1
|
Yuan M, Ma F, Chen L, Li B, Dai X, Shu J, He L, Chen J, Lin S, Xie G, Chai Z, Wang S. Hydrogen Isotope Effect Endows a Breakthrough in Photoluminescent Covalent Organic Frameworks. J Am Chem Soc 2024; 146:1250-1256. [PMID: 38189233 DOI: 10.1021/jacs.3c10511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Luminescent covalent organic frameworks (LCOFs) have emerged as indispensable candidates in various applications due to their greater tunable emitting properties and structural robustness compared to small molecule emitters. An unsolved issue in this area is developing highly luminescent LCOFs of which the nonradiative quenching pathways were suppressed as much as possible. Here, a robust aminal-linked COF (DD-COF) possessing perdeuterated light-emitting monomers was designed and synthesized. The solid-state photoluminescence quantum yield of the DD-COF reaches 81%, significantly outcompeting all state-of-the-art LCOFs reported so far. The exceptional luminescent efficiency is attributed to the inhibition of different pathways of nonradiative decay, especially from bond vibrations where only substitution by a heavier isotope with a lower zero-point vibration frequency works. Furthermore, the prepared deuterated COF not only boosts higher photostability under UV irradiation but also enables superior fluorescence sensing performance for iodine detection compared to nondeuterated COF.
Collapse
Affiliation(s)
- Mengjia Yuan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Fuyin Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lixi Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Baoyu Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xing Dai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jie Shu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Linwei He
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Junchang Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shujing Lin
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guohua Xie
- The Institute of Flexible Electronics (Future Technologies), Xiamen University, Xiamen 361005, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Kenawy ER, Ghazy AR, Rizk HF, Shendy S. Microwave-assisted of new derivatives of polyimine conjugated polymer based on Schiff base: synthesis, characterization, and photo-physical properties as a photoluminescent materials. Sci Rep 2023; 13:18686. [PMID: 37907586 PMCID: PMC10618287 DOI: 10.1038/s41598-023-46051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023] Open
Abstract
The condensation of pyrrole-2,5-dicarbaldehyde (1) with 5-(2-amino-4-phenylthiazol-5-yl)-4-phenylthiazol-2-amine (2) and/or 5-(4-Amino-phenyl)-4-phenylthiazol-2-amine (3) gave new poly(Z)-N-((5-(iminomethyl)-1H-pyrrol-2-yl)methylene)-5-(2-((E)-(5-(iminomethyl)-I-pyrrol-2-yl)methyleneamino)-4-phenylthiazol-5-yl)-4-phenylthiaol-2-amine (P1) and/or poly(E)-N-((5-(iminomethyl)-1H-pyrrol-2-yl)methylene)-5-(4-((E)-(5-(iminomethyl)-1H-pyrrol-2-yl)methyleneamino)phenyl)-4-phenylthiaol-2-amine (P2) as a novel conjugated polymer by microwave irradiation and traditional heating.. It is evident that the microwave irradiation technique quickly raised the molecular weight of polyimines. In addition to quantifying the molecular weight of the resultant polyimines. All the polyimines were characterized using FTIR, XRD, H1NMR, TGA, and DSC. The optical characteristics of polyimine derivatives were investigated using a UV-Vis spectrophotometer. The absorption spectra showed a main absorption band around 372 nm for polyimine (P1) and 381 nm for polyimine (P2). The optical energy was calculated and found to be 2.49 and 2.68 eV. The photoluminescence of the polyimine derivatives was measured and analyzed by spectrofluorometer and Laser photoluminescence experiment and the emission color was studied using CIE graphs. The fluorescence spectra showed an emission peak at 548 nm for polyimine (P1) with yellow green color in CIE graph, while for polyimine (P2) the emission band was located at 440.5 nm with blue color in CIE graph. Photoluminescence quantum yield PLQY was measured for the polyimine P1 and P2 in both liquid and Solid states and indicated the AIE behavior of the polyimines. TD-DFT simulations were applied to the polyimine derivatives where the structures were geometrically optimized and the spectroscopic characterizations were evaluated.
Collapse
Affiliation(s)
- El-Refaie Kenawy
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Ahmed R Ghazy
- Laser Laboratory, Physics Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Hala F Rizk
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - S Shendy
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
3
|
Sun H, He T, Zhang C, Wang S, Dong L, Li Z, Gu PY, Wang Z, Long G, Zhang Q. Structural Engineering of Red Luminogens to Realize High Emission Efficiency through ACQ-to-AIE Transformation. Chemistry 2023; 29:e202300029. [PMID: 36806228 DOI: 10.1002/chem.202300029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 02/22/2023]
Abstract
Deep red/near-infrared (NIR, >650 nm) emissive organic luminophores with aggregation-induced emission (AIE) behaviours have emerged as promising candidates for applications in optoelectronic devices and biological fields. However, the molecular design philosophy for AIE luminogens (AIEgens) with narrow band gaps are rarely explored. Herein, we rationally designed two red organic luminophores, FITPA and FIMPA, by considering the enlargement of transition dipole moment in the charge-transfer state and the transformation from aggregation-caused quenching (ACQ) to AIE. The transition dipole moments were effectively enhanced with a "V-shaped" molecular configuration. Meanwhile, the ACQ-to-AIE transformation from FITPA to FIMPA was induced by a methoxy-substitution strategy. The experimental and theoretical results demonstrated that the ACQ-to-AIE transformation originated from a crystallization-induced emission (CIE) effect because of additional weak interactions in the aggregate state introduced by methoxy groups. Owing to the enhanced transition dipole moment and AIE behaviour, FIMPA presented intense luminescence covering the red-to-NIR region, with a photoluminescence quantum yield (PLQY) of up to 38 % in solid state. The promising cell-imaging performance further verified the great potential of FIMPA in biological applications. These results provide a guideline for the development of red and NIR AIEgens through comprehensive consideration of both the effect of molecular structure and molecular interactions in aggregate states.
Collapse
Affiliation(s)
- Hua Sun
- School of Material and Chemistry Engineering, School of Food and Biology Engineering, Xuzhou University of Technology, 2 Lishui Road, Yunlong District, 221018, Xuzhou, P. R. China
| | - Tengfei He
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, 300350, Tianjin, P. R. China
| | - Chuchen Zhang
- School of Material and Chemistry Engineering, School of Food and Biology Engineering, Xuzhou University of Technology, 2 Lishui Road, Yunlong District, 221018, Xuzhou, P. R. China
| | - Shifan Wang
- School of Material and Chemistry Engineering, School of Food and Biology Engineering, Xuzhou University of Technology, 2 Lishui Road, Yunlong District, 221018, Xuzhou, P. R. China
| | - Liming Dong
- School of Material and Chemistry Engineering, School of Food and Biology Engineering, Xuzhou University of Technology, 2 Lishui Road, Yunlong District, 221018, Xuzhou, P. R. China
| | - Zhao Li
- School of Material and Chemistry Engineering, School of Food and Biology Engineering, Xuzhou University of Technology, 2 Lishui Road, Yunlong District, 221018, Xuzhou, P. R. China
| | - Pei-Yang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, 213164, Changzhou, P. R. China
| | - Zhe Wang
- School of Material and Chemistry Engineering, School of Food and Biology Engineering, Xuzhou University of Technology, 2 Lishui Road, Yunlong District, 221018, Xuzhou, P. R. China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, 300350, Tianjin, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 999077, Hong Kong SAR, P. R. China
| |
Collapse
|
4
|
Zang Y, Xu J, Lu Z, Yi C, Yan F. Self-quenching-resistant fluorescent tunable sulfur quantum dots. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Lv X, Li Y, Cui B, Fang Y, Wang L. Electrochemiluminescent sensor based on an aggregation-induced emission probe for bioanalytical detection. Analyst 2022; 147:2338-2354. [PMID: 35510524 DOI: 10.1039/d2an00349j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In recent years, with the rapid development of electrochemiluminescence (ECL) sensors, more luminophores have been designed to achieve high-throughput and reliable analysis. Impressively, after the proposed fantastic concept of "aggregation-induced electrochemiluminescence (AIECL)" by Cola, the application of AIECL emitters provides more abundant choices for the further improvement of ECL sensors. In this review, we briefly report the phenomenon, principle and representative applications of aggregation-induced emission (AIE) and AIECL emitters. Moreover, it is noteworthy that the cases of AIECL sensors for bioanalytical detection are summarized in detail, from 2017 to now. Finally, inspired by the applications of AIECL emitters, relevant prospects and challenges for AIECL sensors are proposed, which is of great significance for exploring more advanced bioanalytical detection technology.
Collapse
Affiliation(s)
- Xiaoyi Lv
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Yanping Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| |
Collapse
|
6
|
Diana R, Caruso U, Gentile FS, Di Costanzo L, Musto P, Panunzi B. Thermo-Induced Fluorochromism in Two AIE Zinc Complexes: A Deep Insight into the Structure-Property Relationship. Molecules 2022; 27:molecules27082551. [PMID: 35458748 PMCID: PMC9025698 DOI: 10.3390/molecules27082551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Solid-state emitters exhibiting mechano-fluorochromic or thermo-fluorochromic responses represent the foundation of smart tools for novel technological applications. Among fluorochromic (FC) materials, solid-state emissive coordination complexes offer a variety of fluorescence responses related to the dynamic of noncovalent metal-ligand coordination bonds. Relevant FC behaviour can result from the targeted choice of metal cation and ligands. Herein, we report the synthesis and characterization of two different colour emitters consisting of zinc complexes obtained from N,O bidentate ligands with different electron-withdrawing substituents. The two complexes are blue and orange solid-state fluorophores, respectively, highly responsive to thermal and mechanical stress. These emitters show a very different photoluminescent (PL) pattern as recorded before and after the annealing treatment. Through X-ray structural analysis combined with thermal analysis, infrared (IR) spectroscopy, PL, and DFT simulation we provide a comprehensive analysis of the structural feature involved in the fluorochromic response. Notably, we were able to correlate the on-off thermo-fluorochromism of the complexes with the structural rearrangement at the zinc coordination core.
Collapse
Affiliation(s)
- Rosita Diana
- Department of Agriculture, University of Napoli Federico II, Via Università, 100, 80055 Portici, NA, Italy; (R.D.); (L.D.C.)
| | - Ugo Caruso
- Department of Chemical Sciences, University of Napoli Federico II, Strada Comunale Cinthia, 26, 80126 Napoli, Italy; (U.C.); (F.S.G.)
| | - Francesco Silvio Gentile
- Department of Chemical Sciences, University of Napoli Federico II, Strada Comunale Cinthia, 26, 80126 Napoli, Italy; (U.C.); (F.S.G.)
| | - Luigi Di Costanzo
- Department of Agriculture, University of Napoli Federico II, Via Università, 100, 80055 Portici, NA, Italy; (R.D.); (L.D.C.)
| | - Pellegrino Musto
- Institute on Polymers Composites and Biomaterials, National Research Council, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy;
| | - Barbara Panunzi
- Department of Agriculture, University of Napoli Federico II, Via Università, 100, 80055 Portici, NA, Italy; (R.D.); (L.D.C.)
- Correspondence:
| |
Collapse
|
7
|
Diana R, Caruso U, Di Costanzo L, Concilio S, Piotto S, Sessa L, Panunzi B. A Water Soluble 2-Phenyl-5-(pyridin-3-yl)-1,3,4-oxadiazole Based Probe: Antimicrobial Activity and Colorimetric/Fluorescence pH Response. Molecules 2022; 27:1824. [PMID: 35335188 PMCID: PMC8952330 DOI: 10.3390/molecules27061824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022] Open
Abstract
The growing demand of responsive tools for biological and biomedical applications pushes towards new low-cost probes easy to synthesize and versatile. Current optical probes are theranostic tools simultaneously responsive to biological parameters/analyte and therapeutically operating. Among the optical methods for pH monitoring, simple small organic molecules including multifunctional probes for simultaneous biological activity being highly desired by scientists and technicians. Here, we present a novel pH-responsive probe with a three-ring heteroaromatic pattern and a flexible cationic chain. The novel molecule shows real-time naked-eye colorimetric and fluorescence response in the slightly acidic pH range besides its excellent solubility both in the organic phase and in water. In addition, the small probe shows significant antibacterial activity, particularly against Escherichia coli. Single-crystal X-ray study and density functional theory (DFT) calculations rationalize the molecule spectroscopic response. Finally, molecular dynamics (MD) elucidate the interactions between the probe and a model cell membrane.
Collapse
Affiliation(s)
- Rosita Diana
- Department of Agriculture, University of Naples Federico II, Via Università, 100, 80055 Portici, Italy; (R.D.); (L.D.C.); (B.P.)
| | - Ugo Caruso
- Department of Chemical Sciences, University of Naples Federico II, Strada Comunale Cinthia, 26, 80126 Napoli, Italy
| | - Luigi Di Costanzo
- Department of Agriculture, University of Naples Federico II, Via Università, 100, 80055 Portici, Italy; (R.D.); (L.D.C.); (B.P.)
| | - Simona Concilio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (S.C.); (S.P.); (L.S.)
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (S.C.); (S.P.); (L.S.)
| | - Lucia Sessa
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (S.C.); (S.P.); (L.S.)
| | - Barbara Panunzi
- Department of Agriculture, University of Naples Federico II, Via Università, 100, 80055 Portici, Italy; (R.D.); (L.D.C.); (B.P.)
| |
Collapse
|
8
|
Chen S, Xu J, Li Y, Peng B, Luo L, Feng H, Chen Z, Wang Z. Research Progress of Aggregation-Caused Quenching (ACQ) to Aggregation-Induced Emission (AIE) Transformation Based on Organic Small Molecules. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Wang X, Lin X, Li R, Wang Z, Liu W, Chen L, Chen N, Dai T, Sun S, Li Z, Hao J, Lin B, Xie L. Achieving Molecular Fluorescent Conversion from Aggregation-Caused Quenching to Aggregation-Induced Emission by Positional Isomerization. Molecules 2021; 27:193. [PMID: 35011426 PMCID: PMC8747061 DOI: 10.3390/molecules27010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, we synthesized a pair of positional isomers by attaching a small electron-donating pyrrolidinyl group at ortho- and para-positions of a conjugated core. These isomers exhibited totally different fluorescent properties. PDB2 exhibited obvious aggregation-induced emission properties. In contrast, PDB4 showed the traditional aggregation-caused quenching effect. Their different fluorescent properties were investigated by absorption spectroscopy, fluorescence spectroscopy, density functional theory calculations and single-crystal structural analysis. These results indicated that the substituent position of the pyrrolidinyl groups affects the twisted degree of the isomers, which further induces different molecular packing modes, thus resulting in different fluorescent properties of these two isomers. This molecular design concept provided a new accurate strategy for designing new aggregation-induced emission luminogens.
Collapse
Affiliation(s)
- Xinli Wang
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Xiang Lin
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou 350007, China; (X.L.); (Z.W.); (W.L.); (L.C.); (N.C.)
| | - Renfu Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
| | - Zexin Wang
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou 350007, China; (X.L.); (Z.W.); (W.L.); (L.C.); (N.C.)
| | - Wei Liu
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou 350007, China; (X.L.); (Z.W.); (W.L.); (L.C.); (N.C.)
| | - Liwei Chen
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou 350007, China; (X.L.); (Z.W.); (W.L.); (L.C.); (N.C.)
| | - Nannan Chen
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou 350007, China; (X.L.); (Z.W.); (W.L.); (L.C.); (N.C.)
| | - Tao Dai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
| | - Shitao Sun
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.S.); (Z.L.); (J.H.)
| | - Zhenli Li
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.S.); (Z.L.); (J.H.)
| | - Jinle Hao
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.S.); (Z.L.); (J.H.)
| | - Bin Lin
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.S.); (Z.L.); (J.H.)
| | - Lijun Xie
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou 350007, China; (X.L.); (Z.W.); (W.L.); (L.C.); (N.C.)
| |
Collapse
|
10
|
Diana R, Caruso U, Gentile FS, Di Costanzo L, Panunzi B. A Novel L-Shaped Fluorescent Probe for AIE Sensing of Zinc (II) Ion by a DR/NIR Response. Molecules 2021; 26:molecules26237347. [PMID: 34885935 PMCID: PMC8658931 DOI: 10.3390/molecules26237347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
In the field of optical sensors, small molecules responsive to metal cations are of current interest. Probes displaying aggregation-induced emission (AIE) can solve the problems due to the aggregation-caused quenching (ACQ) molecules, scarcely emissive as aggregates in aqueous media and in tissues. The addition of a metal cation to an AIE ligand dissolved in solution can cause a "turn-on" of the fluorescence emission. Half-cruciform-shaped molecules can be a winning strategy to build specific AIE probes. Herein, we report the synthesis and characterization of a novel L-shaped fluorophore containing a benzofuran core condensed with 3-hydroxy-2-naphthaldehyde crossed with a nitrobenzene moiety. The novel AIE probe produces a fast colorimetric and fluorescence response toward zinc (II) in both in neutral and basic conditions. Acting as a tridentate ligand, it produces a complex with enhanced and red-shifted emission in the DR/NIR spectral range. The AIE nature of both compounds was examined on the basis of X-ray crystallography and DFT analysis.
Collapse
Affiliation(s)
- Rosita Diana
- Department of Agriculture, University of Napoli Federico II, 80055 Portici, Italy; (R.D.); (L.D.C.)
| | - Ugo Caruso
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy; (U.C.); (F.S.G.)
| | - Francesco Silvio Gentile
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy; (U.C.); (F.S.G.)
| | - Luigi Di Costanzo
- Department of Agriculture, University of Napoli Federico II, 80055 Portici, Italy; (R.D.); (L.D.C.)
| | - Barbara Panunzi
- Department of Agriculture, University of Napoli Federico II, 80055 Portici, Italy; (R.D.); (L.D.C.)
- Correspondence: ; Tel.: +39-081-674-170
| |
Collapse
|
11
|
Takahashi M, Ito N, Haruta N, Ninagawa H, Yazaki K, Sei Y, Sato T, Obata M. Environment-sensitive emission of anionic hydrogen-bonded urea-derivative-acetate-ion complexes and their aggregation-induced emission enhancement. Commun Chem 2021; 4:168. [PMID: 36697743 PMCID: PMC9814938 DOI: 10.1038/s42004-021-00601-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/08/2021] [Indexed: 01/28/2023] Open
Abstract
Anions often quench fluorescence (FL). However, strong ionic hydrogen bonding between fluorescent dyes and anion molecules has the potential to control the electronic state of FL dyes, creating new functions via non-covalent interactions. Here, we propose an approach, utilising ionic hydrogen bonding between urea groups and anions, to control the electronic states of fluorophores and develop an aggregation-induced emission enhancement (AIEE) system. The AIEE ionic hydrogen-bonded complex (IHBC) formed between 1,8-diphenylnaphthalene (p-2Urea), with aryl urea groups at the para-positions on the peri-phenyl rings, and acetate ions exhibits high environmental sensitivities in solution phases, and the FL quantum yield (QY) in ion-pair assemblies of the IHBC and tetrabutylammonium cations is more than five times higher than that of the IHBC in solution. Our versatile and simple approach for the design of AIEE dye facilitates the future development of environment-sensitive probes and solid-state emitting materials.
Collapse
Affiliation(s)
- Masaki Takahashi
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Japan.
| | - Nozomu Ito
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Japan
| | - Naoki Haruta
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho 34-4, Sakyo-ku, Kyoto, 606-8103, Japan.,Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.,Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Hayato Ninagawa
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Japan
| | - Kohei Yazaki
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Japan
| | - Yoshihisa Sei
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Tohru Sato
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho 34-4, Sakyo-ku, Kyoto, 606-8103, Japan.,Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.,Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Makoto Obata
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Japan
| |
Collapse
|
12
|
Diana R, Caruso U, Panunzi B. Stimuli-Responsive Zinc (II) Coordination Polymers: A Novel Platform for Supramolecular Chromic Smart Tools. Polymers (Basel) 2021; 13:3712. [PMID: 34771269 PMCID: PMC8588226 DOI: 10.3390/polym13213712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
The unique role of the zinc (II) cation prompted us to cut a cross-section of the large and complex topic of the stimuli-responsive coordination polymers (CPs). Due to its flexible coordination environment and geometries, easiness of coordination-decoordination equilibria, "optically innocent" ability to "clip" the ligands in emissive architectures, non-toxicity and sustainability, the zinc (II) cation is a good candidate for building supramolecular smart tools. The review summarizes the recent achievements of zinc-based CPs as stimuli-responsive materials able to provide a chromic response. An overview of the past five years has been organised, encompassing 1, 2 and 3D responsive zinc-based CPs; specifically zinc-based metallorganic frameworks and zinc-based nanosized polymeric probes. The most relevant examples were collected following a consequential and progressive approach, referring to the structure-responsiveness relationship, the sensing mechanisms, the analytes and/or parameters detected. Finally, applications of highly bioengineered Zn-CPs for advanced imaging technique have been discussed.
Collapse
Affiliation(s)
- Rosita Diana
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Ugo Caruso
- Department of Chemical Science, University of Naples Federico II, 80126 Napoli, Italy;
| | - Barbara Panunzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| |
Collapse
|
13
|
Diana R, Panunzi B. Zinc (II) and AIEgens: The "Clip Approach" for a Novel Fluorophore Family. A Review. Molecules 2021; 26:4176. [PMID: 34299451 PMCID: PMC8304007 DOI: 10.3390/molecules26144176] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Aggregation-induced emission (AIE) compounds display a photophysical phenomenon in which the aggregate state exhibits stronger emission than the isolated units. The common term of "AIEgens" was coined to describe compounds undergoing the AIE effect. Due to the recent interest in AIEgens, the search for novel hybrid organic-inorganic compounds with unique luminescence properties in the aggregate phase is a relevant goal. In this perspective, the abundant, inexpensive, and nontoxic d10 zinc cation offers unique opportunities for building AIE active fluorophores, sensing probes, and bioimaging tools. Considering the novelty of the topic, relevant examples collected in the last 5 years (2016-2021) through scientific production can be considered fully representative of the state-of-the-art. Starting from the simple phenomenological approach and considering different typological and chemical units and structures, we focused on zinc-based AIEgens offering synthetic novelty, research completeness, and relevant applications. A special section was devoted to Zn(II)-based AIEgens for living cell imaging as the novel technological frontier in biology and medicine.
Collapse
Affiliation(s)
| | - Barbara Panunzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| |
Collapse
|
14
|
Hassan SI, Haque A, Jeilani YA, Ilmi R, Faizi MSH, Khan I, Mushtaque M. Thioxanthone-based organic probe with aggregation enhanced emission and exceptional mineral acids sensing abilities. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Diana R, Panunzi B. The Role of Zinc(II) Ion in Fluorescence Tuning of Tridentate Pincers: A Review. Molecules 2020; 25:molecules25214984. [PMID: 33126503 PMCID: PMC7662684 DOI: 10.3390/molecules25214984] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022] Open
Abstract
Tridentate ligands are simple low-cost pincers, easy to synthetize, and able to guarantee stability to the derived complexes. On the other hand, due to its unique mix of structural and optical properties, zinc(II) ion is an excellent candidate to modulate the emission pattern as desired. The present work is an overview of selected articles about zinc(II) complexes showing a tuned fluorescence response with respect to their tridentate ligands. A classification of the tridentate pincers was carried out according to the binding donor atom groups, specifically nitrogen, oxygen, and sulfur donor atoms, and depending on the structure obtained upon coordination. Fluorescence properties of the ligands and the related complexes were compared and discussed both in solution and in the solid state, keeping an eye on possible applications.
Collapse
|
16
|
Diana R, Panunzi B, Caruso U. Two Novel π -Conjugated Fluorophores for Dye-Doped LC On-Off Photoluminescence Switching. LETT ORG CHEM 2020. [DOI: 10.2174/1570178616666191104094527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Among various classes of Photoluminescent (PL) compounds, soft-matter based materials in
which chromophores are embedded in a Liquid-Crystal (LC) host polymer prove to be very attractive
in the production of flexible panels and on-off temperature switches. Actually, the obtainment of low
cost, easily synthesizable, and stable organic molecules soluble in the LC matrix is a challenge for both
scholars and technologists. Here we describe the synthesis of two new emissive dyes based on a dicyanophenylenevinylene
and on a bis-azobenzene core whose PL properties were investigated as neat solids, in
solution, and in particular in a dye-doped LC nematic polymer often employed in PDLC applications.
1H NMR and 13C NMR spectroscopy allow the characterization of all compounds Their thermotropic liquid-
crystalline (LC) properties were examined by differential scanning calorimetry and polarizing optical
microscopy. Photoluminescence properties were characterized by fluorescence spectra.
Collapse
Affiliation(s)
- Rosita Diana
- Department of Agriculture, University of Napoli Federico II, 80055 Portici NA, Italy
| | - Barbara Panunzi
- Department of Agriculture, University of Napoli Federico II, 80055 Portici NA, Italy
| | - Ugo Caruso
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| |
Collapse
|
17
|
Caruso U, Diana R, Tuzi A, Panunzi B. Novel Solid-State Emissive Polymers and Polymeric Blends from a T-Shaped Benzodifuran Scaffold: A Comparative Study. Polymers (Basel) 2020; 12:polym12030718. [PMID: 32213844 PMCID: PMC7183281 DOI: 10.3390/polym12030718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 11/16/2022] Open
Abstract
Two novel polyimines were synthesized from a benzodifuran based diamino monomer and two dialdehydes bearing bulky groups and a flexible spacer. The polymers display tuned luminescence performance according to the presence of half-salen groups. The effect of the intramolecular bond on the emission properties were examined. Two model compounds, replicating the same emissive Schiff base cores, were synthetized. From the models, dye-doped blends in the fluorophore/matrix ratio, resembling the polymers, were produced. Amorphous thin films of the covalent polymers and the polymeric blends were obtained by spin-coating technique. The Photoluminescent (PL) response of the different macromolecular systems were qualitatively and quantitatively examined and compared.
Collapse
Affiliation(s)
- Ugo Caruso
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy; (U.C.); (A.T.)
| | - Rosita Diana
- Department of Agriculture, University of Napoli Federico II, 80055 Portici NA, Italy;
- Correspondence: ; Tel.: +39-081-674170
| | - Angela Tuzi
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy; (U.C.); (A.T.)
| | - Barbara Panunzi
- Department of Agriculture, University of Napoli Federico II, 80055 Portici NA, Italy;
| |
Collapse
|
18
|
Diana R, Caruso U, Piotto S, Concilio S, Shikler R, Panunzi B. Spectroscopic Behaviour of Two Novel Azobenzene Fluorescent Dyes and Their Polymeric Blends. Molecules 2020; 25:molecules25061368. [PMID: 32192178 PMCID: PMC7144390 DOI: 10.3390/molecules25061368] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 11/22/2022] Open
Abstract
Two novel symmetrical bis-azobenzene red dyes ending with electron-withdrawing or donor groups were synthesized. Both chromophores display good solubility, excellent chemical, and thermal stability. The two dyes are fluorescent in solution and in the solid-state. The spectroscopic properties of the neat crystalline solids were compared with those of doped blends of different amorphous matrixes. Blends of non-conductive and of emissive and conductive host polymers were formed to evaluate the potential of the azo dyes as pigments and as fluorophores. Both in absorbance and emission, the doped thin layers have CIE coordinates in the spectral region from yellow to red. The fluorescence quantum yield measured for the brightest emissive blend reaches 57%, a remarkable performance for a steadily fluorescent azo dye. A DFT approach was employed to examine the frontier orbitals of the two dyes.
Collapse
Affiliation(s)
- Rosita Diana
- Department of Agriculture, University of Napoli Federico II, NA 80055 Portici, Italy; (R.D.); (B.P.)
| | - Ugo Caruso
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
- Correspondence: ; Tel.: +39-081-674366
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, SA 84084 Fisciano, Italy;
| | - Simona Concilio
- Department of Industrial Engineering, University of Salerno, SA 84084 Fisciano, Italy;
| | - Rafi Shikler
- Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, POB 653 Beer-Sheva 84105, Israel;
| | - Barbara Panunzi
- Department of Agriculture, University of Napoli Federico II, NA 80055 Portici, Italy; (R.D.); (B.P.)
| |
Collapse
|
19
|
|
20
|
Solid-state fluorescence of two zinc coordination polymers from bulky dicyano-phenylenevinylene and bis-azobenzene cores. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Diana R, Panunzi B, Marrafino F, Piotto S, Caruso U. Novel Dicyano-Phenylenevinylene Fluorophores for Low-Doped Layers: A Highly Emissive Material for Red OLEDs. Polymers (Basel) 2019; 11:E1751. [PMID: 31731406 PMCID: PMC6918329 DOI: 10.3390/polym11111751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/14/2019] [Accepted: 10/23/2019] [Indexed: 11/17/2022] Open
Abstract
Two efficient deep red (DR)-emitting organic dicyano-phenylenevinylene derivatives with terminal withdrawing or donor groups were synthesized. The spectroscopic properties of the neat solids and the low-doped layers in polystyrene or polyvinylcarbazole host matrixes were analyzed, and the luminescence performance was explained using density functional theory (DFT) analysis. A noteworthy 89% fluorescence quantum yield was observed for the brightest red-emissive polyvinylcarbazole (PVK) blend. This result pushed us to successfully produce an emissive red organic light-emitting device (OLED) as a preliminary feasibility test.
Collapse
Affiliation(s)
- Rosita Diana
- Department of Agriculture, University of Napoli Federico II, 80055 Portici, Italy;
| | - Barbara Panunzi
- Department of Agriculture, University of Napoli Federico II, 80055 Portici, Italy;
| | - Francesco Marrafino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (F.M.); (S.P.)
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (F.M.); (S.P.)
| | - Ugo Caruso
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy;
| |
Collapse
|
22
|
An Amphiphilic Pyridinoyl-hydrazone Probe for Colorimetric and Fluorescence pH Sensing. Molecules 2019; 24:molecules24213833. [PMID: 31652986 PMCID: PMC6864485 DOI: 10.3390/molecules24213833] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
A new pH sensor based on a substituted aroylhydrazide with a flexible side chain and a terminal trimethyl ammonium group (PHA+) was designed and synthesized. The terminal quaternary ammonium guarantees excellent solubility in water. At the same time, the probe is very soluble in hydrophobic envirornments. The pyridinoyl-hydrazone moiety acts as the pH-sensitive fluorophore/chromophore probe. Extensive physicochemical characterization has been performed on the bromide salt PHABr. DFT calculations, based on single-crystal X-ray data, permitted to rationalize the optical behavior. Molecular dynamics simulations permitted to clarify the mode of interaction with lipid membrane. The ability of the probe to change color and fluorescence in response to different pH and media of different polarity has been investigated. PHABr shows a remarkable pH-dependent behavior in both absorption and fluorescence spectra with high sensitivity and strong on-off switch effect at neutral pH, perceptible even to the naked eye.
Collapse
|
23
|
Panunzi B, Diana R, Caruso U. A Highly Efficient White Luminescent Zinc (II) Based Metallopolymer by RGB Approach. Polymers (Basel) 2019; 11:E1712. [PMID: 31635279 PMCID: PMC6835976 DOI: 10.3390/polym11101712] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022] Open
Abstract
Three aryl-hydrazone O,N,O tridentate ligands with a different electron-withdrawing substituent were prepared. The introduction of a flexible charged chain in the ligands guaranteed solubility in many organic solvents and in water. The increasing withdrawing aptitude of the substituents red-shifted the emission in the correspondent metallopolymers. The metallated polymers were obtained by grafting ligand-zinc (II) coordination fragments onto commercial poly-(4-vinylpyridine). Metallopolymers thin films exhibited red, green and blue emission colors defined by Commission Internationale d'Eclairage (CIE) coordinates and medium to excellent photoluminescence (PL) quantum yields (PLQYs) comparable with other highly-performing active materials for Light-Emitting Diodes (LEDs). By grafting a suitable mix of the three different coordination pendants, an efficient single-component white emissive metallopolymer with CIE (0.30, 0.31) was prepared. Thanks to the charged moiety, the polymers resulted miscible with an ionic liquid. The addition produced homogeneous polymeric layers with unaltered PL performances, potentially employable in Light-emitting Electrochemical Cells (LECs).
Collapse
Affiliation(s)
- Barbara Panunzi
- Department of Agriculture, University of Napoli Federico II, 80055 Portici NA, Italy.
| | - Rosita Diana
- Department of Agriculture, University of Napoli Federico II, 80055 Portici NA, Italy.
| | - Ugo Caruso
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy.
| |
Collapse
|
24
|
The Effect of Bulky Substituents on Two π-Conjugated Mesogenic Fluorophores. Their Organic Polymers and Zinc-Bridged Luminescent Networks. Polymers (Basel) 2019; 11:polym11091379. [PMID: 31443464 PMCID: PMC6780212 DOI: 10.3390/polym11091379] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/01/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022] Open
Abstract
From a dicyano-phenylenevinylene (PV) and an azobenzene (AB) skeleton, two new symmetrical salen dyes were obtained. Terminal bulky substituents able to reduce intermolecular interactions and flexible tails to guarantee solubility were added to the fluorogenic cores. Photochemical performances were investigated on the small molecules in solution, as neat crystals and as dopants in polymeric matrixes. High fluorescence quantum yield in the orange-red region was observed for the brightest emissive films (88% yield). The spectra of absorption and fluorescence were predicted by Density Functional Theory (DFT) calculations. The predicted energy levels of the frontier orbitals are in good agreement with voltammetry and molecular spectroscopy measures. Employing the two dyes as dopants of a nematic polymer led to remarkable orange or yellow luminescence, which dramatically decreases in on-off switch mode after liquid crystal (LC) order was lost. The fluorogenic cores were also embedded in organic polymers and self-assembly zinc coordination networks to transfer the emission properties to a macro-system. The final polymers emit from red to yellow both in solution and in the solid state and their photoluminescence (PL) performance are, in some cases, enhanced when compared to the fluorogenic cores.
Collapse
|