1
|
Zhang Z, Shi W, Gu J, Song S, Xiao M, Yao J, Liu Y, Jiang J, Miao M. Short day promotes gall swelling by a CONSTANS-FLOWERING LOCUS T pathway in Zizania latifolia. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1014-1031. [PMID: 39292875 DOI: 10.1111/tpj.17033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
"Jiaobai" is a symbiont of Zizania latifolia and Ustilago esculenta, producing fleshy galls as a popular vegetable in South and East Asia. Current "Jiaobai" cultivars exhibit abundant variation in their gall formation date; however, the underlying mechanism is not clear. In this study, a strict short-day (SD) "Jiaobai" line "YD-3" was used. Plants were treated with two day-length regimes [14 h/10 h (day/night) (control) and 8 h/16 h (day/night) (SD)] from 100 to 130 days after planting. The gall swelling rate of the two treatments and another early SD treatment (from 60 to 90 days after planting), together with the contingent flowering plants in the experiment population, revealed that SD can improve both gall enlargement and flowering of "Jiaobai" plants. Comparison of RNA sequencing data among control, SD swelling, and SD flowering treatments of leaves and meristems indicated that SD promotion of "Jiaobai" swelling is conducted by the CONSTANS (CO)-FLOWERING LOCUS T (FT) pathway, similar but not identical to the SD-induced flowering pathway in Z latifolia and rice. "Virus-induced gene silencing", "Yeast one-hybrid assay" and "Dual-luciferase assay" showed that a FT gene, ZlGsd1, is critical in SD promotion of gall formation and is positively regulated by a CO gene, ZlCOL1. Our study elucidated how photoperiod affects the formation of a unique organ produced by plant-fungus symbiosis. The difference in SD response between "Jiaobai" and rice, as well as their potential applications in breeding of "Jiaobai" and rice, were also discussed.
Collapse
Affiliation(s)
- Zhiping Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Wangjie Shi
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Jiawen Gu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Sixiao Song
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Meng Xiao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Junchi Yao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Yancheng Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Jiezeng Jiang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Minmin Miao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| |
Collapse
|
2
|
Han Y, Chen H, Lai M, Lin Z, Huang Y, Tang W, Zhu Y, Zhang Y, Wang Z, Ni H, Chen X, Chen S. Nutritional and Phytochemical Composition and Antioxidant Activity of Edible Stems of Smooth Cordgrass ( Spartina alterniflora). Foods 2024; 13:3150. [PMID: 39410185 PMCID: PMC11475077 DOI: 10.3390/foods13193150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Smooth cordgrass (Spartina alterniflora) is a native salt marsh plant along the Atlantic coast but has become an invasive species in coastal regions in China, as well as other areas. Utilizing it for resources has become a control measure in reducing the spread of S. alterniflora. This study assesses the nutritional and phytochemical properties of the edible stems of S. alterniflora collected from three locations in Fujian province, China. The tender stems of S. alterniflora exhibit a rich nutritional profile, with high levels of protein, carbohydrates, and fats, and significant amounts of essential vitamins, minerals, and antioxidants, indicating their potential as a nutritious addition to the diet or forage. In addition, the levels of potential contaminants, including nitrate, nitrite, cadmium, lead, and chromium, are below the established safe thresholds for consumption. Our results provide valuable information for the sustainable utilization of S. alterniflora resources and will contribute to the integrated control of S. alterniflora.
Collapse
Affiliation(s)
- Yijuan Han
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian Provincial Universities Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Huiquan Chen
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian Provincial Universities Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meiling Lai
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian Provincial Universities Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongyuan Lin
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian Provincial Universities Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Yongji Huang
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian Provincial Universities Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Weiqi Tang
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian Provincial Universities Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Yanbing Zhu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yange Zhang
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian Provincial Universities Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Zonghua Wang
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian Provincial Universities Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiaofeng Chen
- Fujian Provincial Universities Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Songbiao Chen
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
3
|
Zhao Y, Gu M, Jiang P, Fang S, Yan N, Kong F, Ma D, Ren D, Pang X, Qiu J. Characterisation of aroma compounds, sensory characteristics, and bioactive components of a new type of huangjiu fermented with Chinese wild rice (Zizania latifolia). Food Chem 2024; 452:139524. [PMID: 38703742 DOI: 10.1016/j.foodchem.2024.139524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Chinese wild rice (CWR) is a nutritious and healthy whole grain, worth developing. To develop and use its value, a new type of huangjiu was brewed with CWR, and the flavour characteristics, sensory quality, functional and bioactive components were evaluated. CWR (67 flavour substances) and glutinous rice (GR)-CWR huangjiu (62 flavour substances) had a better flavour than GR huangjiu (54 flavour substances), and the overall style of GR-CWR huangjiu was more skewed towards GR. The fruity, honey, caramel-like, herb and smoky aroma attributes of CWR huangjiu were higher than those of GR huangjiu (P < 0.05), while only the alcoholic was weaker (P < 0.05) due to the lower alcohol content. The huangjiu brewed using CWR had a better taste than that brewed using only GR. Furthermore, CWR huangjiu had the highest content of total dietary fiber (732.0 ± 15.2 mg/100 g), followed by GR-CWR (307.0 ± 8.5 mg/100 g), and GR (127.0 ± 2.3 mg/100 g). CWR huangjiu also had the highest total phenolic compounds (3.32 ± 0.05 mg/100 g/%vol) and total saponins (2.46 ± 0.03 mg/100 g/%vol) contents, followed by GR-CWR and GR. This study provides guidance for exploring further possibilities for CWR in the future.
Collapse
Affiliation(s)
- Yuzong Zhao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China
| | - Mingyue Gu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China
| | - Peng Jiang
- Qingdao Agricultural Product Quality and Safety Center, Qingdao 266199, China
| | - Song Fang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China
| | - Ning Yan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China
| | - Fanyu Kong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China
| | - Donglin Ma
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Xueli Pang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China.
| | - Jun Qiu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266001, China.
| |
Collapse
|
4
|
Ashraf H, Ghouri F, Zhong M, Cheema SA, Haider FU, Sun L, Ali S, Alshehri MA, Fu X, Shahid MQ. Oryza glumaepatula and calcium oxide nanoparticles enhanced Cr stress tolerance by maintaining antioxidant defense, chlorophyll and gene expression levels in rice. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122239. [PMID: 39182380 DOI: 10.1016/j.jenvman.2024.122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Chromium (Cr), a potent heavy metal, threatens rice cultivation due to its escalating presence in soil from human activities. Wild rice contains useful genes for phytoremediation; however, it is difficult to use directly for metal mitigation. Here, a single segment substitution line (SSSL), SG001, was developed by crossing O. glumaepatula and Huajingxian74 (HJX) to evaluate the survival ability of plants against Cr. Further, we explored the potential effect of calcium oxide nanoparticles (CaO-NPs) (50 μM) to minimize the toxic effect of Cr (100 μM) in rice cultivars, SG001 and HJX. The findings of this study indicated that Cr toxicity led to increased oxidative stress. This was shown by higher levels of hydrogen peroxide (H2O2), which was increased by 104% in SG001 and 177% in HJX, and malondialdehyde (MDA) increased by 79% in SG001 and 135% in HJX. Furthermore, it also depicted that Cr toxicity considerably declined shoot and root length, shoot and root fresh weight by 30%, 27%, 25%, and 20% in SG001 and 44%, 51%, 42%, and 45% in HJX, respectively. This mitigation was evidenced by decreased Cr contents, increased calcium (Ca) levels in SG001, and the maintenance of chlorophyll, antioxidant defense, and gene expression levels. Moreover, there was a notable reduction in MDA and H2O2, while the defense mechanisms of key antioxidants, including ascorbate peroxidase, superoxide dismutase, glutathione, catalase, and peroxidase were upregulated, along with an increase in soluble protein contents in both rice cultivars after applying CaO-NPs. CaO-NPs effectively restored cellular and subcellular structural integrity and growth in both lines, which had been seriously disrupted by Cr toxicity. Overall, our findings suggest that SG001, in combination with CaO-NPs, could serve as an effective strategy to mitigate Cr toxicity in plants.
Collapse
Affiliation(s)
- Humera Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Minghui Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Xuelin Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Wu W, Han Y, Niu B, Yang B, Liu R, Fang X, Chen H, Xiao S, Farag MA, Zheng S, Xiao J, Chen H, Gao H. Recent advances in Zizania latifolia: A comprehensive review on phytochemical, health benefits and applications that maximize its value. Crit Rev Food Sci Nutr 2024; 64:7535-7549. [PMID: 36908217 DOI: 10.1080/10408398.2023.2186125] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Zizania latifolia is an aquatic and medicinal plant with a long history of development in China and the East Asian region. The smut fungus "Ustilago esculenta" parasitizes Z. latifolia and induces culm expansion to form a vegetable named Jiaobai, which has a unique taste and nutritional attributes. However, the postharvest quality of water bamboo shoots is still a big challenge for farmers and merchants. This paper traced the origin, development process, and morphological characteristics of Z. latifolia. Subsequently, the compilation of the primary nutrients and bioactive substances are presented in context to their effects on ecology a postharvest storage and preservation methods. Furthermore, the industrial, environmental, and material science applications of Z. latifolia in the fields of industry were discussed. Finally, the primary objective of the review proposes future directions for research to support the development of Z. latifolia industry and aid in maximizing its value. To sum up, Z. latifolia, aside from its potential as material it can be utilized to make different productions and improve the existing applications. This paper provides an emerging strategy for researchers undertaking Z. latifolia.
Collapse
Affiliation(s)
- Weijie Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanchao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ben Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Baiqi Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ruiling Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiangjun Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huizhi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shangyue Xiao
- Department of Analytical Chemistry and Food Science, University of Vigo, Vigo, Spain
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Shiqi Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, University of Vigo, Vigo, Spain
| | - Hangjun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haiyan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of postharvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key laboratory of fruits and vegetables postharvest and processing technology research of Zhejiang province, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
6
|
Hu G, Li X, Lai A, Liu Y, Zhang Y, Wang J, Sun S, Zhu J, Yang M. Comparative Analysis of the Nutritional Quality of Zizania latifolia Cultivars Harvested in Different Growing Seasons. Foods 2023; 13:30. [PMID: 38201058 PMCID: PMC10778467 DOI: 10.3390/foods13010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Zizania latifolia (Z. latifolia) is a popular aquatic vegetable with various nutrients in south China, but little is known about its cultivars and growing seasons in terms of the nutritional components. This work aims to characterize the nutrients of five Z. latifolia cultivars in different growing seasons. The results showed that Z. latifolia samples differed in terms of chemical parameters, which were significantly affected by variety, growing season, and their interaction. Zhejiao No. 8, harvested in the autumn, stood out with the highest levels of vitamin C. Tangxiajiao and Zhejiao No. 1 contained the highest values of total soluble solids, reducing sugar, soluble proteins, and amino acids. Significant differences were observed between the autumn Z. latifolia and spring samples; the former were of higher quality than the latter based on hierarchical clustering analysis and principal component analysis. Moreover, total amino acids (TAA) and glutamic acid (GLU) were selected as the key indicators for Z. latifolia comprehensive quality by multiple linear regression analysis. This study provides essential information on Z. latifolia quality characteristics corresponding to cultivars and growing seasons, which lays the foundation for promoting the quality improvement of Z. latifolia scientifically.
Collapse
Affiliation(s)
- Guixian Hu
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (G.H.); (A.L.); (Y.L.); (Y.Z.); (J.W.); (S.S.); (J.Z.)
| | - Xue Li
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (G.H.); (A.L.); (Y.L.); (Y.Z.); (J.W.); (S.S.); (J.Z.)
- Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
- Food Safety Key Laboratory of Zhejiang Province, Hangzhou 310021, China
| | - Aiping Lai
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (G.H.); (A.L.); (Y.L.); (Y.Z.); (J.W.); (S.S.); (J.Z.)
| | - Yan Liu
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (G.H.); (A.L.); (Y.L.); (Y.Z.); (J.W.); (S.S.); (J.Z.)
| | - Yu Zhang
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (G.H.); (A.L.); (Y.L.); (Y.Z.); (J.W.); (S.S.); (J.Z.)
- Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
- Food Safety Key Laboratory of Zhejiang Province, Hangzhou 310021, China
| | - Junhong Wang
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (G.H.); (A.L.); (Y.L.); (Y.Z.); (J.W.); (S.S.); (J.Z.)
| | - Suling Sun
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (G.H.); (A.L.); (Y.L.); (Y.Z.); (J.W.); (S.S.); (J.Z.)
| | - Jiahong Zhu
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (G.H.); (A.L.); (Y.L.); (Y.Z.); (J.W.); (S.S.); (J.Z.)
| | - Mengfei Yang
- Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua 321000, China;
| |
Collapse
|
7
|
Chang BY, Bae JH, Lim CY, Kim YH, Kim TY, Kim SY. Tricin-enriched Zizania latifolia ameliorates non-alcoholic fatty liver disease through AMPK-dependent pathways. Food Sci Biotechnol 2023; 32:2117-2129. [PMID: 37860736 PMCID: PMC10581963 DOI: 10.1007/s10068-023-01311-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/18/2023] [Accepted: 04/12/2023] [Indexed: 10/21/2023] Open
Abstract
This study aimed to identify and elucidate the mechanism underlying the protective effect of tricin-enriched Zizania latifolia (Z. latifolia) extract (ETZL) against free fatty acid (FFA)-induced lipid accumulation in vitro and non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet and fructose diet (HFD/F) in vivo. ETZL treatment significantly lowered body weight gain and decreased adipose tissue, lipid, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) levels in HFD/F-fed mice. ETZL acted on phosphorylated acetyl-CoA carboxylase (ACC) and anti-peroxisome proliferator-activated receptor α (PPARα) by activating the adenosine monophosphate-activated protein kinase (AMPK) pathway and inhibiting sterol regulatory element-binding proteins-1 (SREBP)/fatty acid synthase (FAS) signaling to inhibit de novo adipogenesis and increase fatty acid oxidation. In addition, treatment with ETZL increased nuclear factor erythroid-2-related factor 2 (Nrf2) levels to activate the antioxidant pathway. FFA-induced oxidative stress and fatty acid accumulation in HepG2 cells confirmed the improvement in fat accumulation through the AMPK and Nrf2 pathway activities of ETZL. These results suggest that ETZL ameliorates NAFLD by regulating lipid metabolism and defending against oxidative stress via AMPK-dependent pathways.
Collapse
Affiliation(s)
- Bo Yoon Chang
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538 Jeonbuk Korea
| | - Jin Hye Bae
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538 Jeonbuk Korea
| | - Cho Young Lim
- Technology Development Center, BTC Corporation, Ansan, 15588 Korea
| | - Yoon Hee Kim
- Technology Development Center, BTC Corporation, Ansan, 15588 Korea
| | - Tae Young Kim
- Technology Development Center, BTC Corporation, Ansan, 15588 Korea
| | - Sung Yeon Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, 54538 Jeonbuk Korea
| |
Collapse
|
8
|
Li Y, Hu C, Song R, Yin Z, Wang L, Shi L, Li W, Zheng Z, Yang M. The Difference in Diversity between Endophytic Microorganisms in White and Grey Zizania latifolia. J Fungi (Basel) 2023; 9:1067. [PMID: 37998872 PMCID: PMC10672487 DOI: 10.3390/jof9111067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
The Zizania latifolia is usually infected by the obligate parasitic fungus Ustilago esculenta to form an edible fleshy stem which is an aquatic vegetable called Jiaobai in China. The infection by the teliospore (T) strain of U. esculenta induces Z. latifolia forming gray fleshy stems, while the mycelia-teliospore (MT) strain of U. esculenta induces white fleshy stems which are more suitable for edibility than gray fleshy stems. The mechanism of this phenomenon is still largely unknown. One of the possible causes is the diversity of endophytic microbial communities between these two fleshy stems. Therefore, we utilized fungal ITS1 and bacterial 16S rDNA amplicon sequencing to investigate the diversity of endophytic microbial communities in the two different fleshy stems of Z. latifolia. The results revealed that the α diversity and richness of endophytic fungi in white Z. latifolia were significantly greater than in gray Z. latifolia. The dominant fungal genus in both fleshy stems was U. esculenta, which accounted for over 90% of the endophytic fungi. The community composition of endophytic fungi in gray and white Z. latifolia was different except for U. esculenta, and a negative correlation was observed between U. esculenta and other endophytic fungi. In addition, the dominant bacterial genus in gray Z. latifolia was Alcaligenaceae which is also negatively correlated with other bacterium communities. Additionally, the co-occurrence network of white Z. latifolia was found to have a stronger scale, connectivity, and complexity compared to that of gray Z. latifolia. And the detected beneficial bacteria and pathogens in the stems of Z. latifolia potentially compete for resources. Furthermore, the function of endophytic bacteria is more abundant than endophytic fungi in Z. latifolia. This research investigated the correlation between the development of Z. latifolia fleshy stems and endophytic microbial communities. Our findings indicate that the composition of endophytic microbial communities is closely related to the type of Z. latifolia fleshy stems. This research also suggests the potential utilization of specific microbial communities to enhance the growth and development of Z. latifolia, thereby contributing to the breeding of Z. latifolia.
Collapse
Affiliation(s)
- Yipeng Li
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua 321000, China; (Y.L.); (R.S.); (L.W.); (L.S.)
| | - Cailin Hu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (C.H.); (Z.Y.); (W.L.)
| | - Ruiqi Song
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua 321000, China; (Y.L.); (R.S.); (L.W.); (L.S.)
| | - Zhihui Yin
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (C.H.); (Z.Y.); (W.L.)
| | - Lingyun Wang
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua 321000, China; (Y.L.); (R.S.); (L.W.); (L.S.)
| | - Lin Shi
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua 321000, China; (Y.L.); (R.S.); (L.W.); (L.S.)
| | - Wei Li
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (C.H.); (Z.Y.); (W.L.)
| | - Zhaisheng Zheng
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua 321000, China; (Y.L.); (R.S.); (L.W.); (L.S.)
| | - Mengfei Yang
- Zhejiang Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences, Jinhua 321000, China; (Y.L.); (R.S.); (L.W.); (L.S.)
| |
Collapse
|
9
|
Yin FW, Sun XL, Zheng WL, Yin LF, Luo X, Zhang YY, Wang YF, Fu YQ. Development of a Strategy for L-Lactic Acid Production by Rhizopus oryzae Using Zizania latifolia Waste and Cane Molasses as Carbon Sources. Molecules 2023; 28:6234. [PMID: 37687063 PMCID: PMC10488812 DOI: 10.3390/molecules28176234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
As a biodegradable and renewable material, polylactic acid is considered a major environmentally friendly alternative to petrochemical plastics. Microbial fermentation is the traditional method for lactic acid production, but it is still too expensive to compete with the petrochemical industry. Agro-industrial wastes are generated from the food and agricultural industries and agricultural practices. The utilization of agro-industrial wastes is an important way to reduce costs, save energy and achieve sustainable development. The present study aimed to develop a method for the valorization of Zizania latifolia waste and cane molasses as carbon sources for L-lactic acid fermentation using Rhizopus oryzae LA-UN-1. The results showed that xylose derived from the acid hydrolysis of Z. latifolia waste was beneficial for cell growth, while glucose from the acid hydrolysis of Z. latifolia waste and mixed sugars (glucose and fructose) from the acid hydrolysis of cane molasses were suitable for the accumulation of lactic acid. Thus, a three-stage carbon source utilization strategy was developed, which markedly improved lactic acid production and productivity, respectively reaching 129.47 g/L and 1.51 g/L·h after 86 h of fermentation. This work demonstrates that inexpensive Z. latifolia waste and cane molasses can be suitable carbon sources for lactic acid production, offering an efficient utilization strategy for agro-industrial wastes.
Collapse
Affiliation(s)
- Feng-Wei Yin
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, China
| | - Xiao-Long Sun
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, China
| | - Wei-Long Zheng
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, China
| | - Long-Fei Yin
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, China
| | - Xi Luo
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, China
| | - Ying-Ying Zhang
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, China
| | - Yan-Fei Wang
- Taizhou Institute of Product Quality and Safety Inspection, Taizhou 318000, China
| | - Yong-Qian Fu
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, China
| |
Collapse
|
10
|
Chen L, Ma Y, He T, Chen T, Pan Y, Zhou D, Li X, Lu Y, Wu Q, Wang L. Integrated transcriptome and metabolome analysis unveil the response mechanism in wild rice ( Zizania latifolia griseb.) against sheath rot infection. Front Genet 2023; 14:1163464. [PMID: 37359383 PMCID: PMC10289006 DOI: 10.3389/fgene.2023.1163464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Sheath rot disease (SRD) is one of the most devastating diseases of Manchurian wild rice (MWR) (Zizania latifolia Griseb). Pilot experiments in our laboratory have shown that an MWR cultivar "Zhejiao NO.7"exhibits signs of SRD tolerance. To explore the responses of Zhejiao No. 7 to SRD infection, we used a combined transcriptome and metabolome analysis approach. A total of 136 differentially accumulated metabolites (DAMs, 114 up- and 22 down-accumulated in FA compared to CK) were detected. These up-accumulated metabolites were enriched in tryptophan metabolism, amino acid biosynthesis, flavonoids, and phytohormone signaling. Transcriptome sequencing results showed the differential expression of 11,280 genes (DEGs, 5,933 up-, and 5,347 downregulated in FA compared to CK). The genes expressed in tryptophan metabolism, amino acid biosynthesis, phytohormone biosynthesis and signaling, and reactive oxygen species homeostasis confirmed the metabolite results. In addition, genes related to the cell wall, carbohydrate metabolism, and plant-pathogen interaction (especially hypersensitive response) showed changes in expression in response to SRD infection. These results provide a basis for understanding the response mechanisms in MWR to FA attack that can be used for breeding SRD-tolerant MWR.
Collapse
Affiliation(s)
- Limin Chen
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yamin Ma
- Agricultural and Rural Bureau of Jinyun County, Jinyun, Zhejiang, China
| | - Tianjun He
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
| | - TingTing Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yiming Pan
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
| | - Dayun Zhou
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Quancong Wu
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
| | - Lailiang Wang
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
| |
Collapse
|
11
|
Xie YN, Qi QQ, Li WH, Li YL, Zhang Y, Wang HM, Zhang YF, Ye ZH, Guo DP, Qian Q, Zhang ZF, Yan N. Domestication, breeding, omics research, and important genes of Zizania latifolia and Zizania palustris. FRONTIERS IN PLANT SCIENCE 2023; 14:1183739. [PMID: 37324716 PMCID: PMC10266587 DOI: 10.3389/fpls.2023.1183739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Wild rice (Zizania spp.), an aquatic grass belonging to the subfamily Gramineae, has a high economic value. Zizania provides food (such as grains and vegetables), a habitat for wild animals, and paper-making pulps, possesses certain medicinal values, and helps control water eutrophication. Zizania is an ideal resource for expanding and enriching a rice breeding gene bank to naturally preserve valuable characteristics lost during domestication. With the Z. latifolia and Z. palustris genomes completely sequenced, fundamental achievements have been made toward understanding the origin and domestication, as well as the genetic basis of important agronomic traits of this genus, substantially accelerating the domestication of this wild plant. The present review summarizes the research results on the edible history, economic value, domestication, breeding, omics research, and important genes of Z. latifolia and Z. palustris over the past decades. These findings broaden the collective understanding of Zizania domestication and breeding, furthering human domestication, improvement, and long-term sustainability of wild plant cultivation.
Collapse
Affiliation(s)
- Yan-Ning Xie
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qian-Qian Qi
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Wan-Hong Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ya-Li Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Hui-Mei Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ya-Fen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zi-Hong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - De-Ping Guo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhong-Feng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
12
|
Zheng Q, Yin X, Yang A, Yu N, Xing R, Chen Y, Deng R, Cao J. Precise Authenticity of Quinoa, Coix Seed, Wild Rice and Chickpea Components Using Optimized TaqMan Real-Time PCR. Foods 2023; 12:foods12040852. [PMID: 36832928 PMCID: PMC9957468 DOI: 10.3390/foods12040852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
Functional food such as, quinoa, coix seed, wild rice and chickpea have experienced rapidly increasing demand globally and exhibit high economic values. Nevertheless, a method for rapid yet accurate detection of these source components is absent, making it difficult to identify commercially available food with labels indicating the presence of relevant components. In this study, we constructed a real-time quantitative polymerase chain reaction (qPCR) method for rapid detection of quinoa, coix seed, wild rice and chickpea in food to identify the authenticity of such food. Specific primers and probes were designed with 2S albumin genes of quinoa, SAD genes of coix seed, ITS genes of wild rice and CIA-2 genes of chickpea as the target genes. The qPCR method could specifically identify the four wild rice strains, yielding, LODs of 0.96, 1.14, 1.04 and 0.97 pg/µL quinoa, coix seed, wild rice and chickpea source components, respectively. Particularly, the method allowed the identification of the target component with content below 0.01%. A total of 24 commercially available food samples of different types were detected by using the method and the results indicate that the developed method is applicable to the detection of different food matrices, as well as authenticity verification in deeply processed food.
Collapse
Affiliation(s)
- Qiuyue Zheng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Xinying Yin
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Aifu Yang
- Technology Center of Dalian Customs District, Dalian 116001, China
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing 322001, China
| | - Ranran Xing
- Chinese Academy of Inspection and Quarantine, Beijing 322001, China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing 322001, China
- Correspondence: (Y.C.); (J.C.)
| | - Ruijie Deng
- Healthy Food Evaluation Research Center, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Correspondence: (Y.C.); (J.C.)
| |
Collapse
|
13
|
Characterization of Zizania latifolia polysaccharide-corn starch composite films and their application in the postharvest preservation of strawberries. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Zhang Y, Liu X, Wang Z, Sha Y, Zhang S, Xu H, Bai Y, Liu J, Yan Z. Microwave-assisted enzymatic extraction brings a notably high yield of polysaccharides from mountain Zizania latifolia. J Food Sci 2023; 88:94-108. [PMID: 36465017 DOI: 10.1111/1750-3841.16406] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/18/2022] [Accepted: 11/11/2022] [Indexed: 12/09/2022]
Abstract
Mountain Zizania latifolia is produced at scale in China, and the edible swollen culm is exported to many countries, but little attention has been paid to its functional components. In this work, microwave-assisted enzymatic extraction (MAEE) is used for the first time to extract polysaccharides from mountain Z. latifolia swollen culm (PMZL). MAEE conditions optimized by Box-Behnken design-response surface methodology were as follows: 2.4% cellulase, microwaving for 6.0 min at 607 W, with a liquid-to-solid ratio of 63:1 ml g-1 . Under these conditions, a notably high yield of 60.43% ± 1.12% for PMZL was achieved, which was significantly higher (p < 0.01) than from plain-grown varieties. PMZL are naturally occurring sulfated polysaccharide-protein complexes containing 8.46% ± 0.18% proteins and 7.86% ± 0.73% sulfates. PMZL comprises mannose, glucosamine, rhamnose, glucose, galactose, and arabinose at molar ratios of 3.80:2.68:1.00:17.41:5.12:2.91, with a weight-average molecular weight of 1569,219 Da and a number-average molecular weight of 364,088 Da. The surface morphology of PMZL is composed of tightly packed oval particles, and this kind of promising polysaccharides preferentially scavenges reactive nitrogen species. PRACTICAL APPLICATION: Due to global warming, the land available for planting vegetables is likely to expand to higher areas, so greater attention should now be paid to mountain-grown vegetables. This study provides an efficient way to obtain novel polysaccharides from mountain Zizania latifolia using microwave-assisted enzymatic extraction with a remarkably high yield of 60.4%. This promising source of natural carbohydrates has potential uses in pharmaceutical, nutraceutical, functional foods, cosmetics, and functional materials industries.
Collapse
Affiliation(s)
- Yang Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, China
| | - Xinyue Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, China
| | - Ziteng Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, China
| | - Yueshi Sha
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, China
| | - Shushu Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, China
| | - Hai Xu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, China
| | - Yun Bai
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, China
| | - Jiangyun Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zhaowei Yan
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
15
|
Transcriptome Comparison between Two Strains of Ustilago esculenta during the Mating. J Fungi (Basel) 2022; 9:jof9010032. [PMID: 36675853 PMCID: PMC9862937 DOI: 10.3390/jof9010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Ustilago esculenta is a smut fungus that obligately infects Zizania latifolia and stimulates tissue swelling to form galls. Unlike T-type, MT-type U. esculenta can only proliferate within plant tissues and infect the offspring of their host. Production of telispores, haploid life, and plant cuticle penetration are not essential for it, which may lead to the degeneration in these processes. Transcriptome changes during the mating of T- and MT-type U. esculenta were studied. The functions of several secreted proteins were further confirmed by knock-out mutants. Our results showed that MT-type U. esculenta can receive environmental signals in mating and circumstance sensing as T-type does. However, MT-type U. esculenta takes a longer time for conjunction tube formation and cytoplasmic fusion. A large number of genes encoding secreted proteins are enriched in the purple co-expression module. They are significantly up-regulated in the late stage of mating in T-type U. esculenta, indicating their relationship with infecting. The knock-out of g6161 (xylanase) resulted in an attenuated symptom. The knock-out of g943 or g4344 (function unidentified) completely blocked the infection at an early stage. This study provides a comprehensive comparison between T- and MT-type during mating and identifies two candidate effectors for further study.
Collapse
|
16
|
Xie YN, Yang T, Zhang BT, Qi QQ, Ding AM, Shang LG, Zhang Y, Qian Q, Zhang ZF, Yan N. Systematic Analysis of BELL Family Genes in Zizania latifolia and Functional Identification of ZlqSH1a/b in Rice Seed Shattering. Int J Mol Sci 2022; 23:15939. [PMID: 36555582 PMCID: PMC9781759 DOI: 10.3390/ijms232415939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The loss of seed shattering is an important event in crop domestication, and elucidating the genetic mechanisms underlying seed shattering can help reduce yield loss during crop production. This study is the first to systematically identify and analyse the BELL family of transcription factor-encoding genes in Chinese wild rice (Zizania latifolia). ZlqSH1a (Zla04G033720) and ZlqSH1b (Zla02G027130) were identified as key candidate genes involved in seed shattering in Z. latifolia. These genes were involved in regulating the development of the abscission layer (AL) and were located in the nucleus of the cell. Over-expression of ZlqSH1a and ZlqSH1b resulted in a complete AL between the grain and pedicel and significantly enhanced seed shattering after grain maturation in rice. Transcriptome sequencing revealed that 172 genes were differentially expressed between the wild type (WT) and the two transgenic (ZlqSH1a and ZlqSH1b over-expressing) plants. Three of the differentially expressed genes related to seed shattering were validated using qRT-PCR analysis. These results indicate that ZlqSH1a and ZlqSH1b are involved in AL development in rice grains, thereby regulating seed shattering. Our results could facilitate the genetic improvement of seed-shattering behaviour in Z. latifolia and other cereal crops.
Collapse
Affiliation(s)
- Yan-Ning Xie
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ting Yang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Bin-Tao Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Qian-Qian Qi
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - An-Ming Ding
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Lian-Guang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Zhong-Feng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
17
|
Yu X, Qi Q, Li Y, Li N, Xie Y, Ding A, Shi J, Du Y, Liu X, Zhang Z, Yan N. Metabolomics and proteomics reveal the molecular basis of colour formation in the pericarp of Chinese wild rice (Zizania latifolia). Food Res Int 2022; 162:112082. [PMID: 36461331 DOI: 10.1016/j.foodres.2022.112082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 11/27/2022]
Abstract
Chinese wild rice (Zizania latifolia) is rich in flavonoids and the characteristic colour of its pericarp is attributed to the flavonoids. In this study, the molecular basis of the colour change in the pericarp of Chinese wild rice was studied using metabolomics and proteomics. Whole seeds in three developmental stages (10, 20, and 30 days after flowering) were characterised based on phenolic contents, free amino acids (FAAs), and the expression level and activities of enzymes critical in flavonoid biosynthesis. The total phenolic and proanthocyanidin contents of Chinese wild rice increased gradually, whereas total flavonoid and FAA contents decreased during seed development. Metabolomic analysis revealed gradual upward trends for 57 flavonoids (sub classes 1, 3, and 10) related to colour change in the pericarp. Proteomic analysis showed that the phenylpropanoid biosynthesis metabolic pathway was enriched with differentially expressed proteins and was associated with flavonoid biosynthesis. Proteomic data suggested that leucoanthocyanidin reductase and WD40 repeat protein may be involved in flavonoid biosynthesis in Chinese wild rice, which was also verified by real-time quantitative PCR. Our results provide new insights into the understanding of the colour formation in the pericarp of Chinese wild rice.
Collapse
Affiliation(s)
- Xiuting Yu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qianqian Qi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yali Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Nana Li
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji'nan 250100, China.
| | - Yanning Xie
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Anming Ding
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - John Shi
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada.
| | - Yongmei Du
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Xinmin Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Zhongfeng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Ning Yan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
18
|
Li F, Zhang J, Zhong H, Chen J. Germicide Fenaminosulf Promots Gall Formation of Zizania latifolia without directly affecting the growth of endophytic fungus Ustilago esculenta. BMC PLANT BIOLOGY 2022; 22:418. [PMID: 36042398 PMCID: PMC9426258 DOI: 10.1186/s12870-022-03803-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Zizania latifolia is a popular aquatic vegetable in China because of its enlarged edible stems resulting from persistent infection by a fungal endophyte, Ustilago esculenta. Fenaminosulf (FM) is a germicide that can be used to improve agricultural crop yields. In Z. latifolia fields, appropriate spraying of FM not just controls diseases, but also promotes an earlier harvest of Z. latifolia. In this study, we show that the timing of gall formation was advanced and the plant's yield was increased significantly under a high concentration treatment of FM. Yet FM had a strong inhibitory effect on the growth of U. esculenta in vitro, while the transcript levels of mating-type alleles, cell metabolism-related genes and chitin synthase genes were all substantially downregulated. Through a transcriptome analysis, we investigated changes in gene expression of the host Z. latifolia and fungal endophyte U. esculenta in response to FM. FM directly affected the growth of Z. latifolia by altering the expression level of genes involved in plant-pathogen interactions, plant hormone signal transduction and some metabolism pathways. By contrast, FM had little effect on U. esculenta growing inside of Z. latifolia. Collectively, our results provide a more in-depth understanding of the molecular processes that promote gall formation in Z. latifolia, while also identifying potential targets for genetic manipulation to improve the yield and quality of Z. latifolia, in a safer and more effective way.
Collapse
Affiliation(s)
- Fang Li
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Juefeng Zhang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Haiying Zhong
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jianming Chen
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
19
|
Park SH, Lim CY, Moon JM, Gwag JE, Lee JY, Yang SA. Toxicological assessment of enzyme-treated Zizania latifolia extract: Oral toxicology and genotoxicity in rats. Regul Toxicol Pharmacol 2022; 133:105220. [PMID: 35792245 DOI: 10.1016/j.yrtph.2022.105220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/12/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
Abstract
Zizania latifolia Turcz. has long been used as a food source in Southeast Asia. The grains, stems, and leaves of Z. latifolia and its major component, tricin, have also been studied to determine their biological activities. Previously, we hydrolyzed the aerial part of Z. latifolia using an enzyme mixture to maximize the tricin content of the Z. latifolia extract. However, the safety of enzyme-treated Z. latifolia extract (ETZL; DermaNiA™) has not yet been determined. In this study, we performed an in vivo 90-day repeated-dose evaluation and genotoxicity study to assess the toxicological potential of ETZL. EZTL did not exhibit genotoxicity in the bacterial reverse mutation test, in vitro chromosomal aberration assay, or in vivo micronucleus test. Moreover, no changes in body weight or hematological and serum biological parameters were observed in male or female rats under high-dose EZTL treatment (5000 mg/kg body weight (bw)/day) for 90 days with a 4-week recovery period. Significant changes were noted in the forestomach, kidneys, and adrenal glands in the test groups, but these changes, or tendency for recovery, were not observed in the recovery group. Based on these data, the no adverse effect level was determined to be 1250 mg/kg bw/day in rats.
Collapse
Affiliation(s)
- Se-Ho Park
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, 39177, South Korea; Institute of Natural Science, Keimyung University, Daegu, 42601, South Korea
| | - Cho Young Lim
- R&D Center, BTC Corporation, Sangnok-gu, Ansan, 15588, South Korea
| | - Joo Myung Moon
- R&D Center, BTC Corporation, Sangnok-gu, Ansan, 15588, South Korea
| | - Jung Eun Gwag
- R&D Center, BTC Corporation, Sangnok-gu, Ansan, 15588, South Korea
| | - Jae-Yeul Lee
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, 39177, South Korea; Institute of Natural Science, Keimyung University, Daegu, 42601, South Korea
| | - Seun-Ah Yang
- Department of Food Science and Technology, Keimyung University, Daegu, 42601, South Korea.
| |
Collapse
|
20
|
Qi Q, Chu M, Yu X, Xie Y, Li Y, Du Y, Liu X, Zhang Z, Shi J, Yan N. Anthocyanins and Proanthocyanidins: Chemical Structures, Food Sources, Bioactivities, and Product Development. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2029479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Qianqian Qi
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meijun Chu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xiuting Yu
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanning Xie
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yali Li
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongmei Du
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xinmin Liu
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhongfeng Zhang
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - John Shi
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Canada
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
21
|
Zizania latifolia Cell Wall Polysaccharide Metabolism and Changes of Related Enzyme Activities during Postharvest Storage. Foods 2022; 11:foods11030392. [PMID: 35159542 PMCID: PMC8834342 DOI: 10.3390/foods11030392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
The metabolism of polysaccharides in the Zizania latifolia cell wall helps maintain the postharvest quality during storage. Fresh Z. latifolia was stored at 4 °C and 25 °C to evaluate the hardness, cell wall polysaccharide composition, cell wall structure, active ingredients, and cell wall metabolism-related enzyme activities. The results showed that hardness declined concomitantly with an increase in water-soluble pectin content during storage, as well as with a decrease in propectin and cellulose contents. Correlation analysis showed that lower activities of cell wall-degrading enzymes, such as polygalacturonase, cellulase, and β-galactosidase in Z. latifolia stored at 4 °C, were associated with lighter fiberization and greater hardness, compared with those stored at 25 °C. Additionally, the results of infrared spectroscopy showed that texture softening may be attributed to a decrease in the degree of esterification of water-soluble polysaccharides at 25 °C compared to that at 4 °C.
Collapse
|
22
|
Yan N, Yang T, Yu XT, Shang LG, Guo DP, Zhang Y, Meng L, Qi QQ, Li YL, Du YM, Liu XM, Yuan XL, Qin P, Qiu J, Qian Q, Zhang ZF. Chromosome-level genome assembly of Zizania latifolia provides insights into its seed shattering and phytocassane biosynthesis. Commun Biol 2022; 5:36. [PMID: 35017643 PMCID: PMC8752815 DOI: 10.1038/s42003-021-02993-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Chinese wild rice (Zizania latifolia; family: Gramineae) is a valuable medicinal homologous grain in East and Southeast Asia. Here, using Nanopore sequencing and Hi-C scaffolding, we generated a 547.38 Mb chromosome-level genome assembly comprising 332 contigs and 164 scaffolds (contig N50 = 4.48 Mb; scaffold N50 = 32.79 Mb). The genome harbors 38,852 genes, with 52.89% of the genome comprising repetitive sequences. Phylogenetic analyses revealed close relation of Z. latifolia to Leersia perrieri and Oryza species, with a divergence time of 19.7-31.0 million years. Collinearity and transcriptome analyses revealed candidate genes related to seed shattering, providing basic information on abscission layer formation and degradation in Z. latifolia. Moreover, two genomic blocks in the Z. latifolia genome showed good synteny with the rice phytocassane biosynthetic gene cluster. The updated genome will support future studies on the genetic improvement of Chinese wild rice and comparative analyses between Z. latifolia and other plants.
Collapse
Affiliation(s)
- Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Ting Yang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiu-Ting Yu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lian-Guang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - De-Ping Guo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Lin Meng
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Qian-Qian Qi
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ya-Li Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yong-Mei Du
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xin-Min Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiao-Long Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China.
| | - Zhong-Feng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
23
|
Alhazmi HA, Najmi A, Javed SA, Sultana S, Al Bratty M, Makeen HA, Meraya AM, Ahsan W, Mohan S, Taha MME, Khalid A. Medicinal Plants and Isolated Molecules Demonstrating Immunomodulation Activity as Potential Alternative Therapies for Viral Diseases Including COVID-19. Front Immunol 2021; 12:637553. [PMID: 34054806 PMCID: PMC8155592 DOI: 10.3389/fimmu.2021.637553] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Plants have been extensively studied since ancient times and numerous important chemical constituents with tremendous therapeutic potential are identified. Attacks of microorganisms including viruses and bacteria can be counteracted with an efficient immune system and therefore, stimulation of body's defense mechanism against infections has been proven to be an effective approach. Polysaccharides, terpenoids, flavonoids, alkaloids, glycosides, and lactones are the important phytochemicals, reported to be primarily responsible for immunomodulation activity of the plants. These phytochemicals may act as lead molecules for the development of safe and effective immunomodulators as potential remedies for the prevention and cure of viral diseases. Natural products are known to primarily modulate the immune system in nonspecific ways. A number of plant-based principles have been identified and isolated with potential immunomodulation activity which justify their use in traditional folklore medicine and can form the basis of further specified research. The aim of the current review is to describe and highlight the immunomodulation potential of certain plants along with their bioactive chemical constituents. Relevant literatures of recent years were searched from commonly employed scientific databases on the basis of their ethnopharmacological use. Most of the plants displaying considerable immunomodulation activity are summarized along with their possible mechanisms. These discussions shall hopefully elicit the attention of researchers and encourage further studies on these plant-based immunomodulation products as potential therapy for the management of infectious diseases, including viral ones such as COVID-19.
Collapse
Affiliation(s)
- Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Sadique A. Javed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Shahnaz Sultana
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A. Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M. Meraya
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Manal M. E. Taha
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
24
|
Identification and quantification of tricin present in medicinal herbs, plant foods and by-products using UPLC-QTOF-MS. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01651-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Li J, Lu Z, Yang Y, Hou J, Yuan L, Chen G, Wang C, Jia S, Feng X, Zhu S. Transcriptome Analysis Reveals the Symbiotic Mechanism of Ustilago esculenta-Induced Gall Formation of Zizania latifolia. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:168-185. [PMID: 33400553 DOI: 10.1094/mpmi-05-20-0126-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Zizania latifolia is a perennial aquatic vegetable, whose symbiosis with the fungus Ustilago esculenta (member of Basidiomycota, class Ustilaginaceae) results in the establishment of swollen gall formations. Here, we analyzed symbiotic relations of Z. latifolia and U. esculenta, using a triadimefon (TDF) treatment and transcriptome sequencing (RNA-seq). Specifically, accurately identify the whole growth cycle of Z. latifolia. Microstructure observations showed that the presence of U. esculenta could be clearly observed after gall formation but was absent after the TDF treatment. A total of 17,541 differentially expressed genes (DEGs) were identified, based on the transcriptome. According to gene ontology term and Kyoto Encyclopedia of Genes and Genomes pathway results, plant hormone signal transduction, and cell wall-loosening factors were all significantly enriched due to U. esculenta infecting Z. latifolia; relative expression levels of hormone-related genes were identified, of which downregulation of indole 3-acetic acid (IAA)-related DEGs was most pronounced in JB_D versus JB_B. The ultra-high performance liquid chromatography analysis revealed that IAA, zeatin+trans zeatin riboside, and gibberellin 3 were increased under U. esculenta infection. Based on our results, we proposed a hormone-cell wall loosening model to study the symbiotic mechanism of gall formation after U. esculenta infects Z. latifolia. Our study thus provides a new perspective for studying the physiological and molecular mechanisms of U. esculenta infection of Z. latifolia causing swollen gall formations as well as a theoretical basis for enhancing future yields of cultivated Z. latifolia.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. 2021.
Collapse
Affiliation(s)
- Jie Li
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Zhiyuan Lu
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Yang Yang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Jinfeng Hou
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Lingyun Yuan
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Guohu Chen
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Chenggang Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Shaoke Jia
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Xuming Feng
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Shidong Zhu
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University; Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| |
Collapse
|
26
|
Zhihao T, Yamada S, Hu D, Ito Y, Iwasaki T, Yamaguchi A. Unique growth stage-dependent anti-inflammatory and immunostimulating effects of white bamboo (makomotake) on RAW264 macrophages shown by no production. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tu Zhihao
- Department of Food Science and Human Wellness, Rakuno Gakuen University Midorimachi 582
| | - Sayumi Yamada
- Department of Food Science and Human Wellness, Rakuno Gakuen University Midorimachi 582
| | - Dagula Hu
- Department of Food Science and Human Wellness, Rakuno Gakuen University Midorimachi 582
| | | | - Tomohito Iwasaki
- Department of Food Science and Human Wellness, Rakuno Gakuen University Midorimachi 582
| | - Akihiro Yamaguchi
- Department of Food Science and Human Wellness, Rakuno Gakuen University Midorimachi 582
| |
Collapse
|
27
|
Comparison of the contents of phenolic compounds including flavonoids and antioxidant activity of rice (Oryza sativa) and Chinese wild rice (Zizania latifolia). Food Chem 2020; 344:128600. [PMID: 33221101 DOI: 10.1016/j.foodchem.2020.128600] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022]
Abstract
The contents of phenolic compounds, especially flavonoids, and antioxidant activity of rice (Oryza sativa, Os) and Chinese wild rice (Zizania latifolia, Zl) harvested in China were compared. Zl possessed significantly higher contents of total phenolics, flavonoids, and proanthocyanidins and exhibited higher antioxidant activity than in the Os Xian group, the Os Geng group, and red rice. The flavonoid contents of Os and Zl were compared using a UHPLC-QqQ-MS-based metabolomics approach. A total of 159 flavonoids were identified, among which 78 showed differential expression (72 up-regulated and six down-regulated in the Zl group). The Kyoto Encyclopaedia of Genes and Genomes annotation and classification indicated that the differentially expressed flavonoids were mainly related to anthocyanin biosynthesis. Moreover, candidate genes for flavonoid biosynthesis in Os and Zl were identified in this study. Compared with non-pigmented and red rice, Zl may be more nutritious and is thus considered a better source of natural antioxidants.
Collapse
|
28
|
Yu X, Chu M, Chu C, Du Y, Shi J, Liu X, Liu Y, Zhang H, Zhang Z, Yan N. Wild rice (Zizania spp.): A review of its nutritional constituents, phytochemicals, antioxidant activities, and health-promoting effects. Food Chem 2020; 331:127293. [DOI: 10.1016/j.foodchem.2020.127293] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/01/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023]
|
29
|
Zhang Y, Hu Y, Cao Q, Yin Y, Xia W, Cui H, Yu X, Ye Z. Functional Properties of the MAP Kinase UeKpp2 in Ustilago esculenta. Front Microbiol 2020; 11:1053. [PMID: 32582058 PMCID: PMC7295950 DOI: 10.3389/fmicb.2020.01053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/28/2020] [Indexed: 11/13/2022] Open
Abstract
Ustilago esculenta undergoes an endophytic life cycle in Zizania latifolia. It induces the stem of its host to swell, forming the edible galls called jiaobai in China, which are the second most commonly cultivated aquatic vegetable in China. Z. latifolia raised for jiaobai can only reproduce asexually because the U. esculenta infection completely inhibits flowering. The infection and proliferation in the host plants during the formation of edible gall differ from those of conventional pathogens. Previous studies have shown a close relationship between mitogen-activated protein kinase (MAPK) and fungal pathogenesis. In this study, we explored the functional properties of the MAPK UeKpp2. Cross-species complementation assays were carried out, which indicated a functional complementation between the UeKpp2 of U. esculenta and the Kpp2 of Ustilago maydis. Next, UeKpp2 mutants of the UeT14 and the UeT55 sporidia background were generated; these showed an aberrant morphology of budding cells, and attenuated mating and filamentous growth in vitro, in the context of normal pathogenicity. Interestingly, we identified another protein kinase, UeUkc1, which acted downstream of UeKpp2 and may participate in the regulation of cell shape. We also found a defect of filamentous growth in UeKpp2 mutants that was not related to a defect of the induction of mating-type genes but was directly related to a defect in UeRbf1 induction. Overall, our results indicate an important role for UeKpp2 in U. esculenta that is slightly different from those reported for other smut fungi.
Collapse
Affiliation(s)
- Yafen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yingli Hu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Qianchao Cao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yumei Yin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Wenqiang Xia
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
30
|
Chu C, Du Y, Yu X, Shi J, Yuan X, Liu X, Liu Y, Zhang H, Zhang Z, Yan N. Dynamics of antioxidant activities, metabolites, phenolic acids, flavonoids, and phenolic biosynthetic genes in germinating Chinese wild rice (Zizania latifolia). Food Chem 2020; 318:126483. [PMID: 32126468 DOI: 10.1016/j.foodchem.2020.126483] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/27/2020] [Accepted: 02/23/2020] [Indexed: 02/06/2023]
Abstract
In this study, the antioxidant activity of germinating Chinese wild rice was found to decline initially, after which it increased. The largest difference in antioxidant activity was observed between the 36-h (G36) and the 120-h germination (G120) stage. We further assessed the dynamic changes in metabolites, phenolic acids, flavonoids, and phenolic biosynthetic genes in germinating Chinese wild rice. Ultra-high performance liquid chromatography-triple quadrupole mass spectrometry revealed that 315 metabolites were up-regulated and 28 were down-regulated between G36 and G120. Levels of p-hydroxybenzoic acid, p-hydroxybenzaldehyde, vanillin, p-coumaric acid, ferulic acid, and epigallocatechin increased significantly during germination. Gene expression of four phenylalanine ammonia-lyases, one 4-coumarate-CoA ligase, one cinnamoyl-CoA reductase, two cinnamyl alcohol dehydrogenases, one chalcone synthase, and one chalcone isomerase was significantly higher at G120 than at G36 and promoted phenolics accumulation. This study elucidated the biochemical mechanisms involved in antioxidant activity and phenolic profile changes during Chinese wild rice germination.
Collapse
Affiliation(s)
- Cheng Chu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongmei Du
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiuting Yu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Xiaolong Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xinmin Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yanhua Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Hongbo Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Zhongfeng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
31
|
Optimizing Ultrasound-Assisted Deep Eutectic Solvent Extraction of Bioactive Compounds from Chinese Wild Rice. Molecules 2019; 24:molecules24152718. [PMID: 31357469 PMCID: PMC6696331 DOI: 10.3390/molecules24152718] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/20/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023] Open
Abstract
In this study, deep eutectic solvents (DESs) were used for the ultrasound-assisted extraction (UAE) of valuable bioactive compounds from Chinese wild rice (Zizania spp.). To this end, 7 different choline chloride (CC)-based DESs were tested as green extraction solvents. Choline chloride/1,4-butanediol (DES-2) exhibited the best extraction efficiency in terms of parameters such as the total flavonoid content (TFC), total phenolic content (TPC), and free radical scavenging capacity (DPPH● and ABTS●+). Subsequently, the UAE procedure using 76.6% DES-2 was also optimized: An extraction temperature of 51.2 °C and a solid–liquid ratio of 37.0 mg/mL were considered optimal by a Box–Behnken experiment. The optimized extraction procedure proved efficient for the extraction of 9 phenolic and 3 flavonoid compounds from Chinese wild rice as determined by quantification based on ultra-performance liquid chromatography–triple quadrupole tandem mass spectrometry (UPLC-QqQ-MS). This work, thus, demonstrates the possibility of customizing green solvents that offer greater extraction capacity than that of organic solvents.
Collapse
|
32
|
Extraction of Proanthocyanidins from Chinese Wild Rice ( Zizania latifolia) and Analyses of Structural Composition and Potential Bioactivities of Different Fractions. Molecules 2019; 24:molecules24091681. [PMID: 31052148 PMCID: PMC6539017 DOI: 10.3390/molecules24091681] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 02/07/2023] Open
Abstract
Due to the importance of proanthocyanidin bioactivity and its relationship with chemical structure, ultrasound-assisted extraction and purification schemes were proposed to evaluate the proanthocyanidin content and analyze the structural composition and potential bioactivities of different proanthocyanidin fractions from Chinese wild rice (Zizanialatifolia). Following an optimized extraction procedure, the crude wild rice proanthocyanidins (WRPs) were purified using n-butanol extraction, chromatography on macroporous resins, and further fractionation on Sephadex LH-20 to yield six specific fractions (WRPs-1–WRPs-6) containing proanthocyanidin levels exceeding 524.19 ± 3.56 mg/g extract. Structurally, (+)-catechin, (−)-epicatechin, and (−)-epigallocatechin were present as both terminal and extension units, and (−)-epicatechin was the major extension unit, in each fraction. This is the first preparation of WRP fractions with a different mean degree of polymerization (mDP), ranging from 2.66 ± 0.04 to 10.30 ± 0.46. A comparison of the bioactivities of these fractions revealed that fractions WRPs-1−WRPs-5 had significant DPPH radical scavenging activities, whereas fraction WRPs-6 with a high mDP showed better α-glucosidase and pancreatic lipase inhibitory effects. These findings should help define possible applications of WRPs to functional foods or nutraceuticals.
Collapse
|
33
|
Chu C, Yan N, Du Y, Liu X, Chu M, Shi J, Zhang H, Liu Y, Zhang Z. iTRAQ-based proteomic analysis reveals the accumulation of bioactive compounds in Chinese wild rice (Zizania latifolia) during germination. Food Chem 2019; 289:635-644. [PMID: 30955658 DOI: 10.1016/j.foodchem.2019.03.092] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
Abstract
Polyphenols and γ-aminobutyric acid (GABA) accumulate during seed germination, but the mechanisms involved are poorly understood. The objective of this study was to elucidate the accumulation of these bioactive compounds in Chinese wild rice during germination. The greatest differences in the phenolic content were at 36-h (G36) and 120-h germination (G120) stages. An iTRAQ-based proteomic analysis revealed 7031 proteins, and a comparison of the G120 and G36 stages revealed 956 upregulated and 188 downregulated proteins. The KEGG analysis revealed significant protein enrichment in the "metabolic pathways", "biosynthesis of secondary metabolites" and "phenylpropanoid biosynthesis". Four phenylalanine ammonia-lyases, one 4-coumarate-CoA ligase, one cinnamoyl-CoA reductase, two cinnamyl alcohol dehydrogenases, and four glutamate decarboxylases exhibited higher expression at the G120 than at the G36 stage and promoted phenolics and GABA accumulation. This study revealed bioactive compound accumulation in germinating Chinese wild rice, and the finding may help develop functional foods derived from this cereal.
Collapse
Affiliation(s)
- Cheng Chu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yongmei Du
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xinmin Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Meijun Chu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Hongbo Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yanhua Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Zhongfeng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
34
|
A comparative UHPLC-QqQ-MS-based metabolomics approach for evaluating Chinese and North American wild rice. Food Chem 2019; 275:618-627. [DOI: 10.1016/j.foodchem.2018.09.153] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 11/20/2022]
|
35
|
Chu MJ, Liu XM, Yan N, Wang FZ, Du YM, Zhang ZF. Partial Purification, Identification, and Quantitation of Antioxidants from Wild Rice ( Zizania latifolia). Molecules 2018; 23:molecules23112782. [PMID: 30373196 PMCID: PMC6278310 DOI: 10.3390/molecules23112782] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
To provide further insights into the potential health-promoting antioxidants from wild rice (Zizania latifolia), which is an abundant but underutilized whole grain resource in East Asia, a partial purification based on D101 macroporous resin was carried out for the purification and enrichment of the antioxidants from the bioactive ethanol extracts of wild rice. On that basis, 34 phenolic compounds in the antioxidant fractions were identified by a high-performance liquid chromatography-linear ion trap quadrupole-Orbitrap-mass spectrometry (HPLC-LTQ-Orbitrap-MSn). The results suggested that phenolic acids could be enriched in the 10% ethanol-eluted fraction whereas flavonoids (including procyanidins and flavonoid glycosides) could be enriched in 20⁻30% ethanol-eluted fractions. A quantitative analysis determined by the multiple reaction monitoring mode of the ultra-performance liquid chromatography-triple quadrupole-tandem mass spectrometry (UPLC-QqQ-MS/MS) revealed a high content of procyanidins in wild rice. Compared with phenolic acids, flavonoids may contribute more to the potent antioxidant activity of wild rice. This is the first study on the antioxidants from wild rice Z. latifolia. These findings provide novel information on the functional components of wild rice, and will be of value to further research and development on Z. latifolia.
Collapse
Affiliation(s)
- Mei-Jun Chu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Xin-Min Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Ning Yan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Feng-Zhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yong-Mei Du
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Zhong-Feng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|