcohol and a 15% wt. bay leaf extract, resulting in a noteworthy reduction in mass loss (22% after 6 days). It can be asserted that food packaging with the designed composites would be an effective alternative for the reduction in postharvest losses.
Collapse
Affiliation(s)
- Manuel Peña-Ortiz
- FQM-383 NANOVAL Group, Organic Chemistry Department, University of Córdoba, Campus de Rabanales, Marie Curie Building, Ctra. Nnal. IV-A, Km 396, 14014 Córdoba, Spain; (M.P.-O.); (A.A.R.)
- BioPrEn Group (RNM 940), Chemical Engineering Department, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Faculty of Science, University of Córdoba, 14014 Córdoba, Spain
| | - Luis Serrano
- BioPrEn Group (RNM 940), Chemical Engineering Department, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Faculty of Science, University of Córdoba, 14014 Córdoba, Spain
| | - Antonio A. Romero
- FQM-383 NANOVAL Group, Organic Chemistry Department, University of Córdoba, Campus de Rabanales, Marie Curie Building, Ctra. Nnal. IV-A, Km 396, 14014 Córdoba, Spain; (M.P.-O.); (A.A.R.)
| | - Araceli García
- FQM-383 NANOVAL Group, Organic Chemistry Department, University of Córdoba, Campus de Rabanales, Marie Curie Building, Ctra. Nnal. IV-A, Km 396, 14014 Córdoba, Spain; (M.P.-O.); (A.A.R.)
| |
Collapse
|
11
|
Zhu W, Liu J, Zou Y, Li S, Zhao D, Wang H, Xia X. Anti-Biofilm Activity of Laurel Essential Oil against Vibrio parahaemolyticus. Foods 2023; 12:3658. [PMID: 37835311 PMCID: PMC10572487 DOI: 10.3390/foods12193658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Vibrio parahaemolyticus is a primary seafood-associated pathogen that could cause gastroenteritis. It can attach to various surfaces and form a biofilm, which poses serious threats to food safety. Hence, an effective strategy is urgently needed to control the biofilm formation of V. parahaemolyticus. Laurel essential oil (LEO) is used in food, pharmaceutical and other industries, and is commonly used as a flavoring agent and valuable spice in food industries. The potential antibiofilm effects of LEO against V. parahaemolyticus were examined in this study. LEO obviously reduced biofilm biomass at subinhibitory concentrations (SICs). It decreased the metabolic activity and viability of biofilm cells. Microscopic images and Raman spectrum indicted that LEO interfered with the structure and biochemical compositions of biofilms. Moreover, it also impaired swimming motility, decreased hydrophobicity, inhibited auto-aggregation and reduced attachment to different food-contact surfaces. RT-qPCR revealed that LEO significantly downregulated transcription levels of biofilm-associated genes of V. parahaemolyticus. These findings demonstrate that LEO could be potentially developed as an antibiofilm strategy to control V. parahaemolyticus biofilms in food industries.
Collapse
Affiliation(s)
- Wenxiu Zhu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (J.L.); (Y.Z.); (S.L.); (D.Z.)
| | - Jiaxiu Liu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (J.L.); (Y.Z.); (S.L.); (D.Z.)
| | - Yue Zou
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (J.L.); (Y.Z.); (S.L.); (D.Z.)
| | - Shugang Li
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (J.L.); (Y.Z.); (S.L.); (D.Z.)
| | - Dongyun Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (J.L.); (Y.Z.); (S.L.); (D.Z.)
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China;
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (W.Z.); (J.L.); (Y.Z.); (S.L.); (D.Z.)
| |
Collapse
|
12
|
Oktavianawati I, Santoso M, Fatmawati S. Metabolite profiling of Borneo's Gonystylus bancanus through comprehensive extraction from various polarity of solvents. Sci Rep 2023; 13:15215. [PMID: 37709800 PMCID: PMC10502116 DOI: 10.1038/s41598-023-41494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Gonystylus bancanus wood or ramin wood has been generally known as a source of agarwood (gaharu) bouya, a kind of agarwood inferior type, or under the exported trading name of aetoxylon oil. The massive exploitation of ramin wood is causing this plant's extinction and putting it on Appendix II CITES and IUCN Red List of Threatened Species. To date, no scientific publication concerns the chemical exploration of G. bancanus wood and preserving this germplasm through its metabolite profiling. Therefore, research focused on chemical components profiling of G. bancanus is promised. This research is aimed to explore metabolomics and analyze the influence of solvent polarities on the partitioning of metabolites in G. bancanus wood. A range of solvents in different polarities was applied to provide comprehensive extraction of metabolites in G. bancanus wood. Moreover, a hydrodistillation was also carried out to extract the volatile compounds despite the non-volatile ones. LCMS and GCMS analyses were performed to identify volatile and non-volatile components in the extracts and essential oil. Multivariate data analysis was processed using Principal Component Analysis (PCA) and agglomerative hierarchical clustering. 142 metabolites were identified by LCMS analysis, while 89 metabolites were identified by GCMS analysis. Terpenoids, flavonoids, phenyl propanoids, and saccharides are some major compound classes available from LCMS data. Oxygenated sesquiterpenes, especially 10-epi-γ-eudesmol, and β-eudesmol, are the major volatile components identified from GCMS analysis. PCA of LCMS analysis demonstrated that PC1 discriminated two clusters: essential oil, dichloromethane, and n-hexane extracts were in the positive quadrant, while methanol and ethyl acetate extracts were in the negative quadrant. Three-dimensional analysis of GCMS data revealed that n-hexane extract was in the superior quadrant, and its composition can be significantly distinguished from other extracts and essential oil. G. bancanus wood comprises valuable metabolites, i.e., terpenoids, which benefit the essential oil industry. Comprehensive extraction by performing solvents in different polarities on G. bancanus wood could allow exploration of fully extracted metabolites, supported by the exhibition of identified metabolites from LCMS and GCMS analysis.
Collapse
Affiliation(s)
- Ika Oktavianawati
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS, Sukolilo, Surabaya, 60111, Indonesia
- Department of Chemistry, Faculty of Mathematic and Sciences, Universitas Jember, Kampus Tegalboto, Jember, 68121, Indonesia
| | - Mardi Santoso
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS, Sukolilo, Surabaya, 60111, Indonesia
| | - Sri Fatmawati
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS, Sukolilo, Surabaya, 60111, Indonesia.
| |
Collapse
|
13
|
Oppedisano F, De Fazio R, Gugliandolo E, Crupi R, Palma E, Abbas Raza SH, Tilocca B, Merola C, Piras C, Britti D. Mediterranean Plants with Antimicrobial Activity against Staphylococcus aureus, a Meta-Analysis for Green Veterinary Pharmacology Applications. Microorganisms 2023; 11:2264. [PMID: 37764109 PMCID: PMC10534841 DOI: 10.3390/microorganisms11092264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a global health crisis, necessitating the search for innovative strategies to combat infectious diseases. The unique biodiversity of Italian flora offers a treasure trove of plant species and their associated phytochemicals, which hold immense potential as a solution to address AMR. By investigating the antimicrobial properties of Italian flora and their phytochemical constituents, this study aims to shed light on the potential of phyto-complexes as a valuable resource for developing novel or supportive antimicrobial agents useful for animal production.
Collapse
Affiliation(s)
- Francesca Oppedisano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (F.O.); (E.P.)
| | - Rosario De Fazio
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (B.T.); (D.B.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (F.O.); (E.P.)
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China;
| | - Bruno Tilocca
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (B.T.); (D.B.)
| | - Carmine Merola
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy;
| | - Cristian Piras
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (B.T.); (D.B.)
- CISVetSUA, University of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (B.T.); (D.B.)
- CISVetSUA, University of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
14
|
Ailli A, Handaq N, Touijer H, Gourich AA, Drioiche A, Zibouh K, Eddamsyry B, El Makhoukhi F, Mouradi A, Bin Jardan YA, Bourhia M, Elomri A, Zair T. Phytochemistry and Biological Activities of Essential Oils from Six Aromatic Medicinal Plants with Cosmetic Properties. Antibiotics (Basel) 2023; 12:antibiotics12040721. [PMID: 37107083 PMCID: PMC10135202 DOI: 10.3390/antibiotics12040721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
In this work, the chemical composition and antioxidant and antimicrobial activities of the essential oils (EOs) of six species-Laurus nobilis, Chamaemelum nobile, Citrus aurantium, Pistacia lentiscus, Cedrus atlantica, and Rosa damascena-have been studied. Phytochemical screening of these plants revealed the presence of primary metabolites, namely, lipids, proteins, reducing sugars, and polysaccharides, and also secondary metabolites such as tannins, flavonoids, and mucilages. The essential oils were extracted by hydrodistillation in a Clevenger-type apparatus. The yields are between 0.06 and 4.78% (mL/100 g). The analysis of the chemical composition carried out by GC-MS showed the presence of 30 to 35 compounds and represent between 99.97% and 100% of the total composition of EOs, with a variation in the chemical composition detected at the level of the majority compounds between these species. Indeed, in the EO of Laurus nobilis, 1,8-cineole (36.58%) is the major component. In Chamaemelum nobile EO, the most abundant compound is angelylangelate (41.79%). The EO of Citrus aurantium is rich in linalool (29.01%). The EO of Pistacia lentiscus is dominated by 3-methylpentylangelate (27.83%). The main compound of Cedrus atlantica is β-himachalene (40.19%), while the EO of Rosa damascenaa flowers is rich in n-nonadecane (44.89%). The analysis of the similarity between the EOs of the plants studied by ACH and ACP showed that the chemical composition of the EOs makes it possible to separate these plants into three groups: the first represented by Chamaemelum nobile, because it is rich in oxygenated monoterpenes, the second defined Cedrus atlantica and Rosa damascena, which are rich in sesquiterpenes, and the third gathers Pistacia lentiscus, Laurus nobilis and Citrus aurantium, which are composed of oxygenated sesquiterpenes and monoterpenes (these three species are very close). The study of the antioxidant activity showed that all the EOs tested have a high capacity for scavenging free radicals from DPPH. The EOs of Laurus nobilis and Pistacia lentiscus showed the highest activity, 76.84% and 71.53%, respectively, followed by Cedrus atlantica EO (62.38%) and Chamaemelum nobile (47.98%) then Citrus aurantium EO (14.70%). Antimicrobial activity EO was tested against eight bacterial strains and eight fungal strains; the results showed that EOs exhibit significant bactericidal and fungicidal activities against all the microorganisms tested, of which the MICs of the bacterial strains start with 5 mg/mL, while the MICs of the fungal strains are between 0.60 mg/mL and 5 mg/mL. Thus, these EOs rich in antimicrobial and antioxidant components can serve as a natural alternative; this confirms their use as additives in cosmetics.
Collapse
Affiliation(s)
- Atika Ailli
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P.11201 Zitoune, Meknes 50070, Morocco
| | - Nadia Handaq
- Laboratory of Biology, Environmental and Sustainable Development, Hight Normal School, Abdelmalek Essaadi University, Tetouan 93000, Morocco
| | - Hanane Touijer
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P.11201 Zitoune, Meknes 50070, Morocco
| | - Aman Allah Gourich
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P.11201 Zitoune, Meknes 50070, Morocco
| | - Aziz Drioiche
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P.11201 Zitoune, Meknes 50070, Morocco
| | - Khalid Zibouh
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P.11201 Zitoune, Meknes 50070, Morocco
| | - Brahim Eddamsyry
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P.11201 Zitoune, Meknes 50070, Morocco
| | - Fadoua El Makhoukhi
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P.11201 Zitoune, Meknes 50070, Morocco
| | - Aicha Mouradi
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P.11201 Zitoune, Meknes 50070, Morocco
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laaoune 70000, Morocco
| | - Abdelhakim Elomri
- University of Rouen Normandy, INSA Rouen Normandy and CNRS, Laboratory of Organic, Bioorganic Chemistry, Reactivity and analysis (COBRA-UMR 6014), 76000 Rouen, France
| | - Touriya Zair
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P.11201 Zitoune, Meknes 50070, Morocco
| |
Collapse
|
15
|
Pilipović K, Jurišić Grubešić R, Dolenec P, Kučić N, Juretić L, Mršić-Pelčić J. Plant-Based Antioxidants for Prevention and Treatment of Neurodegenerative Diseases: Phytotherapeutic Potential of Laurus nobilis, Aronia melanocarpa, and Celastrol. Antioxidants (Basel) 2023; 12:antiox12030746. [PMID: 36978994 PMCID: PMC10045087 DOI: 10.3390/antiox12030746] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
With the progress of medicine, especially in the last century, life expectancy increased considerably. As a result, age-related diseases also increased, especially malignancies and degenerative diseases of the central nervous system. The incidence and prevalence of neurodegenerative diseases steadily increased over the years, but despite efforts to uncover the pathophysiological processes behind these conditions, they remain elusive. Among the many theories, oxidative stress was proposed to be involved in neurodegenerative processes and to play an important role in the morbidity and progression of various neurodegenerative disorders. Accordingly, a number of studies discovered the potential of natural plant constituents to have significant antioxidant activity. This review focused on several plant-based antioxidants that showed promising results in the prevention and treatment of neurodegenerative diseases. Laurus nobilis, Aronia melanocarpa, and celastrol, a chemical compound isolated from the root extracts of Tripterygium wilfordii and T. regelii, are all known to be rich in antioxidant polyphenols.
Collapse
Affiliation(s)
- Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| | - Renata Jurišić Grubešić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| | - Petra Dolenec
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| | - Natalia Kučić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| | - Lea Juretić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| | - Jasenka Mršić-Pelčić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia
| |
Collapse
|
16
|
Ben Miri Y, Benabdallah A, Taoudiat A, Mahdid M, Djenane D, Tacer-Caba Z, Topkaya C, Simal-Gandara J. Potential of essential oils for protection of Couscous against Aspergillus flavus and aflatoxin B1 contamination. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Mandal D, Sarkar T, Chakraborty R. Critical Review on Nutritional, Bioactive, and Medicinal Potential of Spices and Herbs and Their Application in Food Fortification and Nanotechnology. Appl Biochem Biotechnol 2023; 195:1319-1513. [PMID: 36219334 PMCID: PMC9551254 DOI: 10.1007/s12010-022-04132-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Medicinal or herbal spices are grown in tropical moist evergreen forestland, surrounding most of the tropical and subtropical regions of Eastern Himalayas in India (Sikkim, Darjeeling regions), Bhutan, Nepal, Pakistan, Iran, Afghanistan, a few Central Asian countries, Middle East, USA, Europe, South East Asia, Japan, Malaysia, and Indonesia. According to the cultivation region surrounded, economic value, and vogue, these spices can be classified into major, minor, and colored tropical spices. In total, 24 tropical spices and herbs (cardamom, black jeera, fennel, poppy, coriander, fenugreek, bay leaves, clove, chili, cassia bark, black pepper, nutmeg, black mustard, turmeric, saffron, star anise, onion, dill, asafoetida, celery, allspice, kokum, greater galangal, and sweet flag) are described in this review. These spices show many pharmacological activities like anti-inflammatory, antimicrobial, anti-diabetic, anti-obesity, cardiovascular, gastrointestinal, central nervous system, and antioxidant activities. Numerous bioactive compounds are present in these selected spices, such as 1,8-cineole, monoterpene hydrocarbons, γ-terpinene, cuminaldehyde, trans-anethole, fenchone, estragole, benzylisoquinoline alkaloids, eugenol, cinnamaldehyde, piperine, linalool, malabaricone C, safrole, myristicin, elemicin, sinigrin, curcumin, bidemethoxycurcumin, dimethoxycurcumin, crocin, picrocrocin, quercetin, quercetin 4'-O-β-glucoside, apiol, carvone, limonene, α-phellandrene, galactomannan, rosmarinic acid, limonene, capsaicinoids, eugenol, garcinol, and α-asarone. Other than that, various spices are used to synthesize different types of metal-based and polymer-based nanoparticles like zinc oxide, gold, silver, selenium, silica, and chitosan nanoparticles which provide beneficial health effects such as antioxidant, anti-carcinogenic, anti-diabetic, enzyme retardation effect, and antimicrobial activity. The nanoparticles can also be used in environmental pollution management like dye decolorization and in chemical industries to enhance the rate of reaction by the use of catalytic activity of the nanoparticles. The nutritional value, phytochemical properties, health advantages, and both traditional and modern applications of these spices, along with their functions in food fortification, have been thoroughly discussed in this review.
Collapse
Affiliation(s)
- Debopriya Mandal
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, 732102, India.
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
18
|
Aala J, Ahmadi M, Golestan L, Shahidi SA, Shariatifar N. Effect of multifactorial free and liposome-coated of bay laurel (Laurus nobilis) and rosemary (Salvia rosmarinus) extracts on the behavior of Listeria monocytogenes and Vibrio parahaemolyticus in silver carp (Hypophthalmichthys molitrix) stored at 4 °C. ENVIRONMENTAL RESEARCH 2023; 216:114478. [PMID: 36206926 DOI: 10.1016/j.envres.2022.114478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
In this study, the effect of bay laurel (Laurus nobilis) (LE) and rosemary (Salvia rosmarinus) (RE) extracts, in two free forms and loaded with liposome, on the behavior of Listeria monocytogenes and Vibrio parahaemolyticus in silver carp (Hypophthalmichthys molitrix) minced, were examined. After extraction, the extracts were evaluated for phenolic, flavonoid, and antibacterial compounds (determination of MIC and MBC). The treatments studied included control treatment, treatments containing 1 and 1.5% of free extracts, and treatments containing 1 and 1.5% of liposome-coated extracts of LE and RE which were examined at times of 0, 4, 8, and 12 days with 3 replications. The findings indicated that the amount of flavonoid and phenolic compounds and the results of antibacterial tests (MIC and MBC tests) in RE extract were more favorable than LE extract. The aqueous extract of rosemary had higher levels of phenolic (344.66 mg gallic acid/g extract) and flavonoid (245.33 mg Catechin/g extract) compounds compared to the bay laurel extract (257.66 mg gallic acid/g extract) and (151.26 mg Catechin/g extract) respectively. The results of the behavior of L. monocytogenes and V. parahaemolyticus in fish showed that with increasing the storage time at 4 °C, these parameters increased, but in the treatment containing the coated forms of LE and RE extracts (concentration 1.5%), changes were significantly slower than other treatments. According to the obtained results, it can be concluded that in general, adding extracts of bay laurel and rosemary in a concentration of 1.5% reduces the proliferation of bacteria that cause food poisoning.
Collapse
Affiliation(s)
- Jalal Aala
- Department of Food Hygiene, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Mohammad Ahmadi
- Department of Food Hygiene, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
| | - Leila Golestan
- Department of Food Hygiene, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Seyed-Ahmad Shahidi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Thoma JL, Cantrell CL, Zheljazkov VD. Effects of Essential Oil Fumigation on Potato Sprouting at Room-Temperature Storage. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223109. [PMID: 36432838 PMCID: PMC9695867 DOI: 10.3390/plants11223109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 05/13/2023]
Abstract
As a global staple, potato plays an important role in meeting human dietary needs and alleviating malnutrition. Potato sprouting during storage is a major issue that threatens food security by increasing food waste and must therefore be controlled. Biopesticides, including essential oils (EOs), have a history of use as potato sprout suppressants, and interest in their use has been renewed in response to stricter regulations on CIPC, the dominant chemical sprout suppressant over the last half-century. We evaluated twenty-one EOs as potential sprout suppressants in cv. Ranger Russet potatoes at room-temperature storage. Treatment with Artemisia herba-alba EO was the most effective at suppressing both sprout length and sprout number over a 90-day storage period. GC—MS—FID analysis of A. herba-alba EO revealed the presence of α-thujone, hexadecenoic acid, β-thujone, camphor, sabinene, and camphene at amounts >1%. Cistus ladanifer, Ocimum basilicum, Ormenis mixta, and Salvia sclarea EOs significantly reduced sprout length for shorter storage periods, whereas Cinnamomum zeylanicum (bark) and Laurus nobilis EOs also significantly reduced sprout number. Syzygium aromaticum (clove) EO did not significantly suppress sprouting at room temperature. These results indicate the potential of certain EOs to be used as sprout suppressants for room-temperature potato storage, providing needed alternatives for both organic and conventional potato industries.
Collapse
Affiliation(s)
- Jena L. Thoma
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA
- Correspondence:
| | - Charles L. Cantrell
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, University City, MS 38677, USA
| | - Valtcho D. Zheljazkov
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
20
|
Oriola AO, Oyedeji AO. Essential Oils and Their Compounds as Potential Anti-Influenza Agents. Molecules 2022; 27:7797. [PMID: 36431899 PMCID: PMC9693178 DOI: 10.3390/molecules27227797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Essential oils (EOs) are chemical substances, mostly produced by aromatic plants in response to stress, that have a history of medicinal use for many diseases. In the last few decades, EOs have continued to gain more attention because of their proven therapeutic applications against the flu and other infectious diseases. Influenza (flu) is an infectious zoonotic disease that affects the lungs and their associated organs. It is a public health problem with a huge health burden, causing a seasonal outbreak every year. Occasionally, it comes as a disease pandemic with unprecedentedly high hospitalization and mortality. Currently, influenza is managed by vaccination and antiviral drugs such as Amantadine, Rimantadine, Oseltamivir, Peramivir, Zanamivir, and Baloxavir. However, the adverse side effects of these drugs, the rapid and unlimited variabilities of influenza viruses, and the emerging resistance of new virus strains to the currently used vaccines and drugs have necessitated the need to obtain more effective anti-influenza agents. In this review, essential oils are discussed in terms of their chemistry, ethnomedicinal values against flu-related illnesses, biological potential as anti-influenza agents, and mechanisms of action. In addition, the structure-activity relationships of lead anti-influenza EO compounds are also examined. This is all to identify leading agents that can be optimized as drug candidates for the management of influenza. Eucalyptol, germacrone, caryophyllene derivatives, eugenol, terpin-4-ol, bisabolene derivatives, and camphecene are among the promising EO compounds identified, based on their reported anti-influenza activities and plausible molecular actions, while nanotechnology may be a new strategy to achieve the efficient delivery of these therapeutically active EOs to the active virus site.
Collapse
Affiliation(s)
- Ayodeji Oluwabunmi Oriola
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Nelson Mandela Drive, P/Bag X1, Mthatha 5117, South Africa
| | | |
Collapse
|
21
|
Wang Y, Zhang Y, Song X, Fang C, Xing R, Liu L, Zhao X, Zou Y, Li L, Jia R, Ye G, Shi F, Zhou X, Zhang Y, Wan H, Wei Q, Yin Z. 1,8-Cineole inhibits biofilm formation and bacterial pathogenicity by suppressing luxS gene expression in Escherichia coli. Front Pharmacol 2022; 13:988245. [PMID: 36330093 PMCID: PMC9624193 DOI: 10.3389/fphar.2022.988245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/26/2022] [Indexed: 10/19/2023] Open
Abstract
In recent years, with frequent reports of multi-drug resistant strains, bacteria antibiotic resistance has become an increasingly serious health problem worldwide. One of the most promising ways for combating bacterial infections and antibiotic resistance is development of quorum-sensing (QS) interfering drugs. In this study, the results show that 1,8-cineole inhibited the expression of QS as well as the virulence genes in Escherichia coli O101 (E. coli O101) with a 65% inhibition rate against luxS gene. Therefore, we hypothesized that 1,8-cineole may inhibit the biofilm formation and reduce the pathogenicity of E. coli O101 by inhibiting the expression of luxS gene. To confirm our hypotheses, a luxS gene deleted E. coli O101 was constructed. The results show that the biofilm formation, motility, structure and pathogenicity of E. coli O101 were significantly inhibited following deletion of the luxS gene. In addition, the transcript levels of QS and virulence genes of E. coli O101 were also significantly down-regulated. Interestingly, 1,8-cineole no longer had a significant inhibitory effect on the related phenotype and gene expression of E. coli O101 without luxS gene. In conclusion, the results show that 1,8-cineole can affect bacterial biofilm formation and pathogenicity by suppressing the expression of luxS gene in E. coli O101, which could provide a new perspective for dealing with the biofilm problem of pathogenic bacteria.
Collapse
Affiliation(s)
- Yiming Wang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chunlin Fang
- Chengdu Agricultural College, Chengdu, China
- Chengdu QianKun Veterinary Pharmaceutical Co., Ltd., Chengdu, China
| | - Rui Xing
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lu Liu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinghong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fei Shi
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xun Zhou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yingying Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hongping Wan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qin Wei
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
22
|
Purgatorio C, Serio A, Chaves-López C, Rossi C, Paparella A. An overview of the natural antimicrobial alternatives for sheep meat preservation. Compr Rev Food Sci Food Saf 2022; 21:4210-4250. [PMID: 35876396 DOI: 10.1111/1541-4337.13004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 01/28/2023]
Abstract
Sheep meat is consumed and appreciated all over the world for its nutritional value and flavor. However, this meat is very perishable and easily subjected to the action of both spoilage and pathogenic microorganisms. For this reason, in combination with cold storage, effective preservation techniques are required. There is increasing interest in the application of natural antimicrobials, such as essential oils, extracts, spices, and by-products of the food industry. This review analyses the studies on natural antimicrobials in sheep meat and sheep meat products and gathers evidence about the encouraging results achieved on the reduction and/or elimination of spoilage and pathogenic microorganisms. The use of these natural antimicrobial alternatives might open up important perspectives for industrial application, considering that this specific meat is often traded over long distances. In fact, on the basis of scientific literature, natural antimicrobials can be considered a sustainable and affordable alternative to extend the shelf life of sheep meat and guarantee its safety, although many factors need to be further investigated, such as the sensory impact, potential toxicity, and economic aspects. For all these issues, investigated in some of the studies reviewed here, it is fundamental to obtain the antimicrobial effect with the minimum amount of effective substance to avoid sensory modifications, toxic effects, and unbearable costs. This study sets foundations for the possible direction of future studies, which will contribute to identify effective solutions for industrial applications of natural antimicrobials in the sheep meat industry.
Collapse
Affiliation(s)
- Chiara Purgatorio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Annalisa Serio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Chiara Rossi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
23
|
Razzouk S, Mazri MA, Jeldi L, Mnasri B, Ouahmane L, Alfeddy MN. Chemical Composition and Antimicrobial Activity of Essential Oils from Three Mediterranean Plants against Eighteen Pathogenic Bacteria and Fungi. Pharmaceutics 2022; 14:pharmaceutics14081608. [PMID: 36015234 PMCID: PMC9414133 DOI: 10.3390/pharmaceutics14081608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/04/2022] [Accepted: 06/11/2022] [Indexed: 12/07/2022] Open
Abstract
The chemical composition and antimicrobial activity of essential oils (EOs) obtained from three medicinal plants of the Moroccan flora were evaluated. The chemical composition of EOs of Thymus leptobotrys, Laurus nobilis and Syzygium aromaticum was determined using a gas chromatograph coupled with mass spectrometry. Carvacrol (75.05%) was the main constituent of T. leptobotrys EOs, while 1,8-cineole (31.48%) and eugenol (82.16%) were the predominant components of L. nobilis and S. aromaticum EOs, respectively. The antimicrobial activity of the EOs was evaluated qualitatively and quantitatively against 18 microbial strains pathogenic to humans by using the disc diffusion method, and by measuring the minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC). The EOs of T. leptobotrys were the most active against the strains tested, with inhibitory zone values ranging from 7.00 to 45.00 mm, and MIC and MMC values ranging from 0.312 to 80.00 mg/mL. In many cases, these EOs exhibited higher antibacterial and antifungal activities than the chemical compounds ciprofloxacin and fluconazole, respectively. This high antimicrobial activity can be ascribed to their richness in carvacrol. The EOs of T. leptobotrys, L. nobilis, and S. aromaticum could be considered a promising alternative to replace chemical antimicrobials, and a readily available natural source of bioactive compounds.
Collapse
Affiliation(s)
- Soukaina Razzouk
- Plant Protection Research Unit, Regional Center of Agricultural Research of Marrakech, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco; (S.R.); (L.J.)
- Laboratory of Microbial Biotechnology, Agro-Sciences and Environment (BioMAgE), Cadi Ayyad University, Marrakesh 40000, Morocco;
| | - Mouaad Amine Mazri
- Agro-Biotechnology Research Unit, Regional Center of Agricultural Research of Marrakech, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco;
| | - Lamya Jeldi
- Plant Protection Research Unit, Regional Center of Agricultural Research of Marrakech, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco; (S.R.); (L.J.)
- Laboratory of Microbial Biotechnology, Agro-Sciences and Environment (BioMAgE), Cadi Ayyad University, Marrakesh 40000, Morocco;
| | - Bacem Mnasri
- Center of Biotechnology of Borj-Cédria, Hammam-Lif 2050, Tunisia;
| | - Lahcen Ouahmane
- Laboratory of Microbial Biotechnology, Agro-Sciences and Environment (BioMAgE), Cadi Ayyad University, Marrakesh 40000, Morocco;
| | - Mohamed Najib Alfeddy
- Plant Protection Research Unit, Regional Center of Agricultural Research of Marrakech, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco; (S.R.); (L.J.)
- Correspondence:
| |
Collapse
|
24
|
Piras C, Tilocca B, Castagna F, Roncada P, Britti D, Palma E. Plants with Antimicrobial Activity Growing in Italy: A Pathogen-Driven Systematic Review for Green Veterinary Pharmacology Applications. Antibiotics (Basel) 2022; 11:919. [PMID: 35884173 PMCID: PMC9311764 DOI: 10.3390/antibiotics11070919] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
Drug resistance threatening humans may be linked with antimicrobial and anthelmintic resistance in other species, especially among farm animals and, more in general, in the entire environment. From this perspective, Green Veterinary Pharmacology was proven successful for the control of parasites in small ruminants and for the control of other pests such as varroa in bee farming. As in anthelmintic resistance, antimicrobial resistance (AMR) represents one of the major challenges against the successful treatment of infectious diseases, and antimicrobials use in agriculture contributes to the spread of more AMR bacterial phenotypes, genes, and proteins. With this systematic review, we list Italian plants with documented antimicrobial activity against possible pathogenic microbes. Methods: The literature search included all the manuscripts published since 1990 in PubMed, Web of Science, and Scopus using the keywords (i) "antimicrobial, plants, Italy"; (ii) "antibacterial, plant, Italy"; (iii) "essential oil, antibacterial, Italy"; (iv) "essential oil, antimicrobial, Italy"; (v) "methanol extract, antibacterial, Italy"; (vi) "methanol extract, antimicrobial, Italy". Results: In total, 105 manuscripts that documented the inhibitory effect of plants growing in Italy against bacteria were included. One hundred thirty-five plants were recorded as effective against Gram+ bacteria, and 88 against Gram-. This will provide a ready-to-use comprehensive tool to be further tested against the indicated list of pathogens and will suggest new alternative strategies against bacterial pathogens to be employed in Green Veterinary Pharmacology applications.
Collapse
Affiliation(s)
- Cristian Piras
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (B.T.); (F.C.); (P.R.); (D.B.); (E.P.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| | - Bruno Tilocca
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (B.T.); (F.C.); (P.R.); (D.B.); (E.P.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| | - Fabio Castagna
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (B.T.); (F.C.); (P.R.); (D.B.); (E.P.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| | - Paola Roncada
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (B.T.); (F.C.); (P.R.); (D.B.); (E.P.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (B.T.); (F.C.); (P.R.); (D.B.); (E.P.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (B.T.); (F.C.); (P.R.); (D.B.); (E.P.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, “Magna Græcia University” of Catanzaro, CISVetSUA, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FISH), “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| |
Collapse
|
25
|
Maleš I, Dragović-Uzelac V, Jerković I, Zorić Z, Pedisić S, Repajić M, Garofulić IE, Dobrinčić A. Non-Volatile and Volatile Bioactives of Salvia officinalis L., Thymus serpyllum L. and Laurus nobilis L. Extracts with Potential Use in the Development of Functional Beverages. Antioxidants (Basel) 2022; 11:antiox11061140. [PMID: 35740037 PMCID: PMC9220411 DOI: 10.3390/antiox11061140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023] Open
Abstract
Functional beverages based on herbal extracts are highly demanded products due to the presence of bioactives with promising health benefits and interesting and characteristic sensory properties. Mediterranean medicinal and aromatic herbs contain a wide range of bioactives (non-volatile polyphenols, volatile terpenes) that are important constituents of herbal extracts and essential oils. The antioxidant capacity and potential health benefits of these bioactives could be associated with their synergistic effects. Therefore, this study aimed to characterize the non-volatile and volatile bioactives of sage (Salvia officinalis L.), wild thyme (Thymus serpyllum L.) and laurel (Laurus nobilis L.) aqueous extracts and their two- and three-component mixtures as well as their antioxidant capacity. The content of total phenols, flavonoids, hydroxycinnamic acids and flavonols was determined spectrophotometrically. Individual polyphenols were analyzed by LC-MS/MS, the volatiles were analyzed by HS-SPME/GC-MS, and the antioxidant capacity was analyzed by ORAC and DPPH assays. The results showed that aqueous extracts of all examined herbs and their mixtures contained a high content of phenolic compounds ranging from 0.97 to 2.79 g L-1 of the sample, among which the most common were flavonols. At the same time, mono- and sesquiterpenes were the main volatiles. All extracts showed high antioxidant capacity, especially L. nobilis (781.62 ± 5.19 μmol TE mL-1 of the sample in the DPPH assay; 1896.10 ± 8.77 μmol TE mL-1 of the sample in the ORAC assay) and the two-component mixture of L. nobilis and T. serpyllum (679.12 ± 5.19 μmol TE mL-1 in the DPPH assay; 1913.38 ± 8.77 μmol TE mL-1 in the ORAC assay). Mixtures of herbal extracts have been shown to possess additive or synergistic effects, consequently contributing to higher antioxidant capacity. Therefore, two-component mixtures of herbal extracts showed promising potential for the production of functional beverages.
Collapse
Affiliation(s)
- Ivanka Maleš
- Department of Pharmacy, The School of Medicine, University of Split, 21000 Split, Croatia;
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (Z.Z.); (S.P.); (M.R.); (I.E.G.)
- Correspondence: (V.D.-U.); (A.D.)
| | - Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia;
| | - Zoran Zorić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (Z.Z.); (S.P.); (M.R.); (I.E.G.)
| | - Sandra Pedisić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (Z.Z.); (S.P.); (M.R.); (I.E.G.)
| | - Maja Repajić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (Z.Z.); (S.P.); (M.R.); (I.E.G.)
| | - Ivona Elez Garofulić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (Z.Z.); (S.P.); (M.R.); (I.E.G.)
| | - Ana Dobrinčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (Z.Z.); (S.P.); (M.R.); (I.E.G.)
- Correspondence: (V.D.-U.); (A.D.)
| |
Collapse
|
26
|
Karakosta LK, Vatavali KA, Kosma IS, Badeka AV, Kontominas MG. Combined Effect of Chitosan Coating and Laurel Essential Oil ( Laurus nobilis) on the Microbiological, Chemical, and Sensory Attributes of Water Buffalo Meat. Foods 2022; 11:1664. [PMID: 35681413 PMCID: PMC9180035 DOI: 10.3390/foods11111664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
The combined effect of chitosan coating (CHI) and laurel essential oil (LEO) on the shelf-life extension of water buffalo meat stored under aerobic packaging conditions at 4 °C was investigated. Microbiological, physicochemical, and sensory attributes were monitored over an 18-day storage period. Microbiological data indicated that the (CHI) coating along with (LEO) was the most efficient among treatments in reducing populations of bacteria by 3.2 log cfu/g on day 6 of storage (p < 0.05). pH values of meat varied between 6.04 and 6.21, while thiobarbituric acid (TBA) values were equal to or less than 2.12 mg malondialdehyde/kg throughout storage. The colour parameter L* and a* values decreased, while b* values increased during storage (p < 0.05). Taste proved to be a more sensitive sensory attribute than odour. Based on sensory and microbiological data, product shelf life was approximately 5−6 days for control samples, 7−8 days for samples treated with (LEO), 12 days for samples treated with (CHI), and 13−14 days for samples treated with (CHI + LEO).
Collapse
Affiliation(s)
| | | | | | - Anastasia V. Badeka
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (L.K.K.); (K.A.V.); (I.S.K.)
| | - Michael G. Kontominas
- Laboratory of Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (L.K.K.); (K.A.V.); (I.S.K.)
| |
Collapse
|
27
|
Parva N, Omid S, Sadegh AJ, Mohammad HA, Mehrdad K. Antiviral Activity of Medicinal Plants against Human Coronavirus: a systematic scoping review of and experimentations. J TRADIT CHIN MED 2022; 42:332-343. [PMID: 35610002 PMCID: PMC9924666 DOI: 10.19852/j.cnki.jtcm.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To investigate the and studies of natural compounds and medicinal plants with anti-coronavirus activity. METHODS A systematic review was performed based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses and Animal Research: Reporting of experiments guidelines to find data for medicinal plants and natural products effective against human coronaviruses in or studies. Studies published up to September 6, 2020 were included. Studies ( or ) reporting the effect of medicinal plants and natural products or their derivatives on human coronavirus were included RESULTS: Promising anti-coronavirus effects are seen with different herbal compounds like some diterpenoids, sesquiterpenoids, and three compounds in tea with 3CLpro inhibiting effect of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV); Hirsutenone, Six cinnamic amides and bavachinin are PLpro inhibitors and Tanshinones are active on both 3CLpro and PLpro. Some flavonoid compounds of Citrus fruits act on Immun-oregulation and target angiotensin-converting enzyme 2 which is used by SARS-COV for entry. Virus helicase is possibly inhibited by two compounds myricetin and scutellarein. CONCLUSION This review shows that complementary medicine have the potential for new drug discovery against coronavirus. Further research is needed before definitive conclusions can be made concerning the safety and efficacy of the use of these medicinal plants.
Collapse
Affiliation(s)
- Namiranian Parva
- 1 Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadatpour Omid
- 2 Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azimzadeh Jamalkandi Sadegh
- 3 Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Ayati Mohammad
- 1 Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Karimi Mehrdad
- 1 Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Mehrdad Karimi MD, Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Sarparast St, Taleghani St, Tehran, 1668753961, Iran. , Telephone: +98-21-88974535
| |
Collapse
|
28
|
Paparella A, Nawade B, Shaltiel-Harpaz L, Ibdah M. A Review of the Botany, Volatile Composition, Biochemical and Molecular Aspects, and Traditional Uses of Laurus nobilis. PLANTS 2022; 11:plants11091209. [PMID: 35567209 PMCID: PMC9100900 DOI: 10.3390/plants11091209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022]
Abstract
Laurus nobilis L. is an aromatic medicinal plant widely cultivated in many world regions. L. nobilis has been increasingly acknowledged over the years as it provides an essential contribution to the food and pharmaceutical industries and cultural integrity. The commercial value of this species derives from its essential oil, whose application might be extended to various industries. The chemical composition of the essential oil depends on environmental conditions, location, and season during which the plants are collected, drying methods, extraction, and analytical conditions. The characterization and chemotyping of L. nobilis essential oil are extremely important because the changes in composition can affect biological activities. Several aspects of the plant’s secondary metabolism, particularly volatile production in L. nobilis, are still unknown. However, understanding the molecular basis of flavor and aroma production is not an easy task to accomplish. Nevertheless, the time-limited efforts for conservation and the unavailability of knowledge about genetic diversity are probably the major reasons for the lack of breeding programs in L. nobilis. The present review gathers the scientific evidence on the research carried out on Laurus nobilis L., considering its cultivation, volatile composition, biochemical and molecular aspects, and antioxidant and antimicrobial activities.
Collapse
Affiliation(s)
- Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Balzarini, 1, 64100 Teramo, Italy;
| | - Bhagwat Nawade
- Newe Yaar Research Center, Agricultural Research Organization, Ramat Yishay 30095, Israel;
| | - Liora Shaltiel-Harpaz
- Migal Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Environmental Sciences Department, Tel Hai College, Upper Galilee 12210, Israel
| | - Mwafaq Ibdah
- Newe Yaar Research Center, Agricultural Research Organization, Ramat Yishay 30095, Israel;
- Correspondence: ; Tel.: +972-4-953-9537; Fax: +972-4-983-6936
| |
Collapse
|
29
|
Rocha GA, Ferreira RB. Antimicrobial polysaccharides obtained from natural sources. Future Microbiol 2022; 17:701-716. [PMID: 35392662 DOI: 10.2217/fmb-2021-0257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
With the increase in resistance to conventional antibiotics among bacterial pathogens, the search for new antimicrobials becomes more and more necessary. Although most studies focus on the discovery of antimicrobial peptides for the development of new antibiotics, several others in the literature have described polysaccharides with the same biological activity with the potential for use as therapeutic alternatives. Here we review the currently available literature on antimicrobial polysaccharides isolated from different sources to demonstrate that there are several possible unconventional carbohydrate polymers that could act as therapeutic alternatives in the battle against drug-resistant pathogens.
Collapse
Affiliation(s)
- Giulia A Rocha
- Departamento de Microbiologia Médica Instituto de Microbiologia Paulo de Góes CCS, Bloco I2-028, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brasil
| | - Rosana Br Ferreira
- Departamento de Microbiologia Médica Instituto de Microbiologia Paulo de Góes CCS, Bloco I2-028, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brasil
| |
Collapse
|
30
|
Grati Affes T, Chenenaoui S, Zemni H, Hammami M, Bachkouel S, Aidi Wannes W, Nasraoui B, Saidani Tounsi M, Lasram S. Biological control of Citrus brown spot pathogen, "Alternaria alternata" by different essential oils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022:1-14. [PMID: 35322739 DOI: 10.1080/09603123.2022.2055748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
The antifungal effects of laurel, myrtle and peppermint essential oils and their combinations were investigated in vitro on two strains of Alternaria alternata mycelial growth and in vivo on detached Citrus leaf disease incidence. Myrtle essential oil was rich in α-pinene and 1,8-cineole while peppermint essential oil in menthol and menthone. 1,8-Cineole was the main component of the essential oils from laurel, laurel + myrtle and peppermint + laurel. The combined peppermint and myrtle essential oil was characterized by the predominance of menthol and 1,8-cineole. All tested essential oils, incorporated in potato-dextrose agar, inhibited A. alternata mycelial growth and had a fungistatic effect at concentration 3 mg/mL of medium. A great synergism was detected between peppermint and laurel essential oils against the two strains of A. alternata. The combined laurel and peppermint essential oil reduced mycelial growth rates of inoculated detached leaves at concentration above 1.5 mg/mL.
Collapse
Affiliation(s)
- Taycir Grati Affes
- Laboratoire des Plantes Aromatiques et Médicinales, Centre de Biotechnologie de Borj Cédria, Hammam-Lif, Tunisie
- LR/BPIA Institut National Agronomique de Tunisie (INAT), Université de Carthage, Tunis-Mahrajène Tunisie
| | - Synda Chenenaoui
- Laboratoire de Physiologie Moléculaire des Plantes, Centre de Biotechnologie de Borj Cédria, Hammam-Lif, Tunisie
| | - Hassen Zemni
- Laboratoire de Physiologie Moléculaire des Plantes, Centre de Biotechnologie de Borj Cédria, Hammam-Lif, Tunisie
| | - Majdi Hammami
- Laboratoire des Plantes Aromatiques et Médicinales, Centre de Biotechnologie de Borj Cédria, Hammam-Lif, Tunisie
| | | | - Wissem Aidi Wannes
- Laboratoire des Plantes Aromatiques et Médicinales, Centre de Biotechnologie de Borj Cédria, Hammam-Lif, Tunisie
| | - Bouzid Nasraoui
- LR/BPIA Institut National Agronomique de Tunisie (INAT), Université de Carthage, Tunis-Mahrajène Tunisie
| | - Moufida Saidani Tounsi
- Laboratoire des Plantes Aromatiques et Médicinales, Centre de Biotechnologie de Borj Cédria, Hammam-Lif, Tunisie
| | - Salma Lasram
- Laboratoire de Physiologie Moléculaire des Plantes, Centre de Biotechnologie de Borj Cédria, Hammam-Lif, Tunisie
| |
Collapse
|
31
|
Bay Laurel (Laurus nobilis L.) Essential Oil as a Food Preservative Source: Chemistry, Quality Control, Activity Assessment and Applications to Olive Industry Products. Foods 2022; 11:foods11050752. [PMID: 35267385 PMCID: PMC8909149 DOI: 10.3390/foods11050752] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Essential oils (EOs) find application as flavoring agents in the food industry and are also desirable ingredients as they possess preservative properties. The Mediterranean diet involves the use of a lot of herbs and spices and their products (infusions, EOs) as condiments and for the preservation of foods. Application of EOs has the advantage of homogeneous dispersion in comparison with dry leaf use in small pieces or powder. Among them, Laurus nobilis (bay laurel) L. EO is an interesting source of volatiles, such as 1,8-cineole and eugenol, which are known for their preservative properties. Its flavor suits cooked red meat, poultry, and fish, as well as vegetarian dishes, according to Mediterranean recipes. The review is focused on its chemistry, quality control aspects, and recent trends in methods of analysis and activity assessment with a focus on potential antioxidant activity and applications to olive industry products. Findings indicate that this EO is not extensively studied in comparison with those from other Mediterranean plants, such as oregano EO. More work is needed to establish authenticity and activity methods, whereas the interest for using it for the preparation of flavored olive oil or for the aromatization and preservation of table oils must be further encouraged.
Collapse
|
32
|
Amer SA, Rizk AE. Production and evaluation of novel functional extruded corn snacks fortified with ginger, bay leaves and turmeric powder. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00083-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Extruded corn snacks are accepted by all human ages especially children, but they have low functional value. Therefore, corn extruded snacks contain rich nutraceuticals dried herbs including Laurus nobilis (T1), Curcuma longa (T2), Zingiber officinale Roscoe (T3), and the mixture of these herbs (T4) were manufactured and analyzed. The results declared that all the herbal extruded corn snacks had significantly higher ash, fibers, minerals, and vitamins A and B6. For minerals, the highest percent of increase compared to control was achieved by Fe, K, Ca, Zn content in order, being the highest in T4. The contents of Vitamin A and B6 were ranged from 283 to 445 IU/100 g and from 0.01 to 0.08 mg/100 g for the herbal extrudates, respectively. The increased percent in herbal corn snacks relative to control ranged from 743 to 452%, 188 to 17.6%, and from 313 to 99% for total phenolics, flavonoids, and antioxidant activity. Besides, the highest number of phenolic compounds was recorded in T4. Despite the fact that approximately all herbal extruded products had good texture and color characteristics, the best formulation was T2 and T4 corn snacks. Furthermore, the extruded products were microbiologically safe for up to 9 months. The formulation of herbal-corn snacks could fulfill consumers’ requirement for ready-to-eat-healthy foods with acceptable sensory attributes and also economically suitable for the food industry.
Graphical abstract
Collapse
|
33
|
Özogul Y, El Abed N, Özogul F. Antimicrobial effect of laurel essential oil nanoemulsion on food-borne pathogens and fish spoilage bacteria. Food Chem 2022; 368:130831. [PMID: 34403999 DOI: 10.1016/j.foodchem.2021.130831] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 12/31/2022]
Abstract
This research aimed to apply nanotechnology for nanoformulation of Laurus nobilis essential oil (EO) by ultrasonic emulsification method and characterization of nano-form: particle size, viscosity, polydispersity index, thermodynamic stability, and surface tension. The antimicrobial activity of laurel EO nanoemulsion (LEON) and laurel EO was also investigated against a panel of ten food-borne pathogens and fish spoilage bacteria. The GC-MS analysis of EO revealed that 1,8-Cineole was the main volatile compound. According to disc-diffusion results, LEON was more effective against Gram-positive pathogen bacteria of Staphylococcus aureus and Enterococcus faecalis than EO. Laurel oil demonstrated a higher inhibitory effect against fish spoilage bacteria (6.19 to 18.5 mm). The MICs values of LEON and laurel EO ranged from 6.25 to >25 mg/mL and from 1.56 to >25 mg/mL, respectively. Nanoemulsion and oil exhibited the best bactericidal activity against Pseudomonas luteola. Therefore, LEON can be developed as a natural antimicrobial agent in food industry.
Collapse
Affiliation(s)
- Yesim Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Adana, Turkey
| | - Nariman El Abed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Tunis, Tunisia.
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Adana, Turkey
| |
Collapse
|
34
|
Eslamian Amiri M, Ahmady M, Ariaii P, Golestan L, Ghorbani‐HasanSaraei A. Use composite coating of chitosan-chia seed gum enriched with microliposomes of Bay laurel essential oil to increase the shelf life of quail fillets. Food Sci Nutr 2021; 9:6524-6537. [PMID: 34925782 PMCID: PMC8645717 DOI: 10.1002/fsn3.2578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/12/2022] Open
Abstract
In this study, the effect of composite chitosan-chia seed coating (CH-CG) with Bay laurel (Laurus nobilis) essential oil (BE) in two forms including free and nanocapsulated on the shelf life of quail fillets during the 16-day refrigeration (4 ± 1℃) period was investigated. For this purpose, first, BE was extracted by Clevenger apparatus. Then, nanoliposomes BE were produced, and the properties of BE and nanoliposomes BE were investigated. In order to investigate the shelf life of quail, 6 treatments were produced including 1: control (C), 2: CH-CG, CH-CG+BE at 800 ppm, 3: CH-CG+BE at 1600 ppm, 4: CH-CG+nano BE at 800 ppm, 5: CH-CG+nano BE at 1600 ppm, and periodically chemical parameters (peroxide value, free fatty acid, total volatile basic nitrogen, texture firmness, and chewing ability) and microbial (total viable bacteria (TVC) and psychrotrophic bacteria), and the effect of different treatments on control in Escherichia coli and Staphylococcus aureus inoculated populations in quail was also investigated. The BE had high antioxidant and antimicrobial properties. The particle size and microencapsulation efficiency of BE nanoliposome were 98.3 nm and 75.95%, respectively. The results of chemical and microbial analysis showed that in general, the coating with essential oil slowed down the increasing trend of oxidation and microbial indices compared to the control treatment and nanocapsulation of essential oil has increased its antimicrobial and antioxidant properties (p < .05). At the end of storage period, in all tests, treatments of 3, 4, and 5 had the allowed microbial and chemical range and they also inhibited the growth of these bacteria (p < .05). Overall, considering the higher sensory score of treatment 4 and economic efficiency, it seems that this treatment can be used as a natural preservative in the meat industry.
Collapse
Affiliation(s)
| | - Mohammad Ahmady
- Department of Food Science and TechnologyAyatolla Amoli BranchIslamic Azad UniversityAmolIran
| | - Peiman Ariaii
- Department of Food Science and TechnologyAyatolla Amoli BranchIslamic Azad UniversityAmolIran
| | - Leila Golestan
- Department of Food Science and TechnologyAyatolla Amoli BranchIslamic Azad UniversityAmolIran
| | | |
Collapse
|
35
|
Avram S, Stan MS, Udrea AM, Buiu C, Boboc AA, Mernea M. 3D-ALMOND-QSAR Models to Predict the Antidepressant Effect of Some Natural Compounds. Pharmaceutics 2021; 13:pharmaceutics13091449. [PMID: 34575524 PMCID: PMC8470101 DOI: 10.3390/pharmaceutics13091449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022] Open
Abstract
The current treatment of depression involves antidepressant synthetic drugs that have a variety of side effects. In searching for alternatives, natural compounds could represent a solution, as many studies reported that such compounds modulate the nervous system and exhibit antidepressant effects. We used bioinformatics methods to predict the antidepressant effect of ten natural compounds with neuroleptic activity, reported in the literature. For all compounds we computed their drug-likeness, absorption, distribution, metabolism, excretion (ADME), and toxicity profiles. Their antidepressant and neuroleptic activities were predicted by 3D-ALMOND-QSAR models built by considering three important targets, namely serotonin transporter (SERT), 5-hydroxytryptamine receptor 1A (5-HT1A), and dopamine D2 receptor. For our QSAR models we have used the following molecular descriptors: hydrophobicity, electrostatic, and hydrogen bond donor/acceptor. Our results showed that all compounds present drug-likeness features as well as promising ADME features and no toxicity. Most compounds appear to modulate SERT, and fewer appear as ligands for 5-HT1A and D2 receptors. From our prediction, linalyl acetate appears as the only ligand for all three targets, neryl acetate appears as a ligand for SERT and D2 receptors, while 1,8-cineole appears as a ligand for 5-HT1A and D2 receptors.
Collapse
Affiliation(s)
- Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, SplaiulIndependentei, No 91-95, 050095 Bucharest, Romania; (S.A.); (M.S.S.); (M.M.)
| | - Miruna Silvia Stan
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, SplaiulIndependentei, No 91-95, 050095 Bucharest, Romania; (S.A.); (M.S.S.); (M.M.)
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 91–95, SplaiulIndependentei, 050095 Bucharest, Romania;
| | - Ana Maria Udrea
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 91–95, SplaiulIndependentei, 050095 Bucharest, Romania;
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Cătălin Buiu
- Department of Automatic Control and Systems Engineering, Politehnica University of Bucharest, 313 SplaiulIndependenţei, 060042 Bucharest, Romania
- Correspondence: ; Tel.: +40-021-402-9167
| | - Anca Andreea Boboc
- “Maria Sklodowska Curie” Emergency Children’s Hospital, 20, Constantin Brancoveanu Bd., 077120 Bucharest, Romania;
- Department of Pediatrics 8, “Carol Davila” University of Medicine and Pharmacy, EroiiSanitari Bd., 020021 Bucharest, Romania
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, SplaiulIndependentei, No 91-95, 050095 Bucharest, Romania; (S.A.); (M.S.S.); (M.M.)
| |
Collapse
|
36
|
Oil in Water Nanoemulsions Loaded with Tebuconazole for Populus Wood Protection against White- and Brown-Rot Fungi. FORESTS 2021. [DOI: 10.3390/f12091234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eugenol in water nanoemulsions loaded with tebuconazole appear as a very promising alternative formulations for wood protection against xylophagous fungi that are the main species responsible for different rots in wood structures. The dispersions as prepared and upon dilution (impregnation mixtures) were characterized by the apparent hydrodynamic diameter distribution of the oil droplets loaded with tebuconazole and their long-term stability. The impregnation mixtures were applied on wood of Populus canadensis I-214 clone by using a pressure-vacuum system, and the effectiveness against fungal degradation by Gloeophyllum sepiarium and Pycnoporus sanguineus fungi was determined. The retention of tebuconazole in wood was about 40% of the amount contained in the impregnation mixtures. The results showed that the impregnation process leads to a long-term antifungal protection to the wood, with the mass loss after 16 weeks being reduced more than 10 times in relation to the control (untreated poplar wood) and the reference wood (untreated beech wood).
Collapse
|
37
|
Chemical Profile, In Vitro Biological Activity and Comparison of Essential Oils from Fresh and Dried Flowers of Lavandula angustifolia L. Molecules 2021; 26:molecules26175317. [PMID: 34500747 PMCID: PMC8434377 DOI: 10.3390/molecules26175317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
The chemical composition of essential oils (EOs) from dried and fresh flowers of Lavandula angustifolia L. (lavender), named LA 2019 and LA 2020, respectively, grown in central Italy was analyzed and compared by GC and GC-MS. For both samples, 61 compounds were identified, corresponding to 97.9% and 98.1% of the total essential oils. Explorative data analysis, performed to compare the statistical composition of the samples, resulted in a high level of global similarity (around 93%). The compositions of both samples were characterized by 10 major compounds, with a predominance of Linalool (35.3-36.0%), Borneol (15.6-19.4%) and 1,8-Cineole (11.0-9.0%). The in vitro antibacterial activity assay by disk diffusion tests against Bacillus subtilis PY79 and Escherichia coli DH5α showed inhibition of growth in both indicator strains. In addition, plate counts revealed a bactericidal effect on E. coli, which was particularly noticeable when using oil from the fresh lavender flowers at the highest concentrations. An in vitro antifungal assay showed that the EOs inhibited the growth of Sclerotium rolfsii, a phytopathogenic fungus that causes post-harvest diseases in many fruits and vegetables. The antioxidant activity was also assessed using the ABTS free radical scavenging assay, which showed a different antioxidant activity in both EOs. In addition, the potential application of EOs as a green method to control biodeterioration phenomena on an artistic wood painting (XIX century) was evaluated.
Collapse
|
38
|
Bourebaba N, Kornicka-Garbowska K, Marycz K, Bourebaba L, Kowalczuk A. Laurus nobilis ethanolic extract attenuates hyperglycemia and hyperinsulinemia-induced insulin resistance in HepG2 cell line through the reduction of oxidative stress and improvement of mitochondrial biogenesis - Possible implication in pharmacotherapy. Mitochondrion 2021; 59:190-213. [PMID: 34091077 DOI: 10.1016/j.mito.2021.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 02/03/2023]
Abstract
The aim of this study was to establish the potential effect of Laurus nobilis ethanolic extract on improving insulin sensitivity and protecting liver cells from apoptosis, mitochondrial dysfunction, oxidative stress (OS), and inflammation; all of which considered as major alterations occurring during insulin resistance (IR) as well as diabetes onset, in hyperinsulinemic and hyperglycemic-induced HepG2 cell line. Thereby, L. nobilis ethanolic extract has been first chemically characterized using LC-MS/MS technique. Subsequently, HepG2 cells were pre-treated with an optimal concentration of L. nobilis ethanolic extract for 24 h, and then, subjected to 30 mM D-glucose and 500 nM insulin mixture for another 24 h in order to induce hyperinsulinemia and hyperglycaemia (HI/HG) status. Several parameters such as biocompatibility, hepatotoxicity, reactive oxygen species (ROS), mitochondrial transmembrane potential, dynamics, and metabolism, multicaspase activity, glucose uptake, in addition to genes and proteins expression levels were investigated. The obtained results showed that the bioactive extract of Laurus nobilis increased the number of living cells and their proliferation rate, significantly attenuated apoptosis by modulating pro-apoptotic pathways (p21, p53 and Bax genes), allowed a relative normalization of caspases-activity, and decreased the expression of inflammatory markers including c-Jun, NF-κB and Tlr4 transcripts. L. Nobilis ethanolic extract reduced considerably total intracellular ROS levels in challenged HepG2 cells, and regulated the mitochondrial OXPHOS pathway, demonstrating the potential antioxidant effect of the plant. Ethanolic plant extract increased insulin sensitivity, since an elevated expression of master transcripts responsible for insulin sensitivity including IRS1, IRS2, INSR was found. Taken together, obtained data suggest that L. nobilis ethanolic extract offers new insights in the development of potential antioxidant, insulin sensitizing as well as hepatoprotective drugs.
Collapse
Affiliation(s)
- Nabila Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa 11, Malin 55-114 Wisznia Mała, Poland
| | - Katarzyna Kornicka-Garbowska
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa 11, Malin 55-114 Wisznia Mała, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa 11, Malin 55-114 Wisznia Mała, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa 11, Malin 55-114 Wisznia Mała, Poland.
| | - Anna Kowalczuk
- National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
| |
Collapse
|
39
|
Alimi D, Hajri A, Jallouli S, Sebai H. In vitro acaricidal activity of essential oil and crude extracts of Laurus nobilis, (Lauraceae) grown in Tunisia, against arthropod ectoparasites of livestock and poultry: Hyalomma scupense and Dermanyssus gallinae. Vet Parasitol 2021; 298:109507. [PMID: 34388421 DOI: 10.1016/j.vetpar.2021.109507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022]
Abstract
The current study assayed the toxicity of Laurus nobilis essential oil and crude extracts obtained using solvents of increasing polarity (cyclohexane, acetone and ethanol), on two ectoparasites of veterinary importance, i.e., Hyalomma scupense and Dermanyssus gallinae. The major components detected in bay laurel essential oil were dominated by 1.8-cineole (46.56 %), α-terpinenyl acetate (13.99 %), sabinene (7.69), α-pinene (5.75), linalool (5.50), methyleugenol (5.36 %) and β-pinene (3.97). The highest total phenolic and flavonoids contents were present in the ethalonic extract of L. nobilis leaves at an amount of 152.88 mg gallic acid equivalents per gram of dry weight (GAE/g DW) and 21.77 mg quercetin equivalent per gram of dry weight (QE/g DW), respectively. In vitro acaricidal effects of essensial oil and crude extract of L. nobilis against H. scupense were ascertained by adult immersion test of engorged females (AIT) and larval packet test (LPT) compared with a reference drug amitraz. The essential oil exhibited strong acaricidal activity against tick engorged female and inhibition of hatching eggs. After 24 h of exposure, at the highest tested concentration (100 mg/mL) essential oil induced 90.67 % mortality of H. scupense larvae (LC50 = 10.69 mg/mL). Otherwise, essential oil exhibited high acaricidal activity compared to extracts, and among the extract, the ethanolic extract revealed the highest acaricidal efficacy (81.27 % female mortality). Results from mite contact toxicity showed that essential oil and extracts from L. nobilis were toxic to D. gallinae. Bay essential oil was both more toxic to mites, and faster in exerting this toxicity than other tested crude extracts. L. nobilis essential oil concentration leaded to enhance mortality of D. gallinae reaching the highest (100 %) mortality at 12 h with a concentration of 320 mg/mL. While, ethanolic extract acheived this rate after 24 h of exposure at same concentration. Cyclohexanic extract showed weak acaricidal activity.
Collapse
Affiliation(s)
- Dhouha Alimi
- Laboratory of Functional Physiology and Valorization of Bio-resources (UR17ES27), Higher Institute of Biotechnology of Beja, Jendouba University, Habib Bourguiba Street, Box 382, 9000, Beja, Tunisia.
| | - Azhar Hajri
- Laboratory of Functional Physiology and Valorization of Bio-resources (UR17ES27), Higher Institute of Biotechnology of Beja, Jendouba University, Habib Bourguiba Street, Box 382, 9000, Beja, Tunisia
| | - Selim Jallouli
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj Cedria, Box 901, Hammam-Lif, 2050, Tunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio-resources (UR17ES27), Higher Institute of Biotechnology of Beja, Jendouba University, Habib Bourguiba Street, Box 382, 9000, Beja, Tunisia
| |
Collapse
|
40
|
Ovidi E, Laghezza Masci V, Zambelli M, Tiezzi A, Vitalini S, Garzoli S. Laurus nobilis, Salvia sclarea and Salvia officinalis Essential Oils and Hydrolates: Evaluation of Liquid and Vapor Phase Chemical Composition and Biological Activities. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10040707. [PMID: 33917630 PMCID: PMC8067454 DOI: 10.3390/plants10040707] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 04/03/2021] [Indexed: 05/17/2023]
Abstract
Laurus nobilis, Salvia officinalis and Salvia sclarea essential oils (EOs) and hydrolates (HYs) were investigated to define their chemical compositions and biological properties. Gas-chromatography/Mass-spectrometry (GC/MS) and Headspace-GC/MS (HS-GC/MS) techniques were used to characterize the liquid and vapor phase chemical composition of EOs and HYs. 1,8-Cineole (42.2%, 33.5%) and α-pinene (16.7%, 39.0%) were the main compounds of L. nobilis EO; 1,8-cineole (30.3%, 48.4%) and camphor (17.1%, 8.7%) were for S. officinalis EO; linalyl acetate (62.6%, 30.1%) and linalool (11.1%, 28.9%) were for S. sclarea EO for the liquid and vapor phase, respectively. Chemical profile of HYs was characterized by 1,8-cineole (65.1%, 61.4%) as a main constituent of L. nobilis and S. officinalis HYs, while linalool (89.5%) was the main constituent of S. sclarea HY. The antioxidant activity of EOs and HYs was carried out by DPPH and ABTS assays and antimicrobial properties were also investigated by microdilution and the disc diffusion method for liquid and vapor phase against five different bacterial strains such as Escherichia coli ATCC 25922, Pseudomonas fluorescens ATCC 13525 and Acinetobacter bohemicus DSM 102855 among Gram-negative and Bacillus cereus ATCC 10876 and Kocuria marina DSM 16420 among Gram-positive. L. nobilis and S. officinalis EOs demonstrated considerable antibacterial activity, while S. sclarea EO proved to be less effective. Agar diffusion method and vapor phase test showed the EOs activity with the biggest halo inhibition diameters against A. bohemicus and B. cereus. A remarkably high antioxidant activity was determined for L. nobilis showing low EC50 values and also for S. sclarea; good EO results were obtained in both of the used assays. S. officinalis EC50 values were slightly higher to which corresponds to a lower antioxidant activity. Concerning the HYs, the EC50 values for L. nobilis, S. officinalis and S. sclarea were remarkably high corresponding to an extremely low antioxidant activity, as also obtained by expressing the values in Trolox equivalent antioxidant capacity (TEAC).
Collapse
Affiliation(s)
- Elisa Ovidi
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (E.O.); (V.L.M.); (M.Z.); (A.T.)
| | - Valentina Laghezza Masci
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (E.O.); (V.L.M.); (M.Z.); (A.T.)
| | - Marta Zambelli
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (E.O.); (V.L.M.); (M.Z.); (A.T.)
| | - Antonio Tiezzi
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (E.O.); (V.L.M.); (M.Z.); (A.T.)
| | - Sara Vitalini
- Department of Agricultural and Environmental Sciences, University of Milan, 20122 Milano, Italy;
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
41
|
Nait Irahal I, azzahra Lahlou F, Hmimid F, Errami A, Guenaou I, Diawara I, Kettani‐Halabi M, Fahde S, Ouafik L, Bourhim N. Identification of the chemical composition of six essential oils with mass spectroscopy and evaluation of their antibacterial and antioxidant potential. FLAVOUR FRAG J 2021. [DOI: 10.1002/ffj.3657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Imane Nait Irahal
- Laboratoire Santé Et Environnement Faculté Des Sciences Ain Chock Université Hassan II de Casablanca Casablanca Morocco
| | - Fatima azzahra Lahlou
- Laboratoire Santé Et Environnement Faculté Des Sciences Ain Chock Université Hassan II de Casablanca Casablanca Morocco
- Laboratoire National de Référence Université Mohammed VI Des Sciences De La Santé Faculté De Médecine Casablanca Morocco
- Mohammed VI University of Health Sciences (UM6SS) Casablanca Morocco
| | - Fouzia Hmimid
- Laboratoire Santé Et Environnement Faculté Des Sciences Ain Chock Université Hassan II de Casablanca Casablanca Morocco
- Environnement Et Santé Faculté Des Sciences El Jadida Université Chouaïb Doukkali El Jadida Morocco
| | - Ahmed Errami
- National Institute of Forensic Science of the Police Casablanca Morocco
| | - Ismail Guenaou
- Laboratoire Santé Et Environnement Faculté Des Sciences Ain Chock Université Hassan II de Casablanca Casablanca Morocco
| | - Idrissa Diawara
- Mohammed VI University of Health Sciences (UM6SS) Casablanca Morocco
- Service De Microbiologie CHU Ibn Rochd Casablanca Morocco
| | | | - Sirine Fahde
- Laboratoire Santé Et Environnement Faculté Des Sciences Ain Chock Université Hassan II de Casablanca Casablanca Morocco
| | - L’Houcine Ouafik
- CNRS INP, Inst Neurophysiopathol Université Aix Marseille Marseille France
- APHM, CHU Nord Service De Transfert d’Oncologie Biologique Université Aix Marseille Marseille France
| | - Noureddine Bourhim
- Laboratoire Santé Et Environnement Faculté Des Sciences Ain Chock Université Hassan II de Casablanca Casablanca Morocco
| |
Collapse
|
42
|
Wild Plants Used as Herbs and Spices in Italy: An Ethnobotanical Review. PLANTS 2021; 10:plants10030563. [PMID: 33809800 PMCID: PMC8002413 DOI: 10.3390/plants10030563] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/01/2023]
Abstract
Wild edible plants are an essential component of people's diets in the Mediterranean basin. In Italy, ethnobotanical surveys have received increasing attention in the past two centuries, with some of these studies focusing on wild edible plants. In this regard, the literature in Italy lacks the coverage of some major issues focusing on plants used as herbs and spices. I searched national journals for articles on the use of wild food plants in Italy, published from 1963 to 2020. Aims of the present review were to document plant lore regarding wild herbs and spices in Italy, identify the wild plants most frequently used as spices, analyze the distribution of wild herbs and spices used at a national scale, and finally, to describe the most common phytochemical compounds present in wild plant species. Based on the 34 studies reviewed, I documented 78 wild taxa as being used in Italy as herbs or spices. The studies I included in this systematic review demonstrate that wild species used as herbs and spices enrich Italian folk cuisine and can represent an important resource for profitable, integrated local small-scale activities.
Collapse
|
43
|
Bay Leaf ( Laurus Nobilis L.) Incense Improved Scopolamine-Induced Amnesic Rats by Restoring Cholinergic Dysfunction and Brain Antioxidant Status. Antioxidants (Basel) 2021; 10:antiox10020259. [PMID: 33567537 PMCID: PMC7914738 DOI: 10.3390/antiox10020259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 11/23/2022] Open
Abstract
Bay leaf (Laurus nobilis L.) has been shown to possesses various biological activities such as wound healing activity, antioxidant activity, antibacterial activity, antiviral activity, immunostimulant activity, anticholinergic activity, antifungal activity, insect repellant activity, anticonvulsant activity, antimutagenic activity, and analgesic and anti-inflammatory activity. The present study aimed to investigate whether the bay leaf incense (BL) elicits the memory formation via the action on the cholinergic system using a scopolamine (Sco)-induced rat model. Rats were exposed to BL over 5 min in a smoking chamber apparatus once daily for 22 days, whereas memory impairment was induced by Sco (0.7 mg/kg), a muscarinic receptor antagonist, delivered 30 min before each behavioral test. The phytochemical composition of BL was achieved by gas chromatograph–mass spectrometry (GCMS). Behavioral effects in rats were assessed by Y-maze, radial arm maze (RAM), and novel object recognition (NOR) paradigms. Additionally, the acetylcholinesterase (AChE) activity and the oxidative stress markers in the rat hippocampus were also evaluated. Exposure to BL significantly ameliorated Sco-induced cognitive impairment and oxidative stress in the rat hippocampus. The obtained results suggested that BL-induced ameliorative cognitive effects are mediated by enhancement of the cholinergic system and antioxidant activities.
Collapse
|
44
|
A synergistic interactions of Algerian essential oils of Laurus nobilis L., Lavandula stoechas L. and Mentha pulegium L. on anticholinesterase and antioxidant activities. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101891] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
45
|
Chemical Composition, Antioxidant Activity, and Antifungal Effects of Essential Oil from Laurus nobilis L. Flowers Growing in Morocco. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8819311] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In this study, the chemical composition and the antioxidant and antifungal activities of essential oil from Laurus nobilis flowers were examined. The essential oil was prepared using steam distillation in a modified Clevenger-type apparatus. The chemical composition of the obtained essential oil and chemotypes was determined using gas chromatography coupled with mass spectrometry (GC/MS) and gas chromatography with flame ionization detection (GC-FID). Twenty-five volatile compounds were identified, which made up 92.07% of the total essential oil content. The essential oil yield was 1.06% and the most abundant compounds were 1.8-cineole (45.01%), α-caryophyllene (7.54%), germacradienol (6.13%), limonene (4.69%), α-pinene (3.04%), and germacrene D (3.14%). The antifungal activity of the obtained essential oil was tested against seven fungal strains: Aspergillus clavatus, A. niger, Chaetomium globosum, Cladosporium cladosporioides, Myrothecium verrucaria, Penicillium citrinum, and Trichoderma viride. The results indicated that essential oil from L. nobilis flowers exhibited significant antifungal activity against the tested fungal strains with minimum inhibitory concentrations (MICs) ranging from 0.05 to 0.46 mg/mL. The essential oil of L. nobilis also exhibited strong total antioxidant capacity (TAC) as indicated by its ability to scavenge free radical DPPH. Taken together, this study indicates that the essential oil from L. nobilis flowers possesses significant antifungal and antioxidant activities, possibly due to the high level of 1,8-cineole.
Collapse
|
46
|
Vinturelle R, Mattos C, Meloni J, Lamberti HD, Nogueira J, da Silva Vaz Júnior I, Rocha L, Lione V, Folly E. Evaluation of essential oils as an ecological alternative in the search for control Rhipicephalus microplus (Acari: Ixodidae). VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2020; 23:100523. [PMID: 33678378 DOI: 10.1016/j.vprsr.2020.100523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 11/17/2020] [Accepted: 12/20/2020] [Indexed: 01/21/2023]
Abstract
The cattle tick Rhipicephalus microplus is a significant problem for livestock, causing losses of billions of dollars per year. This work aimed to determine the chemical composition of essential oils obtained from Laurus nobilis and Copaifera officinalis and evaluate activity against engorged R. microplus females. Chemical composition analyzed by GC-MS revealed the presence of 39 components accounting for 95.38% of the oil in L. nobilis, the most abundant being 1,8-cineol (25.7%), trans-sabinene-hydrate (20.8%), and α-terpinil acetate (15.0%). Chemical analysis of C. officinalis oil identified 25 components corresponding to 80.5% of the total constituents, where the major compounds were β-caryophyllene (21.1%), caryophyllene oxide (10.7%), and α-trans-bergamotene (9.3%). Adult immersion test (AIT) showed that L. nobilis essential oil at 5% or 10% caused 80.5% mortality of engorged females after 24 h and reached 96.9% and 100% mortality on the third day after treatment, respectively. While the essential oil from C. officinalis caused 84.7% mortality after six days at 10% and at 5%, achieved approximately 100% mortality rate at the end of the experiment (day 15). Both essential oils and the combination significantly inhibited egg-laying; however, the combination treatment showed higher effectiveness than the isolated oils at 2.5%. A possible synergic action of L. nobilis and C. officinalis against the cattle tick R. microplus is therefore suggested. The present work introduces a potential alternative for the development of a formulation environment-friendly (green pesticide) used to control cattle tick infestations.
Collapse
Affiliation(s)
- Rafaelle Vinturelle
- Laboratório de Estudos de Pragas e Parasitos (LEPP), Universidade Federal Fluminense (UFF), Instituto de Biologia, Departamento de Biologia Celular e Molecular (GCM), Niterói, RJ, Brazil; Programa de Pós-graduação em Ciências e Biotecnologia, UFF, Niterói, RJ, Brazil
| | - Camila Mattos
- Laboratório de Estudos de Pragas e Parasitos (LEPP), Universidade Federal Fluminense (UFF), Instituto de Biologia, Departamento de Biologia Celular e Molecular (GCM), Niterói, RJ, Brazil; Programa de Pós-graduação em Ciências e Biotecnologia, UFF, Niterói, RJ, Brazil
| | - Jéssica Meloni
- Laboratório de Estudos de Pragas e Parasitos (LEPP), Universidade Federal Fluminense (UFF), Instituto de Biologia, Departamento de Biologia Celular e Molecular (GCM), Niterói, RJ, Brazil; Programa de Pós-graduação em Ciências e Biotecnologia, UFF, Niterói, RJ, Brazil
| | - Helen D Lamberti
- Laboratório de Estudos de Pragas e Parasitos (LEPP), Universidade Federal Fluminense (UFF), Instituto de Biologia, Departamento de Biologia Celular e Molecular (GCM), Niterói, RJ, Brazil
| | - Jeane Nogueira
- Laboratório de Tecnologia de Produtos Naturais, Faculdade de Farmácia, UFF, Niterói, RJ, Brazil; Programa de Pós-graduação em Ciências Aplicadas a Produtos para Saúde, Departamento de Farmácia e Administração Farmacêutica, Faculdade de Farmácia, UFF, Niterói, RJ, Brazil
| | - Itabajara da Silva Vaz Júnior
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, RS, Brazil; Instituto Nacional de Ciências e Tecnologia, Entomologia Molecular (INCT-EM), Brazil
| | - Leandro Rocha
- Laboratório de Tecnologia de Produtos Naturais, Faculdade de Farmácia, UFF, Niterói, RJ, Brazil; Programa de Pós-graduação em Ciências Aplicadas a Produtos para Saúde, Departamento de Farmácia e Administração Farmacêutica, Faculdade de Farmácia, UFF, Niterói, RJ, Brazil; Programa de Pós-graduação em Ciências e Biotecnologia, UFF, Niterói, RJ, Brazil
| | - Viviane Lione
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Evelize Folly
- Laboratório de Estudos de Pragas e Parasitos (LEPP), Universidade Federal Fluminense (UFF), Instituto de Biologia, Departamento de Biologia Celular e Molecular (GCM), Niterói, RJ, Brazil; Programa de Pós-graduação em Ciências e Biotecnologia, UFF, Niterói, RJ, Brazil; Instituto Nacional de Ciências e Tecnologia, Entomologia Molecular (INCT-EM), Brazil.
| |
Collapse
|
47
|
Stefanova G, Girova T, Gochev V, Stoyanova M, Petkova Z, Stoyanova A, Zheljazkov VD. Comparative study on the chemical composition of laurel ( Laurus nobilis L.) leaves from Greece and Georgia and the antibacterial activity of their essential oil. Heliyon 2020; 6:e05491. [PMID: 33385077 PMCID: PMC7770545 DOI: 10.1016/j.heliyon.2020.e05491] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/12/2020] [Accepted: 11/09/2020] [Indexed: 11/25/2022] Open
Abstract
Laurel (Laurus nobilis L.) is a plant species from Lauraceae family, and is native to the Mediterranean region. The goal of this study was to compare chemical composition of laurel leaves and antibacterial activity of its essential oil (EO) from wild-grown trees in Greece and Georgia. The laurel leaves from the two native habitats had dissimilar concentrations of phenolic acids. Of the conjugated flavonols and flavons, kaempferol (1981.3 μg/g) and apigenin (1433.6 μg/g) were the major representatives in the leaves from Greece, while luteolin (839.1 μg/g) and kaempferol (688.1 μg/g) were the major ones in the leaves from Georgia, respectively. The EO content was 1.42% and 4.54% in the leaves from Greece and Georgia, respectively. The main EO constituents of the Greek laurel plants were 1,8-cineole (30.8%), α-terpinyl acetate (14.9%), α-terpineol (8.0%), sabinene (7.9%), and terpinen-4-ol (6.0%). The main EO constituents of the Georgian laurel plants were 1,8-cineole (29.2%), α-terpinyl acetate (22.6%), sabinene (12.2%), and methyleugenol (8.1%). The EO antimicrobial activities against 20 microorganisms were determined. Among the Gram-positive bacteria, the Enterococcus faecalis strain was the most sensitive, followed by Staphylococcus aureus ATCC 6538. Among the Candida species, C. albicans ATCC 10231 was the most sensitive to the laurel leaf EOs.
Collapse
Affiliation(s)
| | - Tanya Girova
- Department of Biochemistry and Microbiology and Department of Chemical Technology, Paisii Hilendarski University of Plovdiv, 24 Tzar Asen St., 4000 Plovdiv, Bulgaria
| | - Velizar Gochev
- Department of Biochemistry and Microbiology and Department of Chemical Technology, Paisii Hilendarski University of Plovdiv, 24 Tzar Asen St., 4000 Plovdiv, Bulgaria
| | - Magdalena Stoyanova
- Department of Analytical Chemistry and Physical Chemistry, Department of Tobacco, Sugar, Vegetable and Essential Oil Technology, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
| | - Zhana Petkova
- Department of Biochemistry and Microbiology and Department of Chemical Technology, Paisii Hilendarski University of Plovdiv, 24 Tzar Asen St., 4000 Plovdiv, Bulgaria
| | - Albena Stoyanova
- Department of Analytical Chemistry and Physical Chemistry, Department of Tobacco, Sugar, Vegetable and Essential Oil Technology, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
| | - Valtcho D Zheljazkov
- Oregon State University, Department of Crop and Soil Science, 109 Crop Science Building, 3050 SW Campus Way, Corvallis, OR 97331, USA
| |
Collapse
|
48
|
Řebíčková K, Bajer T, Šilha D, Ventura K, Bajerová P. Comparison of Chemical Composition and Biological Properties of Essential Oils Obtained by Hydrodistillation and Steam Distillation of Laurus nobilis L. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:495-504. [PMID: 32710382 DOI: 10.1007/s11130-020-00834-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The purpose of this study was to compare the yield, chemical composition, antimicrobial and antioxidant properties of essential oils isolated from leaves of Laurus nobilis L. by two different distillation methods. The essential oils isolated by hydrodistillation (HD) and steam distillation (SD) were analyzed by gas chromatography coupled to mass spectrometry (GC-MS) and gas chromatography with flame ionization detector (GC-FID). Hydrodistillation produced a yield of 0.95 ± 0.06% which is slightly higher than yield obtained by steam distillation 0.79 ± 0.07%. Seventy three compounds in the bay leaves oil obtained by steam distillation were identified while in essential oil obtained by hydrodistillation were identified only 54 compounds. The antioxidant activity was evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical method. Antimicrobial activity of obtained essential oils was evaluated by disc diffusion method in comparison with several chosen antimicrobials. The antimicrobial activity was tested on five microorganisms - Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Candida albicans. In general, oils produced by steam distillation had higher antimicrobial and antioxidant activities than hydrodistillation extracts. It seems that hydrodistillation is better for higher yield while steam distillation is better to use for more quality oils with stronger biological properties.
Collapse
Affiliation(s)
- Kristýna Řebíčková
- Faculty of Chemical Technology, Department of Analytical Chemistry, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Tomáš Bajer
- Faculty of Chemical Technology, Department of Analytical Chemistry, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic.
| | - David Šilha
- Faculty of Chemical Technology, Department of Biological and Biochemical Sciences, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Karel Ventura
- Faculty of Chemical Technology, Department of Analytical Chemistry, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Petra Bajerová
- Faculty of Chemical Technology, Department of Analytical Chemistry, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| |
Collapse
|
49
|
Nabila B, Piras A, Fouzia B, Falconieri D, Kheira G, Fedoul FF, Majda SR. Chemical composition and antibacterial activity of the essential oil of Laurus nobilis leaves. Nat Prod Res 2020; 36:989-993. [DOI: 10.1080/14786419.2020.1839450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Bekhti Nabila
- Department of Chemistry, Faculty of Exact Science, Djillali Liabes University, Sidi Bel Abbes, Algeria
| | - Alessandra Piras
- Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, CA, Italy
| | - Belabdelli Fouzia
- Department of Pharmacy, Faculty of Medicine, Djillali Liabes University, Sidi Bel Abbes, Algeria
| | - Danilo Falconieri
- Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, CA, Italy
| | - Guenaoui Kheira
- Department of Biology, Faculty of Natural and Life Sciences, Djillali Liabes University, Sidi Bel Abbes, Algeria
| | - Firdaous-Faiza Fedoul
- Department of Biology, Faculty of Natural and Life Sciences, Djillali Liabes University, Sidi Bel Abbes, Algeria
| | - Sekkal-Rahal Majda
- Department of Chemistry, Faculty of Exact Science, Djillali Liabes University, Sidi Bel Abbes, Algeria
| |
Collapse
|
50
|
Bottoni M, Milani F, Colombo L, Nallio K, Colombo PS, Giuliani C, Bruschi P, Fico G. Using Medicinal Plants in Valmalenco (Italian Alps): From Tradition to Scientific Approaches. Molecules 2020; 25:molecules25184144. [PMID: 32927742 PMCID: PMC7570945 DOI: 10.3390/molecules25184144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
This ethnobotanical survey was carried out in Caspoggio (Valmalenco, SO, Italy) with the purpose of investigating the traditional uses of medicinal plants. Moreover, a bibliographic research meant to validate or refute the uses, focusing on the potentially responsible compounds, was performed. Fifty-nine species, attributable to 30 families (Asteraceae, Pinaceae, Malvaceae, and Lamiaceae the most cited), were mentioned. Arnica montana, anti-inflammatory for traumas and musculoskeletal pains; Pinus mugo, expectorant; Malva sylvestris, anti-inflammatory and soothing; Achillea moschata, digestive. The compounds, responsible for the therapeutic activities, are often polyphenols and terpenoids: helenanin in A. montana, α-pinene, δ-3-carene, and limonene in P. mugo, gossypin and malvin in M. sylvestris, luteolin and apigenin in A. moschata. Scientific evidence for at least one of the traditional activities described was found for 50 species but only in 26 out of 196 works consulted, it is possible to make a comparison between investigated extracts and traditional preparations. This study is thus a stimulus to new phytochemical investigations, mimicking as much as possible the traditional preparations. This work is part of the European Interreg Italy-Switzerland B-ICE project, aimed at creating a management model for the ongoing climate change and searching for new sources of territory valorization as attractions for tourists.
Collapse
Affiliation(s)
- Martina Bottoni
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Science, University of Milan, Toscolano Maderno, 25088 Brescia, Italy
| | - Fabrizia Milani
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Science, University of Milan, Toscolano Maderno, 25088 Brescia, Italy
| | - Lorenzo Colombo
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Science, University of Milan, Toscolano Maderno, 25088 Brescia, Italy
| | - Kevin Nallio
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Science, University of Milan, Toscolano Maderno, 25088 Brescia, Italy
| | - Paola Sira Colombo
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Science, University of Milan, Toscolano Maderno, 25088 Brescia, Italy
| | - Claudia Giuliani
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Science, University of Milan, Toscolano Maderno, 25088 Brescia, Italy
| | - Piero Bruschi
- Department of Agricultural, Environmental, Food and Forestry Science and Technology, University of Florence, 50144 Florence, Italy
| | - Gelsomina Fico
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Science, University of Milan, Toscolano Maderno, 25088 Brescia, Italy
| |
Collapse
|