1
|
Marques HM. Electron transfer in biological systems. J Biol Inorg Chem 2024; 29:641-683. [PMID: 39424709 PMCID: PMC11638306 DOI: 10.1007/s00775-024-02076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Examples of how metalloproteins feature in electron transfer processes in biological systems are reviewed. Attention is focused on the electron transport chains of cellular respiration and photosynthesis, and on metalloproteins that directly couple electron transfer to a chemical reaction. Brief mention is also made of extracellular electron transport. While covering highlights of the recent and the current literature, this review is aimed primarily at introducing the senior undergraduate and the novice postgraduate student to this important aspect of bioinorganic chemistry.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa.
| |
Collapse
|
2
|
Keshri SK, Kapur M. Room temperature C-O bond cleavage of vinyl cyclic synthons via a metallaphotoredox approach. Chem Commun (Camb) 2024; 60:11164-11167. [PMID: 39291592 DOI: 10.1039/d4cc02815e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Herein, we report visible-light induced C-O bond cleavage of vinyl-appended cyclic synthons via a Co(II)-photoredox dual catalytic approach operating at room temperature. This methodology exhibits a broad scope and is capable of accessing linear as well as branched allyl arenes simply by tuning the ring size of the cyclic motifs, in a mild and environmentally friendly protocol. Mechanistic studies unveil an interesting aspect of the reaction pathway involving a challenging homolytic cleavage of the Co(III)-O bond, 1,5-HAT of an unstable Co(II)-organometallic intermediate, and the key roles of O2 and the photocatalyst. The successful removal of the directing group further adds an important dimension to the methodology.
Collapse
Affiliation(s)
- Santosh Kumar Keshri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal 462066, MP, India.
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal 462066, MP, India.
| |
Collapse
|
3
|
Wen X, Ma Y, Chen J, Wang B. A synthetically useful catalytic system for aliphatic C-H oxidation with a nonheme cobalt complex and m-CPBA. Org Biomol Chem 2024; 22:5729-5733. [PMID: 38932595 DOI: 10.1039/d4ob00807c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
We report herein a synthetically useful catalytic system for aliphatic C-H oxidation with a mononuclear nonheme cobalt(II) complex and m-chloroperbenzoic acid (m-CPBA). Preliminary mechanistic studies suggest that a high-valent cobalt-oxygen species (e.g., cobalt(IV)-oxo or cobalt(III)-oxyl) is the oxidant that effects C-H oxidation via a rate-determining hydrogen atom abstraction (HAA) step.
Collapse
Affiliation(s)
- Xiang Wen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Yidong Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Jie Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Bin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
4
|
Su R, Gao Y, Chen L, Chen Y, Li N, Liu W, Gao B, Li Q. Utilizing the oxygen-atom trapping effect of Co 3O 4 with oxygen vacancies to promote chlorite activation for water decontamination. Proc Natl Acad Sci U S A 2024; 121:e2319427121. [PMID: 38442175 PMCID: PMC10945781 DOI: 10.1073/pnas.2319427121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Heterogeneous high-valent cobalt-oxo [≡Co(IV)=O] is a widely focused reactive species in oxidant activation; however, the relationship between the catalyst interfacial defects and ≡Co(IV)=O formation remains poorly understood. Herein, photoexcited oxygen vacancies (OVs) were introduced into Co3O4 (OV-Co3O4) by a UV-induced modification method to facilitate chlorite (ClO2-) activation. Density functional theory calculations indicate that OVs result in low-coordinated Co atom, which can directionally anchor chlorite under the oxygen-atom trapping effect. Chlorite first undergoes homolytic O-Cl cleavage and transfers the dissociated O atom to the low-coordinated Co atom to form reactive ≡Co(IV)=O with a higher spin state. The reactive ≡Co(IV)=O rapidly extracts one electron from ClO2- to form chlorine dioxide (ClO2), accompanied by the Co atom returning a lower spin state. As a result of the oxygen-atom trapping effect, the OV-Co3O4/chlorite system achieved a 3.5 times higher efficiency of sulfamethoxazole degradation (~0.1331 min-1) than the pristine Co3O4/chlorite system. Besides, the refiled OVs can be easily restored by re-exposure to UV light, indicating the sustainability of the oxygen atom trap. The OV-Co3O4 was further fabricated on a polyacrylonitrile membrane for back-end water purification, achieving continuous flow degradation of pollutants with low cobalt leakage. This work presents an enhancement strategy for constructing OV as an oxygen-atom trapping site in heterogeneous advanced oxidation processes and provides insight into modulating the formation of ≡Co(IV)=O via defect engineering.
Collapse
Affiliation(s)
- Ruidian Su
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, People’s Republic of China
| | - Yixuan Gao
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing100871, People’s Republic of China
| | - Long Chen
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing100871, People’s Republic of China
| | - Yi Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, People’s Republic of China
| | - Nan Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong266042, People’s Republic of China
| | - Wen Liu
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing100871, People’s Republic of China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, People’s Republic of China
| | - Qian Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, People’s Republic of China
| |
Collapse
|
5
|
Chand S, Sharma AK, Pandey AK, Singh KN. Synthesis of unsymmetrical ketones via dual catalysed cross-coupling of α,β-unsaturated carboxylic acids with aryldiazonium salts. Chem Commun (Camb) 2023. [PMID: 38013486 DOI: 10.1039/d3cc04898e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A visible light-enabled synthesis of unsymmetrical ketones has been accomplished by the cross-coupling of α,β-unsaturated carboxylic acids and aryldiazonium salts embracing a synergistic eosin Y and Co(OAc)2·4H2O catalysis. The reaction involves decarboxylative aerobic CC bond cleavage, and is endowed with the creation of new C-C and C-O bonds with good substrate scope.
Collapse
Affiliation(s)
- Shiv Chand
- Department of Chemistry Institute of Science Banaras Hindu University, Varanasi 221005, India.
| | - Anup Kumar Sharma
- Department of Chemistry Institute of Science Banaras Hindu University, Varanasi 221005, India.
| | - Anand Kumar Pandey
- Department of Chemistry Institute of Science Banaras Hindu University, Varanasi 221005, India.
| | - Krishna Nand Singh
- Department of Chemistry Institute of Science Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
6
|
Lee J, Lee B, Lee Y, Kim A, Lee DG, Lim H, Song HK. Low-Voltage Hydrogen Production via Hydrogen Peroxide Oxidation Facilitated by Oxo Ligand Axially Coordinated to Cobalt in Phthalocyanine Moiety. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303263. [PMID: 37434049 DOI: 10.1002/smll.202303263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/28/2023] [Indexed: 07/13/2023]
Abstract
A cobalt phthalocyanine having an electron-poor CoN4 (+δ) in its phthalocyanine moiety was presented as an electrocatalyst for hydrogen peroxide oxidation reaction (HPOR). We suggested that hydrogen peroxide as an electrolysis medium for hydrogen production and therefore as a hydrogen carrier, demonstrating that the electrocatalyst guaranteed high hydrogen production rate by hydrogen peroxide splitting. The electron deficiency of cobalt allows CoN4 to have the highly HPOR-active monovalent oxidation state and facilitates HPOR at small overpotentials range around the onset potential. The strong interaction between the electron-deficient cobalt and oxygen of peroxide adsorbates in Co─OOH- encourages an axially coordinated cobalt oxo complex (O═CoN4 ) to form, the O═CoN4 facilitating the HPOR efficiently at high overpotentials. Low-voltage oxygen evolution reaction guaranteeing low-voltage hydrogen production is successfully demonstrated in the presence of the metal-oxo complex having electron-deficient CoN4 . Hydrogen production by 391 mA cm-2 at 1 V and 870 mA cm-2 at 1.5 V is obtained. Also, the techno-economic benefit of hydrogen peroxide as a hydrogen carrier is evaluated by comparing hydrogen peroxide with other hydrogen carriers such as ammonia and liquid organic hydrogen carriers.
Collapse
Affiliation(s)
- Jisu Lee
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, South Korea
| | - Boreum Lee
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, South Korea
| | - Yeongdae Lee
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, South Korea
| | - Ahyeon Kim
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, South Korea
| | - Dong-Gyu Lee
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, South Korea
| | - Hankwon Lim
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, South Korea
| | - Hyun-Kon Song
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, South Korea
| |
Collapse
|
7
|
An L, Narouz MR, Smith PT, De La Torre P, Chang CJ. Supramolecular Enhancement of Electrochemical Nitrate Reduction Catalyzed by Cobalt Porphyrin Organic Cages for Ammonia Electrosynthesis in Water. Angew Chem Int Ed Engl 2023; 62:e202305719. [PMID: 37466386 PMCID: PMC10528061 DOI: 10.1002/anie.202305719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 07/20/2023]
Abstract
The electrochemical nitrate (NO3 - ) reduction reaction (NO3 RR) to ammonia (NH3 ) represents a sustainable approach for denitrification to balance global nitrogen cycles and an alternative to traditional thermal Haber-Bosch processes. Here, we present a supramolecular strategy for promoting NH3 production in water from NO3 RR by integrating two-dimensional (2D) molecular cobalt porphyrin (CoTPP) units into a three-dimensional (3D) porous organic cage architecture. The porphyrin box CoPB-C8 enhances electrochemical active site exposure, facilitates substrate-catalyst interactions, and improves catalyst stability, leading to turnover numbers and frequencies for NH3 production exceeding 200,000 and 56 s-1 , respectively. These values represent a 15-fold increase in NO3 RR activity and 200-mV improvement in overpotential for the 3D CoPB-C8 box structure compared to its 2D CoTPP counterpart. Synthetic tuning of peripheral alkyl substituents highlights the importance of supramolecular porosity and cavity size on electrochemical NO3 RR activity. These findings establish the incorporation of 2D molecular units into 3D confined space microenvironments as an effective supramolecular design strategy for enhancing electrocatalysis.
Collapse
Affiliation(s)
- Lun An
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Mina R Narouz
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Peter T Smith
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Patricia De La Torre
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720-1460, USA
| |
Collapse
|
8
|
Song J, Hou N, Liu X, Antonietti M, Zhang P, Ding R, Song L, Wang Y, Mu Y. Asymmetrically Coordinated CoB 1 N 3 Moieties for Selective Generation of High-Valence Co-Oxo Species via Coupled Electron-Proton Transfer in Fenton-like Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209552. [PMID: 36932043 DOI: 10.1002/adma.202209552] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/09/2023] [Indexed: 06/09/2023]
Abstract
High-valence metal species generated in peroxymonosulfate (PMS)-based Fenton-like processes are promising candidates for selective degradation of contaminants in water, the formation of which necessitates the cleavage of OH and OO bonds as well as efficient electron transfer. However, the high dissociation energy of OH bond makes its cleavage quite challenging, largely hampering the selective generation of reactive oxygen species. Herein, an asymmetrical configuration characterized by a single cobalt atom coordinated with boron and nitrogen (CoB1 N3 ) is established to offer a strong local electric field, upon which the cleavage of OH bond is thermodynamically favored via a promoted coupled electron-proton transfer process, which serves an essential step to further allow OO bond cleavage and efficient electron transfer. Accordingly, the selective formation of Co(IV)O in a single-atom Co/PMS system enables highly efficient removal performance toward various organic pollutants. The proposed strategy also holds true in other heteroatom doping systems to configure asymmetric coordination, thus paving alternative pathways for specific reactive species conversion by rationalized design of catalysts at atomic level toward environmental applications and more.
Collapse
Affiliation(s)
- Junsheng Song
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Nannan Hou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaocheng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Pengjun Zhang
- CAS Center for Excellence in Nanoscience, National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Rongrong Ding
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Li Song
- CAS Center for Excellence in Nanoscience, National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Yang Wang
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
9
|
Su R, Li N, Liu Z, Song X, Liu W, Gao B, Zhou W, Yue Q, Li Q. Revealing the Generation of High-Valent Cobalt Species and Chlorine Dioxide in the Co 3O 4-Activated Chlorite Process: Insight into the Proton Enhancement Effect. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1882-1893. [PMID: 36607701 DOI: 10.1021/acs.est.2c04903] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A Co3O4-activated chlorite (Co3O4/chlorite) process was developed to enable the simultaneous generation of high-valent cobalt species [Co(IV)] and ClO2 for efficient oxidation of organic contaminants. The formation of Co(IV) in the Co3O4/chlorite process was demonstrated through phenylmethyl sulfoxide (PMSO) probe and 18O-isotope-labeling tests. Both experiments and theoretical calculations revealed that chlorite activation involved oxygen atom transfer (OAT) during Co(IV) formation and proton-coupled electron transfer (PCET) in the Co(IV)-mediated ClO2 generation. Protons not only promoted the generation of Co(IV) and ClO2 by lowering the energy barrier but also strengthened the resistance of the Co3O4/chlorite process to coexisting anions, which we termed a proton enhancement effect. Although both Co(IV) and ClO2 exhibited direct oxidation of contaminants, their contributions varied with pH changes. When pH increased from 3 to 5, the deprotonation of contaminants facilitated the electrophilic attack of ClO2, while as pH increased from 5 to 8, Co(IV) gradually became the main contributor to contaminant degradation owing to its higher stability than ClO2. Moreover, ClO2- was transformed into nontoxic Cl- rather than ClO3- after the reaction, thus greatly reducing possible environmental risks. This work described a Co(IV)-involved chlorite activation process for efficient removal of organic contaminants, and a proton enhancement mechanism was revealed.
Collapse
Affiliation(s)
- Ruidian Su
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Nan Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
- School of Information Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Zhen Liu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Xiaoyang Song
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Wen Liu
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing100871, P. R. China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong250100, P. R. China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| | - Qian Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, P. R. China
| |
Collapse
|
10
|
Karabulut S, Korkmaz S, Güneş E, Kabil E, Keskin İ, Usta M, Omurtag GZ. Seminal trace elements and their relationship with sperm parameters. Andrologia 2022; 54:e14610. [PMID: 36175375 DOI: 10.1111/and.14610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
Male reproductive problems may derive from many reasons including the environmental toxicants which may either intaken by occupational exposure, nutrition or bad air quality. The increased exposure to these substances due to rapid industrial development and technology has raised the questions: Is there a relationship between sperm parameters and these substances, and if so, in what extent? Results of studies on the subject reported conflicting results, many of which were not investigated in the seminal plasma. The aim of the current study was to evaluate the relationship between 23 metals and trace elements in human seminal plasma and semen parameters many of which were not investigated before. Levels of 23 metals in human seminal plasma were assessed by inductively coupled plasma mass spectrometry (ICP-MS). We examined the differences between subjects with normal ejaculate (normozoospermia) and pathologic ejaculate (with at least one abnormal semen parameter) according to the WHO criteria. The only significant difference was detected for Se while the other element's difference was not statistically significant. Se was statistically significantly increased in normal semen group suggesting the positive effect of this element on semen parameters.
Collapse
Affiliation(s)
- Seda Karabulut
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Health Science and Technologies Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Serol Korkmaz
- Doping Control Laboratory, Pendik Veterinary Control Institute, Istanbul, Turkey
| | - Ertuğrul Güneş
- Doping Control Laboratory, Pendik Veterinary Control Institute, Istanbul, Turkey
| | - Erol Kabil
- Doping Control Laboratory, Pendik Veterinary Control Institute, Istanbul, Turkey
| | - İlknur Keskin
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Health Science and Technologies Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Melek Usta
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Health Science and Technologies Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Gülden Zehra Omurtag
- Department of Pharmaceutical Toxicology, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
11
|
Kaur L, Mandal D. Role of "S" Substitution on C-H Activation Reactivity of Iron(IV)-Oxo Cyclam Complexes: a Computational Investigation. Inorg Chem 2022; 61:14582-14590. [PMID: 36069431 DOI: 10.1021/acs.inorgchem.2c01504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A comprehensive density functional theory (DFT) investigation has been presented in this article to address the role of equatorial sulfur ligation in C-H activation. A non-heme iron-oxo compound with four nitrogen atoms constituting the equatorially connected macrocyclic framework (represented as N4) [Fe(IV)═O(THC)(CH3CN)]2+(THC = 1,4,8,11-tetrahydro1,4,8,11-tetraazacyclotetradecane) has been considered as the base compound. Other complexes have been anticipated by the sequential replacement of this nitrogen by sulfur, that is, N4, N3S1, N2S2, N1S3, and S4. Counterions, as always, have been considered to avoid the self-interaction error in DFT. Generally, the anti-conformers (with respect to equatorial N-H and Fe═O) turned out to be the most stable. It was found that with the enrichment of the equatorial sulfur atom, reactivity increases successively, that is, we get the trend N4 < N3S1 < N2S2 < N1S3 < S4. Our investigations have also verified the available experimental results where it has been reported that N2S2 is more reactive than N4 in their mixed conformation. In search of insights into this typical pattern of reactivity, the interplay of several factors has been recognized, such as the distortion energy which decreases for the transition states with the addition of sulfur; the spin density on the oxygen atom which increases implying that the radical character of abstractor increases on sulfur ligation; the energy of the electron acceptor orbital (the lowest unoccupied molecular orbital (σz2*)) which decreases continuously with the sulfur substitution; and the triplet-quintet oxidant energy gap which decreases consistently with S enrichment in the equatorial position. The computational predictions reported here, if further validated by experiments, will definitely encourage the synthesis of sulfur-ligated bio-inspired complexes instead of the ones constituting nitrogen exclusively.
Collapse
Affiliation(s)
- Lovleen Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Debasish Mandal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| |
Collapse
|
12
|
Soybean Oil Epoxidation Catalyzed by a Functionalized Metal–Organic Framework with Active Dioxo-Molybdenum (VI) Centers. Catal Letters 2022. [DOI: 10.1007/s10562-022-04096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractIn this work, a functionalized gallium metal–organic framework with active dioxo-molybdenum (VI) centers was evaluated as a catalyst in the epoxidation of soybean oil using tert-butyl-hydroperoxide as an oxidizing agent. The influence of the reaction time, temperature, and concentration of the oxidizing agent was studied, and it was demonstrated that the highest epoxide selectivity was obtained at 110 °C after 4 h of reaction (29% conversion and 91% selectivity) using a soybean oil/oxidizing agent ratio of 1/2. The stability of the metal–organic framework was confirmed by infrared spectroscopy, X-ray powder diffraction, thermogravimetric analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy EDS. The stability tests demonstrated that the catalyst could be reused in the catalytic process for the recovery of vegetable oils.
Graphical Abstract
Collapse
|
13
|
Tang Y, Li MN, Huang ZY, Liu HY, Xiao XY, Zhang SQ. Synthesis of Metal Xanthene‐Bridged Bis‐corroles and their Catalytic Activity in Aerobic Baeyer‐Villiger Oxidation Reaction. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yan Tang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Meng-Ni Li
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Zhen-Yu Huang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Hai-Yang Liu
- South China University of Technology Department of Chemistry 381# Wushan Road 510641 Guangzhou CHINA
| | - Xin-Yan Xiao
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Si-Quan Zhang
- Guangdong Baomo Biochemical Com. Ltd. Technology Department CHINA
| |
Collapse
|
14
|
Zhou A, Cao X, Chen H, Sun D, Zhao Y, Nam W, Wang Y. The chameleon-like nature of elusive cobalt-oxygen intermediates in C-H bond activation reactions. Dalton Trans 2022; 51:4317-4323. [PMID: 35212349 DOI: 10.1039/d2dt00224h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-valence metal-oxo (M-O, M = Fe, Mn, etc.) species are well-known reaction intermediates that are responsible for a wide range of pivotal oxygenation reactions and water oxidation reactions in metalloenzymes. Although extensive efforts have been devoted to synthesizing and identifying such complexes in biomimetic studies, the structure-function relationship and related reaction mechanisms of these reaction intermediates remain elusive, especially for the cobalt-oxygen species. In the present manuscript, the calculated results demonstrate that the tetraamido macrocycle ligated cobalt complex, Co(O)(TAML) (1), behaves like a chameleon: the electronic structure varies from a cobalt(III)-oxyl species to a cobalt(IV)-oxo species when a Lewis acid Sc3+ salt coordinates or an acidic hydrocarbon attacks 1. The dichotomous correlation between the reaction rates of C-H bond activation by 1 and the bond dissociation energy (BDE) vs. the acidity (pKa) was rationalized for the first time by different reaction mechanisms: for normal C-H bond activation, the Co(III)-oxyl species directly activates the C-H bond via a hydrogen atom transfer (HAT) mechanism, whereas for acidic C-H bond activation, the Co(III)-oxyl species evolves to a Co(IV)-oxo species to increase the basicity of the oxygen to activate the acidic C-H bond, via a novel PCET(PT) mechanism (proton-coupled electron transfer with a PT(proton-transfer)-like transition state). These theoretical findings will enrich the knowledge of biomimetic metal-oxygen chemistry.
Collapse
Affiliation(s)
- Anran Zhou
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Xuanyu Cao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Huanhuan Chen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Dongru Sun
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | - Yong Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
15
|
Hu Y, Sun S, Xu M, Guo J, Li Z. Efficient degradation of aqueous organic contaminants in manganese(II)/peroxymonosulfate system assisted by pyridine organic ligands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:151441. [PMID: 34742965 DOI: 10.1016/j.scitotenv.2021.151441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Although manganese(II) is known to have no role in peroxymonosulfate (PMS) activation, through a series of sulfamethoxazole (SMX) oxidation experiments, we found that the addition of pyridine organic ligands can improve the catalytic activity and accelerate SMX oxidation. For the organic ligands to be effective: the stability constant of the Mn(III) complex should be higher than that of the Mn(II) complex. A positive correlation was observed between the SMX oxidation rate and Mn(II) concentration, and the maximum PMS utilization efficiency was achieved. Many shreds of evidence verified that neither •SO4- nor •OH was associated with SMX oxidation. The enhanced effect of phenanthroline on the Mn(II)/PMS system was attributed to the highly oxidative intermediate manganese species (Mn(V)), originating from the two-electron transfer reaction of complexed Mn(III) and PMS. Notably, the main oxidizing species did not change (η-(PMSO2) ∼ 100%) regardless of the initial PMSO concentration or pH value. Additionally, the analysis of SMX degradation products revealed that the oxygen transfer oxidation pathway was dominant in the Mn(II)/phenanthroline/PMS system, while the N radical coupling pathway also contributed significantly to SMX oxidation. This work offers new insights into the formation of high-valent manganese species and provides a potential strategy for applying low-concentration Mn(II) to wastewater treatment.
Collapse
Affiliation(s)
- Youyou Hu
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, China
| | - Siyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, China
| | - Mengshan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, China
| | - Jialin Guo
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, China
| | - Zhengkui Li
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, China.
| |
Collapse
|
16
|
Amtawong J, Nguyen AI, Tilley TD. Mechanistic Aspects of Cobalt–Oxo Cubane Clusters in Oxidation Chemistry. J Am Chem Soc 2022; 144:1475-1492. [DOI: 10.1021/jacs.1c11445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jaruwan Amtawong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Andy I. Nguyen
- Department of Chemistry, University of Illinois, Chicago, Chicago, Illinois 60607, United States
| | - T. Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Photo-epoxidation of (α, β)-pinene with molecular O2 catalyzed by a dioxo-molybdenum (VI)-based Metal–Organic Framework. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04518-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Vallejo MCS, Moura NMM, Gomes ATPC, Joaquinito ASM, Faustino MAF, Almeida A, Gonçalves I, Serra VV, Neves MGPMS. The Role of Porphyrinoid Photosensitizers for Skin Wound Healing. Int J Mol Sci 2021; 22:4121. [PMID: 33923523 PMCID: PMC8072979 DOI: 10.3390/ijms22084121] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/04/2021] [Accepted: 04/10/2021] [Indexed: 12/14/2022] Open
Abstract
Microorganisms, usually bacteria and fungi, grow and spread in skin wounds, causing infections. These infections trigger the immune system and cause inflammation and tissue damage within the skin or wound, slowing down the healing process. The use of photodynamic therapy (PDT) to eradicate microorganisms has been regarded as a promising alternative to anti-infective therapies, such as those based on antibiotics, and more recently, is being considered for skin wound-healing, namely for infected wounds. Among the several molecules exploited as photosensitizers (PS), porphyrinoids exhibit suitable features for achieving those goals efficiently. The capability that these macrocycles display to generate reactive oxygen species (ROS) gives a significant contribution to the regenerative process. ROS are responsible for avoiding the development of infections by inactivating microorganisms such as bacteria but also by promoting cell proliferation through the activation of stem cells which regulates inflammatory factors and collagen remodeling. The PS can act solo or combined with several materials, such as polymers, hydrogels, nanotubes, or metal-organic frameworks (MOF), keeping both the microbial photoinactivation and healing/regenerative processes' effectiveness. This review highlights the developments on the combination of PDT approach and skin wound healing using natural and synthetic porphyrinoids, such as porphyrins, chlorins and phthalocyanines, as PS, as well as the prodrug 5-aminolevulinic acid (5-ALA), the natural precursor of protoporphyrin-IX (PP-IX).
Collapse
Affiliation(s)
- Mariana C. S. Vallejo
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
| | - Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
| | - Ana T. P. C. Gomes
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.T.P.C.G.); (A.A.)
| | - Ana S. M. Joaquinito
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.T.P.C.G.); (A.A.)
| | - Maria Amparo F. Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.T.P.C.G.); (A.A.)
| | - Idalina Gonçalves
- CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Vanda Vaz Serra
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal;
| | - Maria Graça P. M. S. Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
| |
Collapse
|
19
|
Crystallographic and (spectro)electrochemical characterizations of cobalt(II) 10-phenyl-5,15-di-p-tolylporphyrin. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Cationic Pyrrolidine/Pyrroline-Substituted Porphyrins as Efficient Photosensitizers against E. coli. Molecules 2021; 26:molecules26020464. [PMID: 33477299 PMCID: PMC7829939 DOI: 10.3390/molecules26020464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 01/11/2023] Open
Abstract
New porphyrin–pyrrolidine/pyrroline conjugates were prepared by revisiting 1,3-dipolar cycloaddition reactions between a porphyrinic azomethine ylide and a series of dipolarophiles. Cationic conjugates obtained by alkylation of the pyrrolidine/pyrroline cycloadducts showed ability to generate singlet oxygen and to produce iodine in presence of KI when irradiated with visible light. Some of the cationic derivatives showed photobactericidal properties towards a Gram-negative bioluminescent E. coli. In all cases, these features were significantly improved using KI as coadjutant, allowing, under the tested conditions, the photoinactivation of the bacterium until the detection limit of the method with a drastic reduction of the required photosensitizer concentration and irradiation time. The obtained results showed a high correlation between the ability of the cationic porphyrin derivative to produce singlet oxygen and iodine and its E. coli photoinactivation profile.
Collapse
|
21
|
Tian W, Li M, Yang S, Zhang H, Liu H, Xiao X. Copper Corrole as an Efficient Catalyst for Esterification of Allylic sp 3-C—H Bonds with Carboxylic Acids. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Zong Y, Guan X, Xu J, Feng Y, Mao Y, Xu L, Chu H, Wu D. Unraveling the Overlooked Involvement of High-Valent Cobalt-Oxo Species Generated from the Cobalt(II)-Activated Peroxymonosulfate Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:16231-16239. [PMID: 33225681 DOI: 10.1021/acs.est.0c06808] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sulfate radical (SO4•-) is widely recognized as the predominant species generated from the cobalt(II)-activated peroxymonosulfate (PMS) process. However, in this study, it was surprisingly found that methyl phenyl sulfoxide (PMSO) was readily oxidized to the corresponding sulfone (PMSO2) with a transformation ratio of ∼100% under acidic conditions, which strongly implied the generation of high-valent cobalt-oxo species [Co(IV)] instead of SO4•- in the Co(II)/PMS process. Scavenging experiments using methanol (MeOH), tert-butyl alcohol, and dimethyl sulfoxide further suggested the negligible role of SO4•- and hydroxyl radical (•OH) but favored the generation of Co(IV). By employing 18O isotope-labeling technique, the formation of Co(IV) was conclusively verified and the oxygen atom exchange reaction between Co(IV) and H2O was revealed. Density functional theory calculation determined that the formation of Co(IV) was thermodynamically favorable than that of SO4•- and •OH in the Co(II)/PMS process. The generated Co(IV) species was indicated to be highly reactive due to the existence of oxo-wall and capable of oxidizing the organic pollutant that is rather recalcitrant to SO4•- attack, for example, nitrobenzene. Additionally, the degradation intermediates of sulfamethoxazole (SMX) in the Co(II)/PMS process under acidic conditions were identified to further understand the interaction between Co(IV) and the representative contaminant. The developed kinetic model successfully simulated PMSO loss, PMSO2 production, SMX degradation, and/or PMS decomposition under varying conditions, which further supported the proposed mechanism. This study might shed new light on the Co(II)/PMS process.
Collapse
Affiliation(s)
- Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Jun Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Yong Feng
- School of Environment, South China Normal University, University Town, Guangzhou 510631, China
| | - Yunfeng Mao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Longqian Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Huaqiang Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
23
|
Abstract
High-valent oxocobalt(IV) species have been invoked as key intermediates in oxidative catalysis, but investigations into the chemistry of proton-coupled redox reactions of such species have been limited. Herein, the reactivity of an established water oxidation catalyst, [Co4O4(OAc)4(py)4][PF6], toward H-atom abstraction reactions is described. Mechanistic analyses and density functional theory (DFT) calculations support a concerted proton-electron transfer (CPET) pathway in which the high energy intermediates formed in stepwise pathways are bypassed. Natural bond orbital (NBO) calculations point to cooperative donor-acceptor σ interactions at the transition state, whereby the H-atom of the substrate is transferred to an orbital delocalized over a Co3(μ3-O) fragment. The mechanistic insights provide design principles for the development of catalytic C-H activation processes mediated by a multimetallic oxo metal cluster.
Collapse
|
24
|
Lai JW, Liu ZY, Chen XY, Zhang H, Liu HY. Hydration of terminal alkynes catalyzed by cobalt corrole complex. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Tetrapyrrolic Macrocycles: Synthesis, Functionalization and Applications 2018. Molecules 2020; 25:molecules25030433. [PMID: 31972976 PMCID: PMC7037997 DOI: 10.3390/molecules25030433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 02/07/2023] Open
Abstract
Natural and synthetic macrocycles like porphyrins, corroles and phthalocyanines are considered strong candidates to be used in different fields, such as catalysis, sensing, medicine, materials science, or in the development of advanced biomimetic models. All these applications are strongly dependent on the availability of compounds with adequate and specific structural features. This Special Issue has collected 13 contributions which consolidate and expand our knowledge on the application of these macrocycles in different fields accompanied by innovative synthetic methodologies to afford and to functionalize this type of compounds.
Collapse
|
26
|
Shimoyama Y, Tamura S, Kitagawa Y, Hong D, Kon Y. A cobalt-substituted Keggin-type polyoxometalate for catalysis of oxidative aromatic cracking reactions in water. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01758b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative aromatic cracking reactions in water were achieved using a catalytic system with a cobalt-substituted Keggin-type polyoxometalate as a catalyst, an Oxone® as a sacrificial oxidant and sodium bicarbonate as an additive under mild conditions.
Collapse
Affiliation(s)
- Yoshihiro Shimoyama
- Interdisciplinary Research Center for Catalytic Chemistry
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| | - Satoru Tamura
- Institute for Energy and Material/Food Resources
- Technology Innovation Division
- Panasonic Corporation
- Kadoma City
- Japan
| | - Yasutaka Kitagawa
- Department of Materials Engineering Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka
- Japan
| | - Dachao Hong
- Interdisciplinary Research Center for Catalytic Chemistry
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
- Global Zero Emission Research Center
| | - Yoshihiro Kon
- Interdisciplinary Research Center for Catalytic Chemistry
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
- Global Zero Emission Research Center
| |
Collapse
|
27
|
Saha J, Ball R, Sah A, Kalyani V, Subramaniam C. The mechanistic role of a support-catalyst interface in electrocatalytic water reduction by Co 3O 4 supported nanocarbon florets. NANOSCALE 2019; 11:13532-13540. [PMID: 31290513 DOI: 10.1039/c9nr03907d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Comprehending the mechanistic involvement of a support-catalyst interface is critical for effective design of industrially relevant electrocatalytic processes such as the alkaline hydrogen evolution reaction (alHER). The understanding of the kinetically sluggish alHER exhibited by both Pt and Pt-group-metal-free catalysts is primarily derived from indirect electrochemical parameters such as the Tafel slope. To address these issues, we establish the critical role of a nanocarbon floret (NCF) based electrochemical support in generating a key cobalt-oxohydroxo (OH-Co[double bond, length as m-dash]O) intermediate during the alHER through operando Raman spectro-electrochemistry. Specifically, interfacial nano-engineering of a newly designed carbon support (NCF) with a spinel Co3O4 nanocube catalyst is demonstrated to achieve a facile alHER (-0.46 V@10 mA cm-2). Such an efficient alHER is mainly attributed to the unique lamellar morphology with a high mesoporous surface area (936 m2 g-1) of the NCF which catalyses the rate-determining water dissociation step and facilitates rapid ion diffusion. The dissociated water drives the formation of the OH-Co[double bond, length as m-dash]O intermediate, spectroscopically captured for the first time through the emergence of a νOH-Co[double bond, length as m-dash]O Raman peak (1074 cm-1). The subsequent alHER proceeds through the Volmer-Heyrovsky route (119 mV dec-1) via the Td Co2+↔ Co3+↔ Co4+ oxidative pathway. Concomitant graphitization of the NCF through the disappearance of νsp3C-H (2946 cm-1) supports the co-operative dynamics at the Co3O4-NCF interface. Thus, the NCF positively contributes towards the lowering of the overpotential with a low charge-transfer resistance (Rct = 35.8 Ω) and high double layer capacitance (Cdl = 410 mF cm-2).
Collapse
Affiliation(s)
- Jayeeta Saha
- Department of Chemistry, Indian Institute of Technology, Mumbai-400076, India.
| | - Ranadeb Ball
- Department of Chemistry, Indian Institute of Technology, Mumbai-400076, India.
| | - Ananya Sah
- Department of Chemistry, Indian Institute of Technology, Mumbai-400076, India.
| | - Vishwanath Kalyani
- Department of Chemistry, Indian Institute of Technology, Mumbai-400076, India.
| | | |
Collapse
|