1
|
Fotiadou R, Fragkaki I, Pettas K, Stamatis H. Valorization of Olive Pomace Using Ultrasound-Assisted Extraction for Application in Active Packaging Films. Int J Mol Sci 2024; 25:6541. [PMID: 38928246 PMCID: PMC11203504 DOI: 10.3390/ijms25126541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Bioactive compounds that can be recovered by the solid wastes of the olive oil sector, such as polyphenols, are known for their significant antioxidant and antimicrobial activities with potential application in nutraceutical, cosmetic, and food industries. Given that industrial demands are growing, and the polyphenol market value is ever increasing, a systematic study on the recovery of natural antioxidant compounds from olive pomace using ultrasound-assisted extraction (UAE) was conducted. Single-factor parameters, i.e., the extraction solvent, time, and solid-to-liquid ratio, were investigated evaluating the total phenolic content (TPC) recovery and the antioxidant activity of the final extract. The acetone-water system (50% v/v, 20 min, 1:20 g mL-1) exhibited the highest total phenolic content recovery (168.8 ± 5.5 mg GAE per g of dry extract). The olive pomace extract (OPE) was further assessed for its antioxidant and antibacterial activities. In DPPH, ABTS, and CUPRAC, OPE exhibited an antioxidant capacity of 413.6 ± 1.9, 162.72 ± 3.36 and 384.9 ± 7.86 mg TE per g of dry extract, respectively. The antibacterial study showed that OPE attained a minimum inhibitory activity (MIC) of 2.5 mg mL-1 against E. coli and 10 mg mL-1 against B. subtilis. Hydroxytyrosol and tyrosol were identified as the major phenolic compounds of OPE. Furthermore, active chitosan-polyvinyl alcohol (CHT/PVA) films were prepared using different OPE loadings (0.01-0.1%, w/v). OPE-enriched films showed a dose-dependent antiradical scavenging activity reaching 85.7 ± 4.6% (ABTS) and inhibition growth up to 81% against B. subtilis compared to the control film. Increased UV light barrier ability was also observed for the films containing OPE. These results indicate that OPE is a valuable source of phenolic compounds with promising biological activities that can be exploited for developing multifunctional food packaging materials.
Collapse
Affiliation(s)
- Renia Fotiadou
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (I.F.)
| | - Ioanna Fragkaki
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (I.F.)
| | - Kyriakos Pettas
- STYMON Natural Products ΙΚΕ, Industrial Area of Patras, Street B2, Building Square 4, 25018 Patras, Greece;
| | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (I.F.)
| |
Collapse
|
2
|
Ben Amor M, Trabelsi N, Djebali K, Abdallah M, Hammami M, Mejri A, Hamzaoui AH, Ramadan MF, Rtimi S. Eco-friendly extraction of antibacterial compounds from enriched olive pomace: a design-of-experiments approach to sustainability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25616-25636. [PMID: 38478307 DOI: 10.1007/s11356-024-32770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
The increasing interest in utilizing olive pomace bioactive molecules to advance functional elements and produce antioxidant and antimicrobial additives underscores the need for eco-friendly extraction and purification methods. This study aims to develop an eco-friendly extraction method to evaluate the effect of extraction parameters on the recovery of bioactive molecules from enriched olive pomace. The effects were identified based on total phenolic and flavonoid contents and antioxidant activity, employing a design of experimental methodology. The positive and the negative simultaneous effects showed that among the tested enrichments, those incorporating Nigella Sativa, dates, and coffee demonstrated superior results in terms of the measured responses. Furthermore, chromatographic analysis unveiled the existence of intriguing compounds such as hydroxytyrosol, tyrosol, and squalene in distinct proportions. Beyond this, our study delved into the structural composition of the enriched pomace through FTIR analysis, providing valuable insights into the functional groups and chemical bonds present. Concurrently, antimicrobial assays demonstrated the potent inhibitory effects of these enriched extracts against various microorganisms, underscoring their potential applications in food preservation and safety. These findings highlight enriched olive pomace as a valuable reservoir of bioactive molecules for food products since they can enhance their anti-oxidative activity and contribute to a sustainable circular economy model for olive oil industries.
Collapse
Affiliation(s)
- Marwa Ben Amor
- Centre of Biotechnology of Borj Cedria, LR15CBBC05 Laboratory of Olive Biotechnology, Hammam-Lif, Tunisia
| | - Najla Trabelsi
- Centre of Biotechnology of Borj Cedria, LR15CBBC05 Laboratory of Olive Biotechnology, Hammam-Lif, Tunisia
| | - Kais Djebali
- Centre of National of Research in Materials Sciences, Valorization of Useful Materials Laboratory, Soliman, Tunisia
| | - Marwa Abdallah
- Centre of Biotechnology of Borj Cedria, LR15CBBC05 Laboratory of Olive Biotechnology, Hammam-Lif, Tunisia
| | - Mejdi Hammami
- Centre of Biotechnology of Borj Cedria, Laboratory of Aromatic and Medicinal Plants, Hammam-Lif, Tunisia
| | - Asma Mejri
- Centre of Biotechnology of Borj Cedria, LR15CBBC05 Laboratory of Olive Biotechnology, Hammam-Lif, Tunisia
| | - Ahmed Hichem Hamzaoui
- Centre of National of Research in Materials Sciences, Valorization of Useful Materials Laboratory, Soliman, Tunisia
| | - Mohamed Fawzy Ramadan
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Sami Rtimi
- Global Institute for Water Environment and Health, 1201, Geneva, Switzerland.
| |
Collapse
|
3
|
Dahdah P, Cabizza R, Farbo MG, Fadda C, Mara A, Hassoun G, Piga A. Improving the Rheological Properties of Dough Obtained by Partial Substitution of Wheat Flour with Freeze-Dried Olive Pomace. Foods 2024; 13:478. [PMID: 38338613 PMCID: PMC10855632 DOI: 10.3390/foods13030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Mediterranean countries are known for their high-quality olives and the production and consumption of olive oil. Olive pomace (OP), the major by-product of olive oil extraction, is receiving attention for its potential as a functional compound in food products, reflecting its physiology- and health-promoting attributes. This study assessed the physico-chemical characteristics of OP obtained from two Sardinian olive cultivars, Bosana and Semidana, and the effect of OP incorporation on the baking performance of wheat dough. We assessed the rheological parameters, pasting profile, and fermentation of doughs obtained through the partial substitution of wheat flour with OP at 0 (control), 1, 2, 3, and 5%. OP inclusion resulted in significant differences in the studied parameters compared with control samples. Positive effects included a decrease in development time, improved dough stability and storage, and superior loss modulus and gas retention capacity. Negative effects comprised an increase in dough resistance and a decrease in dough development height, gas production, gas retention, pasting profile, stickiness, and elasticity. These differences in the OP dough were due to the interactions between polyphenols and fibre with water and the starch-gluten matrix. This study found improvements in dough characteristics following the substitution of wheat flour with low percentages of OP, especially Semidana at 1%. Although higher percentages of OP would be associated with greater nutritional and health benefits, they resulted in a degradation of the dough's attributes, producing a gluten-free-like matrix in the final product.
Collapse
Affiliation(s)
- Patricia Dahdah
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy; (P.D.); (R.C.); (M.G.F.); (C.F.)
| | - Roberto Cabizza
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy; (P.D.); (R.C.); (M.G.F.); (C.F.)
| | - Maria Grazia Farbo
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy; (P.D.); (R.C.); (M.G.F.); (C.F.)
| | - Costantino Fadda
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy; (P.D.); (R.C.); (M.G.F.); (C.F.)
| | - Andrea Mara
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Georges Hassoun
- Department of Environment and Natural Resources, Lebanese University, Beirut P.O. Box 6573/14, Lebanon;
| | - Antonio Piga
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy; (P.D.); (R.C.); (M.G.F.); (C.F.)
| |
Collapse
|
4
|
Grigoletto I, García Salas P, Valli E, Bendini A, Ferioli F, Pasini F, Sánchez Villasclaras S, García-Ruiz R, Gallina Toschi T. HPLC-MS/MS Phenolic Characterization of Olive Pomace Extracts Obtained Using an Innovative Mechanical Approach. Foods 2024; 13:285. [PMID: 38254587 PMCID: PMC10815396 DOI: 10.3390/foods13020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/30/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Olive pomace results from the production of olive oil. Even if olive pomace represents a potential environmental problem, it contains phenolic compounds, which are widely recognized for their beneficial properties for human health. In this study, an innovative and sustainable technological approach to extract phenolic compounds from fresh olive pomace, based on food-grade solvent instead of those usually adopted, is investigated. Characterization and shelf-life evaluation of the hydroalcoholic extracts obtained from the procedure developed for different industrial purposes were also carried out. The phenolic fractions of the different samples were studied with the Folin-Ciocâlteu method to quantify that the total reducing molecules and HPLC-MS/MS analysis was used to define the profile through the identification and quantification of 42 compounds, belonging to five chemical families. Regarding shelf-life, the hydroalcoholic extract showed no significant reduction in phenolic content, for both instrumental evaluations, retaining most of the phenolic compounds present in the raw material; negative attributes were not perceived by sensory evaluation. Thus, these lab-scale results can be the starting point to develop a procedure that is suitable for a real olive mill, representing a valorization strategy in a circular economy and the perspective of new business models.
Collapse
Affiliation(s)
- Ilaria Grigoletto
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—Università di Bologna, Piazza Gabriele Goidanich 60, 47521 Cesena, Italy; (I.G.); (P.G.S.); (E.V.); (F.F.); (F.P.)
| | - Patricia García Salas
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—Università di Bologna, Piazza Gabriele Goidanich 60, 47521 Cesena, Italy; (I.G.); (P.G.S.); (E.V.); (F.F.); (F.P.)
| | - Enrico Valli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—Università di Bologna, Piazza Gabriele Goidanich 60, 47521 Cesena, Italy; (I.G.); (P.G.S.); (E.V.); (F.F.); (F.P.)
| | - Alessandra Bendini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—Università di Bologna, Piazza Gabriele Goidanich 60, 47521 Cesena, Italy; (I.G.); (P.G.S.); (E.V.); (F.F.); (F.P.)
| | - Federico Ferioli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—Università di Bologna, Piazza Gabriele Goidanich 60, 47521 Cesena, Italy; (I.G.); (P.G.S.); (E.V.); (F.F.); (F.P.)
| | - Federica Pasini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—Università di Bologna, Piazza Gabriele Goidanich 60, 47521 Cesena, Italy; (I.G.); (P.G.S.); (E.V.); (F.F.); (F.P.)
| | - Sebastián Sánchez Villasclaras
- University Institute of Research on Olive Groves and Olive Oils, GEOLIT Science and Technology Park, University of Jaen, 236 Mengibar, Spain; (S.S.V.); (R.G.-R.)
| | - Roberto García-Ruiz
- University Institute of Research on Olive Groves and Olive Oils, GEOLIT Science and Technology Park, University of Jaen, 236 Mengibar, Spain; (S.S.V.); (R.G.-R.)
| | - Tullia Gallina Toschi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—Università di Bologna, Viale Fanin, 40, 40127 Bologna, Italy;
| |
Collapse
|
5
|
Galić E, Radić K, Golub N, Mlinar J, Čepo DV, Vinković T. Functionalization of selenium nanoparticles with olive polyphenols - impact on toxicity and antioxidative activity. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:617-631. [PMID: 38147478 DOI: 10.2478/acph-2023-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 12/28/2023]
Abstract
Selenium nanoparticles (SeNPs) represent novel selenium (Se) formulation characterized by improved biocompatibility and a wider therapeutic range in comparison to inorganic Se. The aim of this work was to investigate the possibilities of functionalization of SeNPs with olive pomace extract (OPE), rich in health-promoting polyphenols, and to obtain innovative forms of nutraceuticals. Cytotoxic and antioxidative activities of four types of SeNPs (polyvinylpyrrolidone stabilized (PVP SeNPs), polysorbate stabilized (PS SeNPs), polyvinylpyrrolidone stabilized and functionalized using OPE (f PVP SeNPs) and polysorbate stabilized and functionalized using OPE (f PS SeNPs) were investigated. SeNPs showed lower toxicity on human hepatocellular carcinoma (HepG2) and human colorectal adenocarcinoma (Caco2) cells compared to selenite. Functionalization with polyphenols significantly improved their direct antiradical (f PVP SeNPs: 24.4 ± 1.84 and f PS SeNPs: 30.9 ± 2.47 mg TE/mmol Se) and reducing properties (f PVP SeNPs: 50 ± 3.16 and f PS SeNPs: 53.6 ± 3.22 mg GAE/mmol) compared to non-functionalized SeNPs. The significant impact of tested SeNPs on intracellular antioxidative mechanisms has been observed and it was dependent on both cell type and physico-chemical properties of SeNPs, indicating the complexity of involved mechanisms.
Collapse
Affiliation(s)
- Emerik Galić
- 1Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek Croatia
- 2University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Kristina Radić
- 2University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Nikolina Golub
- 2University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Jakov Mlinar
- 2University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Dubravka Vitali Čepo
- 2University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Tomislav Vinković
- 1Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek Croatia
| |
Collapse
|
6
|
Faraoni P, Cecchi L, Bellumori M, Gnerucci A, Ranaldi F, Mulinacci N. Virgin Olive Oil By-Products: Biological Activity of Phenolic Extract of Pâté on AGS Gastric Cells. Int J Mol Sci 2023; 24:ijms24097959. [PMID: 37175669 PMCID: PMC10178092 DOI: 10.3390/ijms24097959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Pâté is a by-product of olive oil production which represents an abundant source of phenolic compounds and can be used for food formulation, reducing its environmental impact and promoting a circular economy. In this context, the effects of a hydroalcoholic extract of pâté were evaluated for the first time in an AGS human cell line commonly used as model of gastric mucosa. Pâté was obtained from Tuscan olives; the total phenolic content was 16.6 mg/g dried extract, with verbascoside and secoiridoid derivatives as the most abundant phenols. The phenolic pâté extract did not alter viability, distribution of cell cycle phases or proliferation and migration of AGS cells at the tested concentrations. Seven enzymes were chosen to investigate the metabolic effect of the pâté extract in the context of oxidative stress. Pâté produced a statistically significant increase in the activity of key enzymes of some metabolic pathways: Lactate dehydrogenase, Enolase, Pyruvate kinase, Glucose 6-phosphate dehydrogenase, Citrate synthase, 3-Hydroxyacyl-CoA dehydrogenase and Hexokinase. Pre-treatments with the extract of pâté at 100 µg/mL or 200 µg/mL, as observed through PCA analysis, appeared able to counteract the enzymatic activity alterations due to oxidative stress induced by H2O2 1 mM and 2 mM. The results indicate that dried pâté, due to its phenolic components, can be proposed as a new functional food ingredient.
Collapse
Affiliation(s)
- Paola Faraoni
- Department of Experimental and Clinic Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139 Florence, Florence, Italy
| | - Lorenzo Cecchi
- Department of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144 Florence, Florence, Italy
| | - Maria Bellumori
- Department of NEUROFARBA, Division of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessio Gnerucci
- Department of Physics and Astronomy, University of Florence, Via Sansone, 1, 50019 Sesto Fiorentino, Florence, Italy
| | - Francesco Ranaldi
- Department of Experimental and Clinic Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139 Florence, Florence, Italy
| | - Nadia Mulinacci
- Department of NEUROFARBA, Division of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
7
|
Exploring Olive Pomace for Skincare Applications: A Review. COSMETICS 2023. [DOI: 10.3390/cosmetics10010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The cosmetic industry is continuously searching for new active ingredients in an effort to attend to consumer demands which, in recent years, are focused on more natural and environmentally friendly products, obtained from sustainable resources. Nevertheless, they are required to provide cosmetologically appealing skincare products, ultimately with the purpose of improving skin appearance. The olive oil industry generates a large amount of liquid and semi-solid by-products such as olive pomace. Their phytotoxicity impairs safe disposal, so valorization strategies that promote by-product reuse are needed, which may include skincare products. Hydroxytyrosol is the main phenolic compound present in olive pomace and possesses biological effects that make it a desirable active compound for cosmetic formulations such as antioxidant and anti-aging activities as well as photoprotector, depigmenting, antimicrobial and anti-inflammatory actions. Other compounds present in olive pomace can also have functional properties and skin-related benefits. However, the application of this by-product can be a challenge in terms of formulation’s design, stability, and proven efficacy, so appropriate methodologies should be used to validate its incorporation and may include extraction and further encapsulation of bioactive compounds in order to achieve effective and aesthetic appealing skincare products.
Collapse
|
8
|
Astrup A, Monteiro CA. Does the concept of "ultra-processed foods" help inform dietary guidelines, beyond conventional classification systems? NO. Am J Clin Nutr 2022; 116:1482-1488. [PMID: 35670128 DOI: 10.1093/ajcn/nqac123] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Nova classification of ultra-processed foods (UPFs) rests on poorly defined food processes and the presence of food additives from a chemically heterogeneous group, easily leading to misclassification. UPFs are claimed to promote overconsumption of energy and obesity due to high palatability, but little evidence supports effects beyond those that can be accounted for by nutrient composition, energy density, and food matrices. Observational studies link dietary intake of UPFs with obesity, but none have demonstrated independent associations after controlling for likely confounders. A highly cited randomized controlled feeding study that compared a UPF diet with an unprocessed diet showed a rapidly weaning effect on energy intake that can be entirely explained by more conventional and quantifiable dietary factors, including energy density, intrinsic fiber, glycemic load, and added sugar. Clearly, many aspects of food processing can affect health outcomes, but conflating them into the notion of ultra-processing is unnecessary, because the main determinants of chronic disease risk are already captured by existing nutrient profiling systems. In conclusion, the Nova classification adds little to existing nutrient profiling systems; characterizes several healthy, nutrient-dense foods as unhealthy; and is counterproductive to solve the major global food production challenges.
Collapse
Affiliation(s)
- A Astrup
- Obesity and Nutrition Science, Novo Nordisk Foundation, Hellerup, Denmark
| | - C A Monteiro
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Ultrasound-Assisted Extraction of Polyphenols from Olive Pomace: Scale Up from Laboratory to Pilot Scenario. Processes (Basel) 2022. [DOI: 10.3390/pr10122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Power ultrasound application has been proven to intensify the extraction of biocompounds from plant materials. In this work, the ultrasound-assisted extraction (UAE) of polyphenols from olive pomace (OP) has been studied at three different scales: laboratory (batch, 400 W, 0 barg), medium (continuous, 1000 W, 1.0 barg), and pilot (continuous, 2000 W, 1.0 barg) taking into consideration the influence of technological parameters: extraction time (s), solvent to solid ratio (mL/g), mixture pH, and acoustic parameters: amplitude (µm), intensity (W/cm2), and applied energy (Wh). A central composite design was used to optimize the UAE at laboratory scale (0.2 kg). The optimal conditions were: time: 490 s; ratio: 2.1 mL H2O/g OP; pH: 5.6 at an acoustic amplitude of 46 µm for a maximum extraction yield of 3.6 g GAE/L of extract. At medium scale (2.2 kg) the UAE was carried out using amplitudes from 41 to 57 µm. The effect of the pressure (1.0 barg) on the UAE was positive, in terms of higher extraction yield (2.9 g GAE/L) and faster extraction rates compared to the non-pressurized UAE (2.5 g GAE/L), however, the extraction yield was lower than the one observed at laboratory scale. At pilot scale (120 kg), the UAE involved different ultrasound constellations (booster + sonotrode) to deliver the ultrasound energy at different acoustic intensities from 23 to 57 W/cm2. The acoustic intensity (W/cm2) exerts an important effect on the extraction yield, and should be tailored to each process scale. The highest yield obtained at pilot-scale was 3.0 g GAE/L, and it was 58% higher than the one observed in the conventional extraction without ultrasound assistance (stirring and heating). In all tests, regardless of the scale, higher yields were observed between 80 and 85 °C. The application of this technology at the industrial scale to evaluate if the improvement of the extraction caused by the application of ultrasound could is still important when other operations like centrifugation, ultrafiltration, and reverse osmosis are included in the system and to evaluate its techno-economic feasibility.
Collapse
|
10
|
Galić E, Radić K, Golub N, Vitali Čepo D, Kalčec N, Vrček E, Vinković T. Utilization of Olive Pomace in Green Synthesis of Selenium Nanoparticles: Physico-Chemical Characterization, Bioaccessibility and Biocompatibility. Int J Mol Sci 2022; 23:ijms23169128. [PMID: 36012394 PMCID: PMC9409267 DOI: 10.3390/ijms23169128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
Olive pomace extract (OPE) was investigated as a potential surface modifier for the development of the green synthesis process of selenium nanoparticles (SeNPs). In order to evaluate them as potential nutraceuticals, the obtained nanosystems were characterized in terms of size distribution, shape, zeta potential, stability in different media, gastrointestinal bioaccessibility and biocompatibility. Systems with a unimodal size distribution of spherical particles were obtained, with average diameters ranging from 53.3 nm to 181.7 nm, depending on the type of coating agent used and the presence of OPE in the reaction mixture. The nanosystems were significantly affected by the gastrointestinal conditions. Bioaccessibility ranged from 33.57% to 56.93% and it was significantly increased by functionalization of with OPE. Biocompatibility was investigated in the HepG2 and Caco2 cell models, proving that they had significantly lower toxicity in comparison to sodium selenite. Significant differences were observed in cellular responses depending on the type of cells used, indicating differences in the mechanisms of toxicity induced by SeNPs. The obtained results provide new insight into the possibilities for the utilization of valuable food-waste extracts in the sustainable development of nanonutraceuticals.
Collapse
Affiliation(s)
- Emerik Galić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Kristina Radić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Nikolina Golub
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Dubravka Vitali Čepo
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence:
| | - Nikolina Kalčec
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ena Vrček
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Vinković
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
11
|
Malekjani N, Jafari SM. Valorization of olive processing by-products via drying technologies: a case study on the recovery of bioactive phenolic compounds from olive leaves, pomace, and wastewater. Crit Rev Food Sci Nutr 2022; 63:9797-9815. [PMID: 35475951 DOI: 10.1080/10408398.2022.2068123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Olive by-products are rich sources of phenolic compounds and their valorization is a favorable approach in line with sustainable development goals of the United Nations (UN) organization to promote well-being and production of healthier products; also, to deal with the environmental and economic subjects resulting in more profitability in the olive oil industry. The production of value-added ingredients from these by-products is not extensively exploited on the industrial scale. Drying is a critical pretreatment before extraction that can have a direct impact on the recovery and yield of the available bioactive compounds in olive by-products. In order to produce more stable and high quality phenolic products, encapsulation using spray and freeze drying is used. In this study, the effect of the drying process before and after extraction of bioactive compounds from olive by-products as a valuable source of phenolic compounds is reviewed. In addition, fortification using these ingredients and their incorporation in food formulations is also investigated.
Collapse
Affiliation(s)
- Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
12
|
Quero J, Ballesteros LF, Ferreira-Santos P, Velderrain-Rodriguez GR, Rocha CMR, Pereira RN, Teixeira JA, Martin-Belloso O, Osada J, Rodríguez-Yoldi MJ. Unveiling the Antioxidant Therapeutic Functionality of Sustainable Olive Pomace Active Ingredients. Antioxidants (Basel) 2022; 11:antiox11050828. [PMID: 35624692 PMCID: PMC9137791 DOI: 10.3390/antiox11050828] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
Olive pomace (OP) is the main residue that results from olive oil production. OP is rich in bioactive compounds, including polyphenols, so its use in the treatments of diseases related to oxidative stress, such as cancer, could be considered. The present work aimed to study the biological properties of different OP extracts, obtained by ohmic heating-assisted extraction and conventional heating, using water and 50% ethanol, in the treatment and prevention of colorectal cancer through Caco-2 cell models. Additionally, an in-silico analysis was performed to identify the phenolic intestinal absorption and Caco-2 permeability. The extracts were chemically characterized, and it was found that the Ohmic-hydroethanolic (OH-EtOH) extract had the highest antiproliferative effect, probably due to its higher content of phenolic compounds. The OH-EtOH induced potential modifications in the mitochondrial membrane and led to apoptosis by cell cycle arrest in the G1/S phases with activation of p53 and caspase 3 proteins. In addition, this extract protected the intestine against oxidative stress (ROS) caused by H2O2. Therefore, the bioactive compounds present in OP and recovered by applying a green technology such as ohmic-heating, show promising potential to be used in food, nutraceutical, and biomedical applications, reducing this waste and facilitating the circular economy.
Collapse
Affiliation(s)
- Javier Quero
- Department of Pharmacology and Physiology, Forensic and Legal Medicine Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain;
| | - Lina F. Ballesteros
- CEB-Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.F.B.); (P.F.-S.); (C.M.R.R.); (R.N.P.); (J.A.T.)
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Ferreira-Santos
- CEB-Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.F.B.); (P.F.-S.); (C.M.R.R.); (R.N.P.); (J.A.T.)
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
| | - Gustavo R. Velderrain-Rodriguez
- Alianza Latinoamericana de Nutricion Responsable Inc., 400 E Randolph St Suite 2305, Chicago, IL 60611, USA;
- Department of Food Technology, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain;
| | - Cristina M. R. Rocha
- CEB-Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.F.B.); (P.F.-S.); (C.M.R.R.); (R.N.P.); (J.A.T.)
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
| | - Ricardo N. Pereira
- CEB-Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.F.B.); (P.F.-S.); (C.M.R.R.); (R.N.P.); (J.A.T.)
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
| | - José A. Teixeira
- CEB-Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (L.F.B.); (P.F.-S.); (C.M.R.R.); (R.N.P.); (J.A.T.)
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
| | - Olga Martin-Belloso
- Department of Food Technology, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain;
| | - Jesús Osada
- Department of Biochemistry and Molecular and Cell Biology, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain;
- CIBERobn, ISCIII, 28029 Madrtid, Spain
- IIS Aragón, IA2, 50013 Zaragoza, Spain
| | - María Jesús Rodríguez-Yoldi
- Department of Pharmacology and Physiology, Forensic and Legal Medicine Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain;
- CIBERobn, ISCIII, 28029 Madrtid, Spain
- IIS Aragón, IA2, 50013 Zaragoza, Spain
- Correspondence: ; Tel.: +34-976-761649
| |
Collapse
|
13
|
Tapia-Quirós P, Montenegro-Landívar MF, Reig M, Vecino X, Cortina JL, Saurina J, Granados M. Recovery of Polyphenols from Agri-Food By-Products: The Olive Oil and Winery Industries Cases. Foods 2022; 11:362. [PMID: 35159513 PMCID: PMC8834469 DOI: 10.3390/foods11030362] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
The production of olive oil and wine are two of the main agri-food economic activities in Southern Europe. They generate large amounts of solid and liquid wastes (e.g., olive pomace, olive mill wastewater, grape pomace, grape stems, wine lees, and wine processing wastewater) that represent a major environmental problem. Consequently, the management of these residues has become a big challenge for these industries, since they are harmful to the environment but rich in bioactive compounds, such as polyphenols. In recent years, the recovery of phenolic compounds has been proposed as a smart strategy for the valorization of these by-products, from a circular economy perspective. This review aims to provide a comprehensive description of the state of the art of techniques available for the analysis, extraction, and purification of polyphenols from the olive mill and winery residues. Thus, the integration and implementation of these techniques could provide a sustainable solution to the olive oil and winery sectors.
Collapse
Affiliation(s)
- Paulina Tapia-Quirós
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - María Fernanda Montenegro-Landívar
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Mònica Reig
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Xanel Vecino
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Chemical Engineering Department, Research Center in Technologies, Energy and Industrial Processes—CINTECX, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain
| | - José Luis Cortina
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Water Technology Center—CETAQUA, Carretera d’Esplugues, 75, 08940 Cornellà de Llobregat, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
| |
Collapse
|
14
|
Benincasa C, Pellegrino M, Romano E, Claps S, Fallara C, Perri E. Qualitative and Quantitative Analysis of Phenolic Compounds in Spray-Dried Olive Mill Wastewater. Front Nutr 2022; 8:782693. [PMID: 35071293 PMCID: PMC8766512 DOI: 10.3389/fnut.2021.782693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022] Open
Abstract
The processing of olives for oil production generates the most abundant agro-industrial by-products in the Mediterranean area. The three-phase olive oil extraction process requires the addition of a large amount of water to the system, which is difficult to dispose of for its load of toxic pollutants. On the other hand, olive mill wastewater is a rich source of bioactive substances with various biological properties that can be used as ingredients in the food industry for obtaining functional and nutraceutical foods as well as in the pharmaceutical industry. In this study, we present the results relative to the phenolic compounds detected in dried olive mill wastewaters obtained using a spray dryer. Qualitative and quantitative analyses were obtained by high-pressure liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). In particular, the compounds here discussed are: apigenin (9.55 mg/kg dry weight), caffeic acid (2.89 mg/kg dry weight), catecol (6.12 mg/kg dry weight), p-cumaric acid (5.01 mg/kg dry weight), diosmetin (3.58 mg/kg dry weight), hydroxytyrosol (1.481 mg/kg dry weight), hydroxytyrosyl oleate (564 mg/kg dry weight), luteolin (62.38 mg/kg dry weight), luteolin-7-O-glucoside (88.55 mg/kg dry weight), luteolin-4-O-glucoside (11.48 mg/kg dry weight), oleuropein (103 mg/kg dry weight), rutin (48.52 mg/kg dry weight), tyrosol (2043 mg/kg dry weight), vanillin (27.70 mg/kg dry weight), and verbascoside (700 mg/kg dry weight). The results obtained highlighted that the use of dehumidified air as a drying medium, with the addition of maltodextrin, appears to be an effective way to produce a phenol-rich powder to be included in food formulations as well as in pharmaceutical preparations having different biological properties.
Collapse
Affiliation(s)
- Cinzia Benincasa
- CREA Research Centre for Olive, Fruit and Citrus Crops, Rende, Italy
| | | | - Elvira Romano
- CREA Research Centre for Olive, Fruit and Citrus Crops, Rende, Italy
| | - Salvatore Claps
- CREA Research Centre for Animal Production and Aquaculture, Bella Muro, Italy
| | | | - Enzo Perri
- CREA Research Centre for Olive, Fruit and Citrus Crops, Rende, Italy
| |
Collapse
|
15
|
Influence of genetic and interannual factors on bioactive compounds of olive pomace determined through a germplasm survey. Food Chem 2022; 378:132107. [PMID: 35032800 DOI: 10.1016/j.foodchem.2022.132107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
Olive mill wastes, generated in the extraction of virgin olive oil (VOO), are of important concern for the industry owing to the produced volume and polluting load, mainly associated with the presence of organic compounds. Among them, it is worth mentioning bioactive compounds, mainly phenols and triterpenes, which could be potentially isolated for further use in the cosmetic, pharmaceutical, or food industries. This research analyzed the olive pomace after extraction of VOO from fruits harvested of 43 international olive cultivars during three consecutive seasons. The cultivar was identified as the most determinant factor to explain the variability in the relative concentration of phenols and terpenic acids in the extracts. In addition, the characterization of olive pomace extracts allowed clustering cultivars according to the profile of bioactive compounds. Finally, we identified the components responsible for the observed discrimination that was explained according to biosynthetic metabolic pathways.
Collapse
|
16
|
Madureira J, Margaça FMA, Santos-Buelga C, Ferreira ICFR, Verde SC, Barros L. Applications of bioactive compounds extracted from olive industry wastes: A review. Compr Rev Food Sci Food Saf 2021; 21:453-476. [PMID: 34773427 DOI: 10.1111/1541-4337.12861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/28/2022]
Abstract
The wastes generated during the olive oil extraction process, even if presenting a negative impact for the environment, contain several bioactive compounds that have considerable health benefits. After suitable extraction and purification, these compounds can be used as food antioxidants or as active ingredients in nutraceutical and cosmetic products due to their interesting technological and pharmaceutical properties. The aim of this review, after presenting general applications of the different types of wastes generated from this industry, is to focus on the olive pomace produced by the two-phase system and to explore the challenging applications of the main individual compounds present in this waste. Hydroxytyrosol, tyrosol, oleuropein, oleuropein aglycone, and verbascoside are the most abundant bioactive compounds present in olive pomace. Besides their antioxidant activity, these compounds also demonstrated other biological properties such as antimicrobial, anticancer, or anti-inflammatory, thus being used in formulations to produce pharmaceutical and cosmetic products or in the fortification of food. Nevertheless, it is mandatory to involve both industries and researchers to create strategies to valorize these byproducts while maintaining environmental sustainability.
Collapse
Affiliation(s)
- Joana Madureira
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Loures, Portugal.,Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal.,Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s /n, Salamanca, Spain
| | - Fernanda M A Margaça
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Loures, Portugal
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s /n, Salamanca, Spain.,Unidad de Excelencia Producción, Agrícola y Medioambiente (AGRIENVIRONMENT), Parque Científico, Universidad de Salamanca, Salamanca, Spain
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Loures, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| |
Collapse
|
17
|
Dried Destoned Virgin Olive Pomace: A Promising New By-Product from Pomace Extraction Process. Molecules 2021; 26:molecules26144337. [PMID: 34299612 PMCID: PMC8305014 DOI: 10.3390/molecules26144337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022] Open
Abstract
At present the olive oil industry produces large amounts of secondary products once considered waste or by-products. In this paper, we present, for the first time, a new interesting olive by-product named “dried destoned virgin olive pomace” (DDVOP), produced by the pomace oil industry. The production of DDVOP is possible thanks to the use of a new system that differs from the traditional ones by having the dryer set at a lower temperature value, 350 °C instead of 550 °C, and by avoiding the solvent extraction phase. In order to evaluate if DDVOP may be suitable as a new innovative feeding integrator for animal feed, its chemical characteristics were investigated. Results demonstrated that DDVOP is a good source of raw protein and precious fiber; that it is consistent in total phenols (6156 mg/kg); rich in oleic (72.29%), linoleic (8.37%) acids and tocopherols (8.80 mg/kg). A feeding trial was, therefore, carried out on sheep with the scope of investigating the influence of the diet on the quality of milk obtained from sheep fed with DDVOP-enriched feed. The resulting milk was enriched in polyunsaturated (0.21%) and unsaturated (2.42%) fatty acids; and had increased levels of phenols (10.35 mg/kg) and tocopherols (1.03 mg/kg).
Collapse
|
18
|
Olive Oil Dregs as a Novel Source of Natural Antioxidants: Extraction Optimization towards a Sustainable Process. Processes (Basel) 2021. [DOI: 10.3390/pr9061064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Olive oil dregs (OOD), which are an underutilized by-product from oil mills, were used for the extraction of antioxidant compounds. The residues from three oil mills located in Campania (Southern Italy) were extracted with acidified methanol, and hydroxytyrosol (HT) was the main phenolic compound detected. Total phenolic content (TPC) and HT amount were measured. EVO Campania oil mill provided the residue with the highest TPC and HT quantities: 6.801 ± 0.159 mg Gallic Acid Equivalents (GAE)/g OOD and 519.865 ± 9.082 μg/g OOD, respectively. Eco-friendly extractions at different temperatures and times were performed on EVO Campania OOD, obtaining 9.122 ± 0.104 mg GAE/g OOD and 541.330 ± 64.087 μg/g OOD for TPC and HT, respectively, at 121 °C for 60 min. Radical Scavenging Activity (RSA), Superoxide Scavenging Activity (SSA), and Ferric Reducing Antioxidant Power (FRAP) were measured in OOD aqueous extracts. Extract prepared at 37 °C for 60 min showed the greatest RSA and SSA values (44.12 ± 1.82 and 75.72 ± 1.78, respectively), whereas extract prepared at 121 °C for 60 min exhibited the highest FRAP value (129.10 ± 10.49 μg Ascorbic Acid Equivalents (AAE)/mg). OOD extracts were able to protect sunflower oil from oxidation for 4 weeks at 65 °C. The overall results suggest that this novel residue can be usefully valorized by providing HT-rich extracts to use as antioxidant agents.
Collapse
|
19
|
Chanioti S, Katsouli M, Tzia C. Novel Processes for the Extraction of Phenolic Compounds from Olive Pomace and Their Protection by Encapsulation. Molecules 2021; 26:molecules26061781. [PMID: 33810031 PMCID: PMC8005142 DOI: 10.3390/molecules26061781] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Olive pomace, the solid by-product derived from olive oil production consists of a high concentration of bioactive compounds with antioxidant activity, such as phenolic compounds, and their recovery by applying innovative techniques is a great opportunity and challenge for the olive oil industry. This study aimed to point out a new approach for the integrated valorization of olive pomace by extracting the phenolic compounds and protecting them by encapsulation or incorporation in nanoemulsions. Innovative assisted extraction methods were evaluated such as microwave (MAE), homogenization (HAE), ultrasound (UAE), and high hydrostatic pressure (HHPAE) using various solvent systems including ethanol, methanol, and natural deep eutectic solvents (NADESs). The best extraction efficiency of phenolic compounds was achieved by using NADES as extraction solvent and in particular the mixture choline chloride-caffeic acid (CCA) and choline chloride-lactic acid (CLA); by HAE at 60 °C/12,000 rpm and UAE at 60 °C, the total phenolic content (TPC) of extracts was 34.08 mg gallic acid (GA)/g dw and 20.14 mg GA/g dw for CCA, and by MAE at 60 °C and HHPAE at 600 MPa/10 min, the TPC was 29.57 mg GA/g dw and 25.96 mg GA/g dw for CLA. HAE proved to be the best method for the extraction of phenolic compounds from olive pomace. Microencapsulation and nanoemulsion formulations were also reviewed for the protection of the phenolic compounds extracted from olive pomace. Both encapsulation techniques exhibited satisfactory results in terms of encapsulation stability. Thus, they can be proposed as an excellent technique to incorporate phenolic compounds into food products in order to enhance both their antioxidative stability and nutritional value.
Collapse
|
20
|
Influence of Olive Pomace Blending on Antioxidant Activity: Additive, Synergistic, and Antagonistic Effects. MOLECULES (BASEL, SWITZERLAND) 2020; 26:molecules26010169. [PMID: 33396530 PMCID: PMC7796174 DOI: 10.3390/molecules26010169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022]
Abstract
Food innovation is moving rapidly and comprises new categories of food products and/or ingredients with a natural and ecological origin. Monocultivar olive pomaces, individually or combined, can be a source of natural bioactive compounds suitable for food or cosmetic applications. This work aimed to assess the phenolics content and antioxidant activity of four monocultivar olive pomaces (Arbosana, Koroneiki, Oliana, and Arbequina) and forty-nine blends prepared with different proportions of each. Additive, synergistic, and antagonistic effects were studied. Among the monocultivar pomaces, Koroneiki and Arbosana were the richest in total phenolics (~15 mg gallic acid eq./g). Most of the interactions found in the blends were additive or synergistic, while very few antagonistic effects were observed. The best results were obtained for those blends where the Koroneiki variety predominated: (i) 90% Koroneiki, 4.75% Oliana, 3.75% Arbequina, 1.5% Arbosana; (ii) 65% Koroneiki, 29% Oliana, 3.25% Arbequina, 2.75% Arbosana; and (iii) 85% Koroneiki, 8.75% Arbequina, 3.5% Arbosana, 2.75% Oliana. In sum, these combinations can be advantageous in comparison to the individual use of monocultivar pomaces, presenting a higher potential to be used as functional ingredients or for bioactive compounds extraction, having in view the obtention of natural preservatives or food/cosmetic formula enhancers.
Collapse
|
21
|
Food (Matrix) Effects on Bioaccessibility and Intestinal Permeability of Major Olive Antioxidants. Foods 2020; 9:foods9121831. [PMID: 33317079 PMCID: PMC7764665 DOI: 10.3390/foods9121831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND olive pomace extract (OPE) is a rich source of health promoting polyphenols (hydroxytyrosol (HTS) and tyrosol (TS)) and can be used as a nutraceutical ingredient of dietary supplements and functional foods. Its adequate bioavailability is a prerequisite for excreting biological activity and can be significantly and specifically affected by different food matrices. METHODS in order to investigate food effects on polyphenol bioaccessibility, OPE was co-digested with different foods according to internationally harmonized in vitro digestibility method. Impact of particular nutrients on HTS and TS permeability was assessed on Caco-2 cell monolayer. RESULTS HTS and TS bioaccessibility and transepithelial permeability can be significantly affected by foods (nutrients), especially by casein and certain types of dietary fiber. Those effects are polyphenol-and nutrient-specific and are achieved either through complexation in gastrointestinal lumen and/or through direct effects of nutrients on intestinal monolayer. CONCLUSIONS obtained results emphasize the significance and complexity of polyphenol interactions within the food matrix and the necessity of individual investigational approaches with respect to particular food/nutrient and interacting phenolic compounds.
Collapse
|
22
|
Trombino S, Curcio F, Cassano R. Nano- and Micro-Technologies Applied to Food Nutritional Ingredients. Curr Drug Deliv 2020; 18:670-678. [PMID: 33243120 DOI: 10.2174/1567201817999201125205025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
New technologies are currently investigated to improve the quality of foods by enhancing their nutritional value, freshness, safety, and shelf-life, as well as by improving their tastes, flavors and textures. Moreover, new technological approaches are being explored, in this field, to address nutritional and metabolism-related diseases (i.e., obesity, diabetes, cardiovascular diseases), to improve targeted nutrition, in particular for specific lifestyles and elderly population, and to maintain the sustainability of food production. A number of new processes and materials, derived from micro- and nano-technology, have been used to provide answers to many of these needs and offer the possibility to control and manipulate properties of foods and their ingredients at the molecular level. The present review focuses on the importance of micro- and nano-technology in the food and nutritional sector and, in particular, provides an overview of the micro- and nano-materials used for the administration of nutritional constituents essential to maintain and improve health, as well as to prevent the development and complications of diseases.
Collapse
Affiliation(s)
- Sonia Trombino
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Federica Curcio
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Roberta Cassano
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
23
|
Radić K, Vinković Vrček I, Pavičić I, Čepo DV. Cellular Antioxidant Activity of Olive Pomace Extracts: Impact of Gastrointestinal Digestion and Cyclodextrin Encapsulation. Molecules 2020; 25:molecules25215027. [PMID: 33138271 PMCID: PMC7663658 DOI: 10.3390/molecules25215027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022] Open
Abstract
Olive pomace is a valuable secondary raw material rich in polyphenols, left behind after the production of olive oil. The present study investigated the protective effect of a polyphenolic extract from olive pomace (OPE) on cell viability and antioxidant defense of cultured human HepG2 cells submitted to oxidative stress induced by tert-butylhydroperoxide (tBOOH). The investigation considered possible matrix effects, impact of gastrointestinal digestion and cyclodextrin (CD) encapsulation. Pre-treatment of cells with OPE prevented cell damage and increased intracellular glutathione but did not affect the activity of glutathione peroxidase and superoxide dismutase. OPE matrix significantly enhanced cell protective effects of major antioxidants, such as hydroxytyrosol (HTS), while cyclodextrin encapsulation enhanced activity of OPE against intracellular reactive oxygen species (ROS) accumulation. The obtained results show that OPE is more potent antioxidant in comparison to equivalent dose of main polyphenols (HTS and TS) and that increasing solubility of OPE polyphenols by CD encapsulation or digestion enhances their potential to act as intracellular antioxidants. Antioxidative protection of cells by OPE was primarily achieved through direct radical-scavenging/reducing actions rather than activation of endogenous defense systems in the cell.
Collapse
Affiliation(s)
- Kristina Radić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia;
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10001 Zagreb, Croatia; (I.V.V.); (I.P.)
| | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10001 Zagreb, Croatia; (I.V.V.); (I.P.)
| | - Dubravka Vitali Čepo
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-1-6394-771
| |
Collapse
|
24
|
Influence of Pomace Matrix and Cyclodextrin Encapsulation on Olive Pomace Polyphenols' Bioaccessibility and Intestinal Permeability. Nutrients 2020; 12:nu12030669. [PMID: 32121413 PMCID: PMC7146296 DOI: 10.3390/nu12030669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Olive pomace is a rich source of biologically active compounds, mainly polyphenols. Recently, an efficient and sustainable cyclodextrin (CD)-enhanced extraction was developed. It enabled a relatively simple formulation of high-quality olive pomace extracts (OPEs) that can be used as alternative sources of olive-derived polyphenols in the nutrition and pharma industries. However, biological effects and nutraceutical potential of OPEs are primarily limited by generally low oral bioavailability of major polyphenols (hydroxytyrosol and its derivatives) that can be significantly influenced by OPE matrix and the presence of CDs in formulation. The major goal of this research was to investigate the impact of complex matrix and different types of CDs on gastrointestinal stability and intestinal permeability of major OPE polyphenols, and provide additional data about mechanisms of absorption and antioxidant activity in gut lumen. Obtained results showed high bioaccessibility but relatively low permeability of OPE polyphenols, which was negatively affected by OPE matrix. CDs improved antioxidant efficiency of tested OPEs and tyrosol gastrointestinal stability. Effects of CDs on permeability and the metabolism of particular OPE polyphenols were CD- and polyphenol-specific.
Collapse
|
25
|
Tamasi G, Baratto MC, Bonechi C, Byelyakova A, Pardini A, Donati A, Leone G, Consumi M, Lamponi S, Magnani A, Rossi C. Chemical characterization and antioxidant properties of products and by-products from Olea europaea L. Food Sci Nutr 2019; 7:2907-2920. [PMID: 31572584 PMCID: PMC6766567 DOI: 10.1002/fsn3.1142] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/28/2022] Open
Abstract
The products and by-products of Olea europaea L.: olive fruits (primary agricultural product), oils (primary agro-industrial product), pomaces (agro-industrial processing by-product), and leaves (agricultural practices by-product), are promising sources of bioactive compounds. In the present study, qualitative and quantitative analyses of selected bioactive components in olive fruits, oils, and pomaces were performed. Total polyphenol content and antioxidant activity were analyzed in all samples (humid pomaces 2015: TPP, 26.0 ± 1.5-43.7 ± 3.0 g(GAEq)/kg DW; TEAC/ABTS, 189.5 ± 3.7-388.1 ± 12.0 mmol(Trx)kg DW). Radical (DPPH) quenching potential was analyzed via photometric and EPR methods, obtaining Vis/EPR signal ratio by 1.05 ± 0.45 and 1.66 ± 0.39 for fruits and pomaces, respectively. Through HPLC-UV and HPLC-MS/MS techniques, oleuropein and hydroxytyrosol, as well as selected hydroxycinnamic acids and flavonoids, were identified and quantified in olive fruits and pomaces. The main components were rutin, luteolin, and chlorogenic acid. Cytotoxic assay on fibroblast cells revealed toxic effects for selected extracts at highest tested concentrations (5%).
Collapse
Affiliation(s)
- Gabriella Tamasi
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
- Centre for Colloid and Surface Science (CSGI)University of FlorenceFirenzeItaly
| | | | - Claudia Bonechi
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
- Centre for Colloid and Surface Science (CSGI)University of FlorenceFirenzeItaly
| | | | - Alessio Pardini
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
- Centre for Colloid and Surface Science (CSGI)University of FlorenceFirenzeItaly
| | - Alessandro Donati
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
- Centre for Colloid and Surface Science (CSGI)University of FlorenceFirenzeItaly
| | - Gemma Leone
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
- National Interuniversity Consortium of Materials Science and Technology (INSTM)FirenzeItaly
| | - Marco Consumi
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
- National Interuniversity Consortium of Materials Science and Technology (INSTM)FirenzeItaly
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
- National Interuniversity Consortium of Materials Science and Technology (INSTM)FirenzeItaly
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
- National Interuniversity Consortium of Materials Science and Technology (INSTM)FirenzeItaly
| | - Claudio Rossi
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
- Centre for Colloid and Surface Science (CSGI)University of FlorenceFirenzeItaly
- Operative UnitUniversity of SienaCalabriaItaly
| |
Collapse
|
26
|
Tufariello M, Durante M, Veneziani G, Taticchi A, Servili M, Bleve G, Mita G. Patè Olive Cake: Possible Exploitation of a By-Product for Food Applications. Front Nutr 2019; 6:3. [PMID: 30805344 PMCID: PMC6371699 DOI: 10.3389/fnut.2019.00003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022] Open
Abstract
Patè Olive Cake (POC) is a new by-product derived from recently introduced new decanters in the olive oil production process. POC, is essentially composed of water, olive pulp and olive skin, and is rich in several valuable bioactive compounds. Moreover, it still contains about 8-12% residual olive oil. We characterized the main bioactive compounds in POC from black olives (cv. Leccino and Cellina di Nardò) and also verified the biotechnological aptitude of selected yeast and lactic acid bacteria from different sources, in transforming POC into a new fermented product. The strategy of sequential inoculum of Saccharomyces cerevisiae and Leuconostoc mesenteroides was successful in driving the fermentation process. In fermented POC total levels of phenols were slightly reduced when compared with a non-fermented sample nevertheless the content of the antioxidant hydroxytyrosol showed increased results. The total levels of triterpenic acids, carotenoids, and tocochromanols results were almost unchanged among the samples. Sensory notes were significantly improved after fermentation due to the increase of superior alcohols, esters, and acids. The results reported indicate a possible valorisation of this by-product for the preparation of food products enriched in valuable healthy compounds.
Collapse
Affiliation(s)
- Maria Tufariello
- Consiglio Nazionale delle Ricerche—Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
| | - Miriana Durante
- Consiglio Nazionale delle Ricerche—Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
| | - Gianluca Veneziani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Agnese Taticchi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Maurizio Servili
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Gianluca Bleve
- Consiglio Nazionale delle Ricerche—Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
| | - Giovanni Mita
- Consiglio Nazionale delle Ricerche—Istituto di Scienze delle Produzioni Alimentari, Lecce, Italy
| |
Collapse
|