1
|
Moussa AY, Luo J, Xu B. Insights into Chemical Diversity and Potential Health-Promoting Effects of Ferns. PLANTS (BASEL, SWITZERLAND) 2024; 13:2668. [PMID: 39339643 PMCID: PMC11434777 DOI: 10.3390/plants13182668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
The scientific community is focusing on how to enhance human health and immunity through functional foods, and dietary supplements are proven to have a positive as well as a protective effect against infectious and chronic diseases. Ferns act as a taxonomical linkage between higher and lower plants and are endowed with a wide chemical diversity not subjected to sufficient scrutinization before. Even though a wealth of traditional medicinal fern uses were recorded in Chinese medicine, robust phytochemical and biological investigations of these plants are lacking. Herein, an extensive search was conducted using the keywords ferns and compounds, ferns and NMR, ferns and toxicity, and the terms ferns and chemistry, lignans, Polypodiaceae, NMR, isolation, bioactive compounds, terpenes, phenolics, phloroglucinols, monoterpenes, alkaloids, phenolics, and fatty acids were utilized with the Boolean operators AND, OR, and NOT. Databases such as PubMed, Web of Science, Science Direct, Scopus, Google Scholar, and Reaxys were utilized to reveal a wealth of information regarding fern chemistry and their health-promoting effects. Terpenes followed by phenolics represented the largest number of isolated active compounds. Regarding the neuroprotective effects, Psilotium, Polypodium, and Dryopteris species possessed as their major phenolics component unique chemical moieties including catechins, procyanidins, and bioflavonoids. In this updated chemical review, the pharmacological and chemical aspects of ferns are compiled manifesting their chemical diversity in the last seven years (2017-2024) together with a special focus on their nutritive and potential health-promoting effects.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Jinhai Luo
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, 2000 Jintong Road, Tangjiawan, Zhuhai 519087, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, 2000 Jintong Road, Tangjiawan, Zhuhai 519087, China
| |
Collapse
|
2
|
Bai QX, Zhang ZJ, Tang HP, Yang BY, Kuang HX, Wang M. Dryopteris crassirhizoma Nakai.: A review of its botany, traditional use, phytochemistry, pharmacological activity, toxicology and pharmacokinetics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118109. [PMID: 38570147 DOI: 10.1016/j.jep.2024.118109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/04/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Dryopteris crassirhizoma Nakai., a commonly used herb, is known as "Guan Zhong" in China, "Oshida" in Japan and "Gwanjung" in Korea. It has long been used for parasitic infestation, hemorrhages and epidemic influenza. AIM OF THE REVIEW The present paper aims to provide an up-to-date review at the advancements of the investigations on the traditional use, phytochemistry, pharmacological activity, toxicology and pharmacokinetics of D. crassirhizoma. Besides, possible trends, therapeutic potentials, and perspectives for future research of this plant are also briefly discussed. MATERIALS AND METHODS Relevant information on traditional use, phytochemistry, pharmacological activity, toxicology and pharmacokinetics of D. crassirhizoma was collected through published materials and electronic databases, including the Chinese Pharmacopoeia, Flora of China, Web of Science, PubMed, Baidu Scholar, Google Scholar, and China National Knowledge Infrastructure. 109 papers included in the article and we determined that no major information was missing after many checks. All authors participated in the review process for this article and all research paper are from authoritative published materials and electronic databases. RESULTS 130 chemical components, among which phloroglucinols are the predominant groups, have been isolated and identified from D. crassirhizoma. D. crassirhizoma with its bioactive compounds is possessed of extensive biological activities, including anti-parasite, anti-microbial, anti-viral, anti-cancer, anti-inflammatory, anti-oxidant, anti-diabetic, bone protective, immunomodulatory, anti-platelet and anti-hyperuricemia activity. Besides, D. crassirhizoma has special toxicology and pharmacokinetics characterization. CONCLUSIONS D. crassirhizoma is a traditional Chinese medicine having a long history of application. This review mainly summarized the different chemical components extract from D. crassirhizoma and various reported pharmacological effects. Besides, the toxicology and pharmacokinetics of D. crassirhizoma also be analysed in this review. However, the chemical components of D. crassirhizoma are understudied and require further research to expand its medicinal potential, and it is urgent to design a new extraction scheme, so that the active ingredients can be obtained at a lower cost.
Collapse
Affiliation(s)
- Qian-Xiang Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Zhao-Jiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Hai-Peng Tang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| |
Collapse
|
3
|
Hai P, Gao Y, Yang L, Chen N, Jia H, Wang M, Li H, Jiang W, Yang J, Li R. Two New Compounds from the Endophytic Fungi of Dryopteris crassirhizoma and Their Antimicrobial Activities. Molecules 2023; 28:8043. [PMID: 38138533 PMCID: PMC10745856 DOI: 10.3390/molecules28248043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Two endophytic fungi Trichoderma afroharzianum (HP-3) and Alternaria alstroemeriae (HP-7) were isolated and purified from the fresh root of Dryopteris crassirhizoma. Chemical investigation of the two fungi resulted in the isolation of two new phenols 2,4-dihydroxy-3-farnesyl-5-methoxy benzoic acid (1) and 2-hydroxyphenethyl 2-phenylacetate (2), together with 22 known compounds. Their structures were elucidated by NMR, UV, IR, HRESIMS, and comparison to the literature data. Compounds 15 and 16 showed significant antibacterial activity against Micrococcus lysodeikticus with MIC value of 6.25 μg/mL, while 8 and 14 displayed moderate inhibitory activities against several plant pathogenic fungi and clinically important bacterial strains. This is the first study to report the isolation, identification, and antimicrobial properties of metabolites from endophytic fungi of D. crassirhizoma. Our findings may provide lead compounds for the development of new antibacterial agents.
Collapse
Affiliation(s)
- Ping Hai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (P.H.); (L.Y.)
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China; (Y.G.); (N.C.); (H.J.); (M.W.); (H.L.); (W.J.)
| | - Yuan Gao
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China; (Y.G.); (N.C.); (H.J.); (M.W.); (H.L.); (W.J.)
| | - Lian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (P.H.); (L.Y.)
| | - Nie Chen
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China; (Y.G.); (N.C.); (H.J.); (M.W.); (H.L.); (W.J.)
| | - Haiyan Jia
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China; (Y.G.); (N.C.); (H.J.); (M.W.); (H.L.); (W.J.)
| | - Mengdie Wang
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China; (Y.G.); (N.C.); (H.J.); (M.W.); (H.L.); (W.J.)
| | - Huan Li
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China; (Y.G.); (N.C.); (H.J.); (M.W.); (H.L.); (W.J.)
| | - Wenli Jiang
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China; (Y.G.); (N.C.); (H.J.); (M.W.); (H.L.); (W.J.)
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medical, China Academy of Chinese Medical Sciences, Beijing 100010, China
| | - Rongtao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (P.H.); (L.Y.)
| |
Collapse
|
4
|
Matchide MGT, Hnin SYY, Nguekeu YMM, Matheuda EG, Nghokeng J, Tabakam GT, Djoumbissie RAD, Ngouela SA, Lee YE, Tene M, Morita H, Awouafack MD. Dryoptkirbioside, A New Fructofuranoside Glycerol, and Other Constituents from Dryopteris kirbi Hook et Grav Rhizomes. Chem Biodivers 2023; 20:e202301127. [PMID: 37582677 DOI: 10.1002/cbdv.202301127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
A new fructofuranoside glycerol, dryoptkirbioside (1), along with thirteen known compounds (2-14), was isolated from the MeOH extract of Dryopteris kirbi rhizomes by silica gel column chromatography, Sephadex LH-20 column chromatography, and semipreparative HPLC. The structure of the new compound was determined by analyses of its spectroscopic data including nuclear magnetic resonance (NMR), and high-resolution electrospray ionisation mass spectrometry (HR-ESI-MS) and chemical conversions. The hexane-soluble portion and the EAFA fraction showed strong activities against lung (A549), breast (MCF-7), and cervical (HeLa) human cancer cell lines (IC50 values ranging from 4.0 to 8.8 μg/mL). Aspidinol P (5) and aspidinol B (6) exhibited moderate to low cytotoxicity on the three cell lines (IC50 values ranging from 20.4 to 58.7 μM). The MeOH extract and hexane-soluble portion had excellent activities against Staphylococcus aureus and Bacillus subtilis (MICs 11.7 and 23.4 μg/mL), whereas the AcOEt- and BuOH-soluble portions were significantly active on S. aureus (MICs 46.9 and 93.8 μg/mL). The main fractions EAFB , EAFC and nBFB displayed excellent activity against S. aureus (MICs 11.7 and 23.4 μg/mL). Aspidinol B (6) had significant activity, while aspidinol P (5) was moderately active against S. aureus and B. subtilis (MICs 42.0 and 89.5 μM).
Collapse
Affiliation(s)
- Marie Germaine T Matchide
- Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Saw Yu Yu Hnin
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Yves M Mba Nguekeu
- Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Elodie Gaële Matheuda
- Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Josker Nghokeng
- Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Gaetan T Tabakam
- Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Raymonde A Dzatie Djoumbissie
- Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Silvère Augustin Ngouela
- Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Yuan-E Lee
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Mathieu Tene
- Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Hiroyuki Morita
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Maurice Ducret Awouafack
- Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| |
Collapse
|
5
|
Phong NV, Gao D, Kim JA, Yang SY. Optimization of Ultrasonic-Assisted Extraction of α-Glucosidase Inhibitors from Dryopteris crassirhizoma Using Artificial Neural Network and Response Surface Methodology. Metabolites 2023; 13:metabo13040557. [PMID: 37110215 PMCID: PMC10145310 DOI: 10.3390/metabo13040557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Dryopteris crassirhizoma Nakai is a plant with significant medicinal properties, such as anticancer, antioxidant, and anti-inflammatory activities, making it an attractive research target. Our study describes the isolation of major metabolites from D. crassirhizoma, and their inhibitory activities on α-glucosidase were evaluated for the first time. The results revealed that nortrisflavaspidic acid ABB (2) is the most potent α-glucosidase inhibitor, with an IC50 of 34.0 ± 0.14 μM. In addition, artificial neural network (ANN) and response surface methodology (RSM) were used in this study to optimize the extraction conditions and evaluate the independent and interactive effects of ultrasonic-assisted extraction parameters. The optimal extraction conditions are extraction time of 103.03 min, sonication power of 342.69 W, and solvent-to-material ratio of 94.00 mL/g. The agreement between the predicted models of ANN and RSM and the experimental values was notably high, with a percentage of 97.51% and 97.15%, respectively, indicating that both models have the potential to be utilized for optimizing the industrial extraction process of active metabolites from D. crassirhizoma. Our results could provide relevant information for producing high-quality extracts from D. crassirhizoma for functional foods, nutraceuticals, and pharmaceutical industries.
Collapse
Affiliation(s)
- Nguyen Viet Phong
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dan Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jeong Ah Kim
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seo Young Yang
- Department of Pharmaceutical Engineering, Sangji University, 83 Sangjidae-gil, Wonju 26339, Republic of Korea
| |
Collapse
|
6
|
Hai P, He Y, Wang R, Yang J, Gao Y, Wu X, Chen N, Ye L, Li R. Antimicrobial Acylphloroglucinol Meroterpenoids and Acylphloroglucinols from Dryopteris crassirhizoma. PLANTA MEDICA 2023; 89:295-307. [PMID: 35921848 DOI: 10.1055/a-1917-7910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ten novel meroterpenoids, dryoptins/11″-epi-dryoptins A~E (1: ~10: ) with an unprecedented skeleton consisting of dimeric or trimeric acylphloroglucinols and dehydrotheonelline, two undescribed acylphloroglucinol-nerolidol meroterpenoids (11: ~12: ), and ten known acylphloroglucinol derivatives (13: ~22: ), were isolated from D. crassirhizoma. The novel structures including absolute configurations were established by comprehensive spectroscopic analyses and quantum chemical electronic circular dichroism (ECD) calculations. A biosynthetic pathway of 1: ~10: was assumed. The trimeric acylphloroglucinol meroterpenoids 7: /8: showed significant antifungal activity against standard Candida albicans with a MIC50 value of 1.61 µg/mL [fluconazole (FLC): 3.41 µg/mL], and when combined with FLC, the principal components 20: and 21: exhibited strong antifungal activities against FLC-resistant C. albicans with MIC50 values of 8.39 and 7.16 µg/mL (FLC: > 100 µg/mL), respectively. Moreover, compounds 2, 5: /6, 18, 19: , and 21: exhibited inhibitory effects against several pathogenic fungi and bacteria, with MIC50 values of 6.25 ~ 50 µg/mL.
Collapse
Affiliation(s)
- Ping Hai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yunqing He
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, China
| | - Ruirui Wang
- School of Pharmaceutical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medical, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Gao
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, China
| | - Xudong Wu
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, China
| | - Nie Chen
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, China
| | - Li Ye
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, China
| | - Rongtao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
7
|
Phong NV, Zhao Y, Min BS, Yang SY, Kim JA. Inhibitory Activity of Bioactive Phloroglucinols from the Rhizomes of Dryopteris crassirhizoma on Escherichia coli β-Glucuronidase: Kinetic Analysis and Molecular Docking Studies. Metabolites 2022; 12:metabo12100938. [PMID: 36295840 PMCID: PMC9610990 DOI: 10.3390/metabo12100938] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/13/2022] Open
Abstract
Phloroglucinols-one of the major secondary metabolites in Dryopteris crassirhizoma-exhibit various pharmacological effects, such as antiviral, antioxidant, and antidiabetic activities. This study evaluated 30 phloroglucinols isolated from the rhizomes of D. crassirhizoma for their inhibitory activity on β-glucuronidase via in vitro assays. Among them, dimeric phloroglucinols 13-15 moderately inhibited β-glucuronidase, and trimeric phloroglucinols 26-28 showed strong inhibitory effects, with IC50 values ranging from 5.6 to 8.0 μM. Enzyme kinetic analysis confirmed all six active compounds to be in a competitive mode of inhibition. Molecular docking simulations revealed the key binding interactions with the active site of β-glucuronidase protein and the binding mechanisms of these active metabolites. Our results suggest that the rhizomes of D. crassirhizoma and trimeric compounds 26-28 may serve as potential candidates for discovering and developing new β-glucuronidase inhibitors.
Collapse
Affiliation(s)
- Nguyen Viet Phong
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Korea
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Yan Zhao
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Byung Sun Min
- Drug Research and Development Center, College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Korea
| | - Seo Young Yang
- Department of Pharmaceutical Engineering, Sangji University, Wonju 26339, Korea
- Correspondence: (S.Y.Y.); (J.A.K.); Tel.: +82-33-738-7921 (S.Y.Y.); +82-53-950-8574 (J.A.K.)
| | - Jeong Ah Kim
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Korea
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (S.Y.Y.); (J.A.K.); Tel.: +82-33-738-7921 (S.Y.Y.); +82-53-950-8574 (J.A.K.)
| |
Collapse
|
8
|
Wang Y, Liu B, Wang X, Fan Y. Comparison of Constituents and Antioxidant Activity of Above-Ground and Underground Parts of Dryopteris crassirhizoma Nakai Based on HS-SPME-GC-MS and UPLC/Q-TOF-MS. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154991. [PMID: 35956948 PMCID: PMC9370178 DOI: 10.3390/molecules27154991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
Abstract
Dryopteris crassirhizoma Nakai is a Chinese traditional medicinal fern plant for heat-clearing and detoxifying, promoting blood circulation and dissipating blood stasis. Previous researches showed that many factors could influence the components of medicinal plants, and the plant part is one of the main factors. So far, only the underground part of D. crassirhizoma, called “Mianma Guanzhong”, has been widely sold in the market. However, the above-ground part was usually at low utilization, resulting in a waste of medicinal resources. In order to further develop and utilize the medicinal resources of D. crassirhizoma, the constituents, total flavonoid contents and antioxidant activity of the above-ground and underground parts of D. crassirhizoma were tentatively analyzed and compared based on HS-SPME-GC-MS and UPLC/Q-TOF-MS. The results showed that (1) the volatile components were mainly focused in the above-ground part of D. crassirhizoma, including 3-carene, isoledene, ionene, 4-amino-1-naphthol and furfural. (2) Nonvolatile components of the underground part of D. crassirhizoma contained phenolic acid, flavonoids, phloroglucinol and less fatty acid. (3) The common compounds of the above-ground and underground parts of D. crassirhizoma were phenolic acid and flavaspidic acid AB. (4) Antioxidant activity of the underground part was stronger than that of the above-ground part of D. crassirhizoma. In conclusion, both the above-ground and underground parts of D. crassirhizoma are important medicinal resources worthy of further development.
Collapse
Affiliation(s)
- Yanjia Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Baodong Liu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Xin Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Correspondence: or (X.W.); (Y.F.)
| | - Yawen Fan
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
- Correspondence: or (X.W.); (Y.F.)
| |
Collapse
|
9
|
Abstract
Trimeric acylphloroglucinols (T-ACPLs) are a subclass of the large class of acylphloroglucinols—derivatives of 1,3,5-trihydroxybenzene containing an R–C=O group. T-ACPL molecules contain three acylphloroglucinol moieties linked by methylene bridges. Many of them are present in natural sources and exhibit biological activities, often better than the corresponding activities of monomeric acylphloroglucinols. All the stable conformers of T-ACPLs contain seven intramolecular hydrogen bonds, which constitute the dominant stabilising factors. A total of 38 different T-ACPLs, including both naturally occurring and model molecules, have been calculated at the HF and DFT/B3LYP levels. The DFT/B3LYP calculations were carried out both without and with Grimme’s dispersion correction, to highlight the dispersion (and, therefore, also electron correlation) effects for these molecules. The roles of dispersion are evaluated considering the effects of Grimme’s correction on the estimation of the conformers’ energies, the description of the characteristics of the individual hydrogen bonds, the conformers’ geometries and other molecular properties. Overall, the results offer a comprehensive overview of the conformational preferences of T-ACPL molecules, their intramolecular hydrogen bond patterns, and the correlation effects on their properties.
Collapse
|
10
|
Phong NV, Oanh VT, Yang SY, Choi JS, Min BS, Kim JA. PTP1B inhibition studies of biological active phloroglucinols from the rhizomes of Dryopteris crassirhizoma: Kinetic properties and molecular docking simulation. Int J Biol Macromol 2021; 188:719-728. [PMID: 34416263 DOI: 10.1016/j.ijbiomac.2021.08.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
By various chromatographic methods, 30 phloroglucinols (1-30) were isolated from a methanol extract of Dryopteris crassirhizoma, including two new dimeric phloroglucinols (13 and 25). The structures of the isolates were confirmed by HR-MS, 1D, and 2D NMR as well as by comparison with the literature. The protein tyrosine phosphatase 1B (PTP1B) effects of the isolated compounds (1-30) were evaluated using sodium orthovanadate and ursolic acid as a positive control. Among them, trimeric phloroglucinols 26-28 significantly exhibited the PTP1B inhibitory effects with the IC50 values of 1.19 ± 0.13, 1.00 ± 0.04, 1.23 ± 0.05 μM, respectively. In addition, the kinetic analysis revealed compounds 26-28 acted as competitive inhibitors against PTP1B enzyme with Ki values of 0.63, 0.61, 1.57 μM, respectively. Molecular docking simulations were performed to demonstrate that these active compounds can bind with the catalytic sites of PTP1B with negative binding energies and the results are in accordance with that of the kinetic studies. In vitro and in silico results suggest that D. crassirhizoma rhizomes together with compounds 26-28 are potential candidates for treating type 2 diabetes.
Collapse
Affiliation(s)
- Nguyen Viet Phong
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Vu Thi Oanh
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seo Young Yang
- Department of Pharmaceutical Engineering, Sangji University, Wonju 26339, Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu, Gyeongbuk, Republic of Korea
| | - Jeong Ah Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
11
|
Lv H, Fang T, Kong F, Wang J, Deng X, Yu Q, Sun M, Liang X. Dryocrassin ABBA ameliorates Streptococcus pneumoniae-induced infection in vitro through inhibiting Streptococcus pneumoniae growth and neutralizing pneumolysin activity. Microb Pathog 2020; 150:104683. [PMID: 33309685 DOI: 10.1016/j.micpath.2020.104683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/06/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
To explore the role of dryocrassin ABBA (ABBA) in the prevention and treatment of Streptococcus pneumoniae (S. pneumoniae) infections in vitro, a minimal inhibitory concentration test, growth curve assay, hemolysis assay, BacLight LIVE/DEAD staining experiments, oligomerization inhibition assay, time-killing test, LDH release detection assay and cytotoxicity test were performed to evaluate the efficacy of ABBA against S. pneumoniae infections in vitro. The results indicated that ABBA treatment exists bactericidal effect on S. pneumoniae at a concentration of less than 8 μg/ml. Furthermore, ABBA was effective at inhibiting the oligomerization of pneumolysin (PLY) from reducing its hemolytic activity. Meanwhile, ABBA could ameliorate cell injury by neutralizing the biological activity of PLY without cytotoxicity. In summary, ABBA was a leading compound against S. pneumoniae infections through bactericidal effect and neutralizing PLY activity.
Collapse
Affiliation(s)
- Hongfa Lv
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Tianqi Fang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Fanrong Kong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Xuming Deng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Qinlei Yu
- Jilin Provincial Animal Disease Control Center, 4510 Xi'an Road, Changchun, 130062, China
| | - Meiyang Sun
- Department of Breast Surgery, Jilin Provincial Cancer Hospital, Changchun, China.
| | - Xiaoying Liang
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|