1
|
Hegde M, P R A, Mumbrekar KD. Exploring baicalein: A natural flavonoid for enhancing cancer prevention and treatment. Heliyon 2024; 10:e40809. [PMID: 39691196 PMCID: PMC11650287 DOI: 10.1016/j.heliyon.2024.e40809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 10/12/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024] Open
Abstract
Despite years of development in cancer therapy, achieving successful cancer treatment remains a major research topic. Primary means of cancer treatment include chemotherapy, radiotherapy, and surgery. However, these modalities are associated with limitations and adverse effects on normal tissues. Therefore, there is a search for novel therapeutic approaches that will increase the efficacy of the available treatment while minimizing side effects. Naturally occurring bioactive chemicals such as flavonoids have long been used in traditional medicine to treat various illnesses. Baicalein, an active ingredient in Scutellaria baicalensis Georgi, is utilised in traditional medicine to treat conditions such as hypertension, cardiovascular disease, inflammation, and infections. This review focuses on summarizing the data available on cancer prevention and treatment usage of baicalein. Baicalein is thought to prevent cancer progression by inducing apoptosis, autophagy, and genome instability, and its ability to promote chemo-potentiation, anti-metastatic effects, and regulate specific signalling molecules and transcription factors. Baicalein can be a promising option for cancer treatment, either alone or in combination with established anticancer drugs.
Collapse
Affiliation(s)
- Madhu Hegde
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Archana P R
- Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
2
|
Liu XY, Xie W, Zhou HY, Zhang HQ, Jin YS. A comprehensive overview on antiviral effects of baicalein and its glucuronide derivative baicalin. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:621-636. [PMID: 39368944 DOI: 10.1016/j.joim.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/07/2024] [Indexed: 10/07/2024]
Abstract
Natural product-based antiviral candidates have received significant attention. However, there is a lack of sufficient research in the field of antivirals to effectively combat patterns of drug resistance. Baicalein and its glucuronide derivative baicalin are two main components extracted from Scutellaria baicalensis Georgi. They have proven to be effective against a broad range of viruses by directly killing virus particles, protecting infected cells, and targeting viral antigens on their surface, among other mechanisms. As natural products, they both possess the advantage of lower toxicity, enhanced therapeutic efficacy, and even antagonistic effects against drug-resistant viral strains. Baicalein and baicalin exhibit promising potential as potent pharmacophore scaffolds, demonstrating their antiviral properties. However, to date, no review on the antiviral effects of baicalein and baicalin has been published. This review summarizes the recent research progress on antiviral effects of baicalein and baicalin against various types of viruses both in vitro and in vivo with a focus on the dosages and underlying mechanisms. The aim is to provide a basis for the rational development and utilization of baicalein and baicalin, as well as to promote antiviral drug research. Please cite this article as: Liu XY, Xie W, Zhou HY, Zhang HQ, Jin YS. A comprehensive overview on antiviral effects of baicalein and its glucuronide derivative baicalin. J Integr Med. 2024; 22(6): 621-636.
Collapse
Affiliation(s)
- Xin-Yang Liu
- School of Basic Medicine, Naval Medical University, Shanghai 200433, China
| | - Wei Xie
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - He-Yang Zhou
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Hui-Qing Zhang
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China.
| | - Yong-Sheng Jin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
3
|
Xiong H, Zhang Y, Wang W, Ye H, Zhang Q. Enhancing the Quality of Low-Alcohol Navel Orange Wine through Simultaneous Co-Fermentation Using Saccharomyces cerevisiae SC-125, Angel Yeast SY, and Lactiplantibacillus plantarum BC114. Molecules 2024; 29:1781. [PMID: 38675601 PMCID: PMC11052192 DOI: 10.3390/molecules29081781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
To date, there has been limited research on the interactive effects of yeast and lactic acid bacteria (LAB) on the sensory qualities of navel orange wine. In this study, using Jintang navel orange juice as the raw material, multi-microbial fermentation was conducted with Saccharomyces cerevisiae SC-125 and Angel yeast SY, as well as Lactiplantibacillus plantarum BC114. Single yeast and co-fermentation with Lactiplantibacillus plantarum were used as the control groups. The research aimed to investigate the physicochemical parameters of navel orange wine during fermentation. Additionally, headspace solid-phase microextraction gas chromatography-mass spectrometry (HP-SPME-GC-MS) was employed to determine and analyze the types and levels of flavor compounds in the navel orange wines produced through the different fermentation methods. The co-fermentation using the three strains significantly enhanced both the quantity and variety of volatile compounds in the navel orange wine, concomitant with heightened total phenol and flavonoid levels. Furthermore, a notable improvement was observed in the free radical scavenging activity. A sensory evaluation was carried out to analyze the differences among the various navel orange wines, shedding light on the impact of different wine yeasts and co-fermentation with LAB on the quality of navel orange wines.
Collapse
Affiliation(s)
- Hua Xiong
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (H.X.); (Y.Z.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, China
| | - Yingyue Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (H.X.); (Y.Z.)
| | - Wanting Wang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (H.X.); (Y.Z.)
| | - Hong Ye
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (H.X.); (Y.Z.)
| | - Qing Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (H.X.); (Y.Z.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
- Sichuan Advanced Agricultural & Industrial Institute, China Agricultural University, Chengdu 611430, China
| |
Collapse
|
4
|
Qiao Y, Shen L, Zhang Y, Zhou M, Sun Z. Boldine promotes stemness of human urine-derived stem cells by activating the Wnt/β-catenin signaling pathway. Mol Cell Biochem 2024; 479:243-254. [PMID: 37036633 DOI: 10.1007/s11010-023-04721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/22/2023] [Indexed: 04/11/2023]
Abstract
Human urine-derived stem cells (hUSCs) process self-renewal and multilineage differentiation ability. Due to their non-invasive and easily available clinical source, hUSCs represent a promising alternative source of mesenchymal stem cells (MSCs) for application potential in cytotherapy. However, technical limitations, such as stemness property maintenance, have hindered hUSCs' clinical application. Certain some small molecules have been recognized with advantage in maintaining the stemness of stem cells. In this study, we identified stemness-regulated key targets of hUSCs based on the StemCellNet database, CMAP database and literature mining. Furthermore, we identified a small molecule compound, boldine, which may have the potential to promote the stemness of hUSCs. It promotes cell proliferation, multilineage differentiation and maintains stemness of hUSCs by cell viability assay, single-cell clone formation, osteogenic differentiation and stemness marker expression (OCT-4 and C-MYC). We identified that boldine may be a potential GSK-3β inhibitor by molecular docking and confirmed that it can upregulate the level of β-catenin and promote translocation of β-catenin into nucleus of hUSCs using Western blotting and immunofluorescence analysis. Our study indicates boldine activates the Wnt/β-catenin signaling pathway in hUSCs and provides an effective strategy for MSCs research and application of small molecules in maintaining the stemness of hUSCs.
Collapse
Affiliation(s)
- Yinggu Qiao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Liangliang Shen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yixue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ming Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhenxiao Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
5
|
Wen-Tao C, Zhang YY, Qiang Q, Zou P, Xu Y, Sun C, Badar IH. Characterizations and molecular docking mechanism of the interactions between peptide FDGDF (Phe-Asp-Gly-Asp-Phe) and SOD enzyme. Heliyon 2024; 10:e24515. [PMID: 38293362 PMCID: PMC10826827 DOI: 10.1016/j.heliyon.2024.e24515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/01/2024] Open
Abstract
In this study, we investigated the antioxidant properties of dry-cured beef crude peptide (BPH) at different storage periods. The combination characteristics of different concentrations of Phe-Asp-Gly-Asp-Phe (FDGDF) and superoxide dismutase (SOD) at different temperatures were analyzed by ultraviolet-visible spectroscopy, fluorescence spectroscopy, and FT-IR spectroscopy, combined with the detection of a SOD activity detection box. It was found that FDGDF could improve the activity of SOD by changing its secondary structure. Bonds were formed at O32/O40/O52 using quantum chemical simulation calculations, and the Fukui index was higher than that of most atoms, indicating that these atoms were more likely to participate in the reaction. SPR biological force analysis showed that FDGDF and SOD were in a fast binding and dissociation mode. This study revealed the theoretical basis for studying the antioxidant mechanism of dry-cured beef and provided ideas for developing new dry-cured beef products.
Collapse
Affiliation(s)
- C.H.E.N. Wen-Tao
- School of Biological and Food Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Ying-Yang Zhang
- School of Biological and Food Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Qiang Qiang
- Changzhou Wujin No. 3 People's Hospital Changzhou, Jiangsu,150030, China
| | - Ping Zou
- School of Biological and Food Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Ying Xu
- School of Biological and Food Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Chengjun Sun
- School of Biological and Food Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Iftikhar Hussain Badar
- Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
6
|
Jomova K, Cvik M, Lauro P, Valko M, Cizmar E, Alomar SY, Alwasel SH, Oleksak P, Chrienova Z, Nepovimova E, Kuca K, Rhodes CJ. The role of redox active copper(II) on antioxidant properties of the flavonoid baicalein: DNA protection under Cu(II)-Fenton reaction and Cu(II)-ascorbate system conditions. J Inorg Biochem 2023; 245:112244. [PMID: 37178556 DOI: 10.1016/j.jinorgbio.2023.112244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
The antioxidant properties of flavonoids are mediated by their functional hydroxyl groups, which are capable of both chelating redox active metals such as iron, copper and scavenging free radicals. In this paper, the antioxidant vs. prooxidant and DNA protecting properties of baicalein and Cu(II)-baicalein complexes were studied under the conditions of the Copper-Fenton reaction and of the Copper-Ascorbate system. From the relevant EPR spectra, the interaction of baicalein with Cu(II) ions was confirmed, while UV-vis spectroscopy demonstrated a greater stability over time of Cu(II)-baicalein complexes in DMSO than in methanol and PBS and Phosphate buffers. An ABTS study confirmed a moderate ROS scavenging efficiency, at around 37%, for both free baicalein and Cu(II)-baicalein complexes (in the ratios 1:1 and 1:2). The results from absorption titrations are in agreement with those from viscometric studies and confirmed that the binding mode between DNA and both free baicalein and Cu-baicalein complexes, involves hydrogen bonds and van der Waals interactions. The DNA protective effect of baicalein has been investigated by means of gel electrophoresis under the conditions of the Cu-catalyzed Fenton reaction and of the Cu-Ascorbate system. In both cases, it was found that, at sufficiently high concentrations, baicalein offers some protection to cells from DNA damage caused by ROS (singlet oxygen, hydroxyl radicals and superoxide radical anions). Accordingly, baicalein may be useful as a therapeutic agent in diseases with a disturbed metabolism of redox metals such as copper, for example Alzheimer's disease, Wilson's disease and various cancers. While therapeutically sufficient concentrations of baicalein may protect neuronal cells from Cu-Fenton-induced DNA damage in regard to neurological conditions, conversely, in the case of cancers, low concentrations of baicalein do not inhibit the pro-oxidant effect of copper ions and ascorbate, which can, in turn, deliver an effective damage to DNA in tumour cells.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, Nitra 949 74, Slovakia.
| | - Marcel Cvik
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, Nitra 949 74, Slovakia
| | - Peter Lauro
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, Nitra 949 74, Slovakia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava 812 37, Slovakia; King Saud University, Zoology Department, College of Science, Riyadh 11451, Saudi Arabia
| | - Erik Cizmar
- Department of Condensed Matter Physics, Faculty of Science, University of P. J. Safarik, Park Angelinum 9, Kosice 040 01, Slovakia
| | - Suliman Y Alomar
- King Saud University, Zoology Department, College of Science, Riyadh 11451, Saudi Arabia
| | - Saleh H Alwasel
- King Saud University, Zoology Department, College of Science, Riyadh 11451, Saudi Arabia
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Zofia Chrienova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005 Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | | |
Collapse
|
7
|
Sawadpongpan S, Jaratsittisin J, Hitakarun A, Roytrakul S, Wikan N, Smith DR. Investigation of the activity of baicalein towards Zika virus. BMC Complement Med Ther 2023; 23:143. [PMID: 37138273 PMCID: PMC10158012 DOI: 10.1186/s12906-023-03971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/24/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Zika virus (ZIKV) is a mosquito transmitted virus spread primarily by Aedes species mosquitoes that can cause disease in humans, particularly when infection occurs in pregnancy where the virus can have a significant impact on the developing fetus. Despite this, there remains no prophylactic agent or therapeutic treatment for infection. Baicalein is a trihydroxyflavone, that is found in some traditional medicines commonly used in Asia, and has been shown to have several activities including antiviral properties. Importantly, studies have shown baicalein to be safe and well tolerated in humans, increasing its potential utilization. METHODS This study sought to determine the anti-ZIKV activity of baicalein using a human cell line (A549). Cytotoxicity of baicalein was determined by the MTT assay, and the effect on ZIKV infection determined by treating A549 cells with baicalien at different time points in the infection process. Parameters including level of infection, virus production, viral protein expression and genome copy number were assessed by flow cytometry, plaque assay, western blot and quantitative RT-PCR, respectively. RESULTS The results showed that baicalein had a half-maximal cytotoxic concentration (CC50) of > 800 µM, and a half-maximal effective concentration (EC50) of 124.88 µM. Time-of-addition analysis showed that baicalein had an inhibitory effect on ZIKV infection at the adsorption and post-adsorption stages. Moreover, baicalein also exerted a significant viral inactivation activity on ZIKV (as well as on dengue virus and Japanese encephalitis virus) virions. CONCLUSION Baicalein has now been shown to possess anti-ZIKV activity in a human cell line.
Collapse
Affiliation(s)
| | | | - Atitaya Hitakarun
- Institute of Molecular Biosciences, Mahidol University, Salaya, 73170, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Nitwara Wikan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, 73170, Thailand.
| |
Collapse
|
8
|
Promising Role of the Scutellaria baicalensis Root Hydroxyflavone-Baicalein in the Prevention and Treatment of Human Diseases. Int J Mol Sci 2023; 24:ijms24054732. [PMID: 36902160 PMCID: PMC10003701 DOI: 10.3390/ijms24054732] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Plant roots, due to a high content of natural antioxidants for many years, have been used in herbal medicine. It has been documented that the extract of Baikal skullcap (Scutellaria baicalensis) has hepatoprotective, calming, antiallergic, and anti-inflammatory properties. Flavonoid compounds found in the extract, including baicalein, have strong antiradical activity, which improves overall health and increases feelings of well-being. Plant-derived bioactive compounds with antioxidant activity have for a long time been used as an alternative source of medicines to treat oxidative stress-related diseases. In this review, we summarized the latest reports on one of the most important aglycones with respect to the pharmacological activity and high content in Baikal skullcap, which is 5,6,7-trihydroxyflavone (baicalein).
Collapse
|
9
|
Geng D, Jiang M, Dong H, Wang R, Lu H, Liu W, Guo L, Huang L, Xiao W. MeJA regulates the accumulation of baicalein and other 4'-hydroxyflavones during the hollowed root development in Scutellaria baicalensis. FRONTIERS IN PLANT SCIENCE 2023; 13:1067847. [PMID: 36684750 PMCID: PMC9853287 DOI: 10.3389/fpls.2022.1067847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The dried roots of Scutellaria baicalensis are important traditional Chinese medicine used to treat liver and lung inflammation. An anomalous structure, hollowed root, was discovered in perennial cultivated Scutellaria baicalensis. The presence of the hollow may change the contents of bioactive metabolites, such as baicalein, and other 4'-hydroxyflavones in Scutellaria baicalensis roots, but the relationship between the hollowed root and bioactive metabolite contents is poorly understood. In this study, we identified the anatomical structure of the hollowed root and detected differentially accumulating flavonoid metabolites and enzymes related to 4'-hydroxyflavone biosynthesis in 3-year-old roots with a hollow. We confirmed that methyl jasmonate (MeJA) induced the accumulation of 4'-hydroxyflavones and the expression of enzymes related to 4'-hydroxyflavone biosynthesis in hydroponically cultured Scutellaria baicalensis roots. The development of the hollowed root were divided into 4 stages. The 4'-hydroxyflavone contents and expression of enzymes related to 4'-hydroxyflavone biosynthesis increased synchronously with the content of MeJA during the development of hollowed root. Pathogen and programed-cell-death related genes were induced during hollowed root development. Taken together, our results provide novel insight into the importance of MeJA in the development of hollowed root and the accumulation of 4'-hydroxyflavones in Scutellaria baicalensis roots. Our results suggest that a pathogen and senescence are the two major causes for the development of hollowed root in Scutellaria baicalensis roots.
Collapse
Affiliation(s)
- Dali Geng
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Mei Jiang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hongjing Dong
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Rongyu Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Heng Lu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Liu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wang Xiao
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
10
|
Ghamry M, Zhao W, Li L. Impact of Lactobacillus apis on the antioxidant activity, phytic acid degradation, nutraceutical value and flavor properties of fermented wheat bran, compared to Saccharomyces cerevisiae and Lactobacillus plantarum. Food Res Int 2023; 163:112142. [PMID: 36596097 DOI: 10.1016/j.foodres.2022.112142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
This study aimed to use a novel Lactobacillus strain (L. apis) isolated from the bee gut to develop a wheat bran (WB) deep-processing technology. Compared to the most popular strains (S. cerevisiae and L. plantarum), we found that L. apis had a greater ability to enhance the fermented WB antioxidant activity through hydroxyl radical scavenging, metal chelating ability, reducing power, and ferric reducing antioxidant power. While L. apis and L. plantarum had similar effects on DPPH• and ABTS•+ scavenging activities. This improvement in antioxidant activity has been associated with some metabolic compounds, such as sinapic acid, hydroferulic acid, pyruvic acid, neocostose, oxalic acid, salicylic acid, and schaftoside. Furthermore, L. apis degraded 48.33% of the phytic acid in WB, higher than S. cerevisiae (26.73%) and L. plantarum (35.89%). All strains improved the volatile profile of WB, and the fermented WB by each strain displayed a unique volatile composition. L. apis increased the level of conditional amino acids and branched-chain amino acids significantly. S. cerevisiae increased γ-aminobutyric acid the most, from 230.8 mg/L in unfermented samples to 609.8 mg/L in the fermented WB. While L. apis and L. plantarum also increased the level of γ-aminobutyric acid to 384.5 mg/L and 295.04 mg/L, respectively. Finally, we found that L. apis remarkably increased the content of organic acids and water-soluble vitamins in wheat bran.
Collapse
Affiliation(s)
- Mohamed Ghamry
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Food Technology Department, Faculty of Agriculture, 13736 Moshtohor, Benha University, Egypt
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
11
|
Ahuja A, Tyagi PK, Kumar M, Sharma N, Prakash S, Radha, Chandran D, Dhumal S, Rais N, Singh S, Dey A, Senapathy M, Saleena LAK, Shanavas A, Mohankumar P, Rajalingam S, Murugesan Y, Vishvanathan M, Sathyaseelan SK, Viswanathan S, Kumar KK, Natta S, Mekhemar M. Botanicals and Oral Stem Cell Mediated Regeneration: A Paradigm Shift from Artificial to Biological Replacement. Cells 2022; 11:2792. [PMID: 36139367 PMCID: PMC9496740 DOI: 10.3390/cells11182792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022] Open
Abstract
Stem cells are a well-known autologous pluripotent cell source, having excellent potential to develop into specialized cells, such as brain, skin, and bone marrow cells. The oral cavity is reported to be a rich source of multiple types of oral stem cells, including the dental pulp, mucosal soft tissues, periodontal ligament, and apical papilla. Oral stem cells were useful for both the regeneration of soft tissue components in the dental pulp and mineralized structure regeneration, such as bone or dentin, and can be a viable substitute for traditionally used bone marrow stem cells. In recent years, several studies have reported that plant extracts or compounds promoted the proliferation, differentiation, and survival of different oral stem cells. This review is carried out by following the PRISMA guidelines and focusing mainly on the effects of bioactive compounds on oral stem cell-mediated dental, bone, and neural regeneration. It is observed that in recent years studies were mainly focused on the utilization of oral stem cell-mediated regeneration of bone or dental mesenchymal cells, however, the utility of bioactive compounds on oral stem cell-mediated regeneration requires additional assessment beyond in vitro and in vivo studies, and requires more randomized clinical trials and case studies.
Collapse
Affiliation(s)
- Anami Ahuja
- Department of Biotechnology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226031, India
- Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut 250005, India
| | - Pankaj Kumar Tyagi
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Naveen Sharma
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi 110029, India
| | - Suraj Prakash
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sci-ences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, India
| | - Nadeem Rais
- Department of Pharmacy, Bhagwant University, Ajmer 305004, India
| | - Surinder Singh
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo P.O. Box 138, Ethiopia
| | - Lejaniya Abdul Kalam Saleena
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lampur 56000, Malaysia
| | - Arjun Shanavas
- Division of Medicine, Indian Veterinary Research Institute, Bareilly 243122, India
| | - Pran Mohankumar
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Sureshkumar Rajalingam
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Yasodha Murugesan
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Marthandan Vishvanathan
- Department of Seed Science and Technology, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | | | - Sabareeshwari Viswanathan
- Department of Soil Science and Agricultural Chemistry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Keerthana Krishna Kumar
- Department of Soil Science and Agricultural Chemistry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Suman Natta
- ICAR—National Research Centre for Orchids, Pakyong 737106, India
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Chris-tian-Albrecht’s University, 24105 Kiel, Germany
| |
Collapse
|
12
|
Shpakova V, Rukoyatkina N, Al Arawe N, Prilepskaya A, Kharazova A, Sharina I, Gambaryan S, Martin E. ML355 Modulates Platelet Activation and Prevents ABT-737 Induced Apoptosis in Platelets. J Pharmacol Exp Ther 2022; 381:164-175. [PMID: 35197320 PMCID: PMC9073945 DOI: 10.1124/jpet.121.000973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/05/2022] [Indexed: 01/14/2023] Open
Abstract
12-lipoxigenase (12-LOX) is implicated in regulation of platelet activation processes and can be a new promising target for antiplatelet therapy. However, investigations of 12-LOX were restricted by the lack of specific and potent 12-LOX inhibitors and by controversial data concerning the role of 12-LOX metabolites in platelet functions. A novel specific 12-LOX inhibitor ML355 was shown to inhibit platelet aggregation without adverse side effects on hemostasis; however, the molecular mechanisms of its action on platelets are poorly understood. Here, we showed that ML355 inhibited platelet activation induced by thrombin or thromboxane A2, but not by collagen-related peptide. ML355 blocked protein kinase B, phosphoinositide 3-kinase, and extracellular signal-regulated kinase, but not p38 kinase, spleen tyrosine kinase (Syk), or phospholipase Cγ2 phosphorylation in activated platelets. The main inhibitory effect of low doses of ML355 (1-20 μM) on thrombin activated platelets was mediated by the decrease in reactive oxygen species level, whereas high doses of ML355 (50 μM) caused cyclic adenosine monophosphate activation. ML355 did not affect the activity of nitric oxide-dependent soluble guanylyl cyclase, nor did it affect the relaxation of preconstricted aortic rings in mice. ML355 itself did not affect platelet viability, but at 50 μM dose blocked caspase-dependent apoptosis induced by B-cell lymphoma II inhibitor ABT-737. SIGNIFICANCE STATEMENT: The current paper provides novel and original data concerning molecular mechanisms of 12-LOX inhibitor ML355 action on platelets. These data reveal antiplatelet and protective effects of ML355 on platelets and may be of importance for both antiplatelet and anticancer therapy.
Collapse
Affiliation(s)
- Valentina Shpakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Natalia Rukoyatkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Nada Al Arawe
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Anna Prilepskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Alexandra Kharazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Iraida Sharina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| | - Emil Martin
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia (V.S., N.R., S.G.); Saint Petersburg State University, Saint Petersburg, Russia (N.A.A., A.P., A.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School, Houston, Texas (I.S., E.M.)
| |
Collapse
|
13
|
Zhou W, Lin Z, Xiong Y, Xue H, Song W, Yu T, Chen L, Hu Y, Panayi AC, Sun Y, Cao F, Liu G, Hu L, Yan C, Xie X, Qiu W, Mi B, Liu G. Dual-Targeted Nanoplatform Regulating the Bone Immune Microenvironment Enhances Fracture Healing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56944-56960. [PMID: 34797653 DOI: 10.1021/acsami.1c17420] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The immune system and skeletal system are closely linked. Macrophages are one of the most important immune cells for bone remodeling, playing a prohealing role mainly through M2 phenotype polarization. Baicalein (5,6,7-trihydroxyflavone, BCL) has been well documented to have a noticeable promotion effect on M2 macrophage polarization. However, due to the limitations in targeted delivery to macrophages and the toxic effect on other organs, BCL has rarely been used in the treatment of bone fractures. In this study, we developed mesoporous silica and Fe3O4 composite-targeted nanoparticles loaded with BCL (BCL@MMSNPs-SS-CD-NW), which could be magnetically delivered to the fracture site. This induced macrophage recruitment in a targeted manner, polarizing them toward the M2 phenotype, which was demonstrated to induce mesenchymal stem cells (MSCs) toward osteoblastic differentiation. The mesoporous silicon nanoparticles (MSNs) were prepared with surface sulfhydrylation and amination modification, and the mesoporous channels were blocked with β-cyclodextrin. The outer layer of the mesoporous silicon was added with an amantane-modified NW-targeting peptide to obtain the targeted nanosystem. After entering macrophages, BCL could be released from nanoparticles since the disulfide linker could be cleaved by intracellular glutathione (GSH), resulting in the removal of cyclodextrin (CD) gatekeeper, which is a key element in the pro-bone-remodeling functions such as anti-inflammation and induction of M2 macrophage polarization to facilitate osteogenic differentiation. This nanosystem passively accumulated in the fracture site, promoting osteogenic differentiation activities, highlighting a potent therapeutic benefit with high biosafety.
Collapse
Affiliation(s)
- Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Ze Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Hang Xue
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Wen Song
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Tao Yu
- Department of Orthopedic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Lang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Adriana C Panayi
- Department of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02152, United States
| | - Yun Sun
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Guodong Liu
- Medical Center of Trauma and War Injuries, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Liangcong Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Chenchen Yan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xudong Xie
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Wenxiu Qiu
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
14
|
Yang L, Liu Y, Zhang W, Hua Y, Chen B, Wu Q, Chen D, Liu S, Li X. Ferroptosis-Inhibitory Difference between Chebulagic Acid and Chebulinic Acid Indicates Beneficial Role of HHDP. Molecules 2021; 26:4300. [PMID: 34299576 PMCID: PMC8303713 DOI: 10.3390/molecules26144300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 01/18/2023] Open
Abstract
The search for a safe and effective inhibitor of ferroptosis, a recently described cell death pathway, has attracted increasing interest from scientists. Two hydrolyzable tannins, chebulagic acid and chebulinic acid, were selected for the study. Their optimized conformations were calculated using computational chemistry at the B3LYP-D3(BJ)/6-31G and B3LYP-D3(BJ)/6-311 + G(d,p) levels. The results suggested that (1) chebulagic acid presented a chair conformation, while chebulinic acid presented a skew-boat conformation; (2) the formation of chebulagic acid requires 762.1729 kcal/mol more molecular energy than chebulinic acid; and (3) the 3,6-HHDP (hexahydroxydiphenoyl) moiety was shown to be in an (R)- absolute stereoconfiguration. Subsequently, the ferroptosis inhibition of both tannins was determined using a erastin-treated bone marrow-derived mesenchymal stem cells (bmMSCs) model and compared to that of ferrostatin-1 (Fer-1). The relative inhibitory levels decreased in the following order: Fer-1 > chebulagic acid > chebulinic acid, as also revealed by the in vitro antioxidant assays. The UHPLC-ESI-Q-TOF-MS analysis suggested that, when treated with 16-(2-(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxazolidinyloxy free radicals, Fer-1 generated dimeric products, whereas the two acids did not. In conclusion, two hydrolyzable tannins, chebulagic acid and chebulinic acid, can act as natural ferroptosis inhibitors. Their ferroptosis inhibition is mediated by regular antioxidant pathways (ROS scavenging and iron chelation), rather than the redox-based catalytic recycling pathway exhibited by Fer-1. Through antioxidant pathways, the HHDP moiety in chebulagic acid enables ferroptosis-inhibitory action of hydrolyzable tannins.
Collapse
Affiliation(s)
- Lin Yang
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou 510006, China; (L.Y.); (D.C.)
| | - Yangping Liu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou 510006, China;
| | - Wenhui Zhang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou 510006, China; (W.Z.); (Y.H.); (B.C.); (Q.W.); (S.L.)
| | - Yujie Hua
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou 510006, China; (W.Z.); (Y.H.); (B.C.); (Q.W.); (S.L.)
| | - Ban Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou 510006, China; (W.Z.); (Y.H.); (B.C.); (Q.W.); (S.L.)
| | - Quanzhou Wu
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou 510006, China; (W.Z.); (Y.H.); (B.C.); (Q.W.); (S.L.)
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou 510006, China; (L.Y.); (D.C.)
| | - Shuqin Liu
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou 510006, China; (W.Z.); (Y.H.); (B.C.); (Q.W.); (S.L.)
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou 510006, China; (W.Z.); (Y.H.); (B.C.); (Q.W.); (S.L.)
| |
Collapse
|
15
|
Wang R, Li J, Niu DB, Xu FY, Zeng XA. Protective effect of baicalein on DNA oxidative damage and its binding mechanism with DNA: An in vitro and molecular docking study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119605. [PMID: 33667888 DOI: 10.1016/j.saa.2021.119605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
In this work, the protective effect of baicalein on DNA oxidative damage and its possible protection mechanisms were investigated. 2-thiobarbituric acid (TBA) colorimetry and agarose gel electrophoresis study found that baicalein protected the deoxyribose residue and double-stranded backbone of DNA from the damage of hydroxyl radicals. Antioxidant analysis results showed that baicalein has excellent radicals scavenging effects and Fe2+ chelating ability, which might be the mechanism of baicalein protecting DNA. DNA binding studies indicated that baicalein bound to the minor groove of DNA with moderate binding affinity (K = (7.35 ± 0.91) × 103 M-1). Hydrogen bonding and van der Waals forces played a major role in driving the binding process. Molecular docking further confirmed the experimental results. This binding could stabilize DNA double helix structure, thereby protecting DNA from oxidative damage. This study may provide theoretical basis for designing new functional foods of baicalein for DNA damage protection.
Collapse
Affiliation(s)
- Rui Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Jian Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - De-Bao Niu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Fei-Yue Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
16
|
Scutellaria baicalensis – a small plant with large pro-health biological activities. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2021. [DOI: 10.2478/cipms-2021-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Scutellaria baicalensis, known also as Huang-Qin is a traditional Chinese plant used in medicine for at least 2000 years. The plant is widely distributed in Japan, Korea, Mongolia and Russia, and is listed in Chinese Pharmacopoeia, European Pharmacopoeia and British Pharmacopoeia. The interest in Huang-Qin results from various biological activities which are primarily related to secondary plants metabolites consisting of flavonoids, phenolic compounds and terpenes. It is known that the compounds are active against numerous diseases and protect the organism against harmful pathogenic agents. Particular attention is paid to baicalein, wogonin and oroxylin A – which are characteristic secondary metabolites of the plant. In this paper, we focused on phytochemical analysis and selected biological activities used in periodontal and cardiovascular problems. The presented studies confirm the ability of Huang-Qin to scavenge free radicals, moreover, that it presents anti-bacterial, anti-inflammatory and enzyme inhibitory activities.
Collapse
|
17
|
Liu Y, Li X, Hua Y, Zhang W, Zhou X, He J, Chen D. Tannic Acid as a Natural Ferroptosis Inhibitor: Mechanisms and Beneficial Role of 3’‐
O
‐Galloylation. ChemistrySelect 2021. [DOI: 10.1002/slct.202004392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yangping Liu
- The Fourth Clinical Medical College Guangzhou University of Chinese Medicine Waihuan East Road No. 232, Guangzhou Higher Education Mega Center Guangzhou China 510006
| | - Xican Li
- School of Chinese Herbal Medicine Guangzhou University of Chinese Medicine Waihuan East Road No. 232, Guangzhou Higher Education Mega Center Guangzhou China 510006
| | - Yujie Hua
- School of Chinese Herbal Medicine Guangzhou University of Chinese Medicine Waihuan East Road No. 232, Guangzhou Higher Education Mega Center Guangzhou China 510006
| | - Wenhui Zhang
- School of Chinese Herbal Medicine Guangzhou University of Chinese Medicine Waihuan East Road No. 232, Guangzhou Higher Education Mega Center Guangzhou China 510006
| | - Xianxi Zhou
- School of Basic Medical Science Guangzhou University of Chinese Medicine Guangzhou China 510006
| | - Jianfeng He
- School of Chinese Herbal Medicine Guangzhou University of Chinese Medicine Waihuan East Road No. 232, Guangzhou Higher Education Mega Center Guangzhou China 510006
| | - Dongfeng Chen
- School of Basic Medical Science Guangzhou University of Chinese Medicine Guangzhou China 510006
| |
Collapse
|
18
|
Zhang W, Li X, Hua Y, Li Z, Chen B, Liu A, Lu W, Zhao X, Diao Y, Chen D. Antioxidant product analysis of Hulu Tea ( Tadehagi triquetrum). NEW J CHEM 2021. [DOI: 10.1039/d1nj02639a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phytophenols from Hulu Tea can produce not only homodimers but also a heterodimer through the antioxidant activity.
Collapse
Affiliation(s)
- Wenhui Zhang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yujie Hua
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhen Li
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ban Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Aijun Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wenbiao Lu
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaojun Zhao
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuanming Diao
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
19
|
Luo Z, Kuang XP, Zhou QQ, Yan CY, Li W, Gong HB, Kurihara H, Li WX, Li YF, He RR. Inhibitory effects of baicalein against herpes simplex virus type 1. Acta Pharm Sin B 2020; 10:2323-2338. [PMID: 33354504 PMCID: PMC7745058 DOI: 10.1016/j.apsb.2020.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/10/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a ubiquitous and widespread human pathogen, which gives rise to a range of diseases, including cold sores, corneal blindness, and encephalitis. Currently, the use of nucleoside analogs, such as acyclovir and penciclovir, in treating HSV-1 infection often presents limitation due to their side effects and low efficacy for drug-resistance strains. Therefore, new anti-herpetic drugs and strategies should be urgently developed. Here, we reported that baicalein, a naturally derived compound widely used in Asian countries, strongly inhibited HSV-1 replication in several models. Baicalein was effective against the replication of both HSV-1/F and HSV-1/Blue (an acyclovir-resistant strain) in vitro. In the ocular inoculation mice model, baicalein markedly reduced in vivo HSV-1/F replication, receded inflammatory storm and attenuated histological changes in the cornea. Consistently, baicalein was found to reduce the mortality of mice, viral loads both in nose and trigeminal ganglia in HSV-1 intranasal infection model. Moreover, an ex vivo HSV-1-EGFP infection model established in isolated murine epidermal sheets confirmed that baicalein suppressed HSV-1 replication. Further investigations unraveled that dual mechanisms, inactivating viral particles and inhibiting IκB kinase beta (IKK-β) phosphorylation, were involved in the anti-HSV-1 effect of baicalein. Collectively, our findings identified baicalein as a promising therapy candidate against the infection of HSV-1, especially acyclovir-resistant strain. Baicalein is highly effective against HSV-1infection ex vivo and in vivo. Inactivation of viral particles and suppression of NF-κB activation were involved in the anti-viral effect of baicalein. Hence, our work offers experimental basis for baicalein as a potential drug in treating HSV-1 associated diseases.
Collapse
Key Words
- Anti-HSV-1
- Baicalein
- CC50, 50% cytotoxic concentration
- DCFH-DA, 2′,7′-dichlorofluorescin diacetate
- EC50, 50% effective concentration
- GB, glycoprotein B
- HSV-1 infection
- HSV-1, herpes simplex virus types 1
- ICP, infected cell polypeptide
- IKK-β phosphorylation
- IKK-β, IκB kinase beta
- IL-1β, interleukin 1 beta
- IL-6, interleukin 6
- IκB-α, inhibitor of NF-κB alpha
- LPS, lipopolysaccharides
- MOI, multiplicity of infection
- NAC, N-acetyl-l-cysteine
- NF-κB activation
- NF-κB, nuclear factor kappa-B
- PFU, plaque-forming units
- PGA1, prostaglandin A1
- ROS, reactive oxygen species
- SI, selectivity index
- TG, trigeminal ganglia
- TNF-α, tumor necrosis factor alpha
- Viral inactivation
- dpi, days post-infection
- p-IKK-β, phosphorylated-IKK beta
- p-IκB-α, phosphorylated-IκB alpha
Collapse
|
20
|
Balam FH, Ahmadi ZS, Ghorbani A. Inhibitory effect of chrysin on estrogen biosynthesis by suppression of enzyme aromatase (CYP19): A systematic review. Heliyon 2020; 6:e03557. [PMID: 32181408 PMCID: PMC7063143 DOI: 10.1016/j.heliyon.2020.e03557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/05/2019] [Accepted: 03/04/2020] [Indexed: 11/24/2022] Open
Abstract
The cytochrome P450 enzyme functions as the rate-limiting enzyme in changing androgens to estrogens. Inhibition of aromatase is one of the significant objectives of treatment of hormone-dependent diseases such as breast cancer, especially in post-menopausal women. Natural compounds like chrysin, as a flavor that has a high concentration in honey and propolis, are rich sources of them can be useful in inhibiting aromatase for chemoprevention following treatment or in women at risk of acquiring breast cancer. This study intended to summarize the existing evidence on the effect of chrysin on aromatase activity. We systematically searched Science Direct, PubMed and Google Scholar and hand searched the reference lists of identified relevant articles, up to 5 February, 2019. Articles with English abstracts that reported the effect of chrysin on aromatase inhibition and without publication date restriction were investigated. Twenty relevant articles were chosen from a total of 1721 articles. Only one study was performed on humans and two studies were assayed on rats, while other studies were evaluated in vitro. All the studies except one showed that chrysin had the potency of aromatase inhibition; however, only one study performed on endometrial stromal cells showed that chrysin and naringenin did not indicate aromatase inhibitory properties. Various assay methods and experimental conditions were the important aspects leading to different results between the studies. Chrysin has potency in inhibition of the aromatase enzyme and thus can be useful in preventing and treating the hormone-dependent breast cancer and as an adjuvant therapy for estrogen-dependent diseases.
Collapse
Affiliation(s)
- Farinaz Hosseini Balam
- Student Research Committee, Department of Cellular and Molecular Nutrition, School of Nutrition Sciences & Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Sadat Ahmadi
- Student Research Committee, Department of Nutrition, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Arman Ghorbani
- Faculty of Nutrition Science and Food Technology, Department of Cellular and Molecular Nutrition, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, P.O. Box 19395-4741, Tehran, Iran
| |
Collapse
|
21
|
Liu J, Li X, Cai R, Ren Z, Zhang A, Deng F, Chen D. Simultaneous Study of Anti-Ferroptosis and Antioxidant Mechanisms of Butein and ( S)-Butin. Molecules 2020; 25:E674. [PMID: 32033283 PMCID: PMC7036861 DOI: 10.3390/molecules25030674] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
To elucidate the mechanism of anti-ferroptosis and examine structural optimization in natural phenolics, cellular and chemical assays were performed with 2'-hydroxy chalcone butein and dihydroflavone (S)-butin. C11-BODIPY staining and flow cytometric assays suggest that butein more effectively inhibits ferroptosis in erastin-treated bone marrow-derived mesenchymal stem cells than (S)-butin. Butein also exhibited higher antioxidant percentages than (S)-butin in five antioxidant assays: linoleic acid emulsion assay, Fe3+-reducing antioxidant power assay, Cu2+-reducing antioxidant power assay, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•)-trapping assay, and α,α-diphenyl-β-picrylhydrazyl radical (DPPH•)-trapping assay. Their reaction products with DPPH• were further analyzed using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS). Butein and (S)-butin produced a butein 5,5-dimer (m/z 542, 271, 253, 225, 135, and 91) and a (S)-butin 5',5'-dimer (m/z 542, 389, 269, 253, and 151), respectively. Interestingly, butein forms a cross dimer with (S)-butin (m/z 542, 523, 433, 419, 415, 406, and 375). Therefore, we conclude that butein and (S)-butin exert anti-ferroptotic action via an antioxidant pathway (especially the hydrogen atom transfer pathway). Following this pathway, butein and (S)-butin yield both self-dimers and cross dimers. Butein displays superior antioxidant or anti-ferroptosis action to (S)-butin. This can be attributed the decrease in π-π conjugation in butein due to saturation of its α,β-double bond and loss of its 2'-hydroxy group upon biocatalytical isomerization.
Collapse
Affiliation(s)
- Jie Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Rongxin Cai
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Ziwei Ren
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Aizhen Zhang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Fangdan Deng
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (R.C.); (Z.R.); (A.Z.); (F.D.)
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
22
|
Zhu C, Zhao Y, Wu X, Qiang C, Liu J, Shi J, Gou J, Pei D, Li A. The therapeutic role of baicalein in combating experimental periodontitis with diabetes via Nrf2 antioxidant signaling pathway. J Periodontal Res 2019; 55:381-391. [DOI: 10.1111/jre.12722] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 10/28/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Chunhui Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an China
- Department of Periodontology College of Stomatology Xi’an Jiaotong University Xi'an China
| | - Ying Zhao
- Department of Periodontology College of Stomatology Xi’an Jiaotong University Xi'an China
| | - Xiaoyan Wu
- Department of Periodontology College of Stomatology Xi’an Jiaotong University Xi'an China
| | - Cui Qiang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an China
| | - Jin Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an China
- Department of Periodontology College of Stomatology Xi’an Jiaotong University Xi'an China
| | - Jianfeng Shi
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an China
| | - Jianzhong Gou
- Department of Periodontology College of Stomatology Xi’an Jiaotong University Xi'an China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an China
- Department of Periodontology College of Stomatology Xi’an Jiaotong University Xi'an China
| |
Collapse
|
23
|
3',8″-Dimerization Enhances the Antioxidant Capacity of Flavonoids: Evidence from Acacetin and Isoginkgetin. Molecules 2019; 24:molecules24112039. [PMID: 31142008 PMCID: PMC6600363 DOI: 10.3390/molecules24112039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 01/03/2023] Open
Abstract
To probe the effect of 3',8″-dimerization on antioxidant flavonoids, acacetin and its 3',8″-dimer isoginkgetin were comparatively analyzed using three antioxidant assays, namely, the ·O2- scavenging assay, the Cu2+ reducing assay, and the 2,2'-azino bis(3-ethylbenzothiazolin-6-sulfonic acid) radical scavenging assay. In these assays, acacetin had consistently higher IC50 values than isoginkgetin. Subsequently, the acacetin was incubated with 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxy radicals (4-methoxy-TEMPO) and then analyzed by ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC-ESI-Q-TOF-MS) technology. The results of the UHPLC-ESI-Q-TOF-MS analysis suggested the presence of a dimer with m/z 565, 550, 413, 389, 374, 345, 330, and 283 peaks. By comparison, standard isoginkgetin yielded peaks at m/z 565, 533, 518, 489, 401, 389, 374, and 151 in the mass spectra. Based on these experimental data, MS interpretation, and the relevant literature, we concluded that isoginkgetin had higher electron transfer potential than its monomer because of the 3',8″-dimerization. Additionally, acacetin can produce a dimer during its antioxidant process; however, the dimer is not isoginkgetin.
Collapse
|
24
|
Nagayoshi H, Murayama N, Kakimoto K, Tsujino M, Takenaka S, Katahira J, Lim YR, Kim D, Yamazaki H, Komori M, Guengerich FP, Shimada T. Oxidation of Flavone, 5-Hydroxyflavone, and 5,7-Dihydroxyflavone to Mono-, Di-, and Tri-Hydroxyflavones by Human Cytochrome P450 Enzymes. Chem Res Toxicol 2019; 32:1268-1280. [PMID: 30964977 DOI: 10.1021/acs.chemrestox.9b00078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biologically active plant flavonoids, including 5,7-dihydroxyflavone (57diOHF, chrysin), 4',5,7-trihydroxyflavone (4'57triOHF, apigenin), and 5,6,7-trihydroxyflavone (567triOHF, baicalein), have important pharmacological and toxicological significance, e.g., antiallergic, anti-inflammatory, antioxidative, antimicrobial, and antitumorgenic properties. In order to better understand the metabolism of these flavonoids in humans, we examined the oxidation of flavone, 5-hydroxyflavone (5OHF), and 57diOHF to various products by human cytochrome P450 (P450 or CYP) and liver microsomal enzymes. Individual human P450s and liver microsomes oxidized flavone to 6-hydroxyflavone, small amounts of 5OHF, and 11 other monohydroxylated products at different rates and also produced several dihydroxylated products (including 57diOHF and 7,8-dihydroxyflavone) from flavone. We also found that 5OHF was oxidized by several P450 enzymes and human liver microsomes to 57diOHF and further to 567triOHF, but the turnover rates in these reactions were low. Interestingly, both CYP1B1.1 and 1B1.3 converted 57diOHF to 567triOHF at turnover rates (on the basis of P450 contents) of >3.0 min-1, and CYP1A1 and 1A2 produced 567triOHF at rates of 0.51 and 0.72 min-1, respectively. CYP2A13 and 2A6 catalyzed the oxidation of 57diOHF to 4'57triOHF at rates of 0.7 and 0.1 min-1, respectively. Our present results show that different P450s have individual roles in oxidizing these phytochemical flavonoids and that these reactions may cause changes in their biological and toxicological properties in mammals.
Collapse
Affiliation(s)
- Haruna Nagayoshi
- Osaka Institute of Public Health , 1-3-69 Nakamichi , Higashinari-ku , Osaka 537-0025 , Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo 194-8543 , Japan
| | - Kensaku Kakimoto
- Osaka Institute of Public Health , 1-3-69 Nakamichi , Higashinari-ku , Osaka 537-0025 , Japan
| | - Masaki Tsujino
- Osaka Institute of Public Health , 1-3-69 Nakamichi , Higashinari-ku , Osaka 537-0025 , Japan
| | - Shigeo Takenaka
- Graduate School of Comprehensive Rehabilitation , Osaka Prefecture University , 3-7-30 , Habikino , Osaka 583-8555 , Japan
| | - Jun Katahira
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences , Osaka Prefecture University , 1-58 Rinku-Orai-Kita , Izumisano , Osaka 598-8531 , Japan
| | - Young-Ran Lim
- Department of Biological Sciences , Konkuk University , Seoul 05029 , Korea
| | - Donghak Kim
- Department of Biological Sciences , Konkuk University , Seoul 05029 , Korea
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo 194-8543 , Japan
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences , Osaka Prefecture University , 1-58 Rinku-Orai-Kita , Izumisano , Osaka 598-8531 , Japan
| | - F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States
| | - Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences , Osaka Prefecture University , 1-58 Rinku-Orai-Kita , Izumisano , Osaka 598-8531 , Japan
| |
Collapse
|
25
|
Saul D, Weber M, Zimmermann MH, Kosinsky RL, Hoffmann DB, Menger B, Taudien S, Lehmann W, Komrakova M, Sehmisch S. Effect of the lipoxygenase inhibitor baicalein on bone tissue and bone healing in ovariectomized rats. Nutr Metab (Lond) 2019; 16:4. [PMID: 30651746 PMCID: PMC6329162 DOI: 10.1186/s12986-018-0327-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Osteoporosis is one of the world's major medical burdens in the twenty-first century. Pharmaceutical intervention currently focusses on decelerating bone loss, but phytochemicals such as baicalein, which is a lipoxygenase inhibitor, may rescue bone loss. Studies evaluating the effect of baicalein in vivo are rare. METHODS We administered baicalein to sixty-one three-month-old female Sprague-Dawley rats. They were divided into five groups, four of which were ovariectomized (OVX) and one non-ovariectomized (NON-OVX). Eight weeks after ovariectomy, bilateral tibial osteotomy with plate osteosynthesis was performed and bone formation quantified. Baicalein was administered subcutaneously using three doses (C1: 1 mg/kg BW; C2: 10 mg/kg BW; and C3: 100 mg/kg BW) eight weeks after ovariectomy for four weeks. Finally, femora and tibiae were collected. Biomechanical tests, micro-CT, ashing, histological and gene expression analyses were performed. RESULTS Biomechanical properties were unchanged in tibiae and reduced in femora. In tibiae, C1 treatment enhanced callus density and cortical width and decreased callus area. In the C3 group, callus formation was reduced during the first 3 weeks after osteotomy, correlating to a higher mRNA expression of Osteocalcin, Tartrate-resistant acid phosphatase and Rankl. In femora, baicalein treatments did not alter bone parameters. CONCLUSIONS Baicalein enhanced callus density and cortical width but impaired early callus formation in tibiae. In femora, it diminished the biomechanical properties and calcium-to-phosphate ratio. Thus, it is not advisable to apply baicalein to treat early bone fractures. To determine the exact effects on bone healing, further studies in which baicalein treatments are started at different stages of healing are needed.
Collapse
Affiliation(s)
- Dominik Saul
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Marie Weber
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Marc Hendrik Zimmermann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Robyn Laura Kosinsky
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Daniel Bernd Hoffmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Björn Menger
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Stefan Taudien
- Division of Infection Control and Infectious Diseases, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Wolfgang Lehmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Marina Komrakova
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Stephan Sehmisch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| |
Collapse
|
26
|
Park C, Choi EO, Kim GY, Hwang HJ, Kim BW, Yoo YH, Park HT, Choi YH. Protective Effect of Baicalein on Oxidative Stress-induced DNA Damage and Apoptosis in RT4-D6P2T Schwann Cells. Int J Med Sci 2019; 16:8-16. [PMID: 30662323 PMCID: PMC6332490 DOI: 10.7150/ijms.29692] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/31/2018] [Indexed: 01/20/2023] Open
Abstract
Background: Due to its high antioxidant activity, baicalein, a kind of flavonoid present in Radical Scutellariae, has various pharmacological effects. However, the protective effect against oxidative stress in Schwann cells, which plays an important role in peripheral neuropathy, has not yet been studied. In this study, the effects of baicalein on hydrogen peroxide (H2O2)-induced DNA damage and apoptosis in RT4-D6P2T Schwann cells were evaluated. Methods: Cell viability assay was performed using MTT assay and colony formation assay. Apoptosis was assessed by flow cytometry analysis and DNA fragmentation assay. The effects on DNA damage and ATP content were analyzed by comet method and luminometer. In addition, changes in protein expression were observed by Western blotting. Results: Our results show that baicalein significantly inhibits H2O2-induced cytotoxicity through blocking reactive oxygen species (ROS) generation. We also demonstrate that baicalein is to block H2O2-induced DNA damage as evidenced by inhibition of DNA tail formation and γH2AX phosphorylation. Moreover, baicalein significantly attenuated H2O2-induced apoptosis and mitochondrial dysfunction, and restored inhibition of ATP production. The suppression of apoptosis by baicalein in H2O2-stimulated cells was associated with reduction of increased Bax/Bcl-2 ratio, activation of caspase-9 and -3, and degradation of poly (ADP-ribose) polymerase. Conclusions: These results demonstrate that baicalein eliminates H2O2-induced apoptosis through conservation of mitochondrial function by the removal of ROS. Therefore, it is suggested that baicalein protects Schwann cells from oxidative stress, and may be beneficial for the prevention and treatment of peripheral neuropathy induced by oxidative stress.
Collapse
Affiliation(s)
- Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dong-eui University, Busan 47340, Republic of Korea
| | - Eun Ok Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Hye-Jin Hwang
- Department of Food and Nutrition, College of Nursing, Healthcare Sciences & Human Ecology, Dong-eui University, Busan 47340, Republic of Korea
| | - Byung Woo Kim
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan 47340, Republic of Korea
| | - Young Hyun Yoo
- Department of Anatomy and Cell Biology, Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan 49201, Republic of Korea
| | - Hwan Tae Park
- Department of Physiology, Peripheral Neuropathy Research Center, College of Medicine, Dong-A University, Busan 49201, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| |
Collapse
|
27
|
Antioxidant Mechanisms of Echinatin and Licochalcone A. Molecules 2018; 24:molecules24010003. [PMID: 30577443 PMCID: PMC6337356 DOI: 10.3390/molecules24010003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/15/2023] Open
Abstract
Echinatin and its 1,1-dimethyl-2-propenyl derivative licochalcone A are two chalcones found in the Chinese herbal medicine Gancao. First, their antioxidant mechanisms were investigated using four sets of colorimetric measurements in this study. Three sets were performed in aqueous solution, namely Cu2+-reduction, Fe3+-reduction, and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•)-scavenging measurements, while 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•)-scavenging colorimetric measurements were conducted in methanol solution. The four sets of measurements showed that the radical-scavenging (or metal-reduction) percentages for both echinatin and licochalcone A increased dose-dependently. However, echinatin always gave higher IC50 values than licochalcone A. Further, each product of the reactions of the chalcones with DPPH• was determined using electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS). The UPLC-ESI-Q-TOF-MS/MS determination for echinatin yielded several echinatin–DPPH adduct peaks (m/z 662, 226, and 196) and dimeric echinatin peaks (m/z 538, 417, and 297). Similarly, that for licochalcone A yielded licochalcone A-DPPH adduct peaks (m/z 730, 226, and 196) and dimeric licochalcone A peaks (m/z 674 and 553). Finally, the above experimental data were analyzed using mass spectrometry data analysis techniques, resonance theory, and ionization constant calculations. It was concluded that, (i) in aqueous solution, both echinatin and licochalcone A may undergo an electron transfer (ET) and a proton transfer (PT) to cause the antioxidant action. In addition, (ii) in alcoholic solution, hydrogen atom transfer (HAT) antioxidant mechanisms may also occur for both. HAT may preferably occur at the 4-OH, rather than the 4′-OH. Accordingly, the oxygen at the 4-position participates in radical adduct formation (RAF). Lastly, (iii) the 1,1-dimethyl-2-propenyl substituent improves the antioxidant action in both aqueous and alcoholic solutions.
Collapse
|
28
|
pH Effect and Chemical Mechanisms of Antioxidant Higenamine. Molecules 2018; 23:molecules23092176. [PMID: 30158440 PMCID: PMC6225313 DOI: 10.3390/molecules23092176] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/22/2018] [Accepted: 08/25/2018] [Indexed: 02/07/2023] Open
Abstract
In this article, we determine the pH effect and chemical mechanism of antioxidant higenamine by using four spectrophotometric assays: (1) 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide radical (PTIO•)-scavenging assay (at pH 4.5, 6.0, and 7.4); (2) Fe3+-reducing power assay; (3) Cu2+-reducing power assay; and (4) 1,1-diphenyl-2-picryl-hydrazyl (DPPH•)-scavenging assay. The DPPH•-scavenging reaction product is further analyzed by ultra-performance liquid chromatography, coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) technology. In the four spectrophotometric assays, higenamine showed good dose-response curves; however, its IC50 values were always lower than those of Trolox. In UPLC-ESI-Q-TOF-MS/MS analysis, the higenamine reaction product with DPPH• displayed three chromatographic peaks (retention time = 0.969, 1.078, and 1.319 min). The first gave m/z 541.2324 and 542.2372 MS peaks; while the last two generated two similar MS peaks (m/z 663.1580 and 664.1885), and two MS/MS peaks (m/z 195.9997 and 225.9971). In the PTIO•-scavenging assays, higenamine greatly decreased its IC50 values with increasing pH. In conclusion, higenamine is a powerful antioxidant—it yields at least two types of final products (i.e., higenamine-radical adduct and higenamine-higenamine dimer). In aqueous media, higenamine may exert its antioxidant action via electron-transfer and proton-transfer pathways. However, its antioxidant action is markedly affected by pH. This is possibly because lower pH value weakens its proton-transfer pathway via ionization suppression by solution H+, and its electron-transfer pathway by withdrawing the inductive effect (-I) from protonated N-atom. These findings will aid the correct use of alkaloid antioxidants.
Collapse
|
29
|
Xie H, Li X, Ren Z, Qiu W, Chen J, Jiang Q, Chen B, Chen D. Antioxidant and Cytoprotective Effects of Tibetan Tea and Its Phenolic Components. Molecules 2018; 23:molecules23020179. [PMID: 29364183 PMCID: PMC6017439 DOI: 10.3390/molecules23020179] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 11/30/2022] Open
Abstract
Tibetan tea (Kangzhuan) is an essential beverage of the Tibetan people. In this study, a lyophilized aqueous extract of Tibetan tea (LATT) was prepared and analyzed by HPLC. The results suggested that there were at least five phenolic components, including gallic acid, and four catechins (i.e., (+)-catechin, (−)-catechin gallate (CG), (−)-epicatechin gallate (ECG), and (−)-epigallocatechin gallate). Gallic acid, the four catechins, and LATT were then comparatively investigated by four antioxidant assays: ferric reducing antioxidant power, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•) scavenging, 1,1-diphenyl-2-picryl-hydrazl radical scavenging, and 2,2′-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) radical scavenging assays. In these assays, LATT, along with the five phenolic components, increased their antioxidant effects in a concentration-dependent manner; however, the half maximal scavenging concentrations of ECG were always lower than those of CG. Gallic acid and the four catechins were also suggested to chelate Fe2+ based on UV-visible spectral analysis. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC−ESI−Q−TOF−MS/MS) analysis suggested that, when mixed with PTIO•, the five phenolic components could yield two types of radical adduct formation (RAF) products (i.e., tea phenolic dimers and tea phenolic-PTIO• adducts). In a flow cytometry assay, (+)-catechin and LATT was observed to have a cytoprotective effect towards oxidative-stressed bone marrow-derived mesenchymal stem cells. Based on this evidence, we concluded that LATT possesses antioxidative or cytoprotective properties. These effects may mainly be attributed to the presence of phenolic components, including gallic acid and the four catechins. These phenolic components may undergo electron transfer, H+-transfer, and Fe2+-chelating pathways to exhibit antioxidative or cytoprotective effects. In these effects, two diastereoisomeric CG and ECG showed differences to which a steric effect from the 2-carbon may contribute. Phenolic component decay may cause RAF in the antioxidant process.
Collapse
Affiliation(s)
- Hong Xie
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Guangzhou 510006, China.
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Guangzhou 510006, China.
| | - Zhenxing Ren
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Weimin Qiu
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Jianlan Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Qian Jiang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Guangzhou 510006, China.
| | - Ban Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Guangzhou 510006, China.
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|