1
|
Cruz-Antonio L, Sánchez-Mendoza ME, García-Machorro J, López-Lorenzo Y, Arrieta J. Study of the Effect of Methyl Eugenol on Gastric Damage Produced by Spinal Cord Injury Model in the Rat. Molecules 2024; 30:86. [PMID: 39795143 PMCID: PMC11721453 DOI: 10.3390/molecules30010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Traumatic spinal cord injury (SCI) is a serious medical condition that places patients at high risk of developing gastric ulceration and gastrointestinal bleeding. One preventative strategy involves the use of omeprazole; however, its chronic use is associated with adverse effects, highlighting the need for alternative therapies. This study evaluated the protective effects of methyl eugenol (ME) on gastric mucosal damage in a rat model of SCI. ME was administered orally at doses of 30, 100, and 177 mg/kg in SCI induced at the T9 level, alongside diclofenac or ketorolac (30 mg/kg each). The enzymatic activity of superoxide dismutase, catalase, and glutathione peroxidase was assessed, and the levels of total glutathione and malondialdehyde were determined using biochemical kits. Additionally, stomach histological sections were analyzed. ME exhibited dose-dependent gastroprotective effects, with maximal protection observed at 177 mg/kg in the presence of diclofenac (9.78 ± 2.16 mm2) or ketorolac (12.49 ± 2.17 mm2). A histological analysis confirmed these findings. In conclusion, methyl eugenol protects the gastric mucosa from SCI-induced damage, with glutathione peroxidase and catalase playing key roles in its mechanism of gastroprotection.
Collapse
Affiliation(s)
- Leticia Cruz-Antonio
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Av. Guelatao No. 66, Colonia Ejército de Oriente, Iztapalapa, Ciudad de México 09230, Mexico;
| | - María Elena Sánchez-Mendoza
- Laboratorio de Farmacología de Plantas Medicinales Mexicanas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (M.E.S.-M.); (Y.L.-L.)
| | - Jazmín García-Machorro
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico;
| | - Yaraset López-Lorenzo
- Laboratorio de Farmacología de Plantas Medicinales Mexicanas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (M.E.S.-M.); (Y.L.-L.)
| | - Jesús Arrieta
- Laboratorio de Farmacología de Plantas Medicinales Mexicanas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (M.E.S.-M.); (Y.L.-L.)
| |
Collapse
|
2
|
Wu T, Zhang H, Jin Y, Zhang M, Zhao Q, Li H, Wang S, Lu Y, Chen S, Du H, Liu T, Guo W, Liu W. The active components and potential mechanisms of Wuji Wan in the treatment of ethanol-induced gastric ulcer: An integrated metabolomics, network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117901. [PMID: 38341112 DOI: 10.1016/j.jep.2024.117901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wuji Wan (WJW) is a traditional Chinese medicine formula that can be found in the "Prescriptions of Taiping Benevolent Dispensary" that has been employed in treating gastric discomfort, burning epigastric pain, and gastric reflux for hundreds of years and has shown promise for treating gastric ulcers (GUs). However, the active components and mechanism of action against GUs remain unclear. AIM OF THE STUDY The aim of this study was to explore the active components of WJW and elucidate the underlying mechanism involved in treating GUs. MATERIALS AND METHODS Initially, cell viability was measured by a cell counting kit 8 (CCK-8) assay to evaluate the efficacy of WJW-containing serum in vitro. The gastric ulcer index, ulcer inhibition rate, hematoxylin and staining (H&E), and periodic acid-Schiff (PAS) staining were used to evaluate the therapeutic effect of WJW in vivo. Subsequently, the levels of inflammatory factors and oxidative stress factors were determined using an enzyme-linked immunosorbent assays (ELISA) on in vitro and in vivo samples. Additionally, UPLC-Q Exactive Plus Orbitrap HRMS was used to analyze the components that were absorbed into the blood of WJW and its metabolites. Network pharmacology and metabolomics were subsequently used to identify the targets and pathways. Real-time quantitative PCR (RT‒qPCR) and Western blotting were used to verify the mRNA and protein levels of the key targets and pathways. Finally, the active components were identified by molecular docking to verify the binding stability of the components and key targets. RESULTS WJW-containing serum ameliorated ethanol-induced damage in GES-1 cells and promoted cell healing. WJW-containing serum reduced IL-6, TNF-α, MDA, and LDH levels while increasing IL-10, SOD, and T-AOC levels in the cells. Moreover, WJW treatment resulted in decreased IL-6, TNF-α, and MDA levels and increased IL-10, SOD, PGE2, and NO levels in GUs rats. In addition, eight components of WJW were absorbed into the blood. The network pharmacology results revealed 192 common targets for blood entry components and GUs, and KEGG analysis revealed that apoptosis signaling pathways were the main pathways involved in WJW activity against GUs. Metabolomic screening was used to identify 13 differential metabolites. There were 23 common targets for blood entry components, GUs, and differential metabolites, with the key targets TNF (TNF-α), AKT1, PTGS2 (COX2) and MAPK1. WJW significantly inhibited the expression of Bax, Caspase-9, Caspase-3, cleaved Caspase-9, cleaved Caspase-3, TNF-α, COX2, and p-p44/42 MAPK while promoting the expression of Bcl-2 and p-AKT1. Molecular docking revealed that the active components of WJW for the treatment of GUs are berberine, palmatine, coptisine, evodiamine, rutaecarpine, evocarpine, and paeoniflorin. CONCLUSIONS WJW treatment reduces inflammation and oxidative stress injury and inhibits apoptosis signaling pathways. The main active components are berberine, palmatine, coptisine, evodiamine, rutaecarpine, evocarpine, and paeoniflorin. In this paper, we provide a new strategy for exploring the active components of traditional Chinese medicine formulas for the treatment of diseases based on target mechanisms.
Collapse
Affiliation(s)
- Tiantai Wu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, China
| | - Huan Zhang
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Yang Jin
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Ming Zhang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Qing Zhao
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Herong Li
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Shouli Wang
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Yuan Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Shuaishuai Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Huakang Du
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Weiyu Guo
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Wen Liu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
3
|
Simomura VL, Miorando D, de Oliveira BMM, Mânica A, Bohnen LC, Buzatto MV, Kunst FM, Ansolin LD, Somensi LB, Vidal Gutiérrez M, Venzon L, de Queiroz E Silva TF, Mota da Silva L, Roman Junior WA. Aqueous extract of the bark of Uncaria tomentosa, an amazonian medicinal plant, promotes gastroprotection and accelerates gastric healing in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117542. [PMID: 38056537 DOI: 10.1016/j.jep.2023.117542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
ETHNOPHARMACOLOGICAL IMPORTANCE Uncaria tomentosa Willd. DC., is used in the Amazonian region of South America, wherein ethnic groups use the plant to treat diseases, including gastric disorders. However, despite its widespread popular use, this species has yet to be assessed for its anti-ulcer effects. AIM OF THE STUDY In this study, we aimed to evaluate the in vivo gastroprotective and gastric healing activities of an aqueous extract of the bark of Uncaria tomentosa (AEUt) and sought to gain an understanding of the pharmacological mechanisms underlying these biological effects. MATERIALS AND METHODS To verify the gastroprotective properties rats were treated with AEUt (30, 60, or 120 mg/kg) prior to inducing gastric ulceration with ethanol or piroxicam. Additionally, the involvement of nitric oxide, non-protein sulfhydryl compounds (NP-SH), α-2 adrenergic receptors, and prostaglandins was investigated. Furthermore, a pylorus ligature model was employed to investigate the antisecretory activity of AEUt. The gastric healing effects of AEUt (60 mg/kg) were examined in rats in which ulceration had been induced with 80% acetic acid, whereas the quality of healing was evaluated in mice with interleukin-induced recurrent ulcers. We also evaluated the in vivo thickness of the gastric wall using ultrasonography. Moreover, the levels of reduced glutathione (GSH) and malondialdehyde (MDA) were evaluated in ulcerated mucosa, and we determined the activities of the enzymes myeloperoxidase (MPO), N-acetyl-β-D-glycosaminidase, superoxide dismutase, catalase, and glutathione S-transferase. In addition, we assessed the effects of AEUt on cell viability and subjected the AEUt to phytochemical analyses. RESULTS Administration of the AEUt (60 or 120 mg/kg) prevented ethanol- and piroxicam-induced ulceration, which was also confirmed histologically. Moreover, we observed that pre-treatment with NEM and indomethacin abolished the gastroprotective effects of AEUt, thereby indicating the involvement of NP-SH and prostaglandins in these protective effects. In addition, we found that the administration of AEUt had no appreciable effects on the volume, acidity, or peptic activity of gastric juice. Furthermore, the AEUt (60 mg/kg) accelerated the gastric healing of acetic acid-induced ulcers by 46.2% and ultrasonographic findings revealed a reduction in the gastric wall thickness in this group. The gastric healing effect of AEUt was also accompanied by a reduction in MPO activity. The AEUt (60 mg/kg) also minimized ulcer recurrence in mice exposed to IL-1β and was associated with the maintenance of GSH levels and a reduction in MDA contents. We deduce that the biological effects of AEUt could be associated with the activities of polyphenols and the alkaloids isomitraphylline and mitraphylline, identified as predominant constituents of the AEUt. Furthermore, we found no evidence to indicate that AEUt would have any cytotoxic effects. CONCLUSION Collectively, our findings provide compelling evidence indicating the therapeutic efficacy of U. tomentosa. Our data indicate that compounds in AEUt confer gastroprotection and that this preventive effect of AEUt was accompanied by gastric healing and a reduction in gastric ulcer recurrence. Moreover, we provide evidence to indicate that the gastroprotective and gastric healing effects involve the antioxidant system and anti-inflammatory responses that contribute to preserving the gastric mucosa.
Collapse
Affiliation(s)
- Viviane Lazari Simomura
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, CEP 89809-900, Chapecó, SC, Brazil.
| | - Daniela Miorando
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, CEP 89809-900, Chapecó, SC, Brazil.
| | | | - Aline Mânica
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, CEP 89809-900, Chapecó, SC, Brazil.
| | - Lilian Caroline Bohnen
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, CEP 89809-900, Chapecó, SC, Brazil.
| | - Maike Valentin Buzatto
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, CEP 89809-900, Chapecó, SC, Brazil.
| | - Francine Mantelli Kunst
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, CEP 89809-900, Chapecó, SC, Brazil.
| | - Lucas Damo Ansolin
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, CEP 89809-900, Chapecó, SC, Brazil.
| | - Lincon Bordignon Somensi
- Postgraduate Program in Development and Society, Alto Vale do Rio do Peixe University, CEP 89500-199, Caçador, SC, Brazil.
| | - Max Vidal Gutiérrez
- Department of Chemistry, Biology and Agricultural Sciences, Universidad de Sonora, Navojoa Sonora, Mexico.
| | - Larissa Venzon
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, CEP 88302-202, Itajaí, SC, Brazil.
| | | | - Luisa Mota da Silva
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, CEP 88302-202, Itajaí, SC, Brazil; TGI Pharmacology and its interactions Laboratory, Department of Pharmacology, UFSC, SC, Brazil.
| | - Walter Antônio Roman Junior
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, CEP 89809-900, Chapecó, SC, Brazil; Laboratory of Pharmacognosy, Community University of the Chapecó Region, CEP 89809-900, Chapecó, SC, Brazil.
| |
Collapse
|
4
|
Du K, Zheng C, Kuang Z, Sun Y, Wang Y, Li S, Meng D. Gastroprotective effect of eupatilin, a polymethoxyflavone from Artemisia argyi H.Lév. & Vaniot, in ethanol-induced gastric mucosal injury via NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116986. [PMID: 37536645 DOI: 10.1016/j.jep.2023.116986] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia argyi H.Lév. & Vaniot (AA) has been extensively utilized as an important medicine and food homology in China, Japan, Korea, and eastern parts of Russia, owing to its pharmacological effects, which include anti-inflammatory, antibacterial, antitussive, and antiallergic properties. Despite the extract of AA can significantly alleviate gastric mucosal injury, its precise material basis for effectiveness is not yet clear. As one of the polymethoxy flavonoids with high content in AA, the gastroprotective activity and molecular mechanism of eupatilin (EUP) require further investigation. AIM OF THE STUDY This study aims to investigate the gastroprotective effects and possible mechanisms of EUP by using an ethanol-induced gastric mucosal injury model in rats. MATERIALS AND METHODS EUP was isolated from 95% ethanol extract of AA using a systematic phytochemical method. The gastroprotective activity of EUP was evaluated using a male SD rat model with ethanol-induced gastric mucosa injury. Histopathology evaluation of gastric tissues was performed using hematoxylin and eosin (H&E) staining. The levels of cytokines in the plasma and tissues were tested using the ELISA kits, while western blot analysis was employed to assess the expressions of COX-2, iNOS, and NF-κB pathway proteins. RESULTS A sufficient amount of EUP was obtained from AA through chromatographic methods and identified by NMR experiment. In vivo, experimental results proved that EUP could significantly alleviate pathological features, increased SOD, GSH, and IL-10 levels, and decreased the contents of MDA, TNF-α, IL-1β, and IL-6. Further in vitro and in vivo Western blot experimental results showed that EUP significantly down-regulates the expressions of the NF-κB signal pathway to relieve inflammatory responses. CONCLUSION This study demonstrated that EUP could exert gastroprotective effects by inhibiting inflammation, enhancing gastric mucosal defense, and ameliorating oxidative stress, which is beneficial for providing scientific data for the development of gastric protection.
Collapse
Affiliation(s)
- Kaicheng Du
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Changwei Zheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Zhulingzhi Kuang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Yiwei Sun
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Yumeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Shuang Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Dali Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China.
| |
Collapse
|
5
|
Hassan MAT, Soliman AM, Mohamed AS. The Therapeutic Potency of Silver/Chitosan, Silver/Saponin and Chitosan/ Saponin Nanocomposites on Ethanol-induced Gastric Ulcers in Wistar Rats. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:115-128. [PMID: 38629380 DOI: 10.2174/0127722708283559240405075921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 10/16/2024]
Abstract
BACKGROUND The annual incidence of peptic ulcer disease is estimated to be four million cases worldwide, with an average lifetime risk of 7.5% in individuals of all ages. Polymer nanocomposites have novel prospects in the field of modern medicine. OBJECTIVE The present research endeavors to assess the therapeutic efficacy of nanoparticles composed of silver/chitosan, silver/saponin, and chitosan/saponin against gastric ulcers induced by ethanol in Wistar rats. METHODS Forty-eight rats were randomly split into eight groups of the same size. Oral ethanol (5 ml/kg of body weight) was given to all rat groups except the control one for 1 hour before treatment. Control and ulcer groups of rats were given distilled water orally. The rats in the other groups were given orally 1/10 LD50 of each treatment as follows: AgNPs, chitosan NPs, Saponin, AgNPs-Chitosan NPs, AgNP-Saponin, and chitosan-Saponin NPs. RESULTS NP-treated groups showed a significant increase in the gastric juice pH, glutathione reduced, catalase, and nitric oxide while gastric juice volume, ulcer index, and malondialdehyde levels decreased compared with the ulcer group. Histopathological investigation of stomach showed improvement in NPs groups specially in the chitosan-Saponin NPs group. CONCLUSION The current study revealed that silver-chitosan, silver-saponin and chitosansaponin nanocomposites effectively treat gastric ulcers. Chitosan-Saponin nanoparticles showed high therapeutic effectiveness against gastric ulcer in rats.
Collapse
Affiliation(s)
| | - Amel M Soliman
- Department of Zoology, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Ayman Saber Mohamed
- Department of Zoology, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
6
|
Boeing T, de Souza J, Vilhena da Silva RDC, Mariano LNB, Mota da Silva L, Gerhardt GM, Cretton S, Klein-Junior LC, de Souza P. Gastroprotective effect of Artemisia absinthium L.: A medicinal plant used in the treatment of digestive disorders. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116488. [PMID: 37059247 DOI: 10.1016/j.jep.2023.116488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wormwood (Artemisia absinthium L.) is traditionally used for stomach pain and gastric relief. However, its possible gastroprotective effect has not yet been experimentally evaluated. AIM OF THE STUDY This study evaluated the gastroprotective effect of aqueous extracts obtained through hot and room temperature maceration of A. absinthium aerial parts in rats. MATERIALS AND METHODS The gastroprotective effect of hot aqueous extract (HAE) and room temperature aqueous extract (RTAE) from A. absinthium aerial parts were evaluated in rats using a model of acute gastric ulcer induced by ethanol p.a. The stomachs were collected to measure the gastric lesion area and histological and biochemical analysis. UHPLC-HRMS/MS analysis was used to determine the chemical profile of the extracts. RESULTS Eight main peaks in the UHPLC chromatogram were identified in both HAE and RTAE extracts: tuberonic acid glycoside (1), rupicolin (2), 2-hydroxyeupatolide (3), yangabin (4), sesartemin (5), artemetin (6), isoalantodiene (7), and dehydroartemorin (8). For RTAE, a higher diversity of sesquiterpene lactones was observed. The groups treated with RTAE at 3%, 10%, and 30% presented a gastroprotective effect, reducing the lesion area by 64.68%, 53.71%, and 90.04%, respectively, when compared with the vehicle (VEH)-treated group. On the other hand, the groups treated with HAE at 3%, 10%, and 30% presented values of lesion areas higher than those of the VEH group. Changes in the submucosa layer, inflammatory process with edema, cellular infiltration, and mucin depletion were detected in the gastric mucosa exposed to ethanol, which was fully prevented by RTAE treatment. Neither HAE nor RTAE could increase the reduced glutathione levels in the injured gastric tissue, but RTAE (30%) reduced the formation of lipid hydroperoxides. When the rats were pre-treated with NEM (a chelator of non-protein thiols) or L-NAME (non-selective nitric oxide synthase inhibitor), the RTAE lost the ability to protect the gastric mucosa. CONCLUSIONS This study corroborates the ethnopharmacological use of this specie to treat gastric disorders revealing the gastroprotective effect of the room-temperature aqueous extract of A. absinthium aerial parts. Its mode of action may involve the ability of the infusion to maintain the gastric mucosal barrier integrity.
Collapse
Affiliation(s)
- Thaise Boeing
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil
| | - Josiane de Souza
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil
| | | | - Luísa Nathália Bolda Mariano
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil
| | - Luisa Mota da Silva
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil
| | - Guilherme Moreschi Gerhardt
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil
| | - Sylvian Cretton
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211, Geneva 4, Switzerland
| | - Luiz Carlos Klein-Junior
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil
| | - Priscila de Souza
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil.
| |
Collapse
|
7
|
Salaheldin AT, Shehata MR, Sakr HI, Atia T, Mohamed AS. Therapeutic Potency of Ovothiol A on Ethanol-Induced Gastric Ulcers in Wistar Rats. Mar Drugs 2022; 21:25. [DOI: https:/doi.org/10.3390/md21010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Peptic ulcer is a widespread disease, with a lifetime frequency of 5–10% among the general population and an annual incidence of 0.1–0.3%. Ovothiol A is naturally produced from sea urchin eggs with special antioxidant activity. Gastric ulcers were induced in rats by a single ethanol dose (5 mL/kg). The rats were divided into control, ulcer, and ulcer with 250 and 500 mg/kg ovothiol A doses. Molecular docking studies were used to examine the interactions between ovothiol A and the H+/K+ ATPase active site residues. Ovothiol A led to a significant decline (p < 0.05) in gastric juice volume, ulcer index, MDA, IL-6, and cytochrome c, while levels of gastric juice pH, GSH, CAT, GST, SOD, and NO increased. Histopathological investigation of stomach sections revealed architecture preservation of the gastric mucosa after ovothiol A administration. The anti-ulcerogenic activity of ovothiol A includes scavenging free radicals, inhibition of inflammation, regulation of apoptosis, and stabilization of fibroblast growth factors to promote gastric ulcers healing.
Collapse
Affiliation(s)
| | | | - Hader I. Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Giza 12613, Egypt
- Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Tarek Atia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | | |
Collapse
|
8
|
Salaheldin AT, Shehata MR, Sakr HI, Atia T, Mohamed AS. Therapeutic Potency of Ovothiol A on Ethanol-Induced Gastric Ulcers in Wistar Rats. Mar Drugs 2022; 21:25. [PMID: 36662198 PMCID: PMC9862145 DOI: 10.3390/md21010025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Peptic ulcer is a widespread disease, with a lifetime frequency of 5−10% among the general population and an annual incidence of 0.1−0.3%. Ovothiol A is naturally produced from sea urchin eggs with special antioxidant activity. Gastric ulcers were induced in rats by a single ethanol dose (5 mL/kg). The rats were divided into control, ulcer, and ulcer with 250 and 500 mg/kg ovothiol A doses. Molecular docking studies were used to examine the interactions between ovothiol A and the H+/K+ ATPase active site residues. Ovothiol A led to a significant decline (p < 0.05) in gastric juice volume, ulcer index, MDA, IL-6, and cytochrome c, while levels of gastric juice pH, GSH, CAT, GST, SOD, and NO increased. Histopathological investigation of stomach sections revealed architecture preservation of the gastric mucosa after ovothiol A administration. The anti-ulcerogenic activity of ovothiol A includes scavenging free radicals, inhibition of inflammation, regulation of apoptosis, and stabilization of fibroblast growth factors to promote gastric ulcers healing.
Collapse
Affiliation(s)
| | | | - Hader I. Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Giza 12613, Egypt
- Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Tarek Atia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | | |
Collapse
|
9
|
Salaheldin AT, Shehata MR, Sakr HI, Atia T, Mohamed AS. Therapeutic Potency of Ovothiol A on Ethanol-Induced Gastric Ulcers in Wistar Rats. Mar Drugs 2022. [DOI: doi.org/10.3390/md21010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Peptic ulcer is a widespread disease, with a lifetime frequency of 5–10% among the general population and an annual incidence of 0.1–0.3%. Ovothiol A is naturally produced from sea urchin eggs with special antioxidant activity. Gastric ulcers were induced in rats by a single ethanol dose (5 mL/kg). The rats were divided into control, ulcer, and ulcer with 250 and 500 mg/kg ovothiol A doses. Molecular docking studies were used to examine the interactions between ovothiol A and the H+/K+ ATPase active site residues. Ovothiol A led to a significant decline (p < 0.05) in gastric juice volume, ulcer index, MDA, IL-6, and cytochrome c, while levels of gastric juice pH, GSH, CAT, GST, SOD, and NO increased. Histopathological investigation of stomach sections revealed architecture preservation of the gastric mucosa after ovothiol A administration. The anti-ulcerogenic activity of ovothiol A includes scavenging free radicals, inhibition of inflammation, regulation of apoptosis, and stabilization of fibroblast growth factors to promote gastric ulcers healing.
Collapse
|
10
|
Song H, Qiu J, Yu C, Xiong M, Ou C, Ren B, Zhong M, Zeng M, Peng Q. Traditional Chinese Medicine prescription Huang-Qi-Jian-Zhong-Tang ameliorates indomethacin-induced duodenal ulcers in rats by affecting NF-κB and STAT signaling pathways. Biomed Pharmacother 2022; 156:113866. [PMID: 36228371 DOI: 10.1016/j.biopha.2022.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 11/09/2022] Open
|
11
|
Achillea millefolium Essential Oil Mitigates Peptic Ulcer in Rats through Nrf2/HO-1 Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227908. [PMID: 36432009 PMCID: PMC9692697 DOI: 10.3390/molecules27227908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Extreme ethanol ingestion is associated with developing gastric ulcers. Achillea millefolium (yarrow) is one of the most commonly used herbs with numerous proven pharmacological actions. The goal of the hereby investigation is to explore the gastroprotective action of yarrow essential oil against ethanol-induced gastric ulcers and to reveal the unexplored mechanisms. Rats were distributed into five groups (n = 6); the control group administered 10% Tween 20, orally, for two weeks; the ethanol group administered absolute ethanol (5 mL/kg) to prompt gastric ulcer on the last day of the experiment. Yarrow essential oil 100 or 200 mg/kg + ethanol groups pretreated with yarrow oil (100 or 200 mg/kg, respectively), orally, for two weeks prior to gastric ulcer induction by absolute ethanol. Lanso + ethanol group administered 20 mg/kg lansoprazole, orally, for two weeks prior to gastric ulcer induction by ethanol. Results of the current study showed that ethanol caused several macroscopic and microscopic alterations, amplified lipid peroxidation, pro-inflammatory cytokines, and apoptotic markers, as well as diminished PGE2, NO, and antioxidant enzyme activities. On the other hand, animals pretreated with yarrow essential oil exhibited fewer macroscopic and microscopic modifications, reduced ulcer surface, and increased Alcian blue binding capacity, pH, and pepsin activity. In addition, yarrow essential oil groups exhibited reduced pro-inflammatory cytokines, apoptotic markers, and MDA, restored the PGE2 and NO levels, and recovered the antioxidant enzyme activities. Ethanol escalated Nrf2 and HO-1 expressions, whereas pretreatment of yarrow essential oil caused further intensification in Nrf2 and HO-1. To conclude, the current study suggested yarrow essential oil as a gastroprotective agent against ethanol-induced gastric lesions. This gastroprotective effect could be related to the antioxidant, anti-inflammatory, and anti-apoptotic actions of the essential oil through the instigation of the Nrf2/HO-1 pathway.
Collapse
|
12
|
Alharbi KS, Al-Abbasi FA, Alzarea SI, Afzal O, Altamimi ASA, Almalki WH, Shahid Nadeem M, Afzal M, Sayyed N, Kazmi I. Effects of the Anthocyanin Hirsutidin on Gastric Ulcers: Improved Healing through Antioxidant Mechanisms. JOURNAL OF NATURAL PRODUCTS 2022; 85:2406-2412. [PMID: 36215657 DOI: 10.1021/acs.jnatprod.2c00620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The goal of this study was to determine the effect of hirsutidin on ethanol-induced stomach ulcers in rats. Rats (n = 24 rats/group) were separated at random into the following groups: normal saline-treated (normal control), ethanol-treated (ethanol control), 10 mg/kg hirsutidin + ethanol-treated (hirsutidin 10), and 20 mg/kg hirsutidin + ethanol-treated (hirsutidin 20). All the groups received the respective treatment orally for 7 days. On day 7, i.e., after 24 h of fasting, except for the normal control group, all the groups orally received 5 mL/kg of ethanol. Four hours later, rats were anaesthetized, serum was isolated from the blood, and biochemical tests were performed. The stomach tissue was utilized for ulcer grading, histology, and biochemical analysis. The rats developed stomach acidity and ulcers after being given ethanol based on increased ulcer score, disturbed cellular architecture, increased oxidative stress, myeloperoxidase and decreased endogenous antioxidants, and nitric oxide and prostaglandin E2 concentration. Ethanol-treated rats also displayed increased tumor necrosis factor-α, aspartate aminotransferase, alanine transaminase, alkaline phosphatase, and inflammatory cytokines. The treatment with hirsutidin protected and significantly restored all serum parameters in ethanol-induced stomach ulcers and may have antiulcer activity.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589 Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589 Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur 247121, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589 Saudi Arabia
| |
Collapse
|
13
|
Azmatullah S, Khan AU, Qazi NG, Nadeem H, Irshad N. Pharmacological evaluation of newly synthesized organotin IV complex for antiulcer potential. BMC Pharmacol Toxicol 2022; 23:58. [PMID: 35906691 PMCID: PMC9335977 DOI: 10.1186/s40360-022-00596-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
The present study aims to investigate the newly synthesized organotin (IV) complex (2E, 2′E) dibutylstannanediyl bis (4-(4-nitrophenyl) amino)-4-oxobut-2-enoate (DTN) for its anti-ulcer potential. Characterization performed by carbon nuclear magnetic resonance spectroscopy proved that all values are in the expected ranges of the new compound. Gastroprotective activity of DTN was evaluated through in-silico, anti-H. pylori, in-vitro, in-vivo, and ex-vivo proteomic analysis. In-silico analysis shows that DTN possess stable binding with protein targets involved in gastric ulcer pathophysiology. DTN exhibited an inhibitory effect against 2,2-diphenyl-1-picrylhydrazyl, H. pylori and hydrogen potassium ATPase (H+/K+-ATPase). The antiulcer activity was performed using an ethanol-induced gastric ulcer model in rats. Anti-oxidant profile of DTN showed a significant increase in glutathione-S-transferase, glutathione and catalase levels whereas lipid peroxidation levels were reduced. Histopathological findings confirmed that DTN protected the gastric mucosa of rats. Inflammatory markers tumor necrosis factor-alpha, nuclear factor kappa B, cyclooxygenase-2, interleukin 6 and interleukin-1β were reduced and prostaglandin-E2 restored expression of these cytokines in DTN pretreated animals when analyzed by using immunohistochemistry, enzyme-linked immunosorbent assay and western blot techniques. In real-time polymerase chain reaction technique, the expression of H+/K+-ATPase was downregulated in DTN pretreated group. DTN did not cause any mortality up to 400 mg/Kg. This study indicates that the newly synthesized compound DTN, possess stable binding against selected targets. DTN exhibits a gastro-protective effect, mediated via anti-H. pylori, H+/K+-ATPase inhibition, anti-oxidant and anti-inflammatory pathways, exploring its therapeutic potential in gastric ulcer management.
Collapse
Affiliation(s)
- Syed Azmatullah
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Arif-Ullah Khan
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.
| | - Neelam Gul Qazi
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Nadeem Irshad
- Department of Pharmacy, Quaid i Azam University, Islamabad, Pakistan
| |
Collapse
|
14
|
Sepia officinalis ink mitigates gastric ulcer via modulation of antioxidant/anti-inflammatory pathways. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Sepia officinalis ink is a bioactive secondary metabolite rich in melanin granules, which has a wide range of nutritional and therapeutic values and also has been used to prevent various gastrointestinal disorders. Gastric ulcer, the most common gastrointestinal disease, is characterized by severe gastric mucosa damage, and its prevention is currently one of the main goals of clinical and experimental studies. Thus, the present study was focused on evaluating the potential gastroprotective efficacy of Sepia officinalis ink extract (SOIE) against ethanol-induced gastric ulcer in rats.
Results
The current results revealed that SOIE administration at the two selected doses improved significantly gastric mucosa integrity as indicated by the significant (P < 0.05) amelioration in gastric secretion indices (pH and volume) and the marked decrease in the ulcer index. Moreover, SOIE could counteract the gastric oxidative stress induced by ethanol via a marked decline in malondialdehyde content as well as a significant (P < 0.05) increment in glutathione content and antioxidant enzymes activities (catalase and glutathione-s-transferase). Additionally, SOIE treatment caused a significant (P < 0.05) reduction in gastric nitric oxide content. Respecting morphological and histopathological studies, SOIE treatment at 200 mg/kg body weight caused marked healing of gastric lesions as indicated by no hemorrhagic bands or injuries observed as well as significantly reduced severity score of ulcer.
Conclusions
SOIE could be used as a promising alternative antiulcerogenic compound to treat severe gastric lesions.
Collapse
|
15
|
Jedidi S, Selmi H, Aloui F, Rtibi K, Sammari H, Abbes C, Sebai H. Antioxidant Properties, Phytoactive Compounds and Potential Protective Action of Salvia officinalis Flowers Against Combined Gastro-Intestinal Ulcer and Diarrhea Experimentally Induced in Rat. Dose Response 2022; 20:15593258221102313. [PMID: 35602586 PMCID: PMC9122491 DOI: 10.1177/15593258221102313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
The present study was conducted to investigate the protective action of Salvia officinalis flowers aqueous extract (SOFAE) against combined gastro-intestinal (GI) disorders-induced by ethanol and castor oil administration in rats. Adult male Wistar rats were divided into seven groups of ten each and various doses of SOFAE (50, 100, and 200 mg kg-1, b.w., p.o.) and sulfasalazine (100 mg kg-1, b.w., p.o.) were daily administrated during 15 days. After, animals were intoxicated with a single oral administration of ethanol (4 g kg-1, b.w., p.o.) and castor oil (5 mL kg-1, b.w., p.o.). We found that SOFAE contains several phytoactive compounds with a strong ABTS scavenging ability. In vivo, we showed that SOFAE protected against EtOH/CO-induced macroscopic and histological alterations in GI tract accompanied by intestinal fluid accumulation and gastric juice decrease. SOFAE significantly counteracted lipoperoxydation increase and reversed the depletion of both enzymatic and non-enzymatic antioxidants. More importantly, SOFAE significantly reduced the levels of inflammatory markers (CRP and ALP) in plasma and mucosal GI tract. In conclusion, our data clearly indicate that the SOFAE exerted a potential protective effect against EtOH-induced peptic ulcer combined with CO-induced diarrhea in rats. These effects could be associated with its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Saber Jedidi
- Unité de Physiologie Fonctionnelle
et Valorisation des Bio-Ressources, Institut Supérieur de Biotechnologie de
Béja, Université de Jendouba, Béja, Tunisie
- Laboratoire des Ressources
Sylvo-Pastorales, Institut Sylvo-Pastoral de Tabarka, Université de Jendouba, Tabarka, Tunisie
| | - Houcine Selmi
- Laboratoire des Ressources
Sylvo-Pastorales, Institut Sylvo-Pastoral de Tabarka, Université de Jendouba, Tabarka, Tunisie
| | - Foued Aloui
- Laboratoire des Ressources
Sylvo-Pastorales, Institut Sylvo-Pastoral de Tabarka, Université de Jendouba, Tabarka, Tunisie
| | - Kais Rtibi
- Unité de Physiologie Fonctionnelle
et Valorisation des Bio-Ressources, Institut Supérieur de Biotechnologie de
Béja, Université de Jendouba, Béja, Tunisie
| | - Houcem Sammari
- Unité de Physiologie Fonctionnelle
et Valorisation des Bio-Ressources, Institut Supérieur de Biotechnologie de
Béja, Université de Jendouba, Béja, Tunisie
| | - Chaabane Abbes
- Laboratoire des Ressources
Sylvo-Pastorales, Institut Sylvo-Pastoral de Tabarka, Université de Jendouba, Tabarka, Tunisie
| | - Hichem Sebai
- Unité de Physiologie Fonctionnelle
et Valorisation des Bio-Ressources, Institut Supérieur de Biotechnologie de
Béja, Université de Jendouba, Béja, Tunisie
| |
Collapse
|
16
|
El-shafey RS, Baloza SH, Mohammed LA, Nasr HE, Soliman MM, Ghamry HI, Elgendy SA. The ameliorative impacts of wheat germ oil against ethanol-induced gastric ulcers: involvement of anti-inflammatory, antiapoptotic, and antioxidant activities. Toxicol Res (Camb) 2022; 11:325-338. [PMID: 35510233 PMCID: PMC9052321 DOI: 10.1093/toxres/tfac012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 03/08/2024] Open
Abstract
This study examined if wheat germ oil (WGO) has gastroprotective impacts against ethanol-induced gastric ulcer in rats. Rats were assigned into control, WGO, ethanol, omeprazole + ethanol, and WGO + ethanol. WGO prevented gastric ulceration and damage induced by ethanol, the same effect induced by omeprazole, a widely known medication used for gastric ulcer treatment. WGO reduced gastric ulcer index, nitric oxide, and malondialdehyde levels in the stomach. WGO boosted the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), Bcl2, and the antioxidants. WGO showed inflammatory and anti-inflammatory impacts through the control of interleukin (IL)-1β, Tumor necrosis factor alpha (TNF-α), and IL-10 that were altered in ethanol-administered rats. Ethanol up-regulated caspase-3 and nuclear factor-kappa B (NF-kB) expression and showed histopathological changes such as necrosis and mucosal degeneration that were mitigated by pre-administration of WGO. Moreover, WGO decreased gastric immunoreactivity of NF-kB and increased transforming growth factor beta-1 (TGF-β1) that were associated with upregulation of Nrf2, heme oxygenase-1 (HO-1), and antioxidant expression and production. In conclusion, WGO reduced ethanol-induced stomach toxicity by regulating genes involved in oxidative stress, inflammation, and apoptotic/antiapoptotic pathways.
Collapse
Affiliation(s)
- Rabab Shaban El-shafey
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Samar H Baloza
- Genetic and Genetic Engineering, Animal Wealth Development Department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Lina Abdelhady Mohammed
- Department of Medical Biochemistry and Molecular Biology, College of Medicine, Benha University, Benha 13511, Egypt
| | - Hend Elsayed Nasr
- Department of Medical Biochemistry and Molecular Biology, College of Medicine, Benha University, Benha 13511, Egypt
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, PO Box 11099, Taif 21944, Taif, Saudi Arabia
| | - Heba I Ghamry
- Department of Home Economics, College of Home Economics, King Khalid University, P.O. Box 960, Abha,61421, Saudi Arabia
| | - Salwa A Elgendy
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha 13511, Egypt
| |
Collapse
|
17
|
Wu Y, Chen H, Zou Y, Yi R, Mu J, Zhao X. Lactobacillus plantarum HFY09 alleviates alcohol-induced gastric ulcers in mice via an anti-oxidative mechanism. J Food Biochem 2021; 45:e13726. [PMID: 33846998 DOI: 10.1111/jfbc.13726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
The protective effect of Lactobacillus plantarum HFY09 (LP-HFY09) on alcohol-induced gastric ulcers was investigated. Gastric morphology observation and pathological tissue sections showed that LP-HFY09 effectively relieved gastric tissue injury. The biochemical indicator detection showed that LP-HFY09 increased superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione (GSH), prostaglandin E2 (PGE2), and somatostatin (SS) levels, and decreased malondialdehyde (MDA) levels. Moreover, LP-HFY09 inhibited the levels of inflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α), and elevated the level of anti-inflammatory cytokine IL-10. The quantitative polymerase chain reaction (q-PCR) examination revealed that LP-HFY09 enhanced the mRNA expression of nuclear factor E2-related factor 2 (Nrf2) and downstream genes, including copper/zinc superoxide dismutase (SOD1), heme oxygenase-1 (HO-1), gamma-glutamylcysteine synthetase (GSH1), manganese superoxide dismutase (SOD2), catalase (CAT), and GSH-Px. This study indicated that LP-HFY09 alleviated alcohol-induced gastric ulcers by increasing gastric mucosa defense factor, and inhibiting oxidative stress and the inflammatory response. PRACTICAL APPLICATIONS: LP-HFY09 has the potential to be investigated as a treatment for gastric injury induced by alcohol.
Collapse
Affiliation(s)
- Ya Wu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Hong Chen
- The First Department of Orthopaedic Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Yujie Zou
- Department of Emergency, Chongqing University Central Hospital, Chongqing, P.R. China
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
18
|
Maziero Alves G, Aires R, de Souza Santos V, Zambom Côco L, Peters B, de Leone Evangelista Monteiro Assis A, Ramos Athaydes B, Gobbi Amorim F, Valentim Nogueira B, de Ribeiro Gonçalves RC, Dos Santos Meyrelles S, Melo Costa Pereira T, Prandi Campagnaro B. Sildenafil attenuates nonsteroidal anti-inflammatory-induced gastric ulceration in mice via antioxidant and antigenotoxic mechanisms. Clin Exp Pharmacol Physiol 2021; 48:401-411. [PMID: 33020944 DOI: 10.1111/1440-1681.13414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/14/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Sildenafil (SIL) has potential as an interesting gastroprotective drug. However, the pathways of its protective effect still needs to be clarified, and its use as a potential gastroprotective agent validated. This study aims to evaluate the effects of SIL via modulation of oxidative stress in a NSAID-induced gastric lesion model. Male Swiss mice were divided into six groups: control (CON, water), nonsteroidal anti-inflammatory drug (NSAID, water), proton pump inhibitor (PPI, 30 mg/kg of lansoprazole), SIL 5 (5 mg/kg), SIL 25 (25 mg/kg) and SIL 50 (50 mg/kg). The animals were treated by gavage (a single dose) after 24 hours of fasting, and gastric lesions were performed after 30 minutes, with indomethacin (40 mg/kg, by gavage). After 6h, the animals were killed and the stomach was removed to evaluate reactive oxygen species (ROS) production, oxidation of macromolecules, quantification of antioxidant enzymes, DNA fragmentation, apoptosis and macroscopic and histologic analysis of gastric lesions. SIL exerts a dose-dependent gastroprotective effect against NSAID-induced mucosal injury, also reducing cytoplasmic levels of ROS and consequent oxidative damage to macromolecules. In addition, SIL increases nitric oxide bioavailability, antioxidant enzymes and gastric cellular viability, as well as restoring important factors involved in gastroprotection. Our results demonstrate that different doses of SIL prevent indomethacin-induced gastric ulcer in mice via different, but complementary antioxidant, antigenotoxic and antiapoptotic mechanisms.
Collapse
Affiliation(s)
- Gisele Maziero Alves
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Rafaela Aires
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| | - Verônica de Souza Santos
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Larissa Zambom Côco
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Beatriz Peters
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | | | - Brena Ramos Athaydes
- Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Fernanda Gobbi Amorim
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Breno Valentim Nogueira
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil
| | - Rita Cássia de Ribeiro Gonçalves
- Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Silvana Dos Santos Meyrelles
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| | - Thiago Melo Costa Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
- Federal Institute of Education, Science and Technology (IFES), Vila Velha, Brazil
| | - Bianca Prandi Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| |
Collapse
|
19
|
Raish M, Shahid M, Bin Jardan YA, Ansari MA, Alkharfy KM, Ahad A, Abdelrahman IA, Ahmad A, Al-Jenoobi FI. Gastroprotective Effect of Sinapic Acid on Ethanol-Induced Gastric Ulcers in Rats: Involvement of Nrf2/HO-1 and NF-κB Signaling and Antiapoptotic Role. Front Pharmacol 2021; 12:622815. [PMID: 33716749 PMCID: PMC7946842 DOI: 10.3389/fphar.2021.622815] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Background: In the current study, we evaluated the therapeutic potential of sinapic acid (SA) in terms of the mechanism underlying its gastroprotective action against ethanol-induced gastric ulcers in rats. Methods: These effects were examined through gross macroscopic evaluation of the stomach cavity [gastric ulcer index (GUI)], alteration in pH, gastric juice volume, free acidity, total acidity, total gastric wall mucus, and changes in PGE2. In addition, we evaluated lipid peroxidation (malondialdehyde), antioxidant systems (catalase and glutathione), inflammatory markers [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and myeloperoxidase (MPO)], apoptotic markers (caspase-3, Bax, and Bcl-2), nuclear factor-κB [NF-κB (p65)], NO levels, and histopathological staining (H and E and PAS). Results: In rats with ethanol-induced ulcers, pre-treatment with SA (40 mg/kg p. o.) decreased the sternness of ethanol-induced gastric mucosal injuries by decreasing the GUI, gastric juice volume, free acidity, and total acidity. In addition, the pH and total gastric mucosa were increased, together with histopathological alteration, neutrophil incursion, and increases in PGE2 and NO2. These effects were similar to those observed for omeprazole, a standard anti-ulcer drug. SA was shown to suppress gastric inflammation through decreasing TNF-α, IL-6, and MPO, as well as curbing gastric oxidative stress through the inhibition of lipid peroxidation (MDA) and restoration of depleted glutathione and catalase activity. SA inhibited Bcl-2-associated X (Bax) and caspase-3 activity, and restored the antiapoptotic protein Bcl-2; these findings indicate the antiapoptotic potential of SA, leading to enhanced cell survival. SA also repressed NF-κB signaling and increased IκBα. Moreover, SA upregulated the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), thereby restoring depleted antioxidant defense enzymes and implicating the NRF2/HO-1 signaling pathways. Conclusion: These results suggest that the prophylactic administration of SA (40 mg/kg) can ameliorate ethanol-induced gastric ulcers in rats primarily via the modulation of Nrf2/HO-1 and NF-κB signaling and subsequent enhancement of cell viability.
Collapse
Affiliation(s)
- Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Song H, Hou X, Zeng M, Chen X, Chen X, Yang T, Xu F, Peng J, Peng Q, Cai X, Yu R. Traditional Chinese Medicine Li-Zhong-Tang accelerates the healing of indomethacin-induced gastric ulcers in rats by affecting TLR-2/MyD88 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112979. [PMID: 32442585 DOI: 10.1016/j.jep.2020.112979] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/25/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Li-Zhong-Tang (LZT) is a well-known Chinese herbal formulation first described in one of traditional Chinese medicine (TCM) scriptures, Treatise on Febrile Diseases. LZT has been commonly prescribed for the treatment of various gastrointestinal diseases for over 1800 years, and has demonstrated pronounced therapeutic effects on patients with gastric ulcers. AIM OF THE STUDY The present study aimed to scientifically evaluate protective effects of LZT on indomethacin (IND)-induced gastric injury in rats and to elucidate whether LZT exerts its gastro-protective effects via enhancing mucosal immunity by regulating TLR-2/MyD88 signaling pathway. MATERIAL AND METHODS Gastric ulcers were induced in male Sprague-Dawley (SD) rats with a single oral dose of 150 mg/kg IND. Ulcer index (UI) and curative index (CI) were evaluated. Histopathological examinations were performed and microscopic score (MS) was macroscopically calculated. The volume of gastric juice, free acidity, total acidity, and gastric pH was measured. The gastroprotective and inflammatory biomarkers including levels of nitric oxide (NO), tumor necrosis factor-α (TNF-α), prostaglandin E2 (PGE2), and malondialdehyde (MDA) were determined. Expression levels of TLR-2 and MyD88 mRNA were assessed by qRT-PCR. The expression, distribution, and co-localization of TLR-2 and MyD88 protein were determined by Western blot, immunohistochemistry, and immunofluorescence, respectively. RESULTS Induction of gastric ulcers in rats resulted in very significantly increased UI and elevated volume and acidity of gastric juice, which were markedly attenuated by LZT treatment. Microscopic examinations of the IND-induced gastric ulcers revealed severe gastric hemorrhagic necrosis, submucosal edema, and destruction of epithelial cells, which were significantly attenuated in LZT-treated rats. Moreover, treatment with LZT remarkably increased gastric mucosal levels of PGE2 and NO, and lowered highly elevated levels of TNF-α and MDA in gastric ulcerative rats. Mechanistically, LZT inhibited mRNA and protein expression of TLR-2 and MyD88 and enhanced immune function in gastric mucosa. Immunohistochemical analyses and immunofluorescent detection further confirmed a markedly decreased co-localization of TLR-2 and MyD88 protein in the gastric mucosa of LZT-treated rats as compared to that of gastric ulcerative rats. CONCLUSIONS These findings indicate that LZT alleviates serious gastric mucosal ulcerations induced by IND. Protective effects of LZT on gastric ulcers are believed to be associated with the intensification of the anti-oxidative defense system, mitigation of proinflammatory cytokines, stimulation of the production of cytoprotective mediators, and improvement of the mucosal immunity through TLR-2/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Houpan Song
- Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Xueqin Hou
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai' an, Shandong, 271016, China.
| | - Meiyan Zeng
- Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Xiaojuan Chen
- Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Xinyi Chen
- Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Tao Yang
- Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Fuping Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China.
| | - Jun Peng
- Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Qinghua Peng
- Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Xiong Cai
- Hunan Provincial Key Laboratory of Diagnostic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Rong Yu
- Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
21
|
Matah Marthe VM, Ateufack G, Mbiantcha M, Nana WY, Atsamo AD, Adjouzem FC, Djuichou Nguemnang FS, Tsafack GE, Tadjoua HT, Emakoua J. Cytoprotective and antisecretory properties of methanolic extract of Distemonanthus benthamianus (Caesalpiniaceae) stem bark on acute gastric ulcer in rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 18:37-49. [PMID: 32706751 DOI: 10.1515/jcim-2019-0216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/02/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVES In African traditional medicine, Distemonanthus benthamianus (Caesalpiniaceae) is used to treat many diseases including gastric ulcers. We evaluated in this study, the cytoprotective and antisecretory properties of the methanolic extract of the stem bark of this plant using different technics of gastric lesion induction. METHODS Cytoprotective and antisecretory activity of the methanolic extract of D. benthamianus stem bark was evolved through six methods of gastric lesion induction in experimental Wistar male rats (150-200 g): (1) gastric lesions induced by HCl/ethanol, (2) gastric lesions induced by Indomethacin- HCl/ethanol, (3) gastric lesion induced by Indomethacin, (4) gastric lesions induced by Pylorus ligation, (5) gastric lesions induced by histamine-Pylorus ligation, (6) gastric lesions induced by carbachol-Pylorus ligation. Mucus and gastric mucosal ulceration were evaluated. pH, gastric volume, and acidity were quantified in all pylorus ligation induction technics. Nitric oxide (NO) level was determined in indomethacin induced gastric ulcers. RESULTS At different doses (125, 250 and 500 mg/kg), extract reduced significantly the ulcer index. In all models used, that is 100.00% with HCl/ethanol; 100.00% with HCl/ethanol/indomethacin; 95.70% with Indomethacin; 74.79% with pylorus ligation, 95.94% histamine-Pylorus ligation, 99.54% carbachol-Pylorus ligation at the highest dose of 500 mg/kg. The lesion formation reduces in all the methods used followed by a significant increase of mucus production. The pylorus ligation technic revealed that the extract has an antisecretory activity. CONCLUSIONS The methanolic extract of D. benthamianus stem bark has both cytoprotective and antisecretory effects. This extract exerts its antisecretory effect trough cholinergic and histaminergic pathways.
Collapse
Affiliation(s)
- Vanessa Mba Matah Marthe
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Gilbert Ateufack
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Marius Mbiantcha
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - William Yousseu Nana
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Albert Donatien Atsamo
- Laboratory of Animal Physiology, Faculty of Science, University of Yaounde I, Yaoundé, Cameroon
| | - Flore Carine Adjouzem
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | | | - Gonzal Eric Tsafack
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Herve Tchoumbou Tadjoua
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Joseph Emakoua
- Department of Biological Sciences, Higher Teachers' Training College, University of Yaounde I, Yaounde, Cameroon
| |
Collapse
|
22
|
Gastroprotective Effect of Juanislamin on Ethanol-Induced Gastric Lesions in Rats: Role of Prostaglandins, Nitric Oxide and Sulfhydryl Groups in the Mechanism of Action. Molecules 2020; 25:molecules25092246. [PMID: 32397642 PMCID: PMC7248697 DOI: 10.3390/molecules25092246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
Peptic ulcer disease, the most common gastrointestinal disorder, is currently treated with several types of drugs, but all have severe side effects. The aim of the present study was to evaluate the gastroprotective activity of juanislamin, isolated from Calea urticifolia, in a rat model of ethanol-induced gastric lesions. Thirty minutes after orally administering a given dose of juanislamin (from 1 to 30 mg/kg) or carbenoxolone (the reference drug, at 1–100 mg/kg) to rats, 1 mL of ethanol was applied, and the animals were sacrificed 2 h later. The stomachs were removed and opened to measure the total area of lesions in each. To examine the possible participation of prostaglandins, nitric oxide and/or sulfhydryl groups in the mechanism of action of juanislamin, the rats received indomethacin, NG-Nitro-l-arginine methyl ester hydrochloride (l-NAME) or N-ethylmaleimide pretreatment, respectively, before being given juanislamin and undergoing the rest of the methodology. Juanislamin inhibited gastric lesions produced by ethanol in a non-dose-dependent manner, showing the maximum gastroprotective effect (100%) at 10 mg/kg. The activity of juanislamin was not modified by pretreatment with indomethacin, l-NAME or N-ethylmaleimide. In conclusion, juanislamin protected the gastric mucosa from ethanol-induced damage, and its mechanism of action apparently does not involve prostaglandins, nitric oxide or sulfhydryl groups.
Collapse
|
23
|
Bai K, Hong B, Tan R, He J, Hong Z. Selenium Nanoparticles-Embedded Chitosan Microspheres and Their Effects Upon Alcohol-Induced Gastric Mucosal Injury in Rats: Rapid Preparation, Oral Delivery, and Gastroprotective Potential of Selenium Nanoparticles. Int J Nanomedicine 2020; 15:1187-1203. [PMID: 32110016 PMCID: PMC7036990 DOI: 10.2147/ijn.s237089] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Selenium (Se) is an indispensable trace element required for animals and human beings, whereas Se-deficiency can accelerate the development of acute gastric injury induced by over-consumption of alcohol. Selenium nanoparticles (SeNPs), as a special Se-supplement with favorable properties and unique bioactivities, are expected to play a passive role in gastroprotection. To the best of our knowledge, the gastroprotective potential of SeNPs is unknown and also, a rapid preparation of orally stable SeNPs available for prospective commercial application in the clinic is needed. Thus, SeNPs-embedded chitosan microspheres (SeNPs-CM) were developed to deliver SeNPs, and their gastroprotective potential was evaluated. Results Herein, a rapid, eco-friendly and economic preparation process, composed of synthesis of SeNPs decorated by chitosan (CS), purification of CS-SeNPs by ultra-filtration (UF) and spray-drying of the purified CS-SeNPs, was introduced to prepare SeNPs-CM. The uniformly distributed SeNPs with a nanosize range of 60 nm were loaded into CS-microspheres, and they could be released from the microspheres in gastric conditions. In addition, SeNPs-CM were safer than selenite in terms of Se dose, with a LD50 of around 8-fold of that of selenite, and it could efficiently enhance the Se retention in Se-deficient Wistar rats. Furthermore, SeNPs-CM pre-treatment might significantly attenuate the ethanol-induced gastric mucosal damage, based on histological evaluation. It might be partly attributed to the systematic antioxidant activities of SeNPs-CM, reflected by the reduction in lipid peroxidation, the augmentation in antioxidant enzymatic activity as well as decreasing aggressive nitric oxides (NO). Conclusion SeNPs-CM could be taken into consideration as a prospective Se-supplement for the oral delivery of SeNPs, with prominent gastroprotective effect against ethanol-induced mucosal injury.
Collapse
Affiliation(s)
- Kaikai Bai
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Republic of China.,Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, People's Republic of China
| | - Bihong Hong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Republic of China.,Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, People's Republic of China
| | - Ran Tan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Republic of China.,Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, People's Republic of China
| | - Jianlin He
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Republic of China.,Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, People's Republic of China
| | - Zhuan Hong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Republic of China.,Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, People's Republic of China
| |
Collapse
|
24
|
The Differences in the Proteome Profile of Cannabidiol-Treated Skin Fibroblasts following UVA or UVB Irradiation in 2D and 3D Cell Cultures. Cells 2019; 8:cells8090995. [PMID: 31466340 PMCID: PMC6770406 DOI: 10.3390/cells8090995] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Cannabidiol (CBD), as the only phytocannabinoid that has no psychoactive effect, has both antioxidant and anti-inflammatory effects, and thus might be suggested as a cytoprotective compound against UV-induced metabolic changes in skin cells. Therefore, the aim of this study was to investigate the level of protective CBD activity by evaluating the proteomic profile of 2D and 3D cultured skin fibroblasts models following exposure to UVA and UVB radiation. The CBD cytoprotective effect against UV-induced damage in 2D and 3D cultured fibroblasts were different. The main alterations focus on the range of cell reaction and involved different proteins associated with various molecular functions. In the 2D cultured cells, following UV radiation, the major changes were associated with proteins involved in antioxidant response and inflammation, while, in the 3D cultured fibroblasts, CBD action against UV induced changes were mainly associated with the activation of signalling pathways. Therefore, the knowledge of the CBD action in a multilayer skin cells model allowed for the prediction of changes in cell-cell interactions and skin cell metabolism. Knowledge about the lower protective effect of CBD in 3D cultured fibroblasts should be taken into account during the design of UV light protection.
Collapse
|