1
|
Zhou H, Hua J, Li H, Song X, Luo S. Structurally diverse specialized metabolites of maize and their extensive biological functions. J Cell Physiol 2024; 239:e30955. [PMID: 36745523 DOI: 10.1002/jcp.30955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 02/07/2023]
Abstract
Maize originated in southern Mexico and various hybrid varieties have been bred during domestication. All maize tissues are rich in specialized plant metabolites (SPMs), which allow the plants to resist the stresses of herbivores and pathogens or environmental factors. To date, a total of 95 terpenoids, 91 phenolics, 31 alkaloids, and 6 other types of compounds have been identified from maize. Certain volatile sesquiterpenes released by maize plants attract the natural enemies of maize herbivores and provide an indirect defensive function. Kauralexins and dolabralexins are the most abundant diterpenoids in maize and are known to regulate and stabilize the maize rhizosphere microbial community. Benzoxazinoids and benzoxazolinones are the main alkaloids in maize and are found in maize plants at the highest concentrations at the seedling stage. These two kinds of alkaloids directly resist herbivory and pathogenic infection. Phenolics enhance the cross-links between maize cell walls. Meanwhile, SPMs also regulate plant-plant relationships. In conclusion, SPMs in maize show a large diversity of chemical structures and broad-spectrum biological activities. We use these to provide ideas and information to enable the improvement of maize resistances through breeding and to promote the rapid development of the maize industry.
Collapse
Affiliation(s)
- Huiwen Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Hongdi Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Xinyu Song
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Shihong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| |
Collapse
|
2
|
Ramírez-Esparza U, Agustín-Chávez MC, Ochoa-Reyes E, Alvarado-González SM, López-Martínez LX, Ascacio-Valdés JA, Martínez-Ávila GCG, Prado-Barragán LA, Buenrostro-Figueroa JJ. Recent Advances in the Extraction and Characterization of Bioactive Compounds from Corn By-Products. Antioxidants (Basel) 2024; 13:1142. [PMID: 39334801 PMCID: PMC11428609 DOI: 10.3390/antiox13091142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Maize comes in a variety of colors, including white, yellow, red, blue, and purple, which is due to the presence of phytochemicals such as carotenoids, anthocyanins, flavonoids, phytosterols, and some hydroxycinnamic acid derivatives. In Mexico, maize is primarily grown for human consumption; however, maize residues comprise 51-58% of the total maize plant weight (stalks, leaves, ears, and husks) and are mainly used as livestock feed. These residues contain numerous bioactive compounds that interest the industry for their potential health benefits in preventing or treating degenerative diseases. This review explores the current knowledge and highlights key aspects related to the extraction methods and different techniques for identifying the bioactive compounds found in maize by-products.
Collapse
Affiliation(s)
- Ulises Ramírez-Esparza
- Biotechnology and Bioengineering Laboratory, Research Center in Food and Development, Delicias 33089, Chihuahua, Mexico; (U.R.-E.); (M.C.A.-C.); (E.O.-R.)
| | - María Cristina Agustín-Chávez
- Biotechnology and Bioengineering Laboratory, Research Center in Food and Development, Delicias 33089, Chihuahua, Mexico; (U.R.-E.); (M.C.A.-C.); (E.O.-R.)
| | - Emilio Ochoa-Reyes
- Biotechnology and Bioengineering Laboratory, Research Center in Food and Development, Delicias 33089, Chihuahua, Mexico; (U.R.-E.); (M.C.A.-C.); (E.O.-R.)
| | - Sandra M. Alvarado-González
- Microbiology and Molecular Biology Laboratory, Research Center in Food and Development, Delicias 33089, Chihuahua, Mexico;
| | | | - Juan A. Ascacio-Valdés
- Bioprocesses and Bioproducts Group, Department of Food Research, Faculty of Chemical Sciences, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico;
| | | | - Lilia Arely Prado-Barragán
- Solid Fermentations Pilot Plant, Biotechnology Department, Universidad Autónoma Metropolitana–Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico
| | - José Juan Buenrostro-Figueroa
- Biotechnology and Bioengineering Laboratory, Research Center in Food and Development, Delicias 33089, Chihuahua, Mexico; (U.R.-E.); (M.C.A.-C.); (E.O.-R.)
| |
Collapse
|
3
|
Bhixavatimath P, Akram Naikawadi, Yasmeen Maniyar, Gurudatta Moharir, Vijayakumar Daroj. Synthesis and characterization of 2-thiophen flavonoid analogue for free radical scavenging antioxidant analysis. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i3.1485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Introduction and Aim: Currently research is focussed on the use of antioxidants in preventing oxidative stress induced diseases. Flavonoids present in plant sources gaining more therapeutic importance due to their antioxidant property, but their solubility and some pharmacokinetic concern, diverted the current research study towards the synthesis of these flavonoids for their therapeutic potential. The study was aimed to synthesize and characterize the 2-thiophen flavonoid analogue for free radical scavenging antioxidant activity.
Materials and Methods: The test synthetic compound PNF(3-hydroxy-2-(thiophen-2-yl)-4H-chromen-4-one) a thiophen substituted flavonoid was synthesized from condensation fallowed cyclization reaction in laboratory and DPPH, superoxide, nitric oxide, and hydroxyl radical scavenging activity was determined through established in vitro methods.
Results: It suggests that the test flavonoid (PNF) possesses the potent free radical scavenging on DPPH, superoxide, nitric oxide, and hydroxyl radicals with IC50 values of 6.89±25?g/ml,4.04?g/ml, 2.44?g/ml and 2.96?g/ml respectively. The radical scavenging potential of test PNF synthetic compound at different concentrations(10?g-150?g) was compared with that of standard antioxidants such as BHA , ascorbic acid used in the study.
Conclusion: Results from this study indicates that the novel flavonoid PNF exhibited the considerable dose dependant invitro antioxidant activity. These possible activities could be useful to consider the novel synthetic thiophen derived flavonoid as therapeutic antioxidant agent.
Collapse
|
4
|
Antibacterial Effect of Phenolic Acids Derived from Rice Straw and in Combination with Antibiotics Against Escherichia coli. Appl Biochem Biotechnol 2022; 194:2931-2945. [PMID: 35298768 DOI: 10.1007/s12010-021-03650-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/03/2021] [Indexed: 11/02/2022]
Abstract
Many studies have demonstrated that natural plant extracts have inhibitory effects on microorganisms. The purpose of this study was to investigate the inhibitory effect of phenolic acids from rice straw (PAs) on Escherichia coli and their synergistic effect in combination with antibiotics. PAs can inhibit the growth of E. coli effectively by inducing the formation of H2O2; PA-treated cells had a tenfold greater intracellular H2O2 concentration than the control group. The synergistic effect caused by the interaction of PAs and antibiotics on inhibiting the growth of E. coli was significant. This effect may be caused by a PA-induced change in the permeability of E. coli cell membrane. The treatment with PAs made the extracellular K+ concentration reached 15 mg/L within 30 min, while the K+ concentration in the control group was very low and did not change significantly over time. Similarly to the extracellular K+, the extracellular protein concentration exceeded 150 mg/L in the PA treatment group, while it remained very low in the control group. Due to the increased cell permeability, more antibiotics can enter the cell. Hence, this study may provide a novel method of improving the safe use of antibiotics.
Collapse
|
5
|
Lee TH, Lee CH, Wong S, Ong PY, Hamdan N, Azmi NA. UPLC-orbitrap-MS/MS based characterization of phytochemical compounds from Malaysia purple corn (Zea mays). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Colored Corn: An Up-Date on Metabolites Extraction, Health Implication, and Potential Use. Molecules 2021; 26:molecules26010199. [PMID: 33401767 PMCID: PMC7796034 DOI: 10.3390/molecules26010199] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
Colored (orange, pink, red, purple, and blue) corn strongly attracted attention on its healthy properties mainly due to its anthocyanin and carotenoid composition which is also responsible for its pigmentation. The present review summarized the recent updates on the extraction and chemical characterization of the main plant secondary metabolites present in colored seeds, kernel, cob, husk, and silk. The main approaches used to stabilize the extracts have been discussed as well as their food and non-food uses. Both in vitro and in vivo (animal models) studies on the different effects (antibacterial, antimutagenic, antioxidant, and anti-inflammatory activities, effects on metabolic syndrome, diabetes, glucose and lipidic metabolism, and neuroprotection) of pigmented extracts on animal and human health have been summarized.
Collapse
|
7
|
Thakur M, Nanda V. Screening of Indian bee pollen based on antioxidant properties and polyphenolic composition using UHPLC-DAD-MS/MS: A multivariate analysis and ANN based approach. Food Res Int 2020; 140:110041. [PMID: 33648267 DOI: 10.1016/j.foodres.2020.110041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/18/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022]
Abstract
The present investigation aims to examine the polyphenolic composition and antioxidant capacity of bee pollen samples procured from various regions of India. Total phenolic (TPC) and flavonoid (TFC) content ranged from 15.50 ± 1.25-25.63 ± 1.42 mg GAE/g and 9.72 ± 0.28-15.61 ± 0.74 mg RE/g, respectively. Coriander pollen showed the significantly (p < 0.05) higher antioxidant activity than other samples, demonstrated by DPPH radical scavenging activity (93.75 ± 0.05%), ferric reducing antioxidant power (103.98 ± 0.82 mmol Fe2+/g), ABTS+• radical scavenging activity (96.58 ± 0.65%) and metal chelating activity (84.62 ± 4.37%). The observed antioxidant properties were strongly correlated with TPC and effectively predicted using artificial neural network. Sixty polyphenolic compounds including 38 flavonoids and derivatives, 21 phenolic acid and derivatives and one glucosinolates were identified using UHPLC-DAD-MS/MS wherein the presence of daidzein and sinigrin was acknowledged for the first time. Further, principal component analysis identified three principal components, illustrating 91.24% of total variation to differentiate the pollen samples which were also classified by hierarchical cluster analysis.
Collapse
Affiliation(s)
- Mamta Thakur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology (Deemed-to-be-University), Longowal 148106, Punjab, India.
| | - Vikas Nanda
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology (Deemed-to-be-University), Longowal 148106, Punjab, India
| |
Collapse
|
8
|
Echegaray N, Munekata PES, Centeno JA, Domínguez R, Pateiro M, Carballo J, Lorenzo JM. Total Phenol Content and Antioxidant Activity of Different Celta Pig Carcass Locations as Affected by the Finishing Diet (Chestnuts or Commercial Feed). Antioxidants (Basel) 2020; 10:E5. [PMID: 33374557 PMCID: PMC7822432 DOI: 10.3390/antiox10010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
The objective of this research was to evaluate the total phenol content, total flavonoids, and antioxidant activity of chestnuts (Castanea sativa Mill.) and commercial feed employed in the finishing diet of the Celta pig breed and analyze the effect of the feeding (chestnuts vs. commercial feed) in the finishing diet on total phenol content and antioxidant activity of Longissimus thoracis et lumborum, Psoas major, and Biceps femoris muscles and liver of the Celta pig breed. The antioxidant activity of the feed and animal tissue was investigated using three antioxidant methods (2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2-2'-Azino-di-[3-ethylbenzthiazoline sulfonate] (ABTS) radical scavenging activity, and ferric reducing antioxidant power (FRAP) assay). The determination of the total phenol content and total flavonoids showed that chestnut had a significantly lower concentration than commercial feed in these compounds (130.00 vs. 312.89 mg gallic acid equivalents/100 g fresh weight and 8.58 vs. 32.18 mg catechin equivalents/100 g fresh weight, respectively). However, the results displayed that chestnuts had a higher antioxidant activity when compared with the commercial feed through the DPPH and ABTS methods (1152.42 vs. 957.33 µg Trolox equivalents/g fresh weight, and 9379.74 vs. 7613.44 µg Trolox equivalents/g fresh weight, for DPPH and ABTS assay, respectively), while the antioxidant activity measured by the FRAP assay turned out to show higher values for commercial feed (1777.49 and 1946.09 µmol Fe2+/100 fresh weight for chestnut and commercial feed, respectively), although significant differences were only found in the ABTS assay. On the other hand, the present study found that chestnut significantly reduces the total phenol content and declines the antioxidant activity of Longissimus thoracis et lumborum, Psoas major, and Biceps femoris muscles and liver of the Celta pig breed. Finally, it has been found that liver is the location that has the best antioxidant characteristics compared to any muscle, regardless of diet utilized.
Collapse
Affiliation(s)
- Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (N.E.); (P.E.S.M.); (R.D.); (M.P.)
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (N.E.); (P.E.S.M.); (R.D.); (M.P.)
| | - Juan A. Centeno
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain; (J.A.C.); (J.C.)
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (N.E.); (P.E.S.M.); (R.D.); (M.P.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (N.E.); (P.E.S.M.); (R.D.); (M.P.)
| | - Javier Carballo
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain; (J.A.C.); (J.C.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (N.E.); (P.E.S.M.); (R.D.); (M.P.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain; (J.A.C.); (J.C.)
| |
Collapse
|
9
|
Wong-Paz JE, Aguilar-Zárate P, Veana F, Muñiz-Márquez DB. Impacto de las tecnologías de extracción verdes para la obtención de compuestos bioactivos de los residuos de frutos cítricos. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
En la actualidad, las técnicas de extracción convencionales como la maceración, soxhlet y el calentamiento-reflujo entre otras, han seguido utilizándose debido a su principal ventaja como procesos de extracción más económicos. Sin embargo, estas metodologías presentan diversas desventajas, como largos tiempos de extracción y requerimiento de altas cantidades de disolventes. Es por lo hasta aquí expuesto que se han implementado metodologías de extracción alternativas que cumplen con los principios de la química verde, como son las extracciones asistidas: por ultrasonido (EAU), microondas (EAM) y con fluidos supercríticos (EAFS). Estos métodos de extracción, alternos a los convencionales, han logrado despertar el interés de los investigadores como futuras perspectivas de aplicación, con altos rendimientos, para la recuperación de compuestos bioactivos de los residuos de frutos cítricos, en menor tiempo de extracción, empleando disolventes verdes. El objetivo de la presente revisión es dar a conocer el impacto de las metodologías de extracción alternativas con un enfoque en el aprovechamiento y revalorización de los residuos de frutos cítricos, debido a que éstos presentan una gran diversidad de compuestos de interés para la industria farmacéutica, alimentaria y biotecnológica.
Collapse
|
10
|
Mercado-Mercado G, Blancas-Benítez FJ, Zamora-Gasga VM, Sáyago-Ayerdi SG. Mexican Traditional Plant-Foods: Polyphenols Bioavailability, Gut Microbiota Metabolism and Impact Human Health. Curr Pharm Des 2020; 25:3434-3456. [PMID: 31604412 DOI: 10.2174/1381612825666191011093753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Abstract
Functional foods have been used worldwide since ancient times, particularly, the prehispanic civilizations used several plants as medicinal foods. Nowadays, many Mexicans populations preserve their traditions and dietary patterns based on corn, beans, besides other endemic vegetables, mainly diverse varieties of chili, tomatoes and other plant-foods. It is well known that each species has a special complex mixture of bioactive compounds (BC) in which each component contributes to its overall bioactivity. These BC are plant metabolites that benefit human health by means of anti-inflammatory, immune-modulatory, and antioxidant effects. However, it becomes bioactive at human body when these BC must undergo diverse intestinal transformations, due to the action of digestive enzymes, but also by the action of microbiota metabolism. Thus, the intestinal microbiota is the key factor in the mediation of the physiological functions of dietary polyphenols. In fact, limited information is available, especially on dietary phytochemicals and metabolism in commonly available Mexican plant-foods. In this review, the bioaccesibility and bioavailability major BC from traditional Mexican plant-foods products and its potential health benefits will be discussed. Besides, we compile the scientific reports and the evidence of the impact of some Mexican plant-foods on the gut microbiota dynamic composition, specific microbial metabolites and its possible contributions to human health.
Collapse
Affiliation(s)
- Gilberto Mercado-Mercado
- Departamento de Ciencias Quimico Biologicas, Instituto de Ciencias Biomedicas, Universidad Autonoma de Ciudad Juarez, Ciudad Juarez, Chihuahua, Mexico
| | - Francisco J Blancas-Benítez
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic. Laboratorio Integral de Investigacion en Alimentos, Division de Estudios de Posgrado, Tepic, Nayarit, Mexico
| | - Victor M Zamora-Gasga
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic. Laboratorio Integral de Investigacion en Alimentos, Division de Estudios de Posgrado, Tepic, Nayarit, Mexico
| | - Sonia G Sáyago-Ayerdi
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic. Laboratorio Integral de Investigacion en Alimentos, Division de Estudios de Posgrado, Tepic, Nayarit, Mexico
| |
Collapse
|
11
|
Žilić S, Simić M, Belović M, Škrobot D, Srdić J, Perić V. Chemical, rheological and sensory characteristics of sweet spreads made from by‐products of soya bean and maize. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Slađana Žilić
- Department of Food Technology and Biochemistry Maize Research Institute Slobodana Bajića 1 Belgrade‐Zemun Serbia
| | - Marijana Simić
- Department of Food Technology and Biochemistry Maize Research Institute Slobodana Bajića 1 Belgrade‐Zemun Serbia
| | - Miona Belović
- Institute of Food Technology University of Novi Sad Bulevar cara Lazara 1 Novi Sad Serbia
| | - Dubravka Škrobot
- Institute of Food Technology University of Novi Sad Bulevar cara Lazara 1 Novi Sad Serbia
| | - Jelena Srdić
- Plant Breeding Department Slobodana Bajića 1 Belgrade‐Zemun Serbia
| | - Vesna Perić
- Plant Breeding Department Slobodana Bajića 1 Belgrade‐Zemun Serbia
| |
Collapse
|
12
|
Damián-Medina K, Salinas-Moreno Y, Milenkovic D, Figueroa-Yáñez L, Marino-Marmolejo E, Higuera-Ciapara I, Vallejo-Cardona A, Lugo-Cervantes E. In silico analysis of antidiabetic potential of phenolic compounds from blue corn ( Zea mays L.) and black bean ( Phaseolus vulgaris L.). Heliyon 2020; 6:e03632. [PMID: 32258479 PMCID: PMC7110303 DOI: 10.1016/j.heliyon.2020.e03632] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/20/2020] [Accepted: 03/17/2020] [Indexed: 12/26/2022] Open
Abstract
The growing interest in bioactive compounds, especially in polyphenols, is due to their abundance in the human diet and potentially positive effects on health. The consumption of polyphenols has been shown to possess anti-diabetic properties by preventing insulin resistance or insulin secretion through different signaling pathways, this effect is associated with their capacity to exert genomic modulations. Several studies have suggested that polyphenols could also bind to cellular proteins and modulate their activity, however, the mechanisms of action underlying their beneficial effects are complex and are not fully understood. The aim of this work was to characterize phenolic compounds present in blue corn and black bean extracts as well as identify their potential interactions with target proteins involved in diabetes pathogenesis using in silico approach. Total polyphenols content of both blue corn and black beans was identified using UPLC-ESI/qTOF/MS and quantified by colorimetric assays. In this work we identified twenty-eight phenolic compounds in the extracts, mainly anthocyanins, flavonols, hydroxycinamic acids, dihydroxybenzoic acids, flavones, isoflavones, and flavanols. Interactome of these compounds with thirteen target proteins involved in type 2 diabetes mellitus was performed in-silico. In total, 312 bioactive compounds/protein interaction analyses were acquired. Molecular docking results highlighted that nine of the top ten interactions correspond to anthocyanins, cyanidin 3-glucoside with 11β-HS, GFAT, PPARG; delphinidin 3-glucoside with 11β-HS, GFAT, PTP and RTKs; and petunidin 3-glucoside with 11β-HS and PTP. These proteins are involved in mechanisms regulating functions such as inflammation, insulin resistance, oxidative stress, glucose and lipid metabolism. In conclusion, this work provides a prediction of the potential molecular mechanism of black bean and blue corn polyphenols, specifically anthocyanins and could constitute new pathways by which compounds exert their antidiabetic benefits.
Collapse
Affiliation(s)
- K. Damián-Medina
- Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Food Technology Unit, 45019 Jalisco, Mexico
| | - Y. Salinas-Moreno
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Tepatitlán 47600, Jalisco, Mexico
| | - D. Milenkovic
- Department of Internal Medicine, UC Davis School of Medicine, University of California, Davis, USA
- Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont–Ferrand, France
| | - L. Figueroa-Yáñez
- Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Food Technology Unit, 45019 Jalisco, Mexico
| | - E. Marino-Marmolejo
- Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Food Technology Unit, 45019 Jalisco, Mexico
| | - I. Higuera-Ciapara
- Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Food Technology Unit, 45019 Jalisco, Mexico
| | - A. Vallejo-Cardona
- Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Food Technology Unit, 45019 Jalisco, Mexico
| | - E. Lugo-Cervantes
- Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Food Technology Unit, 45019 Jalisco, Mexico
| |
Collapse
|
13
|
Damián-Medina K, Salinas-Moreno Y, Milenkovic D, Figueroa-Yáñez L, Marino-Marmolejo E, Higuera-Ciapara I, Vallejo-Cardona A, Lugo-Cervantes E. In silico analysis of antidiabetic potential of phenolic compounds from blue corn (Zea mays L.) and black bean (Phaseolus vulgaris L.). Heliyon 2020; 6:e03632. [DOI: https:/doi.org/10.1016/j.heliyon.2020.e03632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
|
14
|
Zhou Y, Li C, Feng B, Chen B, Jin L, Shen Y. UPLC-ESI-MS/MS based identification and antioxidant, antibacterial, cytotoxic activities of aqueous extracts from storey onion (Allium cepa L. var. proliferum Regel). Food Res Int 2019; 130:108969. [PMID: 32156403 DOI: 10.1016/j.foodres.2019.108969] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/16/2019] [Accepted: 12/28/2019] [Indexed: 11/18/2022]
Abstract
Storey onion (Allium cepa L. var. proliferum Regel) is a variety of onion commonly grown in northern China that has not been researched in detail. This study aimed to identify the chemical compositions of storey onion aqueous extracts by UPLC-ESI-MS/MS, as well as characterize the antioxidant, antibacterial and cytotoxic activities, compared with welsh onion and onion. A total of 42 compounds were identified, among which the contents of organosulfur compounds (962.20 ± 34.55 μg/g), polyphenols (100.40 ± 12.55 μg/g) and organic acids (54.04 ± 2.69 μg/g) in storey onion were higher than those in welsh onion and onion. Additionally, the contents of cycloalliin (551.74 ± 8.12 μg/g), ajoene (159.31 ± 5.30 μg/g) and (E)-1-propene-1-sulfenic acid (72.12 ± 2.98 μg/g) in storey onion were the highest. Storey onion had pronounced DPPH• (IC50 = 1.24 ± 0.52 mg/mL) and OH• scavenging activities (IC50 = 14.45 ± 1.29 mg/mL) as well as ferric ion reducing power (absorbance from 0.32 to 2.21). Onion had the highest ABTS•+ scavenging activity (IC50 = 1.64 ± 0.64 mg/mL), while welsh onion had the lowest antioxidant activity. Storey onion had the strongest inhibitory effect on all the tested strains (MIC 31.3-125 mg/mL), and cell viability assays against human liver (HepG2) cancer cell lines also illustrated that aqueous extracts from storey onion significantly inhibited cell proliferation (when incubated for 24 h, IC50 = 33.21 ± 1.12 mg/mL) and induced cell apoptosis. Welsh onion and onion also had weaker antibacterial and anticancer activites, with those of onion being the weakest. The results showed that storey onion with excellent biological activity may benefit to human health and can be developed into functional foods.
Collapse
Affiliation(s)
- Yanyan Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Bang Feng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Lihua Jin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| |
Collapse
|
15
|
Cardoso SM. Special Issue: The Antioxidant Capacities of Natural Products. Molecules 2019; 24:molecules24030492. [PMID: 30704064 PMCID: PMC6384626 DOI: 10.3390/molecules24030492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Susana M Cardoso
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
16
|
Recent Trends in Potential Therapeutic Applications of the Dietary Flavonoid Didymin. Molecules 2018; 23:molecules23102547. [PMID: 30301216 PMCID: PMC6222367 DOI: 10.3390/molecules23102547] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022] Open
Abstract
Didymin (isosakuranetin 7-O-rutinoside) is an orally bioactive dietary flavonoid glycoside first found in citrus fruits. Traditionally, this flavonoid has long been used in Asian countries as a dietary antioxidant. Recent studies have provided newer insights into this pleiotropic compound, which could regulate multiple biological activities of many important signaling molecules in health and disease. Emerging data also presented the potential therapeutic application of dietary flavonoid glycoside didymin against cancer, neurological diseases, liver diseases, cardiovascular diseases, and other diseases. In this review, we briefly introduce the source and extraction methods of didymin, and summarize its potential therapeutic application in the treatment of various diseases, with an emphasis on molecular targets and mechanism that contributes to the observed therapeutic effects. The dietary flavonoid didymin can be used to affect health and disease with multiple therapeutic targets, and it is anticipated that this review will stimulate the future development of this potential dietary medicine.
Collapse
|