1
|
Xu M, Bullard KK, Bacsa J, Gutekunst WR. Halide Abstraction-Mediated Synthesis of a Highly Twisted Amide. J Org Chem 2024; 89:12779-12784. [PMID: 39148350 PMCID: PMC11382264 DOI: 10.1021/acs.joc.4c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Highly strained [3.2.1] bicyclic twisted amide 2 and corresponding amidium 10 were synthesized for the first time through Ag(I)-mediated halide abstraction. After initial lactamization attempts failed, a second-generation strategy was devised to target amidium 10 via intramolecular alkylation. The 3,4-dihydroisoquinolone cyclization precursor was regioselectively prepared via a Rh(III)-catalyzed C-H activation/annulation reaction. After Ag(I)-assisted cyclization, the [3.2.1] bicyclic framework of amidium 10 was confirmed by X-ray crystallography and enabled full solution characterization of twisted amide 2.
Collapse
Affiliation(s)
| | | | - John Bacsa
- X-ray Crystallography Center, Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | | |
Collapse
|
2
|
Gao P, Rahman MM, Zamalloa A, Feliciano J, Szostak M. Classes of Amides that Undergo Selective N-C Amide Bond Activation: The Emergence of Ground-State Destabilization. J Org Chem 2023; 88:13371-13391. [PMID: 36054817 DOI: 10.1021/acs.joc.2c01094] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ground-state destabilization of the N-C(O) linkage represents a powerful tool to functionalize the historically inert amide bond. This burgeoning reaction manifold relies on the availability of amide bond precursors that participate in weakening of the nN → π*C=O conjugation through N-C twisting, N pyramidalization, and nN electronic delocalization. Since 2015, acyl N-C amide bond activation through ground-state destabilization of the amide bond has been achieved by transition-metal-catalyzed oxidative addition of the N-C(O) bond, generation of acyl radicals, and transition-metal-free acyl addition. This Perspective summarizes contributions of our laboratory in the development of new ground-state-destabilized amide precursors enabled by twist and electronic activation of the amide bond and synthetic utility of ground-state-destabilized amides in cross-coupling reactions and acyl addition reactions. The use of ground-state-destabilized amides as electrophiles enables a plethora of previously unknown transformations of the amide bond, such as acyl coupling, decarbonylative coupling, radical coupling, and transition-metal-free coupling to forge new C-C, C-N, C-O, C-S, C-P, and C-B bonds. Structural studies of activated amides and catalytic systems developed in the past decade enable the view of the amide bond to change from the "traditionally inert" to "readily modifiable" functional group with a continuum of reactivity dictated by ground-state destabilization.
Collapse
Affiliation(s)
- Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Alfredo Zamalloa
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jessica Feliciano
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
3
|
Zhang J, Zhao H, Li G, Zhu X, Shang L, He Y, Liu X, Ma Y, Szostak M. Transamidation of thioamides with nucleophilic amines: thioamide N-C(S) activation by ground-state-destabilization. Org Biomol Chem 2022; 20:5981-5988. [PMID: 35441645 DOI: 10.1039/d2ob00412g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Thioamides are 'single-atom' isosteres of amide bonds that have found broad applications in organic synthesis, biochemistry and drug discovery. In this New Talent themed issue, we present a general strategy for activation of N-C(S) thioamide bonds by ground-state-destabilization. This concept is outlined in the context of a full study on transamidation of thioamides with nucleophilic amines, and relies on (1) site-selective N-activation of the thioamide bond to decrease resonance and (2) highly chemoselective nucleophilic acyl addition to the thioamide CS bond. The follow-up collapse of the tetrahedral intermediate is favored by the electronic properties of the amine leaving group. The ground-state-destabilization concept of thioamides enables weakening of the N-C(S) bond and rationally modifies the properties of valuable thioamide isosteres for the development of new methods in organic synthesis. We fully expect that in analogy to the burgeoning field of destabilized amides introduced by our group in 2015, the thioamide bond ground-state-destabilization activation concept will find broad applications in various facets of chemical science, including metal-free, metal-catalyzed and metal-promoted reaction pathways.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China. .,Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | - Hui Zhao
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Guangchen Li
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | - Xinhao Zhu
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Linqin Shang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yang He
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xin Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| |
Collapse
|
4
|
Zeng M, Xue Y, Qin Y, Peng F, Li Q, Zeng MH. CuBr-promoted domino Biginelli reaction for the diastereoselective synthesis of bridged polyheterocycles: mechanism studies and in vitro anti-tumor activities. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Mikshiev VY, Tolstoy P, Tupikina EY, Puzyk AM, Vovk MA. Acid catalysis through N-protonation in undistorted carboxamides: improvement of amide proton sponge acylating ability. NEW J CHEM 2022. [DOI: 10.1039/d2nj02975h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acid catalysis of weakly distorted or undistorted carboxamides in acyl-migration reactions proceeding through N-protonation is the process with low probability in contrast to O-protonation. This circumstance made the experimental study...
Collapse
|
6
|
Pitchumani V, Breugst M, Lupton DW. Enantioselective Rauhut-Currier Reaction with β-Substituted Acrylamides Catalyzed by N-Heterocyclic Carbenes. Org Lett 2021; 23:9413-9418. [PMID: 34842439 DOI: 10.1021/acs.orglett.1c03554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-Substituted acrylamides have low electrophilicity and are yet to be exploited in the enantioselective Rauhut-Currier reaction. By exploiting electron-withdrawing protection of the amide and moderate nucleophilicity N-heterocyclic carbenes, such substrates have been converted to enantioenriched quinolones. The reaction proceeds with complete diastereoselectivity, good yield, and modest enantioselectivity. Derivatizations are reported, as are computational studies, supporting decreased amide bond character with electron-withdrawing protection of the nitrogen.
Collapse
Affiliation(s)
| | - Martin Breugst
- Department für Chemie, Universität zu Köln, 50939 Köln, Germany
| | - David W Lupton
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
7
|
Abstract
In this contribution, we provide a comprehensive overview of acyclic twisted amides, covering the literature since 1993 (the year of the first recognized report on acyclic twisted amides) through June 2020. The review focuses on classes of acyclic twisted amides and their key structural properties, such as amide bond twist and nitrogen pyramidalization, which are primarily responsible for disrupting nN to π*C═O conjugation. Through discussing acyclic twisted amides in comparison with the classic bridged lactams and conformationally restricted cyclic fused amides, the reader is provided with an overview of amidic distortion that results in novel conformational features of acyclic amides that can be exploited in various fields of chemistry ranging from organic synthesis and polymers to biochemistry and structural chemistry and the current position of acyclic twisted amides in modern chemistry.
Collapse
Affiliation(s)
- Guangrong Meng
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jin Zhang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
8
|
Xu M, Paul MK, Bullard KK, DuPre C, Gutekunst WR. Modulating Twisted Amide Geometry and Reactivity Through Remote Substituent Effects. J Am Chem Soc 2021; 143:14657-14666. [PMID: 34463473 DOI: 10.1021/jacs.1c05854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The unusual reactivity of twisted amides has long been associated with the degree of amide distortion, though classical bridged bicyclic amides offer limited methods to further modify these parameters. Here, we report that the geometry and reactivity of a single twisted amide scaffold can be significantly modulated through remote substituent effects. Guided by calculated ground state geometries, a library of twisted amide derivatives was efficiently prepared through a divergent synthetic strategy. Kinetic and mechanistic investigations of these amides in the alkylation/halide-rebound ring-opening reaction with alkyl halides show a strong positive correlation between the electron donating ability of the substituent and distortion of the amide bond, leading to rates of nucleophilic substitution spanning nearly 2 orders of magnitude. The rate limiting step of the cascade sequence is found to be dependent on the nature of the substituent, and additional studies highlight the role of solvent polarity and halide ion on reaction pathway and efficiency.
Collapse
|
9
|
Xie. P, Qin Z, Zhang S, Hong X. Understanding the Structure‐Activity Relationship of Ni‐Catalyzed Amide C−N Bond Activation using Distortion/Interaction Analysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202100672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pei‐Pei Xie.
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 P.R. China
| | - Zhi‐Xin Qin
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 P.R. China
| | - Shuo‐Qing Zhang
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 P.R. China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 P.R. China
| |
Collapse
|
10
|
Lei J, Jiang Y, Luo X, Zheng Y, Zhu L, Sun C, Linghu L, Qin C, Gang W. Ultrasonic‐Assisted Ionic Liquid Extraction of Four Biflavonoids from
Ginkgo biloba L
. ChemistrySelect 2021. [DOI: 10.1002/slct.202004605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jie Lei
- School of Pharmacy Zunyi Medical University Zunyi 563003 Guizhou China
| | - Yongmei Jiang
- Modern Agriculture Department Zunyi Vocational and Technical College Zunyi 563006 Guizhou China
| | - Xirong Luo
- Modern Agriculture Department Zunyi Vocational and Technical College Zunyi 563006 Guizhou China
- Key Lab of Zunyi Crop Gene Resource and Germplasm Innovation Zunyi Academy of Agricultural Sciences Zunyi 563006 Guizhou China
| | - Yu Zheng
- Key Lab of Zunyi Crop Gene Resource and Germplasm Innovation Zunyi Academy of Agricultural Sciences Zunyi 563006 Guizhou China
| | - Lei Zhu
- School of Pharmacy Zunyi Medical University Zunyi 563003 Guizhou China
| | - Chengxin Sun
- School of Pharmacy Zunyi Medical University Zunyi 563003 Guizhou China
| | - Lang Linghu
- School of Pharmacy Zunyi Medical University Zunyi 563003 Guizhou China
| | - Cheng Qin
- Modern Agriculture Department Zunyi Vocational and Technical College Zunyi 563006 Guizhou China
- Key Lab of Zunyi Crop Gene Resource and Germplasm Innovation Zunyi Academy of Agricultural Sciences Zunyi 563006 Guizhou China
| | - Wang Gang
- School of Pharmacy Zunyi Medical University Zunyi 563003 Guizhou China
| |
Collapse
|
11
|
Alves NG, Alves AJS, Soares MIL, Pinho e Melo TMVD. Recent Advances in the Synthesis of Spiro‐β‐Lactams and Spiro‐δ‐Lactams. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nuno G. Alves
- University of Coimbra Coimbra Chemistry Centre and Department of Chemistry 3004-535 Coimbra Portugal
| | - Américo J. S. Alves
- University of Coimbra Coimbra Chemistry Centre and Department of Chemistry 3004-535 Coimbra Portugal
| | - Maria I. L. Soares
- University of Coimbra Coimbra Chemistry Centre and Department of Chemistry 3004-535 Coimbra Portugal
| | | |
Collapse
|
12
|
Wakchaure PD, Ganguly B. Tuning the electronic effects in designing ligands for the inhibition of rotamase activity of FK506 binding protein. Theor Chem Acc 2021. [DOI: 10.1007/s00214-020-02717-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
He Z, Wang Z, Ru J, Wang Y, Liu T, Zeng Z. A Strategy for Accessing Aldehydes
via
Palladium‐Catalyzed C−O/C−N Bond Cleavage in the Presence of Hydrosilanes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhanyu He
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Zijia Wang
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Junxiang Ru
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Yulin Wang
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Tingting Liu
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Zhuo Zeng
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
14
|
Millward MJ, Ellis E, Ward JW, Clayden J. Hydantoin-bridged medium ring scaffolds by migratory insertion of urea-tethered nitrile anions into aromatic C-N bonds. Chem Sci 2020; 12:2091-2096. [PMID: 34163972 PMCID: PMC8179327 DOI: 10.1039/d0sc06188c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023] Open
Abstract
Bicyclic or tricyclic nitrogen-containing heterocyclic scaffolds were constructed rapidly by intramolecular nucleophilic aromatic substitution of metallated nitriles tethered by a urea linkage to a series of electronically unactivated heterocyclic precursors. The substitution reaction constitutes a ring expansion, enabled by the conformationally constrained tether between the nitrile and the heterocycle. Attack of the metallated urea leaving group on the nitrile generates a hydantoin that bridges the polycyclic products. X-ray crystallography reveals ring-dependant strain within the hydantoin.
Collapse
Affiliation(s)
- Makenzie J Millward
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Emily Ellis
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - John W Ward
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
15
|
Ielo L, Pace V, Holzer W, Rahman MM, Meng G, Szostak R, Szostak M. Electrophilicity Scale of Activated Amides: 17 O NMR and 15 N NMR Chemical Shifts of Acyclic Twisted Amides in N-C(O) Cross-Coupling. Chemistry 2020; 26:16246-16250. [PMID: 32668046 DOI: 10.1002/chem.202003213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/17/2022]
Abstract
The structure and properties of amides are of tremendous interest in organic synthesis and biochemistry. Traditional amides are planar and the carbonyl group non-electrophilic due to nN →π*C=O conjugation. In this study, we report electrophilicity scale by exploiting 17 O NMR and 15 N NMR chemical shifts of acyclic twisted and destabilized acyclic amides that have recently received major attention as precursors in N-C(O) cross-coupling by selective oxidative addition as well as precursors in electrophilic activation of N-C(O) bonds. Most crucially, we demonstrate that acyclic twisted amides feature electrophilicity of the carbonyl group that ranges between that of acid anhydrides and acid chlorides. Furthermore, a wide range of electrophilic amides is possible with gradually varying carbonyl electrophilicity by steric and electronic tuning of amide bond properties. Overall, the study quantifies for the first time that steric and electronic destabilization of the amide bond in common acyclic amides renders the amide bond as electrophilic as acid anhydrides and chlorides. These findings should have major implications on the fundamental properties of amide bonds.
Collapse
Affiliation(s)
- Laura Ielo
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Vittorio Pace
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria.,Department of Chemistry, University of Torino, Via P. Giuria 7, Torino, 10125, Italy
| | - Wolfgang Holzer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, United States
| | - Guangrong Meng
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw, 50383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, United States
| |
Collapse
|
16
|
|
17
|
Wu N, Li C, Mi J, Zheng Y, Xu Z. A Strategy for Amide to β-Oxo Ester Transformation via N-Alkenoxypyridinium Salts as the Activator and H2O as the Nucleophile. Org Lett 2020; 22:7118-7122. [DOI: 10.1021/acs.orglett.0c02457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Tongshan Road 209, Xuzhou 221004, China
| | - Chuang Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Tongshan Road 209, Xuzhou 221004, China
| | - Jiajia Mi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Tongshan Road 209, Xuzhou 221004, China
| | - Yan Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Tongshan Road 209, Xuzhou 221004, China
| | - Zhou Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Tongshan Road 209, Xuzhou 221004, China
| |
Collapse
|
18
|
Novel Convenient Approach to 6-, 7-, and 8-Numbered Nitrogen Heterocycles Incorporating Endocyclic Sulfonamide Fragment. Molecules 2020; 25:molecules25122887. [PMID: 32585918 PMCID: PMC7356088 DOI: 10.3390/molecules25122887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 12/02/2022] Open
Abstract
A new effective method for the construction of nitrogen heterocycles incorporating endocyclic pharmacophore sulfonamide fragment, based on the use of easy accessible N-(chlorosulfonyl)imidoyl chloride, CCl3C(Cl)=NSO2Cl (1), has been developed. Thus, a reaction of 1 as bielectrophilic 1,3-C–N–S reagent with benzylamines that act as 1,4-N–C–C-C binucleophiles, affords respective 1,2,4-benzothiadiazepine-1,1-dioxides. On the other hand, 1 reacts with alkenyl amines with the formation of respective N-alkenyl amidines undergoing Lewis acids initiated intramolecular cyclization to afford derivatives of 1,2,4-thiadiazines and 1,2,4-thiadiazocines bearing a halomethyl group able for further functionalization. The first examples of electrophilic heterocyclization of the chlorosulfonyl group onto an alkenyl or alkynyl group have been revealed.
Collapse
|
19
|
Buchspies J, Rahman MM, Szostak R, Szostak M. N-Acylcarbazoles and N-Acylindoles: Electronically Activated Amides for N–C(O) Cross-Coupling by Nlp to Ar Conjugation Switch. Org Lett 2020; 22:4703-4709. [DOI: 10.1021/acs.orglett.0c01488] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jonathan Buchspies
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Md. Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
20
|
Szostak M, Li G. Non-Classical Amide Bond Formation: Transamidation and Amidation of Activated Amides and Esters by Selective N–C/O–C Cleavage. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707101] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the past several years, tremendous advances have been made in non-classical routes for amide bond formation that involve transamidation and amidation reactions of activated amides and esters. These new methods enable the formation of extremely valuable amide bonds via transition-metal-catalyzed, transition-metal-free, or metal-free pathways by exploiting chemoselective acyl C–X (X = N, O) cleavage under mild conditions. In a broadest sense, these reactions overcome the formidable challenge of activating C–N/C–O bonds of amides or esters by rationally tackling nN → π*C=O delocalization in amides and nO → π*C=O donation in esters. In this account, we summarize the recent remarkable advances in the development of new methods for the synthesis of amides with a focus on (1) transition-metal/NHC-catalyzed C–N/C–O bond activation, (2) transition-metal-free highly selective cleavage of C–N/C–O bonds, (3) the development of new acyl-transfer reagents, and (4) other emerging methods.1 Introduction2 Transamidation of Amides2.1 Transamidation by Metal–NHC Catalysis (Pd–NHC, Ni–NHC)2.2 Transition-Metal-Free Transamidation via Tetrahedral Intermediates2.3 Reductive Transamidation2.4 New Acyl-Transfer Reagents2.5 Tandem Transamidations3 Amidation of Esters3.1 Amidation of Esters by Metal–NHC Catalysis (Pd–NHC, Ni–NHC)3.2 Transition-Metal-Free Amidation of Esters via Tetrahedral Intermediates3.3 Reductive Amidation of Esters4 Transamidations of Amides by Other Mechanisms5 Conclusions and Outlook
Collapse
|
21
|
Wang CA, Liu C, Szostak M. N-Acyl-5,5-Dimethylhydantoins: Mild Acyl-Transfer Reagents for the Synthesis of Ketones Using Pd–PEPPSI or Pd/Phosphine Catalysts. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Chang-An Wang
- College of Chemistry and Chemical Engineering, Taishan University, Tai’an, Shandong 271000, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Chengwei Liu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
22
|
Gulledge ZZ, Carrick JD. Deprotection of
N
‐
tert
‐Butoxycarbonyl (Boc) Protected Functionalized Heteroarenes via Addition–Elimination with 3‐Methoxypropylamine. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zachary Z. Gulledge
- Department of Chemistry Tennessee Technological University 55 University Drive 38505‐0001 Cookeville TN USA
| | - Jesse D. Carrick
- Department of Chemistry Tennessee Technological University 55 University Drive 38505‐0001 Cookeville TN USA
| |
Collapse
|
23
|
Li M, Wang T, Wang C. Multicomponent Reaction of Pyridinium Salts,
β
‐Nitrostyrenes and Ammonium Acetate under the DBU/Acetic Acid System: Access to 2,4,6‐Triarylpyridine Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202000387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingshuang Li
- School of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| | - Ting Wang
- School of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| |
Collapse
|
24
|
Rahman MM, Liu C, Bisz E, Dziuk B, Lalancette R, Wang Q, Chen H, Szostak R, Szostak M. N-Acyl-glutarimides: Effect of Glutarimide Ring on the Structures of Fully Perpendicular Twisted Amides and N–C Bond Cross-Coupling. J Org Chem 2020; 85:5475-5485. [DOI: 10.1021/acs.joc.0c00227] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Md. Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Chengwei Liu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Błażej Dziuk
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-373 Wrocław, Poland
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Qi Wang
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
25
|
Mikshiev VY, Pozharskii AF, Filarowski A, Novikov AS, Antonov AS, Tolstoy PM, Vovk MA, Khoroshilova OV. How Strong is Hydrogen Bonding to Amide Nitrogen? Chemphyschem 2020; 21:651-658. [PMID: 31953976 DOI: 10.1002/cphc.201901104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Indexed: 12/23/2022]
Abstract
The protonation of the carboxamide nitrogen atom is an essential part of in vivo and in vitro processes (cis-trans isomerization, amides hydrolysis etc). This phenomenon is well studied in geometrically strongly distorted amides, although there is little data concerning the protonation of undistorted amides. In the latter case, the participation of amide nitrogen in hydrogen bonding (which can be regarded as the incipient state of a proton transfer process) is less well-studied. Thus, it would be a worthy goal to investigate the enthalpy of this interaction. We prepared and investigated a set of peri-substituted naphthalenes containing the protonated dimethylamino group next to the amide nitrogen atom ("amide proton sponges"), which could serve as models for the study of an intramolecular hydrogen bond with the amide nitrogen atom. X-Ray analysis, NMR spectra, basicity values as well as quantum chemical calculations revealed the existence of a hydrogen bond with the amide nitrogen, that should be attributed to the borderline between moderate and weak intramolecular hydrogen bonds (2-7 kcal ⋅ mol-1 ).
Collapse
Affiliation(s)
- Vladimir Y Mikshiev
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504, St. Petersburg, Russian Federation
| | - Alexander F Pozharskii
- Department of Organic Chemistry, Southern Federal University, Zorge str. 7, 344090, Rostov-on-Don, Russian Federation
| | - Alexander Filarowski
- Faculty of Chemistry, Wroclaw University, F. Joliot-Curie str. 14, 50-383, Wroclaw, Poland
- Industrial University of Tyumen, Volodarskogo str. 38, 625000, Tyumen, Russian Federation
| | - Alexander S Novikov
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504, St. Petersburg, Russian Federation
| | - Alexander S Antonov
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504, St. Petersburg, Russian Federation
| | - Peter M Tolstoy
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504, St. Petersburg, Russian Federation
| | - Mikhail A Vovk
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504, St. Petersburg, Russian Federation
| | - Olesya V Khoroshilova
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504, St. Petersburg, Russian Federation
| |
Collapse
|
26
|
Zhang J, Wang X, Chen D, Kang Y, Ma Y, Szostak M. Synthesis of C6-Substituted Isoquinolino[1,2-b]quinazolines via Rh(III)-Catalyzed C–H Annulation with Sulfoxonium Ylides. J Org Chem 2020; 85:3192-3201. [DOI: 10.1021/acs.joc.9b03065] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Xiaogang Wang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Di Chen
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yifan Kang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Michal Szostak
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
27
|
Das J, Borah BJ, Das SK. Base-mediated intramolecular one-pot double-cyclization of epoxide-tethered 2-fluorobenzenesulfonamides: an avenue to 1,4-benzoxazine-fused benzothiaoxazepine-1,1-dioxides. Org Biomol Chem 2020; 18:220-224. [PMID: 31829386 DOI: 10.1039/c9ob02377a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, we describe the synthesis of hitherto unknown 1,4-benzoxazine-fused benzothiaoxazepine-1,1-dioxides by a NaH-promoted intramolecular one-pot double-cyclization of epoxide-tethered 2-fluorobenzene sulfonamides. Mechanistically, the reactions proceed via an intramolecular epoxide ring-opening followed by an intramolecular nucleophilic aromatic substitution. The high yields, mild conditions, complete regio- and diastereoselectivity, and a wide substrate scope render this protocol well suited for drug discovery efforts.
Collapse
Affiliation(s)
- Jonali Das
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam, India-784028.
| | | | | |
Collapse
|
28
|
Li G, Szostak M. Transition-Metal-Free Activation of Amides by N-C Bond Cleavage. CHEM REC 2019; 20:649-659. [PMID: 31833633 DOI: 10.1002/tcr.201900072] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022]
Abstract
The amide bond N-C activation represents a powerful strategy in organic synthesis to functionalize the historically inert amide linkage. This personal account highlights recent remarkable advances in transition-metal-free activation of amides by N-C bond cleavage, focusing on both (1) mechanistic aspects of ground-state-destabilization of the amide bond enabling formation of tetrahedral intermediates directly from amides with unprecedented selectivity, and (2) synthetic utility of the developed transformations. Direct nucleophilic addition to amides enables a myriad of powerful methods for the formation of C-C, C-N, C-O and C-S bonds, providing a straightforward and more synthetically useful alternative to acyl-metals.
Collapse
Affiliation(s)
- Guangchen Li
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| |
Collapse
|
29
|
Zhou T, Ji CL, Hong X, Szostak M. Palladium-catalyzed decarbonylative Suzuki-Miyaura cross-coupling of amides by carbon-nitrogen bond activation. Chem Sci 2019; 10:9865-9871. [PMID: 32015810 PMCID: PMC6977462 DOI: 10.1039/c9sc03169c] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/31/2019] [Indexed: 12/12/2022] Open
Abstract
Palladium-catalyzed Suzuki-Miyaura cross-coupling or aryl halides is widely employed in the synthesis of many important molecules in synthetic chemistry, including pharmaceuticals, polymers and functional materials. Herein, we disclose the first palladium-catalyzed decarbonylative Suzuki-Miyaura cross-coupling of amides for the synthesis of biaryls through the selective activation of the N-C(O) bond of amides. This new method relies on the precise sequence engineering of the catalytic cycle, wherein decarbonylation occurs prior to the transmetallation step. The reaction is compatible with a wide range of boronic acids and amides, providing valuable biaryls in high yields (>60 examples). DFT studies support a mechanism involving oxidative addition, decarbonylation and transmetallation and provide insight into high N-C(O) bond activation selectivity. Most crucially, the reaction establishes the use of palladium catalysis in the biaryl Suzuki-Miyaura cross-coupling of the amide bond and should enable the design of a wide variety of cross-coupling methods in which palladium rivals the traditional biaryl synthesis from aryl halides and pseudohalides.
Collapse
Affiliation(s)
- Tongliang Zhou
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , NJ 07102 , USA .
| | - Chong-Lei Ji
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , China .
| | - Xin Hong
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , China .
| | - Michal Szostak
- College of Chemistry and Chemical Engineering , Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry , Ministry of Education, Shaanxi University of Science and Technology , Xi'an 710021 , China
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , NJ 07102 , USA .
| |
Collapse
|
30
|
Xu M, Bullard KK, Nicely AM, Gutekunst WR. Resonance promoted ring-opening metathesis polymerization of twisted amides. Chem Sci 2019; 10:9729-9734. [PMID: 32055341 PMCID: PMC6993617 DOI: 10.1039/c9sc03602d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 08/30/2019] [Indexed: 12/31/2022] Open
Abstract
The living ring-opening metathesis polymerization (ROMP) of an unsaturated twisted amide using the third-generation Grubbs initiator is described. Unlike prior examples of ROMP monomers that rely on angular or steric strain for propagation, this system is driven by resonance destabilization of the amide that arises from geometric constraints of the bicyclic framework. Upon ring-opening, the amide can rotate and rehybridize to give a stabilized and planar conjugated system that promotes living propagation. The absence of other strain elements in the twisted amide is supported by the inability of a carbon analogue of the monomer to polymerize and computational studies that find resonance destabilization accounts for 11.3 kcal mol-1 of the overall 12.0 kcal mol-1 ring strain. The twisted amide polymerization is capable of preparing high molecular weight polymers rapidly at room temperature, and post-polymerization modification combined with 2D NMR spectroscopy confirms a regioirregular polymer microstructure.
Collapse
Affiliation(s)
- Mizhi Xu
- School of Chemistry and Biochemistry , Georgia Institute of Technology , 901 Atlantic Drive NW , Atlanta , Georgia 30332 , USA .
| | - Krista K Bullard
- School of Chemistry and Biochemistry , Georgia Institute of Technology , 901 Atlantic Drive NW , Atlanta , Georgia 30332 , USA .
| | - Aja M Nicely
- School of Chemistry and Biochemistry , Georgia Institute of Technology , 901 Atlantic Drive NW , Atlanta , Georgia 30332 , USA .
| | - Will R Gutekunst
- School of Chemistry and Biochemistry , Georgia Institute of Technology , 901 Atlantic Drive NW , Atlanta , Georgia 30332 , USA .
| |
Collapse
|
31
|
Xiong L, Deng R, Liu T, Luo Z, Wang Z, Zhu X, Wang H, Zeng Z. Selective C−N Bond Cleavage of
N
‐Acylisatins: Towards High Performance Acylation/Arylation/Transamination Reagents. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Li Xiong
- College of Chemistry and EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat-sen University Cancer Center Guangzhou 510060 People's Republic of China
| | - Tingting Liu
- College of Chemistry and EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Zhongfeng Luo
- College of Chemistry and EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Zijia Wang
- College of Chemistry and EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Xiao‐Feng Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat-sen University Cancer Center Guangzhou 510060 People's Republic of China
| | - Hui Wang
- College of Chemistry and EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
| | - Zhuo Zeng
- College of Chemistry and EnvironmentSouth China Normal University Guangzhou 510006 People's Republic of China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai People's Republic of China 200032
| |
Collapse
|
32
|
|
33
|
Tao J, Yu W, Luo J, Wang T, Ge W, Zhang Z, Yang B, Xiong F. Na2CO3-promoted thioesterification via N–C bond cleavage of amides to construct thioester derivatives. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819873514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A mild, efficient, and transition-metal-free catalytic strategy is developed to construct thioesters via selective N–C bond cleavage of Boc2-activated primary amides. This strategy is successfully carried out with stoichiometric Na2CO3 as the base and provides the corresponding products in moderate to excellent yields.
Collapse
Affiliation(s)
- Jiasi Tao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, P.R. China
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology of Jiangxi Province, Jiangxi Normal University, Nanchang, P.R. China
| | - Weijie Yu
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology of Jiangxi Province, Jiangxi Normal University, Nanchang, P.R. China
| | - Jin Luo
- Analytical and Testing Center, Jiangxi Normal University, Nanchang, P.R. China
| | - Tao Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, P.R. China
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology of Jiangxi Province, Jiangxi Normal University, Nanchang, P.R. China
| | - Wanling Ge
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology of Jiangxi Province, Jiangxi Normal University, Nanchang, P.R. China
| | - Ziwei Zhang
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology of Jiangxi Province, Jiangxi Normal University, Nanchang, P.R. China
| | - Bingjie Yang
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology of Jiangxi Province, Jiangxi Normal University, Nanchang, P.R. China
| | - Fei Xiong
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, P.R. China
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology of Jiangxi Province, Jiangxi Normal University, Nanchang, P.R. China
| |
Collapse
|
34
|
Pace V, Holzer W, Ielo L, Shi S, Meng G, Hanna M, Szostak R, Szostak M. 17O NMR and 15N NMR chemical shifts of sterically-hindered amides: ground-state destabilization in amide electrophilicity. Chem Commun (Camb) 2019; 55:4423-4426. [PMID: 30916689 DOI: 10.1039/c9cc01402k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The structure and spectroscopic properties of the amide bond are a topic of fundamental interest in chemistry and biology. Herein, we report 17O NMR and 15N NMR spectroscopic data for four series of sterically-hindered acyclic amides. Despite the utility of 17O NMR and 15N NMR spectroscopy, these methods are severely underutilized in the experimental determination of electronic properties of the amide bond. The data demonstrate that a combined use of 17O NMR and 15N NMR serves as a powerful tool in assessing electronic effects of the amide bond substitution as a measure of electrophilicity of the amide bond. Notably, we demonstrate that steric destabilization of the amide bond results in electronically-activated amides that are comparable in terms of electrophilicity to acyl fluorides and carboxylic acid anhydrides.
Collapse
Affiliation(s)
- Vittorio Pace
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna A-1090, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
A modular and efficient synthesis of highly twisted N-acylimidazoles is reported. These twist amides were characterized via X-ray crystallography, NMR spectroscopy, IR spectroscopy, and DFT calculations. Modification of the substituent proximal to the amide revealed a maximum torsional angle of 88.6° in the solid state, which may be the most twisted amide reported for a nonbicyclic system to date. Reactivity and stability studies indicate that these twisted N-acylimidazoles may be valuable, namely as acyl transfer reagents.
Collapse
Affiliation(s)
- Elizabeth A. Stone
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
36
|
Fu L, Xu M, Yu J, Gutekunst WR. Halide-Rebound Polymerization of Twisted Amides. J Am Chem Soc 2019; 141:2906-2910. [DOI: 10.1021/jacs.8b13731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Liangbing Fu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Mizhi Xu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Jiyao Yu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Will R. Gutekunst
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
37
|
Szostak R, Szostak M. Tröger's Base Twisted Amides: High Amide Bond Twist and N-/O-Protonation Aptitude. J Org Chem 2019; 84:1510-1516. [PMID: 30571109 DOI: 10.1021/acs.joc.8b02937] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tröger's base twisted amides have emerged as attractive scaffolds to readily achieve substantial nonplanarity of the amide bond in a bicyclic lactam framework. Herein, we report structures and proton affinities of a diverse set of Tröger's base twisted amides and compare them with related nonplanar bridged lactams. The data demonstrate that Tröger's base twisted amides embedded in a [3.3.1] scaffold are among the most twisted bridged lactams prepared to date. Intriguingly, while these amides also favor N-protonation, our data show that the best model for probing N-protonation aptitude in the series of nonplanar amides are less twisted benzofused 1-azabicyclo[3.3.1]nonan-2-one derivatives. This work (1) provides the understanding for future design of nonplanar bridged lactams to directly access N-protonated amide bonds, (2) validates the use of the additive Winkler-Dunitz distortion parameter, and (3) emphasizes the importance of peripheral modification to modulate properties of nonplanar amides.
Collapse
Affiliation(s)
- Roman Szostak
- Department of Chemistry , Wroclaw University , F. Joliot-Curie 14 , Wroclaw 50-383 , Poland
| | - Michal Szostak
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , New Jersey 07102 , United States
| |
Collapse
|