1
|
Ahmed Salıh Gezh S, Deveci K, Sivgin H, Guzelgul F. Serum L C3-II levels in type 2 diabetic patients with impaired renal functions. Cytokine 2024; 181:156683. [PMID: 38943738 DOI: 10.1016/j.cyto.2024.156683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/25/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
This study was designed to evaluate serum LC3-II, BCL-2, IL-1β, TGF-β1, and podocin levels in. type 2 diabetes (T2DM) patients with renal dysfunction. MATERIALS 176 Turkish subjects were enrolled, of whom 26 were healthy, and 150 had T2DM. PATIENTS were classified according to albumin urea ratio: 88 patients had macroalbuminuria, 20. patients had microalbuminuria, and 42 had normoalbuminuria. T2DM patients were also. classified into three groups according to proteinuria and eGFR stages. RESULTS Increased serum LC3-II levels in patients with T2DM with increased urinary albumin. extraction and impaired renal functions. There was a strong relationship between serum. LC3-II levels and serum BCL-2, IL-1β, TGF-β1, and Podocin levels. The efficiency of LC3- II as a diagnostic biomarker in the differential diagnosis of DM patients with. macroproteinuria from DM patients with normoproteinuria was 75.4%. CONCLUSIONS It was thought that increased serum LC3-II levels in T2DM patients with impaired renal. functions may cause renal podocyte damage. In these patients, serum LC3-II levels can be. evaluated as a new biomarker to follow the development of renal damage.
Collapse
Affiliation(s)
- Shahab Ahmed Salıh Gezh
- Tokat Gaziosmanpasa University, Faculty of Medicine, Department of Medical Biochemistry, 60100, Tokat, Turkey.
| | - Koksal Deveci
- Tokat Gaziosmanpasa University, Faculty of Medicine, Department of Medical Biochemistry, 60100, Tokat, Turkey.
| | - Hakan Sivgin
- Tokat Gaziosmanpasa University, Faculty of Medicine, Department of Internal Medicine, 60100, Tokat, Turkey.
| | - Figen Guzelgul
- Tokat Gaziosmanpasa University, Faculty of Medicine, Department of Medical Biochemistry, 60100, Tokat, Turkey.
| |
Collapse
|
2
|
Qu M, Du L. Upregulation of TRPC1 protects against high glucose-induced HUVECs dysfunction by inhibiting oxidative stress. Biochem Biophys Res Commun 2024; 699:149560. [PMID: 38277724 DOI: 10.1016/j.bbrc.2024.149560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
-To explore the effect of TRPC1 on endothelial cell function damage under a high glucose environment and its downstream molecular mechanism, and provide new theory and strategy for improving diabetic endothelial cell function and promoting vascular injury repair. In vitro, we use high glucose to treat human umbilical vein endothelial cells (HUVECs) and upregulated TRPC1 with adenovirus infection. HUVECs were split into 4 groups: (i) NG Group: Treated with normal glucose; (ii) HG Group: Treated with high glucose; (iii) HG + adGFP Group: High glucose + the control adenovirus (adGFP); (iv) HG + adTRPC1 Group: High glucose + recombinant adenovirus encoding TRPC1. We found that high glucose significantly decreased the expression level of TRPC1 protein, and impaired the proliferation and migration of HUVECs, which could be reversed by overexpression of TRPC1. In addition, high glucose induced an increase in ROS and MDA and a decrease in SOD activity, whereas TRPC1 overexpression could inhibit the growth of oxidative stress level. These findings suggest that overexpression of TRPC1 prevents HUVECs proliferation and migration dysfunction induced by high glucose via inhibiting oxidative stress injuries.
Collapse
Affiliation(s)
- Mengting Qu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
| | - Lailing Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
3
|
Zhang L, Shi L, Han J, Li Z. Protection of β-pancreatic cells from dysfunctionality of insulin using vitexin by apoptosis of INS-1 cells. Arch Physiol Biochem 2023; 129:1160-1167. [PMID: 33835897 DOI: 10.1080/13813455.2021.1910714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
AIMS This study was performed to explore the possible beneficial effects of vitexin on high glucose (HG)-induced cytotoxicity in pancreatic β-cells. METHODS INS-1 pancreatic β-cell line has used this study. HG-induced (33 Mm) exposed INS-1 cell death; the apoptosis INS-1 cells treated vitexin 10, 20, 40, and 80 µg/mL for 24 hours. The anti-apoptosis properties were evaluated by MTT assay, glucose-stimulated insulin secretion assay, biochemical assay, annexin-V-FITC staining and western blot analysis. RESULTS These findings demonstrate that vitexin treatment improved the HG-exposure, reduced the INS-1 cell viability and significantly enhanced glucose-stimulated insulin secretion in a dose-dependent manner. The antioxidant studies revealed that vitexin treatment significantly decreased lipid peroxidation and reactive oxygen species and increased antioxidant level of INS-1 cell line in 24 hrs. The findings of the study suggested that in the vitexin treatment group, pancreatic apoptosis and Bax protein expression reduced significantly. At the same time, Bcl-2 protein expression increased, and NF-κB protein in HG-induced INS-cells was inhibited. CONCLUSION Therefore, our results suggest that vitexin can be successfully used to regulate the expression of Bcl-2 family proteins, reduce lipid peroxidation and to improve the secretion of antioxidants in pancreatic β-cell lines.
Collapse
Affiliation(s)
- Li Zhang
- Department of endocrinology, The Fourth People's Hospital of Jinan city, Jinan, Shandong Province, China
| | - Lianfeng Shi
- Department of First General Medicine, Binzhou People's Hospital, Binzhou, Shandong Province, China
| | - Juanjuan Han
- Department of First General Medicine, Binzhou People's Hospital, Binzhou, Shandong Province, China
| | - Zhenzuo Li
- Department of endocrinology, The Fourth People's Hospital of Jinan city, Jinan, Shandong Province, China
| |
Collapse
|
4
|
Wang Y, Shao Z, Song C, Zhou H, Zhao J, Zong K, Zhou G, Meng D. Clinopodium chinense Kuntze ameliorates dextran sulfate sodium-induced ulcerative colitis in mice by reducing systematic inflammation and regulating metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116330. [PMID: 36868438 DOI: 10.1016/j.jep.2023.116330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clinopodium chinense Kuntze (CC), traditional Chinese medicine with anti-inflammatory, anti-diarrheal, and hemostatic activities, has been used to treat dysentery and bleeding diseases for thousands of years, which are similar to the symptoms of ulcerative colitis (UC). AIM OF THE STUDY To obtain a novel treatment for UC, an integrated strategy was developed in this study to investigate the effect and mechanism of CC against UC. MATERIALS AND METHODS The chemical characterization of CC was scanned by UPLC-MS/MS. Network pharmacology analysis was performed to predict the active ingredients and pharmacological mechanisms of CC against UC. Further, the results of network pharmacology were validated using LPS-induced RAW 264.7 cells and DSS-induced UC mice. The production of pro-inflammatory mediators and biochemical parameters was tested using the ELISA kits. The expression of NF-κB, COX-2, and iNOS proteins was evaluated using Western blot analysis. Body weight, disease activity index, colon length, histopathological examination, and metabolomics analysis in colon tissues were carried out to confirm the effect and mechanism of CC. RESULTS Based on the chemical characterization and literature collection, a rich database of ingredients in CC was constructed. Network pharmacology analysis provided five core components as well as revealed that the mechanism of CC against UC was highly related to inflammation, especially the NF-κB signaling pathway. In vitro experiments showed CC could inhibit inflammation by LPS-TLR4-NF-κB-iNOS/COX-2 signaling pathway in RAW264.7 cells. Meanwhile, in vivo experimental results proved that CC significantly alleviated pathological features with increased body weight and colonic length, decreased DAI and oxidative damage, as well as mediated inflammatory factors like NO, PGE2, IL-6, IL-10, and TNF-ɑ. In addition, colon metabolomics analysis revealed CC could restore the abnormal endogenous metabolite levels in UC. 18 screened biomarkers were further enriched in four pathways including Arachidonic acid metabolism, Histidine metabolism, Alanine, aspartate and glutamate metabolism as well as the Pentose phosphate pathway. CONCLUSION This study demonstrates that CC could alleviate UC by reducing systematic inflammation and regulating metabolism, which is beneficial for providing scientific data for the development of UC treatment.
Collapse
Affiliation(s)
- Yumeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Zhutao Shao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Ce Song
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Hongxu Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Jiaming Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Kunqi Zong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Guangxin Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Dali Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China.
| |
Collapse
|
5
|
Chen X, Xu X, Lv J, Huang J, Lyu L, Liu L. Potential Mechanisms of Perillae folium Against COVID-19: A Network Pharmacology Approach. J Med Food 2023. [PMID: 36787478 DOI: 10.1089/jmf.2022.k.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
In China, Perillae folium is widely used to treat colds, especially in the early stages of cold; the effect of taking P. folium is readily noticeable at that time. The active compounds and targets of P. folium were screened from Traditional Chinese Medicine Systems Pharmacology, Chinese Pharmacopoeia, and UniProt. Targets related to the initiation and progression of 2019 Coronavirus Disease (COVID-19) were retrieved from Online Mendelian Inheritance in Man and GeneCards. The potential therapeutic targets of P. folium on COVID-19 were the cross targets between them. Enrichment analysis of Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were conducted by using the Database for Annotation, Visualization and Integrated Discovery website. Molecular docking between key compounds and core targets was performed with AutoDock. The effects of P. folium extract and rosmarinic acid on inflammatory cytokines were tested by a cellular inflammatory model. The "Perillae folium-compound-target-COVID-19" network contained 11 kinds of compounds and 33 matching targets. There were 261 items in the GO functions (P < .05) and 67 items linked to the KEGG signaling pathways (P < .05). Luteolin and rosmarinic acid were key compounds of P. folium. Their docking with the core targets mitogen-activated protein kinase 1 (MAPK1) and chemokine (C-C motif) ligand 2 (CCL2), respectively, showed that they had good affinity with each other. Cell experiments demonstrated that P. folium extract had inhibitory effects on interleukin-6 and tumor necrosis factor (TNF)-α in cells, and was better than rosmarinic acid. Luteolin, rosmarinic acid, and other individual active compounds in P. folium, which may participate in PI3K-Akt, TNF, Jak-STAT, COVID-19, and other multisignaling pathways through multiple targets such as MAPK1 and CCL2, and play a therapeutic role in COVID-19.
Collapse
Affiliation(s)
- XuHan Chen
- Department of Biological Sciences, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Xu Xu
- Research and Development Department, Ningbo Dayang Science and Technology Limited Company, Ningbo, China
| | - Jia Lv
- Department of Biological Sciences, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - JinQin Huang
- Department of Biological Sciences, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - LingLing Lyu
- Research and Development Department, Ningbo Dayang Science and Technology Limited Company, Ningbo, China
| | - LiPing Liu
- Department of Biological Sciences, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
6
|
Zhou B, Liu J, Wang Y, Wu F, Wang C, Wang C, Liu J, Li P. Protective Effect of Ethyl Rosmarinate against Ulcerative Colitis in Mice Based on Untargeted Metabolomics. Int J Mol Sci 2022; 23:1256. [PMID: 35163182 PMCID: PMC8836019 DOI: 10.3390/ijms23031256] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Aiming at assessing the therapeutic effect of ethyl rosmarinate (ER) on ulcerative colitis (UC), the following activities were performed in vitro and in vivo in the present study. Firstly, a lipopolysaccharide (LPS)-induced RAW264.7 cell inflammation model was established to determine the level of inflammatory factors. Then, a UC mice model induced by dextran sodium sulfate (DSS) was established to further investigate the effects of ER on symptoms, inflammatory factors and colon histopathology. Finally, serum and colon metabolomics studies were performed to identify the biomarkers and metabolisms closely related to the protective effect of ER on UC. The results showed that after ER intervention, the levels of inflammatory factors (NO, TNF-α, IL-1β and IL-6) and key enzyme (MPO) in cell supernatant, serum or colon were significantly decreased, and the disease activity index and colon tissue damage in mice were also effectively improved or restored. In addition, 28 biomarkers and 6 metabolisms were found to be re-regulated by ER in the UC model mice. Therefore, it could be concluded that ER could effectively ameliorate the progression of UC and could be used as a new natural agent for the treatment of UC.
Collapse
Affiliation(s)
- Baisong Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
| | - Juntong Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
| | - Yaru Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China;
| | - Fulin Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
| | - Caixia Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
- Research Center of Natural Drug, Jilin University, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
- Research Center of Natural Drug, Jilin University, Changchun 130021, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
- Research Center of Natural Drug, Jilin University, Changchun 130021, China
| |
Collapse
|
7
|
Zuo G, Je KH, Guillen Quispe YN, Shin KO, Kim HY, Kim KH, Arce PHG, Lim SS. Separation and Identification of Antioxidants and Aldose Reductase Inhibitors in Lepechinia meyenii (Walp.) Epling. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122773. [PMID: 34961244 PMCID: PMC8707451 DOI: 10.3390/plants10122773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 05/08/2023]
Abstract
We previously reported that Lepechinia meyenii (Walp.) Epling has antioxidant and aldose reductase (AR) inhibitory activities. In this study, L. meyenii was extracted in a 50% MeOH and CH2Cl2/MeOH system. The active extracts of MeOH and 50% MeOH were subjected to fractionation, followed by separation using high-speed counter-current chromatography (HSCCC) and preparative HPLC. Separation and identification revealed the presence of caffeic acid, hesperidin, rosmarinic acid, diosmin, methyl rosmarinate, diosmetin, and butyl rosmarinate. Of these, rosmarinic acid, methyl rosmarinate, and butyl rosmarinate possessed remarkable antioxidant and AR inhibitory activities. The other compounds were less active. In particular, rosmarinic acid is the key contributor to the antioxidant and AR inhibitory activities of L. meyenii; it is rich in the MeOH extract (333.84 mg/g) and 50% MeOH extract (135.41 mg/g) of L. meyenii and is especially abundant in the EtOAc and n-BuOH fractions (373.71-804.07 mg/g) of the MeOH and 50% MeOH extracts. The results clarified the basis of antioxidant and AR inhibitory activity of L. meyenii, adding scientific evidence supporting its traditional use as an anti-diabetic herbal medicine. The HSCCC separation method established in this study can be used for the preparative separation of rosmarinic acid from natural products.
Collapse
Affiliation(s)
- Guanglei Zuo
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.Z.); (K.-O.S.); (H.Y.K.); (K.H.K.)
| | - Kang-Hoon Je
- Institute of Korean Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea;
| | - Yanymee N. Guillen Quispe
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151742, Korea;
| | - Kyong-Oh Shin
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.Z.); (K.-O.S.); (H.Y.K.); (K.H.K.)
| | - Hyun Yong Kim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.Z.); (K.-O.S.); (H.Y.K.); (K.H.K.)
| | - Kang Hyuk Kim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.Z.); (K.-O.S.); (H.Y.K.); (K.H.K.)
| | - Paul H. Gonzales Arce
- Laboratorio de Florística, Departamento de Dicotiledóneas, Museo de Historia Natural—Universidad Nacional Mayor de San Marcos, Avenida Arenales 1256, Lima 14-0434, Peru;
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.Z.); (K.-O.S.); (H.Y.K.); (K.H.K.)
- Institute of Korean Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea;
- Institute of Natural Medicine, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea
- Correspondence: ; Tel.: +82-33-248-2133; Fax: +82-33-256-3420
| |
Collapse
|
8
|
Ciechanowska A, Gora I, Sabalinska S, Foltynski P, Ladyzynski P. Effect of glucose concentration and culture substrate on HUVECs viability in in vitro cultures: A literature review and own results. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Xi J, Rong Y, Zhao Z, Huang Y, Wang P, Luan H, Xing Y, Li S, Liao J, Dai Y, Liang J, Wu F. Scutellarin ameliorates high glucose-induced vascular endothelial cells injury by activating PINK1/Parkin-mediated mitophagy. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113855. [PMID: 33485979 DOI: 10.1016/j.jep.2021.113855] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/28/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellarin (Scu) is one of the main active ingredients of Erigeron breviscapus (Vant.) Hand.-Mazz which has been used to treat cardiovascular disease including vascular dysfunction caused by diabetes. Scu also has a protective effect on vascular endothelial cells against hyperglycemia. However, molecular mechanisms underlying this effect are not clear. AIM OF THE STUDY This aim of this study was to investigate the effect of Scu on human umbilical vein endothelial cells (HUVECs) injury induced by high glucose (HG), especially the regulation of PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy. MATERIALS AND METHODS HUVECs were exposed to HG to induce vascular endothelial cells injury in vitro. Cell viability was assessed by MTT assay. The extent of cell apoptosis was measured by Hoechst staining and flow cytometry. Mitophagy was assayed by fluorescent immunostaining, transmission electron microscope and immunoblot. Besides, virtual docking was conducted to validate the interaction of PINK1 protein and Scu. RESULTS We found that Scu significantly increased cell viability in HG-treated HUVECs. Scu reduces the expression of Bcl-2, Bax and cytochrome C (Cyt.c) to inhibit apoptosis through a mitochondria-dependent pathway. Meanwhile, Scu improved the overload of reactive oxygen species (ROS), superoxide dismutase (SOD) activity and SOD2 protein expression, and reversed the collapse of mitochondrial membrane potential. Besides, Scu increased autophagic flux, improved the expression of microtubule-associated protein 1 light chain 3 Ⅱ (LC3 II), Beclin 1 and autophagy-related gene 5 (Atg 5) and decreased the expression of Sequestosome1/P62 in HG-treated HUVECs. Furthermore, Scu improved the expressions of PINK1, Parkin, and Mitofusin2, which revealed the enhancement of mitophagy. Moreover, the beneficial effects of Scu on HG-induced low expression of Parkin, overproduction of ROS, and over expressions of P62, Cyt.c and Cleaved caspase-3 were weakened by PINK1 gene knockdown. Molecular docking suggested good interaction of Scu and PINK1 protein. CONCLUSION These results suggest that Scu may protect vascular endothelial cells against hyperglycemia-induced injury by up-regulating mitophagy via PINK1/Parkin signal pathway.
Collapse
Affiliation(s)
- Junxiao Xi
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuezhao Rong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zifeng Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yihai Huang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Pu Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Huiling Luan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yan Xing
- School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Siyuan Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jun Liao
- School of Science, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yue Dai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jingyu Liang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Feihua Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
10
|
Tu Q, Zhu Y, Yuan Y, Guo L, Liu L, Yao L, Zou Y, Li J, Chen F. Gypenosides Inhibit Inflammatory Response and Apoptosis of Endothelial and Epithelial Cells in LPS-Induced ALI: A Study Based on Bioinformatic Analysis and in vivo/vitro Experiments. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:289-303. [PMID: 33531796 PMCID: PMC7846875 DOI: 10.2147/dddt.s286297] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
Introduction Severe inflammatory response leads to poor prognosis of acute lung injury (ALI), the role of gypenosides (GPs) on ALI is not fully clear. The study aimed at investigating the effects of GPs on ALI. Methods We firstly established LPS-induced ALI mice model. Then, we tested whether GPs contributed to alleviate inflammatory response and lung injury of ALI in vivo. In order to identify specific mechanisms of the phenomenon, we conducted a bioinformatic analysis of LPS-induced ALI mice based on GEO database to identify hub differentially expressed genes (DEGs). PPI network of the DEGs was used to find hub-genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted based on the DAVID database to identify which pathways the genes enriched. Then, we tested whether GPs inhibited lung injury and inflammatory response via the enriched pathways. We also tested whether GPs inhibited the apoptosis of endothelial and epithelial cells secondary to severe inflammation. Results We found GPs significantly alleviated lung injury and improved the survival rate of LPS-induced ALI mice in vivo. Bioinformatic analysis identified 20 hub-genes from DEGs, they were mainly enriched in NF-κB and TNF-α pathways. GPs could reduce the lung injury and inflammatory response via inhibiting NF-κB and TNF-α pathways in vivo. Our results indicated that GPs also inhibited inflammatory response of epithelial and endothelial cells via NF-κB and TNF-α pathways in vitro. Severe inflammatory response could also lead to apoptosis of endothelial and epithelial cells. Our results indicated that GPs effectively inhibited the apoptosis of endothelial and epithelial cells. Conclusion Our study suggested GPs contributed to alleviated lung injury in vivo and inhibited inflammation and apoptosis of endothelial and epithelial cells in vitro, providing novel strategies for the prevention and therapy for ALI.
Collapse
Affiliation(s)
- Qing Tu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Yabing Zhu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Yuan Yuan
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Long Guo
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Lu Liu
- School of Anesthesiology, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Liangfang Yao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Yun Zou
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Feng Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| |
Collapse
|
11
|
Gong YP, Zhang YW, Su XQ, Gao HB. Inhibition of long noncoding RNA MALAT1 suppresses high glucose-induced apoptosis and inflammation in human umbilical vein endothelial cells by suppressing the NF-κB signaling pathway. Biochem Cell Biol 2020; 98:669-675. [PMID: 32502356 DOI: 10.1139/bcb-2019-0403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The study investigated the expression of long noncoding RNA (lncRNA) MALAT1 in high glucose (HG)-induced human vascular endothelial cells (HUVECs) and the role of MALAT1 in the apoptosis of HG-induced HUVECs. The HUVECs were cultured and induced with 25 mmol/L HG. After that, the HUVECs were transfected with MALAT1 siRNA. The expression levels of MALAT1 were detected with qPCR, whereas the expression levels of Bax, Bcl-2, cleaved-caspase-3, cleaved-caspase-9, p-65, and p-p65 were detected using Western blot. The roles of MALAT1 in cell activities, including apoptosis, were evaluated using the CCK-8 assay, TUNEL staining, and flow cytometry. The expression levels of inflammatory factors (TNF-α and IL-6) were measured using ELISA. The expression levels of MALAT1, TNF-α, and IL-6 in HUVECs were increased in the HG environment; however, when MALAT1 was silenced in the HUVECs, cell proliferation increased significantly, the expression levels of TNF-α, IL-6, Bax, cleaved-caspase-3, and cleaved-caspase-9 decreased, and the rate of apoptosis also decreased. Silencing MALAT1 inhibited the expression of p-p65 in HG-induced HUVECs. In conclusion, our study demonstrated that MALAT1 is upregulated in HG-induced HUVECs, and inhibition of MALAT1 inhibits HG-induced apoptosis and inflammation in HUVECs by suppression of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yu-Ping Gong
- Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China.,Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China
| | - Ya-Wei Zhang
- Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China.,Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China
| | - Xiao-Qing Su
- Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China.,Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China
| | - Hai-Bo Gao
- Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China.,Department of Endocrinology, Pingxiang People's Hospital, Pingxiang 337000, P.R. China
| |
Collapse
|
12
|
Yang S, Ma C, Wu H, Zhang H, Yuan F, Yang G, Yang Q, Jia L, Liang Z, Kang L. Tectorigenin attenuates diabetic nephropathy by improving vascular endothelium dysfunction through activating AdipoR1/2 pathway. Pharmacol Res 2020; 153:104678. [PMID: 32014572 DOI: 10.1016/j.phrs.2020.104678] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 01/10/2023]
Abstract
Diabetic nephropathy (DN), a kind of microvascular complication, is a primary cause of end-stage renal disease worldwide. However, therapeutic drugs for DN treatment are still in lack. The glomerular endothelium is essential to maintain selective permeability of glomerular filtration barrier and glomerular vasculature function. Growing evidences show that endothelial dysfunction or injury is the initial stage of vascular damage in DN, which can be induced by hyperglycemia, lipotoxicity, and inflammation. Therefore, to improve the function of vascular endothelium in kidney is a key point for treatment of DN. As a plant isoflavone, tectorigenin (TEC) has attracted considerable attention due to its anti-proliferative and anti-inflammatory functions. However, whether TEC could inhibit the DN development remains unknown. In this study, we examined the effects of TEC on DN development in db/db mice, a type of genetic defect diabetic mice that can spontaneously develop into severe renal dysfunction. Intriguingly, TEC treatment restored diabetes-induced glucose and lipid metabolic disorder; and improved the deterioration of renal function, particularly the renal endothelium function in db/db mice. Additionally, TEC inhibited the renal inflammation via reducing macrophages infiltration and M1 polarization. Moreover, TEC inhibited lipopolysaccharide (LPS)-induced endothelial injury and M1 polarization in vitro. Mechanistically, TEC partially restored the reduction in expression of adiponectin receptor 1/2 (AdipoR1/2), pi-LKB1, pi-AMPKα, and PPARα in vitro and in vivo. Noteworthy, these beneficial pharmacological activities mediated by TEC were significantly attenuated after AdipoR1/2 knockdown by siRNA, indicating that AdipoR1/2 plays a critical role in protection against DN. Collectively, these results suggested that TEC have a potently effect for retarding type 2 diabetes-associated DN.
Collapse
Affiliation(s)
- Shu Yang
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Han Wu
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China; Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Hao Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Fengyi Yuan
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Guangyan Yang
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Qi Yang
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Lijing Jia
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.
| | - Zhen Liang
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.
| | - Lin Kang
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.
| |
Collapse
|
13
|
Pantan R, Tocharus J, Nakaew A, Suksamrarn A, Tocharus C. Ethyl Rosmarinate Prevents the Impairment of Vascular Function and Morphological Changes in L-NAME-Induced Hypertensive Rats. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E777. [PMID: 31817916 PMCID: PMC6956334 DOI: 10.3390/medicina55120777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/01/2019] [Accepted: 12/05/2019] [Indexed: 11/16/2022]
Abstract
Background and Objectives: The potent, endothelium-independent, vasorelaxant effect of ethyl rosmarinate, an ester derivative of rosmarinic acid, makes it of interest as an alternative therapeutic agent for use in hypertension. This study was designed to investigate the effect of ethyl rosmarinate on Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats. Materials and Methods: L-NAME was given orally to male Wistar rats for 6 weeks to induce hypertension concurrently with treatment of ethyl rosmarinate at 5, 15, or 30 mg/kgor enalapril at 10 mg/kg Systolic blood pressure (SBP), heart rate, and body weight of all experimental groups were recorded weekly, while the vascular sensitivity and histological changes of the aorta were evaluated at the end of the experiment. Results: For all treatment groups, the data indicated that ethyl rosmarinate significantly attenuated the SBP in hypertensive rats induced by L-NAME, with no significant differences in heart rate and body weight. In addition, the response of vascular sensitivity to acetylcholine (ACh) was improved but there was no significant difference in the response to sodium nitroprusside (SNP). Furthermore, the sensitivity of the aorta to phenylephrine (PE) was significantly decreased. The thickness of the aortic wall did not differ between groups but the expression of endothelial nitric oxide synthase (eNOS) was increased in ethyl rosmarinate- and enalapril-treated groups compared with the hypertensive group. Conclusions: Ethyl rosmarinate is an interesting candidate as an alternative treatment for hypertension due to its ability to improve vascular function and to increase the expression of eNOS similar to enalapril which is a drug commonly used in hypertension.
Collapse
Affiliation(s)
- Rungusa Pantan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Archawin Nakaew
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|