1
|
Petrova AV, Poptsov AI, Heise NV, Csuk R, Kazakova OB. Diethoxyphosphoryloxy-oleanolic acid is a nanomolar-inhibitor of butyrylcholinesterase. Chem Biol Drug Des 2024; 103:e14506. [PMID: 38480508 DOI: 10.1111/cbdd.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/22/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024]
Abstract
A series of new betulin, lupeol, erythrodiol, and oleanolic acid phosphoryloxy- and furoyloxy-derivatives has been synthesized and their structure was confirmed by NMR spectroscopy. Synthesized compounds were subjected to Ellman's assays to determine their ability to inhibit the enzymes AChE and BChE. Among them, diethoxyphosphoryloxy-oleanolic acid inhibited BChE with a value of 99%, thereby acting as a mixed-type inhibitor holding very low Ki values of Ki = 6.59 nM and Ki ' = 1.97 nM, respectively.
Collapse
Affiliation(s)
- Anastasiya V Petrova
- Ufa Institute of Chemistry, Ufa Federal Research Centre, Russian Academy of Science, Ufa, Russia
| | - Alexandr I Poptsov
- Ufa Institute of Chemistry, Ufa Federal Research Centre, Russian Academy of Science, Ufa, Russia
| | - Niels V Heise
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Halle (Saale), Germany
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Halle (Saale), Germany
| | - Oxana B Kazakova
- Ufa Institute of Chemistry, Ufa Federal Research Centre, Russian Academy of Science, Ufa, Russia
| |
Collapse
|
2
|
Yan R, Liu L, Huang X, Quan ZS, Shen QK, Guo HY. Bioactivities and Structure-Activity Relationships of Maslinic Acid Derivatives: A Review. Chem Biodivers 2024; 21:e202301327. [PMID: 38108648 DOI: 10.1002/cbdv.202301327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Maslinic acid has a variety of biological activities, such as anti-tumor, hypoglycemic, anti-inflammatory, and anti-parasitic. In order to enhance the biological activity of maslinic acid, scholars have carried out a lot of structural modifications, and found some more valuable maslinic acid derivatives. In this paper, the structural modification, biological activity, and structure-activity relationship of maslinic acid were reviewed, providing references for the development of maslinic acid.
Collapse
Affiliation(s)
- Rui Yan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Luguang Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong, P. R. China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| |
Collapse
|
3
|
α-Glucosidase and cholinesterase inhibiting potential of a series of semisynthetic nitrogen triterpenic derivatives. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Özdemir Z, Wimmer Z. Selected plant triterpenoids and their amide derivatives in cancer treatment: A review. PHYTOCHEMISTRY 2022; 203:113340. [PMID: 35987401 DOI: 10.1016/j.phytochem.2022.113340] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 05/20/2023]
Abstract
Medicinal plants have been used to treat different diseases throughout the human history namely in traditional medicine. Most of the plants mentioned in this review article belong among them, including those that are widely spread in the nature, counted frequently to be food and nutrition plants and producing pharmacologically important secondary metabolites. Triterpenoids represent an important group of plant secondary metabolites displaying emerging pharmacological importance. This review article sheds light on four selected triterpenoids, oleanolic, ursolic, betulinic and platanic acid, and on their amide derivatives as important natural or semisynthetic agents in cancer treatment, and, in part, in pathogenic microbe treatment. A literature search was made in the Web of Science for the given key words covering the required area of secondary plant metabolites and their amide derivatives. The most recently published findings on the biological activity of the selected triterpenoids, and on the structures and biological activity of their relevant amide derivatives have been summarized therein. Mainly anti-cancer effects, and, in part, antimicrobial and other effects of the four selected triterpenoids and their amide derivatives have also been reviewed. A comparison of the effects of the parent plant products and those of their amide derivatives has been made.
Collapse
Affiliation(s)
- Zulal Özdemir
- University of Chemistry and Technology in Prague, Technická 5, 16028, Prague 6, Czech Republic; Institute of Experimental Botany AS CR, Isotope Laboratory, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| | - Zdeněk Wimmer
- University of Chemistry and Technology in Prague, Technická 5, 16028, Prague 6, Czech Republic; Institute of Experimental Botany AS CR, Isotope Laboratory, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|
5
|
Semenova MD, Popov SA, Sorokina IV, Meshkova YV, Baev DS, Tolstikova TG, Shults EE. Conjugates of Lupane Triterpenoids with Arylpyrimidines: Synthesis and Anti-inflammatory Activity. Steroids 2022; 184:109042. [PMID: 35580647 DOI: 10.1016/j.steroids.2022.109042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/24/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
Semisynthetic triterpenoid betulonic acid is of significant interest due to its biological activity and synthetic application. In this study, we report the synthesis of hybrid compounds, containing betulonic acid carboxamide and arylpyrimidine fragments. A total of 15 conjugates were prepared using the cyclocondensation reaction of new terpenoid alkynyl ketones with amidinium salts. The main synthetic approach to betulonic acid amide-derived alkynylketones was based on the cross-coupling reaction of N-(4-ethynylphenyl)- or N-(2-(4-ethynylphenyl)-1-(methoxycarbonyl)ethyl)- substituted betulonic acid carboxamide with aroylchlorides. Cyclocondensation of alkynones with amidine or guanidine hydrochlorides by reflux in MeCN in the presence of K2CO3 led to the formation of terpenoid pyrimidine hybrids in 52-89% isolated yield. Anti-inflammatory properties of new type of triterpenoid-pyrimidine conjugates were studied using the histamine- and concanavalin A- induced mouse paw edema models. In a model of acute inflammation betulonic acid amide-arylpyrimidines containing a 4-fluorophenyl substituent at the C-6 position of pyrimidine ring exhibited significant and selective anti-inflammatory activity. Compounds containing the 4-bromophenyl- substituent in the pyrimidine ring revealed selective anti-inflammatory activity in the model of immunogenic inflammation (concanavalin-A model). It should be noted that the methoxycarbonyl substituted ethane link between pharmacophore ligands (betulonic acid carboxamide and arylpyrimidine) has a significant effect on anti-inflammatory activity in both in vivo models of inflammation. It was shown by molecular docking that the new derivatives are incorporated into the binding site of the protein Keap1 Kelch-domain by their pyrimidine substituent with the formation of more non-covalent bonds.
Collapse
Affiliation(s)
- Maria D Semenova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrent'ev Ave. 9, 630090 Novosibirsk, Russian Federation
| | - Sergey A Popov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrent'ev Ave. 9, 630090 Novosibirsk, Russian Federation
| | - Irina V Sorokina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrent'ev Ave. 9, 630090 Novosibirsk, Russian Federation
| | - Yulia V Meshkova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrent'ev Ave. 9, 630090 Novosibirsk, Russian Federation
| | - Dmitry S Baev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrent'ev Ave. 9, 630090 Novosibirsk, Russian Federation
| | - Tatyana G Tolstikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrent'ev Ave. 9, 630090 Novosibirsk, Russian Federation
| | - Elvira E Shults
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrent'ev Ave. 9, 630090 Novosibirsk, Russian Federation.
| |
Collapse
|
6
|
Heise N, Friedrich S, Temml V, Schuster D, Siewert B, Csuk R. N-methylated diazabicyclo[3.2.2]nonane substituted triterpenoic acids are excellent, hyperbolic and selective inhibitors for butyrylcholinesterase. Eur J Med Chem 2022; 227:113947. [PMID: 34731766 DOI: 10.1016/j.ejmech.2021.113947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022]
Abstract
Triterpenoic acids (oleanolic, ursolic, betulinic, platanic and glycyrrhetinic acid) were acetylated and coupled with 1,3- or 1,4-diazabicyclo[3.2.2]nonanes to yield amides. Reaction of these amides with methyl iodide at the distal nitrogen of the bicyclic system gave the corresponding quaternary ammonium salts. These compounds were shown to act as excellent inhibitors of the enzyme butyrylcholinesterase (BChE) while being only weak inhibitors for acetylcholinesterase (AChE). Evaluation of the enzyme kinetics revealed these compounds to act as hyperbolic inhibitors for BChE while the results from molecular modeling gave an explanation for their selectivity between AChE and BChE.
Collapse
Affiliation(s)
- Niels Heise
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany
| | - Sander Friedrich
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany
| | - Veronika Temml
- Pharmacy/ Pharmaceutical and Medicinal Chemistry Institute, Paracelsus Medical University Salzburg, Stubergasse 21, A-5020, Salzburg, Austria
| | - Daniela Schuster
- Pharmacy/ Pharmaceutical and Medicinal Chemistry Institute, Paracelsus Medical University Salzburg, Stubergasse 21, A-5020, Salzburg, Austria
| | - Bianka Siewert
- Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany.
| |
Collapse
|
7
|
Lupiáñez JA, Rufino-Palomares EE. Phytochemicals: "A Small Defensive Advantage for Plants and Fungi; a Great Remedy for the Health of Mankind". Molecules 2021; 26:molecules26206159. [PMID: 34684740 PMCID: PMC8538969 DOI: 10.3390/molecules26206159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- José A. Lupiáñez
- Correspondence: (J.A.L.); (E.E.R.-P.); Tel.: +34-958-243089 (J.A.L.); +34-958-243252 (E.E.R.-P.); Fax: +34-958-249945 (J.A.L. & E.E.R.-P.)
| | - Eva E. Rufino-Palomares
- Correspondence: (J.A.L.); (E.E.R.-P.); Tel.: +34-958-243089 (J.A.L.); +34-958-243252 (E.E.R.-P.); Fax: +34-958-249945 (J.A.L. & E.E.R.-P.)
| |
Collapse
|
8
|
Hoenke S, Christoph MA, Friedrich S, Heise N, Brandes B, Deigner HP, Al-Harrasi A, Csuk R. The Presence of a Cyclohexyldiamine Moiety Confers Cytotoxicity to Pentacyclic Triterpenoids. Molecules 2021; 26:molecules26072102. [PMID: 33917636 PMCID: PMC8038856 DOI: 10.3390/molecules26072102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/29/2021] [Accepted: 04/04/2021] [Indexed: 11/16/2022] Open
Abstract
Pentacyclic triterpenoids oleanolic acid, ursolic acid, betulinic acid, and platanic acid were acetylated and converted into several amides 9-31; the cytotoxicity of which has been determined in sulforhodamine B assays employing seral human tumor cell lines and nonmalignant fibroblasts. Thereby, a betulinic acid/trans-1,4-cyclohexyldiamine amide showed excellent cytotoxicity (for example, EC50 = 0.6 μM for HT29 colon adenocarcinoma cells).
Collapse
Affiliation(s)
- Sophie Hoenke
- Organic Chemistry, Martin–Luther University Halle–Wittenberg, Kurt–Mothes, Str. 2, D-06120 Halle (Saale), Germany; (S.H.); (M.A.C.); (S.F.); (N.H.); (B.B.)
| | - Martin A. Christoph
- Organic Chemistry, Martin–Luther University Halle–Wittenberg, Kurt–Mothes, Str. 2, D-06120 Halle (Saale), Germany; (S.H.); (M.A.C.); (S.F.); (N.H.); (B.B.)
| | - Sander Friedrich
- Organic Chemistry, Martin–Luther University Halle–Wittenberg, Kurt–Mothes, Str. 2, D-06120 Halle (Saale), Germany; (S.H.); (M.A.C.); (S.F.); (N.H.); (B.B.)
| | - Niels Heise
- Organic Chemistry, Martin–Luther University Halle–Wittenberg, Kurt–Mothes, Str. 2, D-06120 Halle (Saale), Germany; (S.H.); (M.A.C.); (S.F.); (N.H.); (B.B.)
| | - Benjamin Brandes
- Organic Chemistry, Martin–Luther University Halle–Wittenberg, Kurt–Mothes, Str. 2, D-06120 Halle (Saale), Germany; (S.H.); (M.A.C.); (S.F.); (N.H.); (B.B.)
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Science Faculty, Furtwangen University, Jakob–Kienzle–Str. 17, D-78054 Villigen–Schwenningen, Germany;
| | - Ahmed Al-Harrasi
- Chair of Oman’s Medicinal Plants and Marine Natural Products, University of Nizwa, P.O. Box 33, Birkat Al-Mauz, PC 616 Nizwa, Oman;
| | - René Csuk
- Organic Chemistry, Martin–Luther University Halle–Wittenberg, Kurt–Mothes, Str. 2, D-06120 Halle (Saale), Germany; (S.H.); (M.A.C.); (S.F.); (N.H.); (B.B.)
- Correspondence: ; Tel.: +49-345-5525660
| |
Collapse
|
9
|
Gonzalez G, Hodoň J, Kazakova A, D'Acunto CW, Kaňovský P, Urban M, Strnad M. Novel pentacyclic triterpenes exhibiting strong neuroprotective activity in SH-SY5Y cells in salsolinol- and glutamate-induced neurodegeneration models. Eur J Med Chem 2021; 213:113168. [PMID: 33508480 DOI: 10.1016/j.ejmech.2021.113168] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Novel triterpene derivatives were prepared and evaluated in salsolinol (SAL)- and glutamate (Glu)-induced models of neurodegeneration in neuron-like SH-SY5Y cells. Among the tested compounds, betulin triazole 4 bearing a tetraacetyl-β-d-glucose substituent showed a highly potent neuroprotective effect. Further studies revealed that removal of tetraacetyl-β-d-glucose part (free triazole derivative 10) resulted in strong neuroprotection in the SAL model at 1 μM, but this derivative suffered from cytotoxicity at higher concentrations. Both compounds modulated oxidative stress and caspase-3,7 activity, but 10 showed a superior effect comparable to the Ac-DEVD-CHO inhibitor. Interestingly, while both 4 and 10 outperformed the positive controls in blocking mitochondrial permeability transition pore opening, only 4 demonstrated potent restoration of the mitochondrial membrane potential (MMP) in the model. Derivatives 4 and 10 also showed neuroprotection in the Glu model, with 10 exhibiting the strongest oxidative stress reducing effect among the tested compounds, while the neuroprotective activity of 4 was probably due recovery of the MMP.
Collapse
Affiliation(s)
- Gabriel Gonzalez
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and the Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic; Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, CZ-775 20, Olomouc, Czech Republic
| | - Jiří Hodoň
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Anna Kazakova
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Cosimo Walter D'Acunto
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and the Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Petr Kaňovský
- Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, CZ-775 20, Olomouc, Czech Republic
| | - Milan Urban
- Department of Medicinal Chemistry, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 5, 779 00, Olomouc, Czech Republic.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and the Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic; Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, CZ-775 20, Olomouc, Czech Republic.
| |
Collapse
|
10
|
|
11
|
Brandes B, Koch L, Hoenke S, Deigner HP, Csuk R. The presence of a cationic center is not alone decisive for the cytotoxicity of triterpene carboxylic acid amides. Steroids 2020; 163:108713. [PMID: 32795453 DOI: 10.1016/j.steroids.2020.108713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/26/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
3-O-Acetyl-ursolic acid (2) and 3-O-acetyl oleanolic acid (8) were converted into piperazinylamides holding a distal NH, NMe or a NMe2 group. These compounds as well as the corresponding N-methyl-N-oxides were accessed. Their cytotoxicity was assessed in SRB assays employing a panel of human tumor cell lines and non-malignant fibroblasts (NIH 3T3). As a result, compounds holding a quaternary distal N-substituent were less cytotoxic that those holding a NH-moiety. Hence, the presence of a distal cationic center seems not to be a sufficient criterion for obtaining triterpenoids of high cytotoxicity and selectivity.
Collapse
Affiliation(s)
- Benjamin Brandes
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Lukas Koch
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Sophie Hoenke
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Hans-Peter Deigner
- Furtwangen University, Medical and Life Sciences Faculty, Jakob-Kienzle Str. 17, D-78054 Villingen-Schwenningen, Germany
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| |
Collapse
|
12
|
Pawełczyk A, Zaprutko L. Anti-COVID drugs: repurposing existing drugs or search for new complex entities, strategies and perspectives. Future Med Chem 2020; 12:1743-1757. [PMID: 32698626 PMCID: PMC7377048 DOI: 10.4155/fmc-2020-0204] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
At the end of 2019, a novel virus causing severe acute respiratory syndrome to spread globally. There are currently no effective drugs targeting SARS-CoV-2. In this study, based on the analysis of numerous references and selected methods of computational chemistry, the strategy of integrative structural modification of small molecules with antiviral activity into potential active complex molecules has been presented. Proposed molecules have been designed based on the structure of triterpene oleanolic acid and complemented by structures characteristic of selected anti-COVID therapy assisted drugs. Their pharmaceutical molecular parameters and the preliminary bioactivity were calculated and predicted. The results of the above analyses show that among the designed complex substances there are potential antiviral agents directed mainly on SARS-CoV-2.
Collapse
Affiliation(s)
- Anna Pawełczyk
- Poznan University of Medical Sciences, Department of Organic Chemistry, Grunwaldzka 6, Poznań 60-780, Poland
| | - Lucjusz Zaprutko
- Poznan University of Medical Sciences, Department of Organic Chemistry, Grunwaldzka 6, Poznań 60-780, Poland
| |
Collapse
|
13
|
Serbian I, Siewert B, Al-Harrasi A, Csuk R. 2-O-(2-chlorobenzoyl) maslinic acid triggers apoptosis in A2780 human ovarian carcinoma cells. Eur J Med Chem 2019; 180:457-464. [DOI: 10.1016/j.ejmech.2019.07.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/28/2019] [Accepted: 07/15/2019] [Indexed: 02/08/2023]
|
14
|
Kahnt M, Loesche A, Serbian I, Hoenke S, Fischer L, Al-Harrasi A, Csuk R. The cytotoxicity of oleanane derived aminocarboxamides depends on their aminoalkyl substituents. Steroids 2019; 149:108422. [PMID: 31175922 DOI: 10.1016/j.steroids.2019.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/24/2022]
Abstract
Several oligo-methylene diamine derived carboxamides of oleanolic and maslinic acid have been prepared, and substitutions of the terminal primary amine as well as variations of the length of alkyl chain of the diamine moiety were made. Biological evaluation of their cytotoxic activity was performed using photometric sulforhodamin B assays employing a panel of different human cancer cell lines. These experiments showed most of the carboxamides to be cytotoxic with EC50 values below 10 µM. Prolongation of the alkyl chain length initially reduced EC50 values to a minimum, but a decrease in cytotoxicity was observed for longer alkyl chains. Variation of substituents at the terminal nitrogen atom, however, did not influence EC50 values at all. Noteworthy results were obtained particularly for compounds 4, 6 and 23 as indicated by EC50 values lower than 2 µM, and in case of a maslinic derivative 23 even an increased tumor/non-tumor cell selectivity was observed. These compounds were further investigated using fluorescence microscopy and flow cytometry analysis, which revealed 6 to show indications of apoptosis.
Collapse
Affiliation(s)
- Michael Kahnt
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Anne Loesche
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Immo Serbian
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Sophie Hoenke
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Lucie Fischer
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Ahmed Al-Harrasi
- University of Nizwa, Natural and Medical Sciences Research Center, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|
15
|
Kahnt M, Hoenke S, Fischer L, Al-Harrasi A, Csuk R. Synthesis and Cytotoxicity Evaluation of DOTA-Conjugates of Ursolic Acid. Molecules 2019; 24:E2254. [PMID: 31212958 PMCID: PMC6630699 DOI: 10.3390/molecules24122254] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 01/25/2023] Open
Abstract
In this study, we report the synthesis of several amine-spacered conjugates of ursolic acid (UA) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Thus, a total of 11 UA-DOTA conjugates were prepared holding various oligo-methylene diamine spacers as well as different substituents at the acetate units of DOTA including tert-butyl, benzyl, and allyl esters. Furthermore, three synthetic approaches were compared for the ethylenediamine-spacered conjugate 29 regarding reaction steps, yields, and precursor availability. The prepared conjugates were investigated regarding cytotoxicity using SRB assays and a set of human tumor cell lines. The highest cytotoxicity was observed for piperazinyl spacered compound 22. Thereby, EC50 values of 1.5 µM (for A375 melanoma) and 1.7 µM (for A2780 ovarian carcinoma) were determined. Conjugates 22 and 24 were selected for further cytotoxicity investigations including fluorescence microscopy, annexin V assays and cell cycle analysis.
Collapse
Affiliation(s)
- Michael Kahnt
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| | - Sophie Hoenke
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| | - Lucie Fischer
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, Birkat Al-Mauz, Nizwa 616, Oman.
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|