1
|
Yin Y, Fan C, Cheng L, Shan Y. Efficient and Sensitive Detection of Organophosphate Pesticides in Orange Juice Using Dispersed Solid-Phase Extraction Based on Amorphous UiO-66. J Sep Sci 2025; 48:e70066. [PMID: 39740127 DOI: 10.1002/jssc.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025]
Abstract
Organophosphate pesticides can cause long-term neurological damage to humans. There is an urgent need to develop a more sensitive and efficient method for detecting trace amounts of organophosphorus pesticides in orange juice, particularly in the presence of interfering substances. This study developed a dispersive solid-phase extraction (DSPE) method using amorphous UiO-66 (aUiO-66) as an adsorbent for the detection of four organophosphate pesticides (fenthion, profenofos, fensulfothion, and chlorpyrifos) in orange juice. The aUiO-66 was synthesized in a green, direct method within a deep eutectic solvent composed of diethanolamine hydrochloride and acetamide. Its amorphous nature was confirmed through x-ray diffraction (XRD) and thermogravimetric analysis (TGA). Parameters influencing extraction efficiency, including adsorbent dosage, extraction time, eluent type, and volume, were optimized by genetic neural network (GNN). The method demonstrated good linearity (R2 = 0.9927-0.9981), high recovery (95.35%-110.75%), low limit of detection (0.169-0.214 ng L⁻¹), and precision (intraday RSD = 4.13%-5.44%, interday RSD = 3.28%-4.91%). It was successfully applied to analyze targets in commercially available orange juices, detecting residues within 4.37-36.07 µg L⁻¹. This study's methodological development offers significant guidance for efficient detection of organophosphorus pesticides in food products, potentially facilitating the advancement and application of simpler and more efficient analytical techniques.
Collapse
Affiliation(s)
- Yaqi Yin
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, China
| | - Chen Fan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, China
| | - Linru Cheng
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, China
| | - Yuwei Shan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
2
|
Martínez-Pérez-Cejuela H, García-Atienza P, Simó-Alfonso EF, Herrero-Martínez JM, Armenta S. Micro-paper-based analytical device decorated with metal-organic frameworks for the assay of synthetic cannabinoids in oral fluids coupled to ion mobility spectrometry. Mikrochim Acta 2023; 190:271. [PMID: 37351649 PMCID: PMC10289984 DOI: 10.1007/s00604-023-05844-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
A new concept of paper-based device has been developed combining the advantages of cellulose supports and the rich surface chemistry of metal-organic frameworks (MOFs). The composite, named as NH2-UiO-66@paper, has been developed for the isolation of synthetic cannabinoid receptor agonists (SCRAs) in oral fluids, trying to mimic the interactions of those compounds with the human CB1R and CB2R receptors, mainly governed by hydrogen bonding and π-interactions with serine and histidine residues. MOF selection (UiO-66) and functionalization of the ligand (2-aminoterephthalic acid) has been done according to the following criteria: (i) water stability of the selected MOF, and (ii) promoting appropriate interactions with SCRAs due to the MOF nature. NH2-UiO-66@paper composite has been characterized in depth and the results confirmed that the material is stable at the temperature selected for thermal desorption (230 °C). Furthermore, the developed method provided appropriate precision values (RSD < 12%) and a limit of detection as low as 10 ng using ion mobility spectrometry as analytical technique. Lastly, the method has been successfully applied to the isolation of several synthetic cannabinoids from oral fluids. This method claims to be an interesting approach for expanding the combination of MOFs with sustainable support and represents a promising alternative to sophisticated and non-portable systems due to the negligible sample treatment required and the simplicity of the operation, which can be applied with screening purposes.
Collapse
Affiliation(s)
| | - Patricia García-Atienza
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | | | | | - Sergio Armenta
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
3
|
Selahle SK, Nqombolo A, Nomngongo PN. From polyethylene waste bottles to UIO-66 (Zr) for preconcentration of steroid hormones from river water. Sci Rep 2023; 13:6808. [PMID: 37100990 PMCID: PMC10131548 DOI: 10.1038/s41598-023-34031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/22/2023] [Indexed: 04/28/2023] Open
Abstract
Metal-organic framework (UiO-66 (Zr) was synthesized using polyethylene terephthalate (PET) and used as an adsorbent for extraction and preconcentration of steroid hormones in river water. Polyethylene waste bottles were used as the source of polyethylene terephthalate (PET) ligands. The UIO-66(Zr), which the PET was made from recycled waste plastics, was used for the first time for the extraction and preconcentration of four different types of steroid hormones in river water samples. Various analytical characterization techniques were employed to characterize the synthesized material. The steroid hormones were detected and quantified using high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). The results were further validated using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Experimental variables, such as sample pH, the mass of adsorbent and extraction time, were optimized using Box-Behnken design (BBD). The dispersive solid phase extraction method combined with HPLC-DAD, displayed good linearity (0.004-1000 µg/L) low limits of detections (LODs, 1.1-16 ng/L for ultrapure water and 2.6-5.3 ng/L for river water) and limits of quantification (LOQs, 3.7-5.3 ng/L for ultrapure water and 8.7-11.0 ng/L for river water samples) and acceptable extraction recoveries (86-101%). The intraday (n = 10) and interday (n = 5) precisions expressed in terms of relative standard deviations (%RSD) were all less than 5%. The steroid hormones were detected in most of the river water samples (Vaal River and Rietspruit River). The DSPE/HPLC method offered a promising approach for simultaneous extraction, preconcentration and determination of steroid hormones in water.
Collapse
Affiliation(s)
- Shirley Kholofelo Selahle
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Azile Nqombolo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein, 2028, South Africa
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI): Nanotechnology for Water, University of Johannesburg, Doornfontein, 2028, South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein, 2028, South Africa.
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI): Nanotechnology for Water, University of Johannesburg, Doornfontein, 2028, South Africa.
| |
Collapse
|
4
|
Martínez-Pérez-Cejuela H, Conejero M, Amorós P, El Haskouri J, Simó-Alfonso EF, Herrero-Martínez JM, Armenta S. Metal-organic frameworks as promising solid-phase sorbents for the isolation of third-generation synthetic cannabinoids in biological samples. Anal Chim Acta 2023; 1246:340887. [PMID: 36764780 DOI: 10.1016/j.aca.2023.340887] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
In this work, metal-organic frameworks (MOFs) were used for the first time as solid-phase extraction (SPE) sorbents for the isolation of synthetic cannabinoids (SCs) from oral fluids and subsequently quantified by LC-fluorescence detection (FLD). In this context, different MOF families were synthesized and tested under SPE mode. UiO-66 was the family selected, being the amino functionalized (NH2-UiO-66) the best candidate in terms of extraction performance. After the method optimization, several analytical parameters of interest were obtained, reaching limits of detection (LODs) as low as 0.6-0.8 μg L-1 and precision values (expressed as RSD) lower than 10.6%. The developed method was successfully applied to the determination of 8 SCs in different oral fluids at three spiked levels with recoveries between 67 and 114%. This method claims to be a real alternative for screening purposes, being a cost-effective procedure due to the price of the sorbent (<0.5 €/cartridge) and its recyclability (up to 12 uses), among others good features.
Collapse
Affiliation(s)
| | - Mónica Conejero
- Department of Analytical Chemistry, University of Valencia, Dr Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Pedro Amorós
- Institute of Material Science (ICMUV), University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain
| | - Jamal El Haskouri
- Institute of Material Science (ICMUV), University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain
| | | | | | - Sergio Armenta
- Department of Analytical Chemistry, University of Valencia, Dr Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
5
|
Ghorbani YA, Ghoreishi SM, Ghani M. Micro-Solid Phase Extraction of Volatile Organic Compounds in Water Samples Using Porous Membrane-Protected Melamine-Modified MIL-88 Followed by Gas Chromatography-Mass Spectrometry. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1954038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yousef Ali Ghorbani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Sayed Mehdi Ghoreishi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Milad Ghani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
6
|
Metal-organic framework-based magnetic dispersive micro-solid-phase extraction for the gas chromatography–mass spectrometry determination of polycyclic aromatic compounds in water samples. J Chromatogr A 2022; 1671:463010. [DOI: 10.1016/j.chroma.2022.463010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 12/21/2022]
|
7
|
Uflyand IE, Naumkina VN, Zhinzhilo VA. Nanocomposites of Graphene Oxide and Metal-Organic Frameworks. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s107042722111001x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Gutiérrez-Serpa A, Kundu T, Pasán J, Jiménez-Abizanda AI, Kaskel S, Senkovska I, Pino V. Zirconium-Based Metal-Organic Framework Mixed-Matrix Membranes as Analytical Devices for the Trace Analysis of Complex Cosmetic Samples in the Assessment of Their Personal Care Product Content. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4510-4521. [PMID: 35006682 PMCID: PMC8796172 DOI: 10.1021/acsami.1c21284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
A device comprising a zirconium-based metal-organic framework (MOF) mixed-matrix membrane (MMM) framed in a plastic holder has been used to monitor the content of personal care products (PCPs) in cosmetic samples. Seven different devices containing the porous frameworks UiO-66, UiO-66-COOH, UiO-67, DUT-52, DUT-67, MOF-801, and MOF-808 in polyvinylidene fluoride (PVDF) membranes were studied. Optimized membranes reach high adsorption capacities of PCPs, up to 12.5 mg·g-1 benzophenone in a 3.0 mg·L-1 sample. The MMM adsorption kinetics, uptake measurements, and isotherm studies were carried out with aqueous standard solutions of PCPs to ensure complete characterization of the performance. The studies demonstrate the high applicability and selectivity of the composites prepared, highlighting the performance of PVDF/DUT-52 MMM that poses uptakes up to 78% for those PCPs with higher affinity while observing detection limits for the entire method down to 0.03 μg·L-1. The PVDF/DUT-52 device allowed the detection of parabens and benzophenones in the samples, with PCPs found at concentrations of 1.9-24 mg·L-1.
Collapse
Affiliation(s)
- Adrián Gutiérrez-Serpa
- Laboratorio
de Materiales para Análisis Químicos (MAT4ALL), Departamento
de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), 38206 La Laguna, Tenerife, Spain
- Unidad
de Investigación de Bioanalítica y Medioambiente, Instituto
Universitario de Enfermedades Tropicales y Salud Pública de
Canarias, Universidad de La Laguna (ULL), 38206 La Laguna, Tenerife, Spain
| | - Tanay Kundu
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, 603203 Chennai, Tamil Nadu, India
| | - Jorge Pasán
- Laboratorio
de Materiales para Análisis Químicos (MAT4ALL), Departamento
de Química, Unidad Departamental de Química Inorgánica, Universidad de La Laguna (ULL), 38206 La Laguna, Tenerife, Spain
| | - Ana I. Jiménez-Abizanda
- Laboratorio
de Materiales para Análisis Químicos (MAT4ALL), Departamento
de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), 38206 La Laguna, Tenerife, Spain
| | - Stefan Kaskel
- Technische
Universität Dresden (TUD), Bergstrasse 66, 01069 Dresden, Germany
| | - Irena Senkovska
- Technische
Universität Dresden (TUD), Bergstrasse 66, 01069 Dresden, Germany
| | - Verónica Pino
- Laboratorio
de Materiales para Análisis Químicos (MAT4ALL), Departamento
de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), 38206 La Laguna, Tenerife, Spain
- Unidad
de Investigación de Bioanalítica y Medioambiente, Instituto
Universitario de Enfermedades Tropicales y Salud Pública de
Canarias, Universidad de La Laguna (ULL), 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
9
|
Hao X, Zhai Z, Sun Y, Li C. Preparation and Performance Characterization of Flexible and Washable Zr-MOFs Composite Nanofiber Membrane. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21080402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
González-Hernández P, Pacheco-Fernández I, Bernardo F, Homem V, Pasán J, Ayala JH, Ratola N, Pino V. Headspace solid-phase microextraction based on the metal-organic framework CIM-80(Al) coating to determine volatile methylsiloxanes and musk fragrances in water samples using gas chromatography and mass spectrometry. Talanta 2021; 232:122440. [PMID: 34074425 DOI: 10.1016/j.talanta.2021.122440] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/31/2022]
Abstract
A headspace solid-phase microextraction (HS-SPME) method was developed using the metal-organic framework (MOF) CIM-80(Al) as extraction phase and in combination with gas chromatography-mass spectrometry (GC-MS) for the simultaneous determination of 6 methylsiloxanes and 7 musk fragrances in different environmental waters. The chromatographic separation was optimized in different GC instruments equipped with different detectors, allowing the correct separation and identification of the compounds. The HS-SPME method was optimized using a Box-Behnken experimental design, while the validation was carried out together with the most suitable commercial fiber (divinylbenzene/polydimethylsiloxane) for comparison purposes. The MOF-based coating was particularly efficient for the determination of volatile methylsiloxanes, showing moderately lower limits of detection (of 0.2 and 0.5 μg L-1versus 0.6 μg L-1 for cyclic methylsiloxanes) and slightly better precision (relative standard deviation values lower than 17% versus 22%) than the commercial coating, while avoiding the cross-contamination issues associated to the polymeric composition of commercial fibers. The method was applied for the analysis of seawater and wastewater samples, allowing the quantification of several analytes and the assessment of matrix effects. The proposed HS-SPME method using the CIM-80(Al) fiber constitutes a more environmentally friendly, simpler, and efficient strategy in comparison with other sample preparation methods using different extraction techniques, while the use of a MOF as fiber sorbent constitutes a potential alternative to exploit the features of SPME for the challenging environmental monitoring of these compounds.
Collapse
Affiliation(s)
- Providencia González-Hernández
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Chemical Engineering, University of Porto, Porto, 4200-465, Portugal.
| | - Idaira Pacheco-Fernández
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife, 38206, Spain.
| | - Fábio Bernardo
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Chemical Engineering, University of Porto, Porto, 4200-465, Portugal.
| | - Vera Homem
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Chemical Engineering, University of Porto, Porto, 4200-465, Portugal.
| | - Jorge Pasán
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Física, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain.
| | - Juan H Ayala
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife, 38206, Spain.
| | - Nuno Ratola
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Chemical Engineering, University of Porto, Porto, 4200-465, Portugal.
| | - Verónica Pino
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Tenerife, 38206, Spain.
| |
Collapse
|
11
|
Nukatsuka I, Satoh R, Kihara S, Kitagawa F. A thin-layer solid-phase extraction-liquid film elution technique used for the enrichment of polycyclic aromatic hydrocarbons in water. J Sep Sci 2021; 44:1989-1997. [PMID: 33605531 DOI: 10.1002/jssc.202001165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/28/2022]
Abstract
In this article, we propose a novel microsolid-phase extraction and elution technique, which we called the thin-layer solid-phase extraction-liquid film elution technique. The thin-layer solid-phase extraction phase is an octadecylsilylated sol gel- coated porous silica thin film prepared on the outer wall of a test tube, which has a larger surface area for the extraction of the target compounds compared to a conventional solid-phase microextraction phase. After optimization of the extraction procedure for five types of polycyclic aromatic hydrocarbons, the liquid film elution technique was investigated. Liquid film elution is an elution technique wherein the compounds extracted into the thin-layer solid-phase extraction phase are eluted using a small volume of solvent film formed around the extraction phase. The results show that the elution can be carried out using 150 μL of eluent. Enrichment factors between 20 and 34 were obtained for polycyclic aromatic hydrocarbons containing more than four aromatic rings in 10 mL aliquots of aqueous samples. Finally, recoveries of 85-112% were obtained for polycyclic aromatic hydrocarbons containing more than four aromatic rings from spiked natural water samples using the thin-layer solid-phase extraction-liquid film elution technique.
Collapse
Affiliation(s)
- Isoshi Nukatsuka
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Ryota Satoh
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Shigeki Kihara
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Fumihiko Kitagawa
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Japan
| |
Collapse
|
12
|
Wang Y, Yin SJ, Zhao CP, Chen GY, Yang FQ. Preparation of a zirconium terephthalate metal-organic framework coated magnetic nanoparticle for the extraction of berberine prior to high-performance liquid chromatography analysis. J Sep Sci 2020; 44:1220-1230. [PMID: 33369071 DOI: 10.1002/jssc.202001026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 02/04/2023]
Abstract
In this study, a zirconium terephthalate metal-organic framework-coated magnetic nanoparticle (UiO-66@PA@PEI@Fe3 O4 ) was synthesized for the extraction of berberine prior to high-performance liquid chromatography analysis. The phytic acid, which could be grafted onto the magnetic nanoparticle through electrostatic interaction with the abundant amino groups of polyethylenimine, possesses outstanding metal ion coordination ability for the immobilization of metal-organic frameworks UiO-66. The physicochemical properties of the obtained nanoparticle were thoroughly investigated by a series of characterization techniques. Then, the factors that will affect the extraction efficiency and recovery of berberine were investigated. Results indicated that the material had good stability and reusability, and high adsorption capacity (50.01 mg/g) to berberine through single-layer adsorption. In addition, a molecular docking study indicated that the interactions between the material and berberine were mainly π-π stacking and hydrophobic interaction. Finally, the material was successfully applied to the extraction of berberine in Rhizoma Coptidis and Cortex Phellodendri extracts with the recoveries of 76.1% and 71.6%, respectively.
Collapse
Affiliation(s)
- Yuan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Shi-Jun Yin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Cong-Peng Zhao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Guo-Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| |
Collapse
|
13
|
Ghorbani M, Aghamohammadhassan M, Ghorbani H, Zabihi A. Trends in sorbent development for dispersive micro-solid phase extraction. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105250] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Liu L, Cui W, Lu C, Zain A, Zhang W, Shen G, Hu S, Qian X. Analyzing the adsorptive behavior of Amoxicillin on four Zr-MOFs nanoparticles: Functional groups dependence of adsorption performance and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 268:110630. [PMID: 32510425 DOI: 10.1016/j.jenvman.2020.110630] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/18/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
In this study, four functional Zr-MOFs (UiO-66-H, -NH2, -NO2, -Cl) were prepared, characterized (FESEM, XRD, BET, XPS, FT-IR) and compared to remove low-concentration Amoxicillin (AMX) from water. Then UiO-66-NH2 was selected for further experiments due to its highest adsorption capacity (2.3 ± 0.4 mg g-1). The adsorption process followed pseudo-second order, Langmuir and Freundlich models. With pH increasing, deprotonation of functional groups in UiO-66-NH2 and AMX made adsorption interactions variable. The obvious spectra shift of FT-IR/XPS indicated that Lewis acid-base interaction was the main adsorption impetus; meanwhile hydrogen bonding interaction and π-π/n-π (electron-donator-acceptor) EDA interaction should be included. For Lewis acid-base interaction, the strength was controlled by percentage of amine group in UiO-66-NH2, mainly interacting with phenolic hydroxyl group in AMX. Due to changes in charge distribution of functional groups, there existed six kinds of π-π/n-π EDA interactions and thirteen types of hydrogen/π-hydrogen bonding interactions. Additionally, electrostatic interaction and molecular attraction also contributed to the AMX adsorption. Conclusively, analysis of functional groups interactions could help to comprehend adsorption mechanisms more profoundly and exploit functional adsorbents more efficiently.
Collapse
Affiliation(s)
- Lin Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Wei Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cong Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shangtex Architectural Design Research Institute, Shanghai 200060, China, Shanghai, 200233, China.
| | - Abbas Zain
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Genxiang Shen
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Shuangqing Hu
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Xiaoyong Qian
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| |
Collapse
|
15
|
Rocío-Bautista P, Gutiérrez-Serpa A, Cruz AJ, Ameloot R, Ayala JH, Afonso AM, Pasán J, Rodríguez-Hermida S, Pino V. Solid-phase microextraction coatings based on the metal-organic framework ZIF-8: Ensuring stable and reusable fibers. Talanta 2020; 215:120910. [DOI: 10.1016/j.talanta.2020.120910] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 12/19/2022]
|
16
|
Liu G, Liu H, Tong Y, Xu L, Ye YX, Wen C, Zhou N, Xu J, Ouyang G. Headspace solid-phase microextraction of semi-volatile ultraviolet filters based on a superhydrophobic metal-organic framework stable in high-temperature steam. Talanta 2020; 219:121175. [PMID: 32887097 DOI: 10.1016/j.talanta.2020.121175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/10/2023]
Abstract
Headspace solid-phase microextraction (HS-SPME) of low volatile analytes from complex aqueous samples can be substantially facilitated by elevating the temperature of the samples. However, many SPME coatings prepared from novel sorptive materials may suffer from low stabilities in hot water steam. Herein, a superhydrophobic metal-organic framework (MOF) derived from decorating the metal-oxo nodes of the amino-functionalized UiO-66(Zr) with phenylsilane was prepared and successfully developed into a novel SPME fiber coating. The highest extraction efficiencies towards the semi-volatile ultraviolet (UV) filters were achieved when the aqueous samples were heated up to 100 °C. It was notable that the lab-made coating exhibited extraordinary stability towards hot water steam, probably because the hydrophobic groups capped on the MOF prevented water molecules from entering and deconstructing its lattice. Even after being treated with water steam under 100 °C for 21 h, the extraction performance of the coating remained unchanged, and the crystal structure of the MOF maintained. Furthermore, a negligible matrix effect was observed even in the samples containing humic acid. Under the optimal extraction and thermal desorption conditions, a method for determining UV filters in aqueous samples was established, which possessed low detection limits (0.6-2.1 ng L-1), wide linear ranges (10-50000 ng L-1), good inter-fiber reproducibility (2.3-6.0%, n = 6), and satisfying intra-fiber repeatability (1.8-5.8%, n = 3). The method was successfully applied in quantifying UV filters in environmental water samples. In addition, the lab-made NH2-UiO-66(Zr)-shp-coated fiber was also suitable for the analysis of polycyclic aromatic hydrocarbons (PAHs). This study provided an effective strategy for preparing MOF coatings that can maintain their crystalline structures and high extraction performances in high-temperature steam.
Collapse
Affiliation(s)
- Guifeng Liu
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, PR China
| | - Huan Liu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, Shanghai, China
| | - Yuanjun Tong
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Linyan Xu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Yu-Xin Ye
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Cheng Wen
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, PR China
| | - Ningbo Zhou
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, PR China.
| | - Jianqiao Xu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| | - Gangfeng Ouyang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
17
|
Eltaweil AS, Abd El-Monaem EM, El-Subruiti GM, Abd El-Latif MM, Omer AM. Fabrication of UiO-66/MIL-101(Fe) binary MOF/carboxylated-GO composite for adsorptive removal of methylene blue dye from aqueous solutions. RSC Adv 2020; 10:19008-19019. [PMID: 35518294 PMCID: PMC9053870 DOI: 10.1039/d0ra02424d] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
This study provides a novel composite as an efficient adsorbent of cationic methylene blue dye. UiO-66/MIL-101(Fe) binary metal organic framework (MOF) was fabricated using a solvothermal technique. Additionally, the developed binary MOF was modified with carboxylated graphene oxide (GOCOOH) using a post-synthetic technique. The as-fabricated UiO-66/MIL-101(Fe)-GOCOOH composite was analyzed by FTIR, XRD, SEM, BET, TGA, XPS and zeta potential analysis. The adsorption performance of UiO-66/MIL-101(Fe)-GOCOOH composite was examined for its aptitude to adsorb cationic MB dye using a batch technique. The obtained data revealed that, the developed UiO-66/MIL-101(Fe)-GOCOOH composite exhibited higher adsorption capacity compared to UiO-66/MIL-101(Fe) binary MOF. Adsorption isotherms and kinetic studies revealed that MB dye adsorption onto UiO-66/MIL-101(Fe)-GOCOOH composite fitted a Langmuir isotherm model (q m = 448.71 mg g-1) and both pseudo 1st order and pseudo 2nd order kinetic models. An intra-particle diffusion model showed that the adsorption process occurs through three steps. Besides, thermodynamic data reflected that the adsorption of MB onto UiO-66/MIL-101(Fe)-GOCOOH composite is an endothermic and spontaneous process and the adsorption involves both physisorption and chemisorption interactions. The as-fabricated UiO-66/MIL-101(Fe)-GOCOOH composite exhibited good reusability and can be considered as a promising reusable adsorbent for the treatment of dye-containing industrial effluents with high efficiency.
Collapse
Affiliation(s)
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University Alexandria Egypt
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University Alexandria Egypt
| | - Mona M Abd El-Latif
- Fabrication Technology Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg El-Arab City, P. O. Box: 21934 Alexandria Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg El-Arab City, P. O. Box: 21934 Alexandria Egypt
| |
Collapse
|
18
|
Core-shell microparticles formed by the metal-organic framework CIM-80(Al) (Silica@CIM-80(Al)) as sorbent material in miniaturized dispersive solid-phase extraction. Talanta 2020; 211:120723. [DOI: 10.1016/j.talanta.2020.120723] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 11/18/2022]
|
19
|
|
20
|
Martínez-Pérez-Cejuela H, Guiñez M, Simó-Alfonso EF, Amorós P, El Haskouri J, Herrero-Martínez JM. In situ growth of metal-organic framework HKUST-1 in an organic polymer as sorbent for nitrated and oxygenated polycyclic aromatic hydrocarbon in environmental water samples prior to quantitation by HPLC-UV. Mikrochim Acta 2020; 187:301. [DOI: 10.1007/s00604-020-04265-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/09/2020] [Indexed: 12/22/2022]
|
21
|
Boontongto T, Burakham R. Evaluation of metal-organic framework NH 2-MIL-101(Fe) as an efficient sorbent for dispersive micro-solid phase extraction of phenolic pollutants in environmental water samples. Heliyon 2019; 5:e02848. [PMID: 31763487 PMCID: PMC6861588 DOI: 10.1016/j.heliyon.2019.e02848] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 09/14/2019] [Accepted: 11/08/2019] [Indexed: 01/23/2023] Open
Abstract
This work proposes an application of amine-functionalized metal-organic framework (NH2-MIL-101(Fe)) as sorbent for dispersive micro-solid phase extraction (D-μSPE) of ten priority phenolic pollutants. The sorbent was simply synthesized under facile condition. The entire D-μSPE process was optimized by studying the effect of experimental parameters affecting the extraction recovery of the target analytes. The final extract was analyzed using high performance liquid chromatography with photodiode array detector. Under the optimum condition, the proposed procedure can be applied for wide linear calibration ranges between 1.25–5000 μg L−1 with the correlation coefficients of greater than 0.9900. The limits of detection (LODs) and limits of quantitation (LOQs) were in the ranges of 0.4–9.5 μg L−1 and 1.25–30 μg L−1, respectively. The precision evaluated in terms of the relative standard deviations (RSDs) of the intra- and inter-day determinations of the phenol compounds at their LOQ concentrations were below 13.9% and 12.2%, respectively. High enrichment factors up to 120 were reached. The developed method has been successfully applied to determine phenol residues in environmental water samples. The satisfactory recoveries obtained by spiking phenol standards at two different concentrations (near LOQs and 5 times as high as LOQs) ranged from 68.4–114.4%. The results demonstrate that the NH2-MIL-101(Fe) material is promising sorbent in the D-μSPE of phenolic pollutants.
Collapse
Affiliation(s)
- Tittaya Boontongto
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rodjana Burakham
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
22
|
Chen Y, Xia L, Liang R, Lu Z, Li L, Huo B, Li G, Hu Y. Advanced materials for sample preparation in recent decade. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115652] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Affiliation(s)
- Frederik A. Hansen
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
24
|
González-Rodríguez G, Taima-Mancera I, Lago AB, Ayala JH, Pasán J, Pino V. Mixed Functionalization of Organic Ligands in UiO-66: A Tool to Design Metal-Organic Frameworks for Tailored Microextraction. Molecules 2019; 24:molecules24203656. [PMID: 31658737 PMCID: PMC6832283 DOI: 10.3390/molecules24203656] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022] Open
Abstract
The mixed-ligand strategy was selected as an approach to tailor a metal–organic framework (MOF) with microextraction purposes. The strategy led to the synthesis of up to twelve UiO-66-based MOFs with different amounts of functionalized terephthalate ligands (H-bdc), including nitro (-NO2) and amino (-NH2) groups (NO2-bdc and NH2-bdc, respectively). Increases of 25% in ligands were used in each case, and different pore environments were thus obtained in the resulting crystals. Characterization of MOFs includes powder X-ray diffraction, infrared spectroscopy, and elemental analysis. The obtained MOFs with different degrees and natures of functionalization were tested as sorbents in a dispersive miniaturized solid-phase extraction (D-µSPE) method in combination with high-performance liquid chromatography (HPLC) and diode array detection (DAD), to evaluate the influence of mixed functionalization of the MOF on the analytical performance of the entire microextraction method. Eight organic pollutants of different natures were studied, using a concentration level of 5 µg· L−1 to mimic contaminated waters. Target pollutants included carbamazepine, 4-cumylphenol, benzophenone-3, 4-tert-octylphenol, 4-octylphenol, chrysene, indeno(1,2,3-cd)pyrene, and triclosan, as representatives of drugs, phenols, polycyclic aromatic hydrocarbons, and disinfectants. Structurally, they differ in size and some of them present polar groups able to form H-bond interactions, either as donors (-NH2) or acceptors (-NO2), permitting us to evaluate possible interactions between MOF pore functionalities and analytes’ groups. As a result, extraction efficiencies can reach values of up to 60%, despite employing a microextraction approach, with four main trends of behavior being observed, depending on the analyte and the MOF.
Collapse
Affiliation(s)
- Gabriel González-Rodríguez
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife, 38206 La Laguna, Spain.
| | - Iván Taima-Mancera
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife, 38206 La Laguna, Spain.
| | - Ana B Lago
- Laboratorio de Rayos X y Materiales Moleculares (MATMOL), Departamento de Física, Universidad de La Laguna (ULL), Tenerife, 38206 La Laguna, Spain.
| | - Juan H Ayala
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife, 38206 La Laguna, Spain.
| | - Jorge Pasán
- Laboratorio de Rayos X y Materiales Moleculares (MATMOL), Departamento de Física, Universidad de La Laguna (ULL), Tenerife, 38206 La Laguna, Spain.
| | - Verónica Pino
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife, 38206 La Laguna, Spain.
- University Institute of Tropical Diseases and Public Health, Universidad de La Laguna (ULL), Tenerife, 38206 La Laguna, Spain.
| |
Collapse
|
25
|
|
26
|
Abstract
Metal-organic frameworks (MOFs) are porous hybrid materials composed of metal ions and organic linkers, characterized by their crystallinity and by the highest known surface areas. MOFs structures present accessible cages, tunnels and modifiable pores, together with adequate mechanical and thermal stability. Their outstanding properties have led to their recognition as revolutionary materials in recent years. Analytical chemistry has also benefited from the potential of MOF applications. MOFs succeed as sorbent materials in extraction and microextraction procedures, as sensors, and as stationary or pseudo-stationary phases in chromatographic systems. To date, around 100 different MOFs form part of those analytical applications. This review intends to give an overview on the use of MOFs in analytical chemistry in recent years (2017–2019) within the framework of green analytical chemistry requirements, with a particular emphasis on possible toxicity issues of neat MOFs and trends to ensure green approaches in their preparation.
Collapse
|
27
|
Rocío-Bautista P, Termopoli V. Metal–Organic Frameworks in Solid-Phase Extraction Procedures for Environmental and Food Analyses. Chromatographia 2019. [DOI: 10.1007/s10337-019-03706-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
28
|
González-Hernández P, Lago AB, Pasán J, Ruiz-Pérez C, Ayala JH, Afonso AM, Pino V. Application of a Pillared-Layer Zn-Triazolate Metal-Organic Framework in the Dispersive Miniaturized Solid-Phase Extraction of Personal Care Products from Wastewater Samples. Molecules 2019; 24:E690. [PMID: 30769919 PMCID: PMC6412874 DOI: 10.3390/molecules24040690] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/28/2019] [Accepted: 02/11/2019] [Indexed: 11/16/2022] Open
Abstract
The pillared-layer Zn-triazolate metal-organic framework (CIM-81) was synthesized, characterized, and used for the first time as a sorbent in a dispersive micro-solid phase extraction method. The method involves the determination of a variety of personal care products in wastewaters, including four preservatives, four UV-filters, and one disinfectant, in combination with ultra-high performance liquid chromatography and UV detection. The CIM-81 MOF, constructed with an interesting mixed-ligand synthetic strategy, demonstrated a better extraction performance than other widely used MOFs in D-µSPE such as UiO-66, HKUST-1, and MIL-53(Al). The optimization of the method included a screening design followed by a Doehlert design. Optimum conditions required 10 mg of CIM-81 MOF in 10 mL of the aqueous sample at a pH of 5, 1 min of agitation by vortex and 3 min of centrifugation in the extraction step; and 1.2 mL of methanol and 4 min of vortex in the desorption step, followed by filtration, evaporation and reconstitution with 100 µL of the initial chromatographic mobile phase. The entire D-µSPE-UHPLC-UV method presented limits of detection down to 0.5 ng·mL-1; intra-day and inter-day precision values for the lowest concentration level (15 ng·mL-1)-as a relative standard deviation (in %)-lower than 8.7 and 13%, respectively; average relative recovery values of 115%; and enrichment factors ranging from ~3.6 to ~34. The reuse of the CIM-81 material was assessed not only in terms of maintaining the analytical performance but also in terms of its crystalline stability.
Collapse
Affiliation(s)
- Providencia González-Hernández
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife 38206, Spain.
| | - Ana B Lago
- Laboratorio de Rayos X y Materiales Moleculares (MATMOL), Departamento de Física, Universidad de La Laguna (ULL), La Laguna, Tenerife 38206, Spain.
| | - Jorge Pasán
- Laboratorio de Rayos X y Materiales Moleculares (MATMOL), Departamento de Física, Universidad de La Laguna (ULL), La Laguna, Tenerife 38206, Spain.
| | - Catalina Ruiz-Pérez
- Laboratorio de Rayos X y Materiales Moleculares (MATMOL), Departamento de Física, Universidad de La Laguna (ULL), La Laguna, Tenerife 38206, Spain.
| | - Juan H Ayala
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife 38206, Spain.
| | - Ana M Afonso
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife 38206, Spain.
| | - Verónica Pino
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife 38206, Spain.
- University Institute of Tropical Diseases and Public Health, Universidad de La Laguna (ULL), La Laguna, Tenerife 38206, Spain.
| |
Collapse
|