1
|
Wang G, Wan X, Li X, Ou J, Li G, Deng H. Transcriptome-based analysis of key functional genes in the triterpenoid saponin synthesis pathway of Platycodon grandiflorum. BMC Genom Data 2024; 25:83. [PMID: 39333877 PMCID: PMC11438079 DOI: 10.1186/s12863-024-01266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Platycodon grandiflorum (P. grandiflorum) is a commonly used medicinal plant in China. Transcriptome sequencing studies of different tissues of P. grandiflorum have been widely conducted. However, studies on transcriptome sequencing and expression patterns of key genes in the saponin synthesis pathway of Tongcheng P. grandiflorum, a high-quality medicinal resource of different years, are relatively limited. RESULTS This study involved transcriptome sequencing and bioinformatics analysis of the roots from annual, biennial, and triennial P. grandiflorum in the Tongcheng area. After data filtering and assembly, we obtained 111.44 Gb of clean base data, including 742,880616 clean reads. We identified 5,156 differential expression unigenes between at least two sample groups, with differences noted among annual, biennial, and triennial P. grandiflorum plants. GO enrichment analysis annotated 3509, 1819, and 1393 DEGs in comparison TC1vsTC2, TC1vsTC3, and TC2vsTC3, respectively. Furthermore, KEGG enrichment analysis identified 16 genes encoding key enzymes in the terpene skeleton biosynthesis, sesquiterpene and triterpene biosynthesis pathways, including SE, AACT, FPPS, DXR, HMGR, HMGS, and DXS. The results of qRT-PCR experiments showed that most of the genes were most highly expressed in annual P. grandiflorum. CONCLUSIONS The present study provided transcriptomic data from the roots of Tongcheng P. grandiflorum of different years, which provides critical bioinformatics data on the growth and development of P. grandiflorum, laying a foundation for further research on saponins and identifying key enzymes involved in this process across different growth stages.
Collapse
Affiliation(s)
- Guoyu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
| | - Xiaoting Wan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
| | - Xiaolu Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jinmei Ou
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Guohui Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China.
| | - Hui Deng
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China.
| |
Collapse
|
2
|
Ji YJ, Kang MH, Kim GS, Kim HD, Jang GY. Platycodon grandiflorum exhibits anti-neuroinflammatory potential against beta-amyloid-induced toxicity in microglia cells. Front Nutr 2024; 11:1427121. [PMID: 39171113 PMCID: PMC11335668 DOI: 10.3389/fnut.2024.1427121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Background/objectives Platycodon grandiflorum (PG) is used in traditional oriental medicine to treat several ailments. Methods The study investigated the anti-inflammatory and neuroprotective effects of PGW (P. grandiflorum) extract in Aβ25-35-induced inflammation in BV2 microglia cells. Result PGW demonstrated significant inhibition of nitric oxide (NO) production, with reductions of 30.4, 36.7, and 61.2% at concentrations of 50, 100, and 200 μg/mL, respectively. Moreover, PGW effectively suppressed the production of pro-inflammatory cytokines IL-1β and IL-6 and exhibited significant inhibitory activity against TNF-α at 200 μg/mL. Furthermore, PGW treatment mitigated apoptosis in Aβ-induced BV2 cells by modulating the mitochondrial apoptosis pathway, regulating Bcl-2 family protein synthesis, and inhibiting caspase activation. Mechanistically, PGW attenuated the activation of the MAPK (JNK, ERK, p38) pathway induced by Aβ, showing a concentration-dependent decrease in phosphorylation levels of these proteins. Additionally, PGW inhibited the NF-κB pathway activation by reducing the phosphorylation levels of p65 and IκBα in a concentration-dependent manner. Conclusion PGW demonstrated anti-inflammatory and neuroprotective effects in Aβ-induced neuronal cells, suggesting its potential as a therapeutic agent for neuroinflammatory associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yun-Jeong Ji
- Department of Herbal Crop Research, National Institute of Horticultural Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Min Hye Kang
- Department of Herbal Crop Research, National Institute of Horticultural Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Geum-Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Hyung Don Kim
- Department of Herbal Crop Research, National Institute of Horticultural Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Gwi Yeong Jang
- Department of Herbal Crop Research, National Institute of Horticultural Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| |
Collapse
|
3
|
Zhang L, Wang X, Zhang J, Liu D, Bai G. Ethnopharmacology, phytochemistry, pharmacology and product application of Platycodon grandiflorum: A review. CHINESE HERBAL MEDICINES 2024; 16:327-343. [PMID: 39072195 PMCID: PMC11283231 DOI: 10.1016/j.chmed.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/23/2023] [Accepted: 01/11/2024] [Indexed: 07/30/2024] Open
Abstract
Platycodonis Radix (Jiegeng in Chinese) is a well-known traditional Chinese medicine used for both medicinal and culinary purposes. Its historical use as an antitussive and expectorant has been extensively documented. Researchers, to date, have identified 219 chemical constituents in Platycodon grandiflorum (Jacq.) A. DC, encompassing 89 saponins, 11 flavonoids, 21 polysaccharides, 14 phenolic acids, six polyacetylenes, five sterols, 34 fatty acids, 17 amino acids, and 22 trace elements. Jiegeng exhibits diverse pharmacological effects, including antitussive and anti-phlegm properties, anti-cancer activity, anti-inflammatory effects, immune regulation, antioxidant properties, anti-obesity, and antidiabetic effects. Additionally, Jiegeng shows potential in protecting the heart and liver. Beyond its medicinal benefits, Jiegeng is highly esteemed in culinary applications, and its global demand is on the rise. Its utilization has expanded beyond medicine and food to encompass daily necessities, cosmetics, agricultural supplies, and other fields. Currently, there are 18 272 patents related to P. grandiflorum. This comprehensive review summarizes the latest research published over the past 20 years, providing a robust foundation for further exploration of the medicinal and health benefits of P. grandiflorum.
Collapse
Affiliation(s)
- Lanying Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Xinrui Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Jingze Zhang
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Dailin Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Gang Bai
- Nankai University, Tianjin 300353, China
| |
Collapse
|
4
|
Wang M, Yin F, Kong L, Yang L, Sun H, Sun Y, Yan G, Han Y, Wang X. Chinmedomics: a potent tool for the evaluation of traditional Chinese medicine efficacy and identification of its active components. Chin Med 2024; 19:47. [PMID: 38481256 PMCID: PMC10935806 DOI: 10.1186/s13020-024-00917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/03/2024] [Indexed: 03/18/2024] Open
Abstract
As an important part of medical science, Traditional Chinese Medicine (TCM) attracts much public attention due to its multi-target and multi-pathway characteristics in treating diseases. However, the limitations of traditional research methods pose a dilemma for the evaluation of clinical efficacy, the discovery of active ingredients and the elucidation of the mechanism of action. Therefore, innovative approaches that are in line with the characteristics of TCM theory and clinical practice are urgently needed. Chinmendomics, a newly emerging strategy for evaluating the efficacy of TCM, is proposed. This strategy combines systems biology, serum pharmacochemistry of TCM and bioinformatics to evaluate the efficacy of TCM with a holistic view by accurately identifying syndrome biomarkers and monitoring their complex metabolic processes intervened by TCM, and finding the agents associated with the metabolic course of pharmacodynamic biomarkers by constructing a bioinformatics-based correlation network model to further reveal the interaction between agents and pharmacodynamic targets. In this article, we review the recent progress of Chinmedomics to promote its application in the modernisation and internationalisation of TCM.
Collapse
Affiliation(s)
- Mengmeng Wang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Fengting Yin
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ling Kong
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
5
|
Si Q, Su L, Wang D, De BJ, Na R, He N, Byambaa T, Dalkh T, Bao X, Yi L. An evaluation of the qualitative superiority of the Mongolian medicinal herb hurdan-tsagaan (Platycodi Radix) from five different geographic origins based on anti-inflammatory effects. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116331. [PMID: 36931411 DOI: 10.1016/j.jep.2023.116331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The contents and types of the active compounds in medicinal herbs depend greatly on their extraction methods, sources of origin and the modes of cultivation. Platycodon grandiflorus (Jacq.) A.DC. is an ethnic medicinal herb widely cultivated in China, and its dried root, Platycodi Radix (PR), is an important ingredient in herbal formulae for attenuating lung issues in Mongolian medical practice. However, research evaluating the superiority of PR based on harvesting regions is relatively limited. AIM This study aimed to evaluate the qualitative superiority of PR from different regions based on anti-inflammatory effect. MATERIALS AND METHODS A total of three commercial PR samples were obtained from Anguo, Bozhou and Shangluo, and two wild samples were obtained from Chifeng and Hinggan. PR extract (PRE) was prepared by water distillation, and platycodin D content in the extract was examined by HPLC-UVD. An optimal dose of PRE was administered to BALB/c mice with S. pneumoniae pneumonia, and IL-10 and TNF-α levels in lung tissue were examined by ELISA. HepG2 cells were treated with PRE, and an analysis of differentially expressed gene and functional enrichment was performed using an HTS2 assay. RESULTS The contents of moisture, total ash, crude extract and platycodin D in the raw roots met the quality control requirements outlined in the Chinese Pharmacopoeia (2020 edition). The platycodin D content in the aqueous extract of the roots in descending order was 24.16% in PRE_Shangluo, 22.91% in PRE_Hinggan, 21.41% in PRE_Bozhou, 17.8% in PRE_Chifeng and 15.92% in PRE_Anguo. Furthermore, administration of PREs at an optimal dose of 2.0 g/kg resulted in some anti-inflammatory effect in mice with Streptococcus pneumoniae pneumonia, among which PRE_Shangluo administration exhibited a more obvious anti-inflammatory impact as shown by a significant decrease in the plasma white cell count (p < 0.05) and IL-10 level elevation and TNF-α reduction in lung tissue (p < 0.05) after treatment. In HepG2 cells treated with 100 μg/ml of each PRE, PRE_Hinggan and PRE_Shangluo resulted in significant differential expression of genes such as nuclear factor kappa B subunit 1 (NFKB1) and significant enrichment of pathways involved in the immune system, such as PI3K-Akt, MAPK and NF-kappa B signaling pathways. CONCLUSIONS In this study, based on the anti-inflammatory effect, the quality of PR of Shangluo origin was superior to that of PR from the other four regions.
Collapse
Affiliation(s)
- Qin Si
- Scientific Research Department, Inner Mongolia International Mongolian Hospital, Hohhot, 010065, China; Inner Mongolia Azitai Mongolian Medicine Psychosomatic Research Co., Ltd., Ordos, 017004, China
| | - Longga Su
- Medicine Innovation Center for Nationalities, Inner Mongolia Medical University, Hohhot, 010110, China; Drug Quality Testing Center, Ordos Mongolian Hospital, Ordos, 017010, China
| | - Dong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bao-Jun De
- Inner Mongolia Azitai Mongolian Medicine Psychosomatic Research Co., Ltd., Ordos, 017004, China
| | - Risu Na
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Nagongbilige He
- Experimental Center, Traditional Chinese & Mongolian Medical Research Institute of Inner Mongolia, Hohhot, 010010, China
| | - Tserentsoo Byambaa
- International School of Mongolian Medicine, Mongolian National University of Medical Sciences, 14210, Ulaanbaatar, Mongolia
| | - Tserendagva Dalkh
- International School of Mongolian Medicine, Mongolian National University of Medical Sciences, 14210, Ulaanbaatar, Mongolia
| | - Xilinqiqige Bao
- Scientific Research Department, Inner Mongolia International Mongolian Hospital, Hohhot, 010065, China; Medicine Innovation Center for Nationalities, Inner Mongolia Medical University, Hohhot, 010110, China.
| | - Letai Yi
- Medicine Innovation Center for Nationalities, Inner Mongolia Medical University, Hohhot, 010110, China.
| |
Collapse
|
6
|
Li J, Yu H, Liu M, Chen B, Dong N, Chang X, Wang J, Xing S, Peng H, Zha L, Gui S. Transcriptome-wide identification of WRKY transcription factors and their expression profiles in response to methyl jasmonate in Platycodon grandiflorus. PLANT SIGNALING & BEHAVIOR 2022; 17:2089473. [PMID: 35730590 PMCID: PMC9225661 DOI: 10.1080/15592324.2022.2089473] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Platycodon grandiflorus, a perennial flowering plant widely distributed in China and South Korea, is an excellent resource for both food and medicine. The main active compounds of P. grandiflorus are triterpenoid saponins. WRKY transcription factors (TFs) are among the largest gene families in plants and play an important role in regulating plant terpenoid accumulation, physiological metabolism, and stress response. Numerous studies have been reported on other medicinal plants; however, little is known about WRKY genes in P. grandiflorus. In this study, 27 PgWRKYs were identified in the P. grandiflorus transcriptome. Phylogenetic analysis showed that PgWRKY genes were clustered into three main groups and five subgroups. Transcriptome analysis showed that the PgWRKY gene expression patterns in different tissues differed between those in Tongcheng City (Southern Anhui) and Taihe County (Northern Anhui). Gene expression analysis based on RNA sequencing and qRT-PCR analysis showed that most PgWRKY genes were expressed after induction with methyl jasmonate (MeJA). Co-expressing PgWRKY genes with triterpenoid biosynthesis pathway genes revealed four PgWRKY genes that may have functions in triterpenoid biosynthesis. Additionally, functional annotation and protein-protein interaction analysis of PgWRKY proteins were performed to predict their roles in potential regulatory networks. Thus, we systematically analyzed the structure, evolution, and expression patterns of PgWRKY genes to provide an important theoretical basis for further exploring the molecular basis and regulatory mechanism of WRKY TFs in triterpenoid biosynthesis.
Collapse
Affiliation(s)
- Jing Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hanwen Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Mengli Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Bowen Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Nan Dong
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jutao Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Huasheng Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesState Key Laboratory of Dao-Di, Beijing, Hebei, China
| | - Liangping Zha
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of traditional Chinese medicine resources, Anhui University of Chinese Medicine, Hefei, Anhui, China
- CONTACT Liangping Zha College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application Anhui University of Chinese Medicine, Hefei, Anhui, China
- Shuangying Gui College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, Chinai
| |
Collapse
|
7
|
Zhang S, Chai X, Hou G, Zhao F, Meng Q. Platycodon grandiflorum (Jacq.) A. DC.: A review of phytochemistry, pharmacology, toxicology and traditional use. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154422. [PMID: 36087526 DOI: 10.1016/j.phymed.2022.154422] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/01/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The traditional Chinese medicine Platycodon grandiflorum (Jacq.) A. DC. (PG, balloon flower) has medicinal and culinary value. It consists of a variety of chemical components including triterpenoid saponins, polysaccharides, flavonoids, polyphenols, polyethylene glycols, volatile oils and mineral components, which have medicinal and edible value. PURPOSE The ultimate goal of this review is to summarize the phytochemistry, pharmacological activities, safety and uses of PG in local and traditional medicine. METHODS A comprehensive search of published literature up to March 2022 was conducted using the PubMed, China Knowledge Network and Web of Science databases to identify original research related to PG, its active ingredients and pharmacological activities. RESULTS Triterpene saponins are the primary bioactive compounds of PG. To date, 76 triterpene saponin compounds have been isolated and identified from PG. In addition, there are other biological components, such as flavonoids, polyacetylene and phenolic acids. These extracts possess antitussive, immunostimulatory, anti-inflammatory, antioxidant, antitumor, antiobesity, antidepressant, and cardiovascular system activities. The mechanisms of expression of these pharmacological effects include inhibition of the expression of proteins such as MDM and p53, inhibition of the activation of enzymes, such as AKT, the secretion of inflammatory factors, such as IFN-γ, TNF-α, IL-2 and IL-1β, and activation of the AMPK pathway. CONCLUSION This review summarizes the chemical composition, pharmacological activities, molecular mechanism, toxicity and uses of PG in local and traditional medicine over the last 12 years. PG contains a wide range of chemical components, among which triterpene saponins, especially platycoside D (PD), play a strong role in pharmacological activity, representing a natural phytomedicine with low toxicity that has applications in food, animal feed and cosmetics. Therefore, PG has value for exploitation and is an excellent choice for treating various diseases.
Collapse
Affiliation(s)
- Shengnan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xiaoyun Chai
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fenglan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
8
|
Lan L, Huang W, Zhou H, Yuan J, Miao S, Mao X, Hu Q, Ji S. Integrated Metabolome and Lipidome Strategy to Reveal the Action Pattern of Paclobutrazol, a Plant Growth Retardant, in Varying the Chemical Constituents of Platycodon Root. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206902. [PMID: 36296498 PMCID: PMC9609321 DOI: 10.3390/molecules27206902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022]
Abstract
Platycodon root, a medicinal food homology species which has been used in Asian countries for hundreds of years, is now widely cultivated in China. Treatment with paclobutrazol, a typical plant growth retardant, has raised uncertainties regarding the quality of Platycodon root, which have been rarely investigated. In the present study, metabolomic and lipidomic differences were revealed by ultra-high performance liquid chromatography coupled to ion mobility-quadrupole time of flight mass spectrometry (UPLC-IM-QTOF-MS). A significant decrease of platycodigenin-type saponins was observed in the paclobutrazol-treated sample. Carrying out a comprehensive quantitative analysis, the contents of total saponins and saccharides were determined to illustrate the mode of action of paclobutrazol on Platycodon root. This study demonstrated an exemplary research model in explaining how the exogenous matter influences the chemical properties of medicinal plants, and therefore might provide insights into the reasonable application of plant growth regulators.
Collapse
Affiliation(s)
- Lan Lan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Weizhen Huang
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Heng Zhou
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Jiajia Yuan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Shui Miao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Xiuhong Mao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Qing Hu
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Shen Ji
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
- Correspondence: ; Tel.: +86-18001678046
| |
Collapse
|
9
|
Chang A, Pei WH, Li SY, Wang TM, Song HP, Kang TG, Zhang H. Integrated metabolomic and transcriptomic analysis reveals variation in the metabolites and genes of Platycodon grandiflorus roots from different regions. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:982-994. [PMID: 35726458 DOI: 10.1002/pca.3153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Platycodon grandiflorum root (PG), a popular traditional Chinese medicine, contains considerable chemical components with broad pharmacological activities. The complexity and diversity of the chemical components of PG from different origins contribute to its broad biological activities. The quality of southern PG is superior to that of northern PG, but the mechanisms underlying these differences remain unclear. OBJECTIVES In order to study variation in the differentially accumulated metabolites (DAMs), differentially expressed genes (DEGs), as well as their interactions and signalling pathways among PG from Anhui and Liaoning. METHODS The metabolomes based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) and the transcriptome based on high-throughput sequencing technology were combined to comprehensively analyse PGn and PGb. RESULTS A total of 6515 DEGs and 83 DAMs from the comparison of PG from Anhui and Liaoning were detected. Integrated analysis of metabolomic and transcriptomic data revealed that 215 DEGs and 57 DAMs were significantly enriched in 48 pathways according to KEGG pathway enrichment analysis, and 15 DEGs and 10 DAMs significantly enriched in the main pathway sesquiterpenoid and triterpenoid and phenylpropanoid biosynthesis might play a key role in complex response or regulatory processes. CONCLUSION Differences in PG from southern and northern China might thus stem from differences in environmental factors, such as precipitation, light duration, and humidity. The results of our study provide new insight into geographic variation in gene expression and metabolite accumulation and will enhance the utilisation of PG resources.
Collapse
Affiliation(s)
- An Chang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Department of Drug Administration, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Wen-Han Pei
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Si-Yu Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Tian-Min Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Hui-Peng Song
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ting-Guo Kang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Hui Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
10
|
Abstract
To better control the quality of saponins, ensure their biological activity and clinical therapeutic effect, and expand the development and application of saponins, this paper systematically and comprehensively reviews the separation and analytical methods of saponins in the past decade. Since 2010, the electronic databases of PubMed, Google Scholar, ISI Web of Science, Science Direct, Wiley, Springer, CNKI (National Knowledge Infrastructure, CNKI), Wanfang Med online, and other databases have been searched systematically. As a result, it is found that ionic liquids and high-performance countercurrent chromatography are the most popular extraction and separation techniques for saponins, and the combined chromatography technique is the most widely used method for the analysis of saponins. Liquid chromatography can be used in combination with different detectors to achieve qualitative or quantitative analysis and quality control of saponin compounds in medicinal materials and their preparations. This paper provides the latest valuable insights and references for the analytical methods and continued development and application of saponins.
Collapse
|
11
|
Li JJ, Liu ML, Lv JN, Chen RL, Ding K, He JQ. Polysaccharides from Platycodonis Radix ameliorated respiratory syncytial virus-induced epithelial cell apoptosis and inflammation through activation of miR-181a-mediated Hippo and SIRT1 pathways. Int Immunopharmacol 2022; 104:108510. [PMID: 34999393 DOI: 10.1016/j.intimp.2021.108510] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis in young children, but there are few safe and effective treatments for this disease. Platycodonis Radix is widely used as an antitussive and expectorant drug for preventing various diseases in lower respiratory tract, in which the polysaccharides are one of the main bioactivity constituents. In this study, the protective effects of the P. Radix polysaccharides (PRP) against RSV-induced bronchiolitis in juvenile mice and RSV-induced apoptosis of epithelial HEp-2 cells were investigated. The results showed that PRP obviously decreased the levels of IL-1β, IL-4, IL-6, TNF-α, IFN-γ and TSLP in lung tissues, and reduced the number of inflammatory cells in bronchoalveolar lavage fluid (BALF) of RSV-infected mice. Furthermore, it reduced the apoptosis of RSV-infected HEp-2 cells and remarkably inhibited the mRNA expressions of RSV L gene, which indicated that PRP affected transcription and replication of RSV in host cells. Compared with that in RSV-infected group, miR-181a-5p in the PRP-treated group presented the highest relative abundance and its expression was violently reduced by approximately 30%. Mechanistically, PRP had the similar effects as miR-181a-5p antagomir on RSV-induced apoptosis and inflammation in HEp-2 cells via upregulating BCL2, MLL3 and SIRT1, which could be reversed by miR-181a-5p mimic. Therefore, it demonstrated that PRP not only protected against RSV-induced lung inflammation in mice but also inhibited apoptosis of RSV-infected HEp-2 cells via suppressing miR-181a-5p and transcriptionally activating Hippo and SIRT1 pathways.
Collapse
Affiliation(s)
- Juan-Juan Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Mei-Ling Liu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Jia-Ni Lv
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Rui-Lin Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China; The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ke Ding
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Jia-Qi He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China.
| |
Collapse
|
12
|
Lee SJ, Kim HW, Lee S, Kwon RH, Na H, Kim JH, Wee CD, Yoo SM, Lee SH. Characterization of Saponins from Various Parts of Platycodon grandiflorum Using UPLC-QToF/MS. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010107. [PMID: 35011337 PMCID: PMC8746516 DOI: 10.3390/molecules27010107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
Abstract
Platycodon grandiflorum (PG) is known as a high-potential material in terms of its biological activity. The objective of this report is to provide chromatographic and mass fragment ion data of 38 simultaneously identified saponins, including novel compounds, by analyzing them through ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QToF/MS). In so doing, we investigated their diverse conditions, including morphological parts (stems, roots, buds, and leaves), peeling (or not), and blanching of PG. The total contents of individual saponins indicated an order of roots (containing peel, 1674.60 mg/100 g, dry weight) > buds (1364.05) > roots (without peel, 1058.83) ≈ blanched roots (without peel, 945.17) ≈ stems (993.71) ≈ leaves (881.16). When considering three types of aglycone, the platycodigenin group (55.04 ~ 68.34%) accounted for the largest proportion of the total content, whereas the platycogenic acid A group accounted for 17.83 ~ 22.61%, and the polygalacic acid group represented 12.06 ~ 22.35%. As they are classified as major compounds, novel saponins might be utilized for their role in healthy food for human consumption. Additionally, during blanching, the core temperature of PG was satisfied with the optimal condition, thus activating the enzymes related to biotransformation. Furthermore, through the use of this comprehensive data, additional studies related to buds, as well as roots or the characterization of individual saponins, can be conducted in a rapid and achievable manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sang Hoon Lee
- Correspondence: ; Tel.: +82-63-238-3562; Fax: +82-63-238-3841
| |
Collapse
|
13
|
Adi-Dako O, Kumadoh D, Egbi G, Okyem S, Addo PY, Nyarko A, Osei-Asare C, Oppong EE, Adase E. Strategies for formulation of effervescent granules of an herbal product for the management of typhoid fever. Heliyon 2021; 7:e08147. [PMID: 34746457 PMCID: PMC8551464 DOI: 10.1016/j.heliyon.2021.e08147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/23/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022] Open
Abstract
Herbal medicines are currently being adopted as alternatives to orthodox medicines for the management of drug-resistant and emerging multidrug-resistant microbial strains of various diseases, including typhoid fever. A herbal decoction, MA 001, manufactured by the Centre for Plant Medicine Research (CPMR), has been used for the treatment of typhoid fever for at least two decades in Ghana with desirable outcomes. MA 001 is formulated from Citrus aurantifolia, Spondias mombin, Latana camara, Bidens pilosa, Trema occidentalis, Psidium guajava, Morinda lucida, Vernonia amygdalina, Persea americana, Paulina pinnatta, Momordia charantia and Cnestis ferruguinea medicinal plants. The low palatability and compliance to treatment due to the bulky nature of the decoction poses challenges in its optimum use. This study sought to design and formulate the therapeutic components of the aqueous herbal decoction of MA 001 into an optimal solid dosage form of effervescent granules to improve the delivery of MA 001 as well as increase patient compliance and convenience of product handling. The methods involved pre-formulation studies on the suitability of effervescent vehicles, formulation and evaluation of effervescent granules for drug excipient interactions using high performance liquid chromatography analysis. The findings indicate that the effervescent granules were suitable for use in the delivery of the therapeutic constituents for the treatment of typhoid fever as done with the decoction due to minimal herbal extract-excipient interaction.
Collapse
Affiliation(s)
- Ofosua Adi-Dako
- Department of Pharmaceutics and Microbiology, School of Pharmacy, University of Ghana, Ghana
| | - Doris Kumadoh
- Centre for Plant Medicine Research, Mampong, Akuapem, Ghana
| | - Godfred Egbi
- Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana
| | - Samuel Okyem
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Ghana.,University of Illinois-Urbana Champaign, USA
| | - Papa Yaw Addo
- Department of Pharmaceutics and Microbiology, School of Pharmacy, University of Ghana, Ghana
| | - Alexander Nyarko
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Ghana, Ghana
| | | | - Esther Eshun Oppong
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Adase
- Centre for Plant Medicine Research, Mampong, Akuapem, Ghana
| |
Collapse
|
14
|
Yu SM, Kim SJ, Yoon YC, Kim JH. Development and application of a chemical profiling method for the assessment of the quality and consistency of the Pelargonium sidoides extract. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThe evaluation of chemical similarity is very significant for the evaluation and standardization of the quality of herbal medicines as the biological activity of herbal medicines depends on the composition and proportion of many individual components. Many health organizations have recommended chemical profiling for the quality and consistency evaluation of herbal medicines. In this study, chemical profiling was performed to evaluate the similarity between batches of Pelargonium sidoides maltodextrin mixture (PMM) from EPs® 7630, a Pelargonium sidoides extract preparation. For chemical profile analysis, 7 common peaks were selected from 27 different PMM batches and specificity, linearity, accuracy, and precision tests were performed to develop the analytical method. The Pearson correlation coefficients of the similarity for all 27 batches manufactured over the years were higher than 0.90, indicating that quality consistency is well ensured over the years. This profiling method confirms the chemical profile of various commercial products using not only PMM but also Pelargonium sidoides extract and shows that it can be applied to standardization of quality.
Collapse
|
15
|
Gaião Calixto M, Alves Ramos H, Veríssimo LS, Dantas Alves V, D Medeiros AC, Alencar Fernandes FH, Veras G. Trends and Application of Chemometric Pattern Recognition Techniques in Medicinal Plants Analysis. Crit Rev Anal Chem 2021; 53:326-338. [PMID: 34314279 DOI: 10.1080/10408347.2021.1953370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Medicinal plants have been used and studied for ages, from very old registers to modern ethnopharmacology, which encompasses analytical chemistry, foods, and pharmacy. Based on international norms and governmental organizations of health, phytomedicine-for example, herbal drugs-needs to guarantee the quality control of products and identify contaminants, biomarkers, and chemical profiles, among other issues. In this sense, is necessary to develop advanced analytical methods that show interesting possibilities and obtain a great amount of data. In order to treat the data, a set of mathematical and statistical procedures named chemometrics is necessary. In terms of herbal drugs, chemometric tools may be used to identify the following in plants: parts, development stages, processing, geographic origin, authentication, and chemical markers. This review describes applications of chemometric pattern recognition tools to analyze herbal drugs in different conditions associated with analytical methods in the last six years (2015-2020).
Collapse
Affiliation(s)
- Mariana Gaião Calixto
- Laboratório de Química Analítica e Quimiometria, Universidade Estadual da Paraíba, Campina Grande, Brasil
| | - Hilthon Alves Ramos
- Laboratório de Química Analítica e Quimiometria, Universidade Estadual da Paraíba, Campina Grande, Brasil
| | - Lucas Silva Veríssimo
- Laboratório de Química Analítica e Quimiometria, Universidade Estadual da Paraíba, Campina Grande, Brasil
| | - Vitor Dantas Alves
- Laboratório de Química Analítica e Quimiometria, Universidade Estadual da Paraíba, Campina Grande, Brasil
| | - Ana Cláudia D Medeiros
- Laboratório de Desenvolvimento e Ensaios de Medicamentos, Universidade Estadual da Paraíba, Campina Grande, Brasil
| | - Felipe Hugo Alencar Fernandes
- Laboratório de Desenvolvimento e Ensaios de Medicamentos, Universidade Estadual da Paraíba, Campina Grande, Brasil.,Centro Universitário UNIFACISA, Campina Grande, Brasil
| | - Germano Veras
- Laboratório de Química Analítica e Quimiometria, Universidade Estadual da Paraíba, Campina Grande, Brasil
| |
Collapse
|
16
|
Yu H, Liu M, Yin M, Shan T, Peng H, Wang J, Chang X, Peng D, Zha L, Gui S. Transcriptome analysis identifies putative genes involved in triterpenoid biosynthesis in Platycodon grandiflorus. PLANTA 2021; 254:34. [PMID: 34291354 DOI: 10.1007/s00425-021-03677-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/30/2021] [Indexed: 05/25/2023]
Abstract
Comprehensive transcriptome analysis of different Platycodon grandiflorus tissues discovered genes related to triterpenoid saponin biosynthesis. Platycodon grandiflorus (Jacq.) A. DC. (P. grandiflorus), a traditional Chinese medicine, contains considerable triterpenoid saponins with broad pharmacological activities. Triterpenoid saponins are the major components of P. grandiflorus. Here, single-molecule real-time and next-generation sequencing technologies were combined to comprehensively analyse the transcriptome and identify genes involved in triterpenoid saponin biosynthesis in P. grandiflorus. We quantified four saponins in P. grandiflorus and found that their total content was highest in the roots and lowest in the stems and leaves. A total of 173,354 non-redundant transcripts were generated from the PacBio platform, and three full-length transcripts of β-amyrin synthase, the key synthase of β-amyrin, were identified. A total of 132,610 clean reads obtained from the DNBSEQ platform were utilised to explore key genes related to the triterpenoid saponin biosynthetic pathway in P. grandiflorus, and 96 differentially expressed genes were selected as candidates. The expression levels of these genes were verified by quantitative real-time PCR. Our reliable transcriptome data provide valuable information on the related biosynthesis pathway and may provide insights into the molecular mechanisms of triterpenoid saponin biosynthesis in P. grandiflorus.
Collapse
Affiliation(s)
- Hanwen Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Mengli Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Minzhen Yin
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Tingyu Shan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Huasheng Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU057), National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jutao Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Liangping Zha
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Conservation and Development of Traditional Chinese Medicine Resources, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
17
|
Qian Z, Yiyang C, Lixia M, Yue J, Jun C, Jie D, Yifan M, Jingjing Z, Guojun Y. Study on the Fingerprints and Quality Evaluation of Angelica Sinensis Radix by HPLC Coupled With Chemometrics Based on Traditional Decoction Process of ACPTCM. Dose Response 2020; 18:1559325820951730. [PMID: 33013250 PMCID: PMC7513407 DOI: 10.1177/1559325820951730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 11/17/2022] Open
Abstract
Objective To establish a HPLC fingerprints evaluation method for Angelica Sinensis Radix (ASR) based on traditional decoction process of Ancient Classical Prescriptions of Traditional Chinese Medicine (ACPTCM). Methods The fingerprints of 10 batches of ASR were further evaluated by chemometrics methods. The similarity analyzed with "Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine 2004A," and hierarchical clustering analysis (HCA) and principal component analysis (PCA) were performed by SPSS (version 22.0, SPSS Inc., Chicago, IL, USA). Results There were 12 common peaks, and the similarity degrees of 10 batches of samples were more than 0.923 and showed that all the samples from different origins were of good consistency. The samples were divided into 4 clusters by HCA. The results of PCA showed that the 3 factors were chosen, the quality of samples could be evaluated basically. The comprehensive score results show that the ASR with Lot.Nos.DG-18007, DG-18008 in Weiyuan County, Gansu and DG-18009 produced in Minle County, Gansu Province rank among the top 3 in all samples. Conclusions These results demonstrated that the combination of HPLC chromatographic fingerprint and chemometrics offers an efficient and reliable approach for quality evaluation of ASR from different sources as Ancient Classical Prescriptions ingredients.
Collapse
Affiliation(s)
- Zhang Qian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chen Yiyang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ma Lixia
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiang Yue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chen Jun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dong Jie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ma Yifan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Zhang Jingjing
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Yan Guojun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Zhang J, Wang D, Zhang X, Yang J, Chai X, Wang Y. Application of "spider-web" mode in discovery and identification of Q-markers from Xuefu Zhuyu capsule. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153273. [PMID: 32663710 DOI: 10.1016/j.phymed.2020.153273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/05/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The selection of quality control indicators in a complex system is a key scientific issue for the study of Chinese materia medica (CMM), which is directly related to its safety and efficacy. In order to scientifically understand and control the quality of CMM, quality marker (Q-marker) has been recently raised as a new concept, which provided a novel research idea for the quality control and evaluation of CMM. PURPOSE By a new and integrated "spider-web" mode, Q-markers of Xuefu Zhuyu capsule (XZC) were comprehensively uncovered, conducing to great improvement of quality control of XZC. METHODS Mainly established by three dimensions derived from six variables including content, stability and activity, "spider-web" mode was constructed to evaluate Q-marker property of candidate compounds by taking regression area of the tested compounds into account. RESULTS The candidate compounds with larger regression area were preferentially adopted as Q-markers, which should possess the satisfactorily integrated properties of content, stability and activity. Six compounds, naringin, isoliquiritin, paeoniflorin, protocatechuic acid, neohesperidin and ferulic acid, were identified and preferred as Q-markers of XZC. CONCLUSION Based on "spider-web" mode, Q-markers from Xuefu Zhuyu capsule were successfully screened, which would substantially perform quality control of XZC and prove the feasibility of "spider-web" mode in solving the selection of quality control indicators from compound formulae.
Collapse
Affiliation(s)
- Jing Zhang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Danni Wang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jing Yang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xin Chai
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Yuefei Wang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
19
|
Chen L, Tang X, Yang Q, Cheng X. Quantitative and Chemical Fingerprint Analysis of Desmodium styracifolium by High-Performance Liquid Chromatography Combined with Chemometrics. J Chromatogr Sci 2020; 58:294-302. [PMID: 31879757 DOI: 10.1093/chromsci/bmz112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 08/12/2019] [Accepted: 10/31/2019] [Indexed: 11/14/2022]
Abstract
In this study, a valid and comprehensive evaluation method for assessing the quality of Desmodium styracifolium (Osb.) Merr has been established, based on analysis of high-performance liquid chromatography fingerprint combined with the similarity analysis (SA), hierarchical cluster analysis (HCA), principal component analysis (PCA), discriminant analysis (DA) and the quantitative analysis multi-components by single marker (QAMS) method. Eleven peaks of the common model were obtained and analyzed using SA, HCA, PCA and DA analysis. These methods indicated a similar conclusion that 31 batches of D. styracifolium samples were categorized into two clusters basically coincident with their geographical regions of origin. Four peaks were identified as schaftoside, isoorientin, isoschaftoside and isovitexin. Schaftoside was selected as the internal standard, and the relative correction factors between schaftoside and the other three flavonoids were calculated using the QAMS method. The accuracy of the QAMS method was verified by comparing with the results calculated by the external standard method. No significant difference between the two methods was found. In conclusion, the established methods were scientifically applied in the quality evaluation of D. styracifolium.
Collapse
Affiliation(s)
- Liangyuan Chen
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Outer Ring Road East 280, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Xiaomin Tang
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Outer Ring Road East 280, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Quan Yang
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Outer Ring Road East 280, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| | - Xuanxuan Cheng
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Outer Ring Road East 280, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China
| |
Collapse
|
20
|
Wu L, Ni ZH, Xu YC, Zhang XQ, Du SL, Cao KX, Chen ZP, Li WD, Guo LB. Investigation on the Characteristic Components of Dahuang Zhechong Pill Based on High-Performance Liquid Chromatography (HPLC) Fingerprint. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19888079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dahuang Zhechong Pill (DHZCP) has been widely used in the treatment of hepatocarcinoma in China. The aim of our study was to identify the characteristic components of DHZCP. First, HPLC fingerprint of DHZCP was established to analyze the common components of 14 batches of DHZCP samples, which were purchased from different manufacturers. The results of HPLC fingerprint detected 164 peaks in these 14 batches of DHZCP. Through similarity analysis, cluster analysis, and principal component analysis, we identified 20 common components upon which to conduct quantitative analysis conducted by an HPLC method. After that, a cytotoxicity test was carried out to screen the active components in DHZCP. The results showed that hypoxanthine, rhein, emodin, aloe emodin, and wogonin are the active components of DHZCP for the treatment of hepatocarcinoma, as they have significant inhibitory effect against the activity of drug-resistant hepatocarcinoma cells (SMMC-7721/DOX) than others.
Collapse
Affiliation(s)
- Li Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Jiangsu, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, PR China
- China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Zi-Hui Ni
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, PR China
- China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Yun-Cong Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, PR China
- China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Xi-Qiong Zhang
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Jiangsu, PR China
| | - Sha-Li Du
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Jiangsu, PR China
| | - Ke-Xin Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, PR China
- China Pharmaceutical University, Nanjing, Jiangsu, PR China
| | - Zhi-Peng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, PR China
- China Pharmaceutical University, Nanjing, Jiangsu, PR China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Jiangsu, PR China
| | - Wei-Dong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, PR China
- China Pharmaceutical University, Nanjing, Jiangsu, PR China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Jiangsu, PR China
| | - Lu-Bo Guo
- Jinan Central Hospital, Shandong, PR China
| |
Collapse
|
21
|
Quality assessment of licorice extract powder through geometric linear quantified fingerprint method combined with multicomponent quantification and chemometric analysis. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|