1
|
Ku T, Hu J, Zhou M, Xie Y, Liu Y, Tan X, Guo L, Li G, Sang N. Cardiac energy metabolism disorder mediated by energy substrate imbalance and mitochondrial damage upon tebuconazole exposure. J Environ Sci (China) 2024; 136:270-278. [PMID: 37923437 DOI: 10.1016/j.jes.2022.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2023]
Abstract
Tebuconazole exposure has been described as an increasing hazard to human health. An increasing number of recent studies have shown a positive association between tebuconazole exposure and cardiovascular disease risk, which is characterized by the reduction of adenosine triphosphate (ATP) synthesis. However, researches on the damage of tebuconazole exposure to energy metabolism and the related molecular mechanisms are limited. In the present study, male C57BL/6 mice were treated with tebuconazole at different low concentrations for 4 weeks. The results indicated that tebuconazole could accumulate in the heart and further induce the decrease of ATP content in the mouse heart. Importantly, tebuconazole induced an obvious shift in substrate utilization of fatty acid and glucose by disrupting their corresponding transporters (GLUT1, GLUT4, CD36, FABP3 and FATP1) expression, and significantly repressed the expression of mitochondrial biogenesis (Gabpa and Tfam) and oxidative phosphorylation (CS, Ndufa4, Sdhb, Cox5a and Atp5b) related genes in a dose-dependent manner. Further investigation revealed that these alterations were related to the IRS1/AKT and PPARγ/RXRα pathways. These findings contribute to a better understanding of triazole fungicide-induced cardiovascular disease by revealing the key indicators associated with this phenomenon.
Collapse
Affiliation(s)
- Tingting Ku
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Jindong Hu
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Mengmeng Zhou
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Yuanyuan Xie
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Yutong Liu
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Xin Tan
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Lin Guo
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Guangke Li
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Nan Sang
- College of Environmental Science and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
2
|
Nainu F, Frediansyah A, Mamada SS, Permana AD, Salampe M, Chandran D, Emran TB, Simal-Gandara J. Natural products targeting inflammation-related metabolic disorders: A comprehensive review. Heliyon 2023; 9:e16919. [PMID: 37346355 PMCID: PMC10279840 DOI: 10.1016/j.heliyon.2023.e16919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Currently, the incidence of metabolic disorders is increasing, setting a challenge to global health. With major advancement in the diagnostic tools and clinical procedures, much has been known in the etiology of metabolic disorders and their corresponding pathophysiologies. In addition, the use of in vitro and in vivo experimental models prior to clinical studies has promoted numerous biomedical breakthroughs, including in the discovery and development of drug candidates to treat metabolic disorders. Indeed, chemicals isolated from natural products have been extensively studied as prospective drug candidates to manage diabetes, obesity, heart-related diseases, and cancer, partly due to their antioxidant and anti-inflammatory properties. Continuous efforts have been made in parallel to improve their bioactivity and bioavailability using selected drug delivery approaches. Here, we provide insights on recent progress in the role of inflammatory-mediated responses on the initiation of metabolic disorders, with particular reference to diabetes mellitus, obesity, heart-related diseases, and cancer. In addition, we discussed the prospective role of natural products in the management of diabetes, obesity, heart-related diseases, and cancers and provide lists of potential biological targets for high throughput screening in drug discovery and development. Lastly, we discussed findings observed in the preclinical and clinical studies prior to identifying suitable approaches on the phytochemical drug delivery systems that are potential to be used in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andri Frediansyah
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Sukamto S. Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | | | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain
| |
Collapse
|
3
|
Pereira da Silva V, de Carvalho Brito L, Mesquita Marques A, da Cunha Camillo F, Raquel Figueiredo M. Bioactive limonoids from Carapa guianensis seeds oil and the sustainable use of its by-products. Curr Res Toxicol 2023; 4:100104. [PMID: 37020602 PMCID: PMC10068018 DOI: 10.1016/j.crtox.2023.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Carapa guianensis (Andiroba, Meliaceae) is considered a multipurpose tree. In Brazil, Indigenous people have used it as insect repellent and in the treatment of various diseases. Most biological activities and popular uses are attributed to limonoids, which are highly oxygenated tetranortriterpenoids. More than 300 limonoids have been described in Meliaceae family. Limonoids from Andiroba oil have shown high anti-inflammatory and anti-allergic activities in vivo, by inhibiting platelet activating factors and many inflammatory mediators such as IL-5, IL-1β and TNF-α. It also reduced T lymphocytes, eosinophils and mast cells. In corroboration with the wide popular use of Andiroba oil, no significant cytotoxicity or genotoxicity in vivo was reported. This oil promotes apoptosis in a gastric cancer cell line (ACP02) at high concentrations, without showing mutagenic effects, and is suggested to increase the body's nonspecific resistance and adaptive capacity to stressors, exhibit some antioxidant activity, and protect against oxidative DNA damages. Recently, new methodologies of toxicological assays have been applied. They include in chemico, in vitro, in silico and ex vivo procedures, and take place to substitute the use of laboratory animals. Andiroba by-products have been used in sustainable oil production processes and as fertilizers and soil conditioners, raw material for soap production, biodegradable surfactants and an alternative natural source of biodegradable polymer in order to reduce environmental impacts. This review reinforces the relevance of Andiroba and highlights its ability to add value to its by-products and to minimize possible risks to the health of the Amazonian population.
Collapse
|
4
|
Kelvin Barros Dias K, Lima Cardoso A, Alice Farias da Costa A, Fonseca Passos M, Emmerson Ferreira da Costa C, Narciso da Rocha Filho G, Helena de Aguiar Andrade E, Luque R, Adriano Santos do Nascimento L, Coelho Rodrigues Noronha R. Biological activities from andiroba (Carapa guianensis Aublet.) and its biotechnological applications: a systematic review. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
5
|
Wang J, Li T, Li M, Fu Z, Chen L, Shi D, Qiu F, Tan X. Lycopene attenuates oxidative stress-induced hepatic dysfunction of insulin signal transduction: involvement of FGF21 and mitochondria. J Nutr Biochem 2022; 110:109144. [PMID: 36057413 DOI: 10.1016/j.jnutbio.2022.109144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/29/2022] [Accepted: 08/09/2022] [Indexed: 01/13/2023]
Abstract
Lycopene (LYC) has been regarded as a nutraceutical that has powerful antioxidant and hepatoprotective bioactivities. In the present study, we aimed to investigate the beneficial effects of LYC on hepatic insulin signal transduction under oxidative stress conditions and the possible involvement of FGF21 and mitochondria pathways. Two-month-old CD-1 mice were treated by intraperitoneal injection of D-galactose (D-gal) 150 mg/kg/day for 8 weeks and received 0.03% LYC (w/w, mixed into diet). The results showed that LYC increased the expression of FGF21, alleviated mitochondrial dysfunction and improved hepatic insulin signal transduction in D-gal-treated mice. Furthermore, knockdown of FGF21 by small interfering RNA notably suppressed mitochondrial function and blunted LYC-stimulated insulin signal transduction in H2O2-treated HepG2 cells. Moreover, suppressed mitochondrial function via oligomycin also inhibited insulin signal transduction, indicating that LYC supplementation ameliorated oxidative stress-induced hepatic dysfunction of insulin signal transduction by up-regulating FGF21 and enhancing mitochondrial function.
Collapse
Affiliation(s)
- Jia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ting Li
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mengling Li
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhendong Fu
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Likai Chen
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Dongxing Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Fubin Qiu
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xintong Tan
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
6
|
Nagatomo A, Ninomiya K, Marumoto S, Sakai C, Watanabe S, Ishikawa W, Manse Y, Kikuchi T, Yamada T, Tanaka R, Muraoka O, Morikawa T. A Gedunin-Type Limonoid, 7-Deacetoxy-7-Oxogedunin, from Andiroba ( Carapa guianensis Aublet) Reduced Intracellular Triglyceride Content and Enhanced Autophagy in HepG2 Cells. Int J Mol Sci 2022; 23:13141. [PMID: 36361930 PMCID: PMC9655357 DOI: 10.3390/ijms232113141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 01/03/2025] Open
Abstract
The seed oil of Carapa guianensis Aublet (Andiroba) has been used in folk medicine for its insect-repelling, anti-inflammatory, and anti-malarial activities. This study aimed to examine the triglyceride (TG) reducing effects of C. guianensis-derived limonoids or other commercially available limonoids in human hepatoblastoma HepG2 cells and evaluate the expression of lipid metabolism or autophagy-related proteins by treatment with 7-deacetoxy-7-oxogedunin (DAOG; 1), a principal limonoid of C. guianensis. The gedunin-type limonoids, such as DAOG (% of control at 20 μM: 70.9 ± 0.9%), gedunin (2, 74.0 ± 1.1%), epoxyazadiradione (4, 73.4 ± 2.0%), 17β-hydroxyazadiradione (5, 79.9 ± 0.6%), 7-deacetoxy-7α-hydroxygedunin (6, 61.0 ± 1.2%), andirolide H (7, 87.4 ± 2.2%), and 6α-hydroxygedunin (8, 84.5 ± 1.1%), were observed to reduce the TG content at lower concentrations than berberine chloride (BBR, a positive control, 84.1 ± 0.3% at 30 μM) in HepG2 cells pretreated with high glucose and oleic acid. Andirobin-, obacunol-, nimbin-, and salannin-type limonoids showed no effect on the intracellular TG content in HepG2 cells. The TG-reducing effect of DAOG was attenuated by the concomitant use of compound C (dorsomorphin), an AMPK inhibitor. Further investigation on the detailed mechanism of action of DAOG at non-cytotoxic concentrations revealed that the expressions of autophagy-related proteins, LC3 and p62, were upregulated by treatment with DAOG. These findings suggested that gedunin-type limonoids from Andiroba could ameliorate fatty liver, and that the action of DAOG in particular is mediated by autophagy.
Collapse
Affiliation(s)
- Akifumi Nagatomo
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama 703-8516, Okayama, Japan
| | - Shinsuke Marumoto
- Joint Research Center, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Chie Sakai
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Shuta Watanabe
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Wakana Ishikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Yoshiaki Manse
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Takashi Kikuchi
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan
- Faculty of Pharmacy, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan
| | - Takeshi Yamada
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan
| | - Reiko Tanaka
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan
| | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| |
Collapse
|
7
|
Wang J, Li T, Li M, Shi D, Tan X, Qiu F. Lycopene attenuates D-galactose-induced insulin signaling impairment by enhancing mitochondrial function and suppressing the oxidative stress/inflammatory response in mouse kidneys and livers. Food Funct 2022; 13:7720-7729. [PMID: 35762205 DOI: 10.1039/d2fo00706a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lycopene (LYC) possesses bioactivity to improve the pathogenesis of several chronic diseases via antioxidant-associated mechanisms. The purpose of this study was to investigate whether LYC could attenuate D-galactose (D-gal)-induced mitochondrial dysfunction and insulin signaling impairment in mouse kidneys and livers. Two-month-old CD-1 mice were treated by intraperitoneal injection of 150 mg kg-1 day-1D-gal for 8 weeks and received 0.03% LYC (w/w, mixed into diet). The results showed that LYC ameliorated oxidative stress triggered by D-gal by enhancing the Nrf2 antioxidant defense pathway and increasing the expression of the antioxidant response genes HO-1 and NQO1 in mouse kidneys and livers. LYC inhibited the MAPK and NFκB pathways and attenuated renal and hepatic inflammatory responses. Moreover, LYC upregulated the expression of genes related to mitochondrial biosynthesis and oxidative phosphorylation and improved insulin signal transduction through the IRS-1/AKT/GSK3β pathway in mouse kidneys and livers.
Collapse
Affiliation(s)
- Jia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Ting Li
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Mengling Li
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Dongxing Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Xintong Tan
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271000, China.
| | - Fubin Qiu
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
8
|
Ferreira EDS, Paranhos SB, da Paz SPA, Canelas CADA, do Nascimento LAS, Passos MF, da Silva ACR, Monteiro SN, Paula MVDS, Candido VS. Synthesis and Characterization of Natural Polymeric Membranes Composed of Chitosan, Green Banana Peel Extract and Andiroba Oil. Polymers (Basel) 2022; 14:polym14061105. [PMID: 35335436 PMCID: PMC8950070 DOI: 10.3390/polym14061105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan comprises polymeric macromolecules with technical and biological properties that have been used in biomedical healing applications requiring anti-microbial and anti-inflammatory capacities worldwide. In the tropical regions, green banana peel extract and andiroba oil are considered natural products with wound healing properties. The present study, for the first time, synthesized chitosan/green banana peel extract/andiroba oil (CGA) membranes and analyzed them using scanning electron microscopy (SEM) and the swelling and moisture tests. The CGA membranes together with control membranes of plain chitosan and chitosan plus green banana peel extract, were characterized by contact angle measurement, X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Macroscopic analysis showed significant differences in color and transparency caused by the number of decoction days used for extract preparation and the oil content. SEM observations disclosed the formation of two phases, lipid and polymer, in the CGA. The number of decoction days and the andiroba oil content were inversely related to the swelling moisture uptake. All membranes were found to be hydrophilic with contact angles less than 90°. The incorporation of plant extract and oil promoted the appearance of related XRD peaks. DSC curves revealed a reduction in the enthalpy of the CGA membranes compared with plain chitosan, which might be attributed to the evaporation of the natural extract and oil. Based on these findings, the studied newly synthesized membranes demonstrated a potential for healing epithelial lesions.
Collapse
Affiliation(s)
- Elisângela da Silva Ferreira
- Engineering of Natural Resources of the Amazon Program, Federal University of Pará—UFPA, Rua Augusto Corrêa 01, Belém, Pará 66075-110, Brazil; (E.d.S.F.); (S.B.P.); (S.P.A.d.P.)
| | - Sheila Barbosa Paranhos
- Engineering of Natural Resources of the Amazon Program, Federal University of Pará—UFPA, Rua Augusto Corrêa 01, Belém, Pará 66075-110, Brazil; (E.d.S.F.); (S.B.P.); (S.P.A.d.P.)
| | - Simone Patrícia Aranha da Paz
- Engineering of Natural Resources of the Amazon Program, Federal University of Pará—UFPA, Rua Augusto Corrêa 01, Belém, Pará 66075-110, Brazil; (E.d.S.F.); (S.B.P.); (S.P.A.d.P.)
| | - Caio Augusto de Almeida Canelas
- Laboratory of Amazon Oils, Federal University of Pará—UFPA, Augusto Corrêa Street, Belém, Pará 66075-110, Brazil; (C.A.d.A.C.); (L.A.S.d.N.)
| | - Luís Adriano Santos do Nascimento
- Laboratory of Amazon Oils, Federal University of Pará—UFPA, Augusto Corrêa Street, Belém, Pará 66075-110, Brazil; (C.A.d.A.C.); (L.A.S.d.N.)
| | - Marcele Fonseca Passos
- Materials Science and Engineering Program, Federal University of Pará, Belém-Pa. Tv We 26, Ananindeua, Pará 67130-660, Brazil; (M.F.P.); (A.C.R.d.S.)
| | - Alisson Clay Rios da Silva
- Materials Science and Engineering Program, Federal University of Pará, Belém-Pa. Tv We 26, Ananindeua, Pará 67130-660, Brazil; (M.F.P.); (A.C.R.d.S.)
| | - Sergio Neves Monteiro
- Department of Materials Science, Military Institute of Engineering—IME, Praça General Tibúrcio 80, Urca, Rio de Janeiro 22290-270, Brazil;
| | | | - Verônica Scarpini Candido
- Engineering of Natural Resources of the Amazon Program, Federal University of Pará—UFPA, Rua Augusto Corrêa 01, Belém, Pará 66075-110, Brazil; (E.d.S.F.); (S.B.P.); (S.P.A.d.P.)
- Correspondence:
| |
Collapse
|
9
|
Chen J, Ding X, Wu R, Tong B, Zhao L, Lv H, Meng X, Liu Y, Ren B, Li J, Jian T, Li W. Novel Sesquiterpene Glycoside from Loquat Leaf Alleviates Type 2 Diabetes Mellitus Combined with Nonalcoholic Fatty Liver Disease by Improving Insulin Resistance, Oxidative Stress, Inflammation, and Gut Microbiota Composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14176-14191. [PMID: 34783554 DOI: 10.1021/acs.jafc.1c05596] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is strongly associated with type 2 diabetes mellitus (T2DM). Sesquiterpene glycosides from loquat leaf achieved beneficial effects on metabolic syndromes such as NAFLD and diabetes; however, their specific activity and underlying mechanism on T2DM-associated NAFLD have not yet been fully understood. In the present study, we found that sesquiterpene glycoside 3 (SG3), a novel sesquiterpene glycoside isolated from loquat leaf, was able to prevent insulin resistance (IR), oxidative stress, and inflammation. In db/db mice, SG3 administration (25 and 50 mg/kg/day) inhibited obesity, hyperglycemia, and the release of inflammatory cytokines. SG3 (5 and 10 μM) also significantly alleviated hepatic lipid accumulation, oxidative stress, and inflammatory response induced by high glucose combined with oleic acid in HepG2 cells. Western blotting analysis showed that these effects were related to repair the abnormal insulin signaling and inhibit the cytochrome P450 2E1 (CYP2E1) and NOD-like receptor family pyrin domain-containing 3 (NLRP3), both in vivo and in vitro. In addition, SG3 treatment could decrease the ratio of Firmicutes/Bacteroidetes and increase the relative abundance of Lachnospiraceae, Muribaculaceae, and Lactobacillaceae after a high-throughput pyrosequencing of 16S rRNA to observe the changes of related gut microbial composition in db/db mice. These findings proved that SG3 could protect against NAFLD in T2DM by improving IR, oxidative stress, inflammation through regulating insulin signaling and inhibiting CYP2E1/NLRP3 pathways, and remodeling the mouse gut microbiome. It is suggested that SG3 could be considered as a new functional additive for a healthy diet.
Collapse
Affiliation(s)
- Jian Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoqin Ding
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Ruoyun Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bei Tong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Lei Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Han Lv
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xiuhua Meng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yan Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bingru Ren
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jing Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tunyu Jian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Weilin Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Forestry College, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Yamamoto M, Nagasawa Y, Fujimori K. Glycyrrhizic acid suppresses early stage of adipogenesis through repression of MEK/ERK-mediated C/EBPβ and C/EBPδ expression in 3T3-L1 cells. Chem Biol Interact 2021; 346:109595. [PMID: 34302803 DOI: 10.1016/j.cbi.2021.109595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Glycyrrhizic acid (GA), a major constituent of the root of licorice (Glycyrrhiza glabra), and has various biological activities, including anti-obesity property. However, the molecular mechanism of anti-adipogenic effect of GA is still unclear. In this study, we investigated the anti-adipogenic effects of GA in mouse adipocytic 3T3-L1 cells and elucidated its underlying molecular mechanism. GA decreased the intracellular triglyceride level. The expression levels of the adipogenic and lipogenic genes were lowered by treatment with GA in a concertation-dependent manner. In contrast, GA did not affect the lipolytic gene expression and the released glycerol level. GA suppressed the early stage of adipogenesis when it was added for 0-3 h after initiation of adipogenesis. Moreover, GA reduced the mRNA levels of CCAAT/enhancer binding protein (C/EBP) β and C/EBPδ, both of which activate the early stage of adipogenesis. Furthermore, GA decreased phosphorylation of extracellular signal-regulated kinase [ERK: p44/42 mitogen-activated protein kinase (MAPK)] in the early stage of adipogenesis. In addition, a MAPK kinase (MEK) inhibitor, PD98059 reduced the C/EBPβ and C/EBPδ gene expression. These results indicate that GA suppressed the early stage of adipogenesis through repressing the MEK/ERK-mediated C/EBPβ and C/EBPδ expression in 3T3-L1 cells. Thus, GA has an anti-adipogenic ability and a possible agent for treatment of obesity.
Collapse
Affiliation(s)
- Masayuki Yamamoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yasuna Nagasawa
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Ko Fujimori
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| |
Collapse
|
11
|
Liu Z, Li J, Lin S, Wu Y, He D, Qu P. PI3K regulates the activation of NLRP3 inflammasome in atherosclerosis through part-dependent AKT signaling pathway. Exp Anim 2021; 70:488-497. [PMID: 34162771 PMCID: PMC8614019 DOI: 10.1538/expanim.21-0002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PI3K is a downstream target of multiple cell-surface receptors, which acts as a crucial modulator of both cell polarization and survival. PI3K/AKT signaling pathway is commonly involved in cancer, atherosclerosis, and other diseases. However, its role in cardiovascular diseases, especially in atherosclerosis, remains to be further investigated. To determine the effect of PI3K/AKT signaling pathway on cellular inflammatory response and oxidative stress, PI3K inhibitor (GDC0941) and AKT inhibitor (MK2206) were used. First, THP-1 cells were incubated with ox-LDL (100 µg/ml) to establish an in vitro atherosclerosis model. The inflammatory factors and foam cell formation were then evaluated to ascertain and compare the effects of PI3K and AKT inhibition. ApoE−/− mice fed a high-fat diet were used to assess the roles of PI3K and AKT in aortic plaque formation. Our results showed that the inhibition of PI3K or AKT could suppress the activation of NLRP3, decreased the expression levels of p-p65/p65 and reduced the production of mitochondrial reaction oxygen species (mitoROS) in THP-1 cells. Inhibition of PI3K or AKT could also reduced atherosclerosis lesion and plaque area, and decreased the levels of NLRP3 and IL-1β in ApoE−/− mice. The effect of PI3K inhibition was more significant than AKT. Therefore, PI3K inhibition can retard the progress of atherosclerosis. Besides, there may be other AKT-independent pathways that regulate the formation of atherosclerosis.
Collapse
Affiliation(s)
- Zhenzhu Liu
- Department of Cardiology, 2nd Affiliated Hospital of Dalian Medical University
| | - Jing Li
- Department of Cardiology, 2nd Affiliated Hospital of Dalian Medical University
| | - Shu Lin
- Department of Cardiology, The University of Hong Kong-Shenzhen Hospital
| | - Yuhang Wu
- Department of Cardiology, 2nd Affiliated Hospital of Dalian Medical University
| | - Dan He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education
| | - Peng Qu
- Department of Cardiology, 2nd Affiliated Hospital of Dalian Medical University
| |
Collapse
|
12
|
Sugimoto M, Ko R, Goshima H, Koike A, Shibano M, Fujimori K. Formononetin attenuates H 2O 2-induced cell death through decreasing ROS level by PI3K/Akt-Nrf2-activated antioxidant gene expression and suppressing MAPK-regulated apoptosis in neuronal SH-SY5Y cells. Neurotoxicology 2021; 85:186-200. [PMID: 34077701 DOI: 10.1016/j.neuro.2021.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022]
Abstract
Formononetin is an isoflavone, found in herbs like Trifolium pratense, which executes a variety of physiological activities including anti-neurodegenerative effect. However, the molecular mechanism of formononetin-mediated neuroprotection remains unclear. In this study, we investigated the protective effect of formononetin on hydrogen peroxide (H2O2)-induced death of human neuroblastoma SH-SY5Y cells and its underlying molecular mechanism. Formononetin suppressed H2O2-induced cytotoxicity. H2O2-induced increase in the intracellular reactive oxygen species (ROS) levels was decreased by formononetin, together with the enhanced expression of the antioxidant genes. H2O2-induced elevation of the Bax/Bcl-2 ratio and cleaved caspase-3 and caspase-7 levels were lowered by formononetin treatment. Moreover, formononetin repressed H2O2-induced phosphorylation of mitogen-activated protein kinases (MAPKs). Nuclear factor erythroid 2-related factor 2 (Nrf2) siRNA decreased antioxidant gene expression and elevated the H2O2-induced ROS level in the formononetin-treated cells. Furthermore, the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling is involved in the activation of the nuclear translocation of Nrf2. These results indicate that the neuroprotective effect of formononetin against H2O2-induced cell death is due to a decrease in the ROS level with the enhanced expression of the antioxidant genes through activation of the PI3K/Akt-Nrf2 signaling. In addition, formononetin suppressed apoptosis through inhibition of phosphorylation of MAPKs in SH-SY5Y cells. Thus, formononetin is a potential therapeutic agent for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mayuko Sugimoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Risa Ko
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Hiromi Goshima
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Atsushi Koike
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Makio Shibano
- Department of Clinical Kampo Medicines, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Ko Fujimori
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| |
Collapse
|
13
|
Matsumoto C, Maehara T, Tanaka R, Fujimori K. Limonoid 7-Deacetoxy-7-oxogedunin from Andiroba, Carapa guianensis, Meliaceae, Decreased Body Weight Gain, Improved Insulin Sensitivity, and Activated Brown Adipose Tissue in High-Fat-Diet-Fed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10107-10115. [PMID: 31434473 DOI: 10.1021/acs.jafc.9b04362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We examined the antiobesity effect of a limonoid 7-deacetoxy-7-oxogedunin, named CG-1, purified from the seeds of Carapa guianensis, Meliaceae, known as andiroba in high-fat-diet (HFD)-fed mice. C57BL/6 mice were fed a low-fat diet or an HFD and orally administered CG-1 (20 mg/kg) for 7 weeks. CG-1 lowered the body weight gain and improved the serum triglyceride level and insulin sensitivity in HFD-fed mice. The expression level of the adipogenesis-related genes was lowered by CG-1 in the visceral white adipose tissue (vWAT). The mRNA expression level of the macrophage-related genes decreased in vWAT following the administration of CG-1 to HFD-fed mice. It is noteworthy that CG-1 activated the brown adipose tissue (BAT) with enhanced expression of uncoupling protein 1 and increased the rectal temperature in HFD-fed mice. These results indicate that the limonoid CG-1 decreased body weight gain and ameliorated hypertriglyceridemia and insulin resistance with the activation of BAT in HFD-fed mice.
Collapse
|