1
|
Jiang X, Liu Z, You H, Tang Z, Ma Y, Nie R, Yang Z, Che N, Liu W. Quercetin-primed BMSC-derived extracellular vesicles ameliorate chronic liver damage through miR-136-5p and GNAS/STAT3 signaling pathways. Int Immunopharmacol 2024; 142:113162. [PMID: 39340996 DOI: 10.1016/j.intimp.2024.113162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Chronic liver damage (CLD) is a long-term and progressive liver condition characterized by inflammation, fibrosis, and impaired liver function, which ultimately lead to severe complications such as cirrhosis or liver cancer. Quercetin (Que), a flavonoid in various plants, possesses anti-inflammatory, antiviral, anti-ischemic, and anticancer properties. Recently, extracellular vesicles (EVs) derived from pretreated bone marrow mesenchymal stem cells (BMSCs) have shown immense potential in treating various diseases, including CLD. Thus, this study evaluated the regulatory effects of Que-preconditioned BMSC-derived EVs (Que-EVs) on LPS-stimulated RAW264.7 cells and their therapeutic effects on mice with CLD. METHODS Que-EVs and control-EVs were harvested from the cell culture supernatant of BMSCs. The EVs were characterized using western blot, transmission electron microscopy, and nanoparticle tracking analysis. Further, the DIR labeling of EVs was used to detect in vitro and in vivo uptake. Next, LPS pre-stimulated RAW264.7 cells were treated with Que-EVs and control-EVs for 24 h. The relative expression of inflammatory cytokines and macrophage polarization markers genes was assessed using RT-qPCR, and western blot was conducted to evaluate the GNAS, PI3K, ERK, and STAT3 gene and protein expressions in RAW264.7 cells. Furthermore, transfection techniques were employed to induce miR-136-5p inhibition and GNAS overexpression in RAW264.7 cells to validate the role of miR-136-5p in alleviating inflammation through the GNAS/PI3K/ERK/STAT3 pathway. Subsequently, the outcomes were validated via in vitro experiments. RESULTS Que enhanced miR-136-5p expression in BMSC-EVs. Furthermore, it was shown that EVs delivered miR-136-5p to macrophages, thereby attenuating M1-type macrophage polarisation through the GNAS/PI3K/ERK/STAT3 pathway, reducing liver inflammation, improving liver function and treating CLD.
Collapse
Affiliation(s)
- Xiaodan Jiang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, China
| | - Zhejun Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongjie You
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zuoqing Tang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yun Ma
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ruifang Nie
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zheng Yang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Niancong Che
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenlan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Lv R, Cao H, Zhong M, Wu J, Lin S, Li B, Chen D, Zhang Z, Zhang K, Gao Y. Polygala fallax Hemsl polysaccharides alleviated alcoholic fatty liver disease by modifying lipid metabolism via AMPK. Int J Biol Macromol 2024; 279:135565. [PMID: 39270893 DOI: 10.1016/j.ijbiomac.2024.135565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Alcoholic fatty liver disease (AFLD) is characterized by excessive lipid accumulation in the liver. This study aimed to investigate the protective effects and mechanisms of Polygala fallax Hemsl polysaccharides (PFPs) on AFLD. PFPs were purified and structurally characterized. An AFLD model was established in mice using alcohol and a high-fat diet. A significant reduction in hepatic steatosis was observed following PFPs treatment, evidenced by decreased fat deposition in liver tissues. Additionally, PFPs reduced various liver injury markers, increased levels of antioxidant enzymes, and improved significantly liver function. RNA sequencing revealed that PFPs improved lipid and CYP450 metabolic pathway abnormalities in AFLD mice. Furthermore, PFPs activated the AMPK pathway, reducing lipid accumulation and enhancing lipid metabolism. A HepG2 cell model treated with ethanol and oleic acid showed significant biochemical improvements with PFPs pretreatment, including reduced lipid accumulation and lower reactive oxygen species (ROS) levels. To further elucidate the AMPK and PFPs correlation in AFLD, an AMPK inhibitor (compound C) was used. In vitro and in vivo qRT-PCR and Western blot results confirmed that PFPs protected against AFLD by activating AMPK phosphorylation, regulating lipid synthesis, and inhibiting lipid accumulation. PFPs also modulated CYP2E1 and oxidative stress-related gene expression, affecting liver metabolism.
Collapse
Affiliation(s)
- Rui Lv
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Houkang Cao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Mingli Zhong
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Jianzhao Wu
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Shiyuan Lin
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Bo Li
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Dongyu Chen
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Zhiyuan Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China
| | - Kefeng Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541100, China.
| | - Ya Gao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
3
|
Liu D, Yang K, Li T, Tang T, Wang Y, Wang W, Li J, Zhou P, Wang X, Zhao C, Guo D, Xie Y, Cheng J, Wang M, Sun J, Zhang X. The protective effects of aqueous extract of Schisandra sphenanthera against alcoholic liver disease partly through the PI3K-AKT-IKK signaling pathway. Heliyon 2024; 10:e34214. [PMID: 39091943 PMCID: PMC11292531 DOI: 10.1016/j.heliyon.2024.e34214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Purpose This study aimed to investigated the key chemical components and the effect of the aqueous extract of Schisandra sphenanthera (SSAE) on alcoholic liver disease (ALD) and the related molecular mechanism. Methods This study employed UPLC-Q-TOF-MS/MS to identify the chemical compositions in SSAE. ALD rat model was established through oral administration of white spirit. Transcriptome sequencing, weighted gene co-expression network construction analysis (WGCNA), and network pharmacology were used to predict key compositions and pathways targeted by SSAE for the treatment of ALD. Enzyme-linked immunosorbent assay (ELISA), biochemical kits, hematoxylin-eosin (HE) staining, Western blotting (WB) analysis, and immunohistochemical analysis were used to validate the mechanism of action of SSAE in treating ALD. Results Active ingredients such as schisandrin A, schisandrol A, and schisandrol B were found to regulate the PI3K/AKT/IKK signaling pathway. Compared to the model group, the SSAE group demonstrated significant improvements in cellular solidification and tissue inflammation in the liver tissues of ALD model rats. Additionally, SSAE regulated the levels of a spartate aminotransferase (AST), alanine aminotransferase (ALT), alcohol dehydrogenase (ADH), and aldehyde Dehydrogenase (ALDH) in serum (P < 0.05); Western blotting and immunohistochemical analyses showed that the expression levels of phosphorylated PI3K, AKT, IKK, NFκB, and FOXO1 proteins were significantly reduced in liver tissues (P < 0.05), whereas the expression level of Bcl-2 proteins was significantly increased (P < 0.05). Conclusion The active components of SSAE were schisandrin A, schisandrol A, and schisandrol B, which regulated the phosphorylation levels of PI3K, AKT, IKK, and NFκB and the expression of FOXO1 protein and upregulated the expression of Bcl-2 protein in the liver tissues of ALD rats. These findings indicate that SSAE acts against ALD partly through the PI3K-AKT-IKK signaling pathway. This study provided a reference for future research and treatment of ALD and the development of novel natural hepatoprotective drugs.
Collapse
Affiliation(s)
- Ding Liu
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Kai Yang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Taotao Li
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Tiantian Tang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Yujiao Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Wenfei Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Jia Li
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Peijie Zhou
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Xuan Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Chongbo Zhao
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Dongyan Guo
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Yundong Xie
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Jiangxue Cheng
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Mei Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Jing Sun
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Xiaofei Zhang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
- Key Laboratory of Modern Chinese Medicine Preparation, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| |
Collapse
|
4
|
Meng X, Ren K, Liu X, Lyu C, Jung HW, Zhang Y, Zhang S. Efficacy of Rhamnus utilis Decne. Aqueous extract in mice with acute alcoholic liver injury and metabolomic study. Heliyon 2024; 10:e32523. [PMID: 38952369 PMCID: PMC11215275 DOI: 10.1016/j.heliyon.2024.e32523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Rhamnus utilis Decne. (Family Rhamnaceae Juss.) leaf is commonly prepared as a anti-inflammatory herbal medicine and used for tea production. To investigate the mechanism of Rhamnus utilis Decne. aqueous extract (RDAE) against acute alcoholic liver disease (ALD) in mice. The ALD mouse (Male ICR) model was induced via intragastric administration of 52 % alcohol. Mice in each group were treated by gavage once daily with the RDAE (1.12, 2.25, 4.500 g/kg). The expression of proteins involved in the MAPKs/NF-κB/COX-2-iNOS pathway was measured by western blotting. Non-targeted metabolomics was used to determine metabolic profiles and critical pathways, while targeted metabolomics validated key amino acid metabolites. After administration of RDAE, the body mass of mice was significantly increased. The liver index was significantly decreased. Meanwhile, the serum levels of AST, ALT, TG, TC, MDA, TNF-α, IL-1β and IL-6 were significantly decreased (P < 0.05, P < 0.01), but GSH level was inversely increased (P < 0.05). Metabolomic analysis revealed nine major pathways involved in the therapeutic effect of RDAE, including fructose and mannose metabolism. The levels of 7 amino acids including leucine, proline and alanine/sarcosine were significantly upregulated. Additionally, protein levels of p-NF-κB (p65)/NF-κB (p65), p-ERK1/2/ERK1/2, p-JNK/JNK, p-p38/p38, COX-2 and iNOS were significantly decreased (P < 0.01, P < 0.05). RDAE is used to treat acute ALD by improving lipid metabolism, inhibiting the expression of pro-inflammatory cytokines and regulating MAPKs/NF-κB/COX-2-iNOS signalling pathway. These findings provide valuable insights for acute ALD therapy based on traditional Chinese medicine (TCM).
Collapse
Affiliation(s)
- Xianglong Meng
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
- Shanxi Key Laboratory of Traditional Herbal Medicines Processing, Jinzhong, 030619, Shanxi, China
| | - Kele Ren
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
- Shanxi Key Laboratory of Traditional Herbal Medicines Processing, Jinzhong, 030619, Shanxi, China
| | - Xiaoqin Liu
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
- Shanxi Key Laboratory of Traditional Herbal Medicines Processing, Jinzhong, 030619, Shanxi, China
- College of Pharmacy, Shandong Modern University, Jinan, 250104, China
| | - Chenzi Lyu
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea
| | - Hyo Won Jung
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea
| | - Yilong Zhang
- Shanxi Pengyakang Biotechnology Co., Ltd, Lyuliang, 033000, Shanxi, China
| | - Shuosheng Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
- Shanxi Key Laboratory of Traditional Herbal Medicines Processing, Jinzhong, 030619, Shanxi, China
| |
Collapse
|
5
|
Akbari G, Abasi MR, Gharaghani M, Nouripoor S, Shakerinasab N, Azizi M, Salahi M, Karimi F, Eftekhari M, Razmjoue D, Doustimotlagh AH. Antioxidant and hepatoprotective activities of Juniperus excelsa M. Bieb against bile duct ligation-induced cholestasis. Res Pharm Sci 2024; 19:217-227. [PMID: 39035584 PMCID: PMC11257206 DOI: 10.4103/rps.rps_52_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/12/2023] [Accepted: 03/12/2024] [Indexed: 07/23/2024] Open
Abstract
Background and purpose Cholestasis is caused by a malfunction of the biliary liver system. Oxidative stress plays an essential role in the progression of cholestasis. This study aimed to investigate the antioxidant and hepatoprotective effects of ethanolic extract of Juniperus excelsa M. Bieb (JE) fruits on hepatic impairment induced by bile duct ligation (BDL) in rats. Experimental approach Forty male Wistar rats were randomly divided into 4 groups; sham control + vehicle (SC), BDL + vehicle (BDL), BDL + JE extract (BDL + JE), and SC + extract (SC + JE). One day after surgery, the animals were treated with vehicle or ethanolic extract of JE (500 mg/kg/day) for 7 days. Finally, the blood was taken for biochemical and oxidative stress analysis. Furthermore, the liver tissue of rats was removed for histological examination. Findings/Results Treatment with the extract of JE decreased the ALP level, whereas it enhanced total protein content compared to the BDL group. Also, JE increased the activity of SOD and GPx, as well as FRAP content compared to the BDL group; while it did not significantly affect the levels of MDA and inflammation markers. However, JE could not improve BDL-induced histopathological alterations in hepatic tissue. Conclusion and implication This study demonstrated that JE may be useful as an adjuvant therapy by attenuating ALP activity, increasing serum total protein and FRAP content, as well as improving the antioxidant enzymes activity of SOD and GPx. However, further research is warranted to explore the other underlying mechanisms of action.
Collapse
Affiliation(s)
- Ghaidafeh Akbari
- Department of Physiology, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Reza Abasi
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Maral Gharaghani
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sadegh Nouripoor
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Nasrin Shakerinasab
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahdokht Azizi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Marjan Salahi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farzaneh Karimi
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Mahdieh Eftekhari
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Damoun Razmjoue
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amir Hossein Doustimotlagh
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
6
|
Yan T, Zhang Y, Lu H, Zhao J, Wen C, Song S, Ai C, Yang J. The protective effect of Enteromorpha prolifera polysaccharide on alcoholic liver injury in C57BL/6 mice. Int J Biol Macromol 2024; 261:129908. [PMID: 38320642 DOI: 10.1016/j.ijbiomac.2024.129908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
An alcohol-induced liver injury model was induced in C57BL/6 mice to assess the protective efficacy of Enteromorpha prolifera polysaccharides (EP) against liver damage. Histological alterations in the liver were examined following hematoxylin-eosin (H&E) staining. Biochemical assay kits and ELISA kits were employed to analyze serum and liver biochemical parameters, as well as the activity of antioxidant enzymes and alcohol metabolism-related enzymes. The presence of oxidative stress-related proteins in the liver was detected using western blotting. Liquid chromatography and mass spectrometry were used to profile serum metabolites in mice. The findings demonstrated that EP-H (100 mg/Kg) reduced serum ALT and AST activity by 2.31-fold and 2.32-fold, respectively, when compared to the alcohol-induced liver injury group. H&E staining revealed a significant attenuation of microvesicular steatosis and ballooning pathology in the EP-H group compared to the model group. EP administration was found to enhance alcohol metabolism by regulating metabolite-related enzymes (ADH and ALDH) and decreasing CYP2E1 expression. EP also modulated the Nrf2/HO-1 signaling pathway to bolster hepatic antioxidant capacity. Furthermore, EP restored the levels of lipid metabolites (Glycine, Butanoyl-CoA, and Acetyl-CoA) to normalcy. In summary, EP confers protection to the liver through the regulation of antioxidant activity and lipid metabolites in the murine liver.
Collapse
Affiliation(s)
- Tingting Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yuying Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hengyu Lu
- West China School of Pharmacy, Sichuan University, Chengdu 610207, China
| | - Jun Zhao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chengrong Wen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Song
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chunqing Ai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jingfeng Yang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Li K, Xia T, Jiang Y, Wang N, Lai L, Xu S, Yue X, Xin H. A review on ethnopharmacology, phytochemistry, pharmacology and potential uses of Portulaca oleracea L. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117211. [PMID: 37739100 DOI: 10.1016/j.jep.2023.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Portulaca oleracea L. (PO), popularly known as purslane, has been documented in ethnopharmacology in various countries and regions. Traditional application records indicated that PO might be used extensively to treat the common cold, dysentery, urinary tract infections, coughing, eye infections, skin problems, gynecological diseases, and pediatric illnesses. AIM OF THE REVIEW This paper includes a systematic review of the traditional usage, phytochemicals, pharmacological activity, and potential uses of PO to provide an overview of the research for further exploitation of PO resources. MATERIALS AND METHODS This article uses "Portulaca oleracea L." and "purslane" as the keywords and collects relevant information on PO from different databases, including PubMed, Web of Science, Springer, Science Direct, ACS, Wiley, CNKI, Baidu Scholar, Google Scholar, and ancient meteria medica. RESULTS PO is a member of the Portulacaceae family and is grown worldwide. Traditional Chinese medicine believes that purslane has the effect of improving eyesight, eliminating evil qi, quenching thirst, purgation, diuresis, hemostasis, regulating qi, promoting hair growth, detoxifying, and avoiding epidemic qi. Recent phytochemical investigations have shown that PO is a rich source of flavonoids, homoisoflavonoids, alkaloids, organic acids, esters, lignans, terpenoids, catecholamines, sterols, and cerebrosides. The purslane extracts or compounds have exhibited numerous biological activities such as anti-inflammatory, immunomodulatory, antimicrobial, antiviral, antioxidant, anticancer, renoprotective, hepatoprotective, gastroprotective, metabolic, muscle relaxant, anti-asthmatic and anti-osteoporosis properties. The significant omega-3 fatty acids, vital amino acids, minerals, and vitamins found in purslane also provide nutritional benefits. Purslane as a food/feed additive in the food industry and animal husbandry has caused concern. Its global wide distribution and tolerance to abiotic stress characteristics make it in the future sustainable development of agriculture a certain position. CONCLUSIONS Based on traditional usage, phytochemicals, and pharmacological activity, PO is a potential medicinal and edible plant with diverse pharmacological effects. Due to purslane's various advantages, it may have vast application potential in the food and pharmaceutical industries and animal husbandry.
Collapse
Affiliation(s)
- Kun Li
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China; Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Tianshuang Xia
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yiping Jiang
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Liyong Lai
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Shengyan Xu
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Hailiang Xin
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China.
| |
Collapse
|
8
|
Guan H, Zhang W, Liu H, Jiang Y, Li F, Wang D, Liu Y, He F, Wu M, Ivan Neil Waterhouse G, Sun-Waterhouse D, Li D. Simultaneous binding of quercetin and catechin to FOXO3 enhances IKKα transcription inhibition and suppression of oxidative stress-induced acute alcoholic liver injury in rats. J Adv Res 2024:S2090-1232(24)00043-2. [PMID: 38286301 DOI: 10.1016/j.jare.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024] Open
Abstract
INTRODUCTION Oxidative stress is one of the major contributors to acute alcoholic liver injury (AALI), which is a common alcoholic liver disease. Quercetin and catechin are flavonoid antioxidants present in plant foods and possess chemopreventive and chemotherapeutic activities. Quercetin and catechin are often included in the same meal and ingested together. While they show cooperative actions against oxidative damage, the underlying mechanisms behind their counteracting effects against oxidative stress-induced AALI remain poorly understood. OBJECTIVES The aim of this study was to understand the mechanism underlying the enhanced antioxidant effect of quercetin-catechin combination to alleviate AALI in rats. METHODS The ethanol (EtOH)-treated rats and H2O2-treated liver cells were used to demonstrate the enhanced antioxidant effect of quercetin and catechin. Then we used RNA-sequencing to compare quercetin alone, catechin alone and quercetin-catechin combination and then identified the critical role of IKKα combining with gene silencing and overexpression techniques. Its transcription factor, FOXO3 was found through yeast one-hybrid assay, luciferase reporter assay, EMSA and ChIP assay. Finally, the interaction between quercetin, catechin and FOXO3 was verified through molecular docking, UV-Vis absorption spectroscopy, fluorescence spectroscopy, and CD spectroscopy. RESULTS The study demonstrated the enhanced antioxidant effect of a quercetin-catechin combination in EtOH-treated rats and in H2O2-treated liver cells. Quercetin and catechin cooperatively inhibited IKKα/p53 pathway and activated Nrf2 signaling pathway. IKKα was a critical negative regulator in their joint action. FOXO3 bound to IKKα promoter to regulate IKKα transcription. Quercetin and catechin influenced FOXO3-IKKα binding through attaching directly to FOXO3 at different sites and altering FOXO3's secondary structures. CONCLUSION Our study revealed the mechanism of quercetin and catechin against oxidative stress-induced AALI through jointly interacting with transcription factor. This research opens new vistas for examining the joint effect of therapeutics towards functional proteins and confirms the chemopreventive effects of multiple flavonoids via co-regulation.
Collapse
Affiliation(s)
- Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, 61 Dai Zong Street, Tai'an 271018, Shandong, People's Republic of China
| | - Wenyuan Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, 61 Dai Zong Street, Tai'an 271018, Shandong, People's Republic of China
| | - Hui Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, 61 Dai Zong Street, Tai'an 271018, Shandong, People's Republic of China
| | - Yang Jiang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, 61 Dai Zong Street, Tai'an 271018, Shandong, People's Republic of China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, 61 Dai Zong Street, Tai'an 271018, Shandong, People's Republic of China
| | - Dan Wang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, 61 Dai Zong Street, Tai'an 271018, Shandong, People's Republic of China
| | - Yang Liu
- College of Life Sciences, Shandong Agricultural University, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, 61 Dai Zong Street, Tai'an 271018, Shandong, People's Republic of China
| | - Fatao He
- Jinan Fruit Research Institute of All China Federation of Supply & Marketing Cooperatives, 16001 East Road Jingshi, Jinan 250220, Shandong, People's Republic of China
| | - Maoyu Wu
- Jinan Fruit Research Institute of All China Federation of Supply & Marketing Cooperatives, 16001 East Road Jingshi, Jinan 250220, Shandong, People's Republic of China
| | | | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, 61 Dai Zong Street, Tai'an 271018, Shandong, People's Republic of China; School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, 61 Dai Zong Street, Tai'an 271018, Shandong, People's Republic of China.
| |
Collapse
|
9
|
Mao J, Tan L, Tian C, Wang W, Zhang H, Zhu Z, Li Y. Research progress on rodent models and its mechanisms of liver injury. Life Sci 2024; 337:122343. [PMID: 38104860 DOI: 10.1016/j.lfs.2023.122343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The liver is the most important organ for biological transformation in the body and is crucial for maintaining the body's vital activities. Liver injury is a serious pathological condition that is commonly found in many liver diseases. It has a high incidence rate, is difficult to cure, and is prone to recurrence. Liver injury can cause serious harm to the body, ranging from mild to severe fatty liver disease. If the condition continues to worsen, it can lead to liver fibrosis and cirrhosis, ultimately resulting in liver failure or liver cancer, which can seriously endanger human life and health. Therefore, establishing an rodent model that mimics the pathogenesis and severity of clinical liver injury is of great significance for better understanding the pathogenesis of liver injury patients and developing more effective clinical treatment methods. The author of this article summarizes common chemical liver injury models, immune liver injury models, alcoholic liver injury models, drug-induced liver injury models, and systematically elaborates on the modeling methods, mechanisms of action, pathways of action, and advantages or disadvantages of each type of model. The aim of this study is to establish reliable rodent models for researchers to use in exploring anti-liver injury and hepatoprotective drugs. By creating more accurate theoretical frameworks, we hope to provide new insights into the treatment of clinical liver injury diseases.
Collapse
Affiliation(s)
- Jingxin Mao
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lihong Tan
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Cheng Tian
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Hao Zhang
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Zhaojing Zhu
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Yan Li
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China.
| |
Collapse
|
10
|
Bemidinezhad A, Zojaji SA, Taraz Jamshidi S, Mohammadi M, Alavi MS, Ghorbani A. Evaluation of acute, subacute, and subchronic toxicity of a hepatoprotective herbal formulation. Toxicol Rep 2023; 11:452-459. [PMID: 38045604 PMCID: PMC10692756 DOI: 10.1016/j.toxrep.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 11/04/2023] [Indexed: 12/05/2023] Open
Abstract
Background The possible toxicity of natural products must be tested before being used in the market. The present work aimed to evaluate acute, subacute, and subchronic toxicity of an herbal formulation containing Anethum graveolens, Cynara scolymus, Citrus aurantium, Portulaca oleracea, and Silybum marianum. Material and methods Acute toxicity (2000 mg/kg, single dose) and sub-acute toxicity (600 and 1200 mg/kg/day, 4 weeks) tests were performed on female and male rats according to OECD 423 and OECD 407 guidelines, respectively. In the subchronic study (12 weeks), the animals were divided into three groups (6 females and 6 males per group): control, low-dose group (food supplemented with 300 mg/kg of the herbal product), and high-dose group (600 mg/kg). Results The herbal product at a single dose of 2000 mg/kg did not induce mortality for 14 days. In the sub-acute study, administration of the product for 28 days at 1200 mg/kg/day had no effect on survival, appetite (water and food consumption), body weight, serum biochemical parameters (BUN, creatinine, AST, ALT, ALP, bilirubin, albumin), histology of vital organs (liver, kidney, heart, brain), and hematological markers related to erythrocyte, platelet, and leukocyte. Similarly, in the subchronic study, the product did not induce mortality, change in histology of the vital organs, or alteration in hematological or biochemical parameters (except for an increase in ALP in female rats received 600 mg/kg). Conclusion The formulated product shows no signs of toxicity in rats up to 2000 mg/kg, 1200 mg/kg, and 600 mg/kg in acute, subacute, and subchronic phases, respectively. It is suggested to monitor ALP levels in females in case of long-term use of the product.
Collapse
Affiliation(s)
- Abolfazl Bemidinezhad
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Abbas Zojaji
- Department of Pharmacology, Mashhad Branch Faculty of Medicine, Islamic Azad University, Mashhad, Iran
- Department of Education and Research, Army Health Center of Excellence (NEZAJA), Tehran, Iran
| | - Shirin Taraz Jamshidi
- Solid Tumor Treatment Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Mohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Liu J, Chen H, Li X, Song C, Wang L, Wang D. Micro-Executor of Natural Products in Metabolic Diseases. Molecules 2023; 28:6202. [PMID: 37687031 PMCID: PMC10488769 DOI: 10.3390/molecules28176202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Obesity, diabetes, and cardiovascular diseases are the major chronic metabolic diseases that threaten human health. In order to combat these epidemics, there remains a desperate need for effective, safe, and easily available therapeutic strategies. Recently, the development of natural product research has provided new methods and options for these diseases. Numerous studies have demonstrated that microRNAs (miRNAs) are key regulators of metabolic diseases, and natural products can improve lipid and glucose metabolism disorders and cardiovascular diseases by regulating the expression of miRNAs. In this review, we present the recent advances involving the associations between miRNAs and natural products and the current evidence showing the positive effects of miRNAs for natural product treatment in metabolic diseases. We also encourage further research to address the relationship between miRNAs and natural products under physiological and pathological conditions, thus leading to stronger support for drug development from natural products in the future.
Collapse
Affiliation(s)
- Jinxin Liu
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (J.L.); (C.S.)
| | - Huanwen Chen
- Center for Agricultural and Rural Development, Zhangdian District, Zibo 255000, China;
| | - Xiaoli Li
- Zibo Digital Agriculture and Rural Development Center, Zibo 255000, China;
| | - Chunmei Song
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (J.L.); (C.S.)
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Deguo Wang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China; (J.L.); (C.S.)
- Key Laboratory of Biomarker Based Rapid-Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China
| |
Collapse
|
12
|
Qiao J, Li H, Jinxiang C, Shi Y, Li N, Zhu P, Zhang S, Miao M. Mulberry fruit repairs alcoholic liver injury by modulating lipid metabolism and the expression of miR-155 and PPARα in rats. Funct Integr Genomics 2023; 23:261. [PMID: 37530875 DOI: 10.1007/s10142-023-01131-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 08/03/2023]
Abstract
As alcohol consumption increases, alcoholic liver disease (ALD) has become more popular and is threating our human life. In this study, we found mulberry fruit extract (MFE) repaired alcohol-caused liver diseases by regulating hepatic lipid biosynthesis pathway and oxidative singling in alcoholically liver injured (ALI) rats. MFE administration inhibited hepatic lipid accumulation and improved liver steatosis in ALI rats. MFE also enhanced the antioxidant capacity and alleviated the inflammatory response by increasing the activities of antioxidant enzymes and decreasing the contents of interleukin (IL)-1β and tumor necrosis factor (TNF)-α. Additionally, MFE regulated the expression of miRNA-155 and lipid metabolism-related PPARα protein in rats. Both miR-155 and PPARα play important roles in liver function. The results indicate that MFE has hepatoprotective effects against ALI in rats.
Collapse
Affiliation(s)
- Jingyi Qiao
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- People's Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Hanwei Li
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Chen Jinxiang
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yanmei Shi
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ning Li
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Pingsheng Zhu
- College of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Sisen Zhang
- People's Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Mingsan Miao
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
13
|
Zhao W, Zhang Y, Li W, Hu Q, Huang H, Xu X, Du B, Li P. Probiotic-fermented Portulaca oleracea L. alleviated DNFB-induced atopic dermatitis by inhibiting the NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116613. [PMID: 37156447 DOI: 10.1016/j.jep.2023.116613] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Probiotic fermentation is a mild and safe biological method to boost the performance of herbs. Portulaca oleracea L. (PO), with folklore records of purgative, anti-dermatological and anti-epidemic effects, has been demonstrated to possess anti-inflammatory, immunomodulatory, and antioxidant properties. However, the potential of PO for the treatment of atopic dermatitis (AD) has not been sufficiently explored. AIM OF STUDY This study aimed to evaluate the therapeutic benefits of PO and fermented Portulaca oleracea L. (FPO) and explore their intrinsic mechanisms. METHODS By utilizing 2,4-dinitrofluorobenzene-induced AD mice as a model, the histopathology of the lesions was observed using H&E and toluidine blue staining methods; the levels of immunoglobulin E (Ig E), histamine (HIS), and thymic stromal lymphopoietin (TSLP) in serum were measured using ELISA, whereas, the expression of inflammatory cytokines in skin lesion was measured using ELISA and immunohistochemistry experiments. The expression of tumor necrosis factor-α (TNF-α), IKKα, NF-κB mRNA was measured using qPCR; and the expression of TNF-α、p-IKKα, p-IκBα, p-NF-κB was measured using western blotting. RESULTS Both 20 mg/mL PO and FPO alleviated mast cell infiltration and lesion pathology, reduced serum levels of Ig E, HIS and TSLP, down-regulated the expression of AD-related inflammatory cytokines, such as, TNF-α, interferon-γ, and interleukin-4, and increased filaggrin expression. Furthermore, they inhibited the expression of TNF-α, IKKα, and NF-κB genes and TNF-α, p-IKKα, p-NF-κB and p-IκBα proteins associated with the NF-κB signaling pathway. CONCLUSIONS PO and FPO has a positive therapeutic potential on AD, indicating that it may be employed as alternative therapies for AD.
Collapse
Affiliation(s)
- Wenjun Zhao
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuwei Zhang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Weijie Li
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Quanzhi Hu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haozhang Huang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xian Xu
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Liu M, Zhou J, Li Y, Ding Y, Lian J, Dong Q, Qu Q, Lv W, Guo S. Effects of dietary polyherbal mixtures on growth performance, antioxidant capacity, immune function and jejunal health of yellow-feathered broilers. Poult Sci 2023; 102:102714. [PMID: 37172360 DOI: 10.1016/j.psj.2023.102714] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/14/2023] Open
Abstract
This study aimed to investigate the effects of polyherbal mixtures (PHM) on growth performance, antioxidant capacities, immune function, and intestinal health in yellow-feathered broilers. PHM is composed of five traditional Chinese medicine herbs (Portulaca oleracea L., Radix Sophora flavescens, Thalictrum glandulosissimum, Terra flava usta, and Pogostemon cablin). A total of 270 one-day-old yellow-feathered broilers were randomly allotted into 3 treatments for a 42-d feeding trial, each with 6 replicates of 15 birds. The dietary treatments consisted of a basal diet (CON), a basal diet supplemented with 50 mg/kg chlortetracycline (CTC), and a basal diet supplemented with 1000 mg/kg PHM. The results showed that dietary PHM supplementation increased body weight, ADG, and decreased F/G compared to the CON. PHM also increased spleen index and mRNA expression of IL-4 (d 21), and thymus index, serum IgA (d 42) and IgG, IL-4 and sIgA in jejunal mucosa (d 21 and 42), but decreased serum IFN-γ and mRNA expression of IFN-γ (d 21 and 42). In addition, PHM increased serum SOD, GSH-Px (d 21 and 42) and T-AOC (d 42), but decreased the content of serum MDA (d 21), the up-regulated mRNA expression of GSH-Px, CAT (d 21), SOD and CAT (d 42). Furthermore, PHM also improved the intestinal epithelial barrier indicators by the up-regulated mRNA expression of CLDN-1, OCLN (d 21 and 42) and ZO-1 (d 21), and the increased of villus height and villus height to crypt depth in jejunum (d 42). The high-throughput sequencing results showed that dietary PHM supplementation increased the alpha diversity and relative abundance of Oscillospira and Ruminococcus (d 21) and Lactobacillus (d 42), whereas decreasing that of Enterococcus (d 21) compared with CON. PICRUSt analysis revealed that metabolic pathways of carbohydrate, energy, lipid, cofactors, and vitamins were significantly enriched in the PHM group. Spearman's correlation analysis revealed that the genera Lactobacillus, Enterococcus, Ruminococcus, Oscillospira, and Faecalibacterium were related to growth performance, intestinal integrity, immune-related factors, antioxidant indices, and tight junction proteins. In conclusion, the results indicated that dietary PHM supplementation improved growth performance and immune status of yellow-feathered broilers by enhancing antioxidant capacities, barrier function, and modulated jejunal microbial communities. PHM used in our study has the potential to replace prophylactic antibiotic use in poultry production systems.
Collapse
Affiliation(s)
- Mengjie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jing Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yue Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yiqing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jiale Lian
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Qi Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Guangdong Technology Research center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, People's Republic of China.
| |
Collapse
|
15
|
Song M, Ying Z, Ying X, Jia L, Yang G. Two new natural products from Portulaca oleracea L . and their bioactivities. Z NATURFORSCH C 2023; 78:253-259. [PMID: 36762738 DOI: 10.1515/znc-2022-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023]
Abstract
Two new natural products, belonging to alkaloids, identified as ((2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl acetate (1) and (5-hydroxypyridin-2-yl)methyl acetate (2), were isolated from Portulaca oleracea L. The structures were identified by spectroscopic methods, including 1D, 2D NMR, and UHPLC-ESI-QTOF/MS methods. Meanwhile, the anti-inflammatory and anticholinesterase bioactivities were found in these two compounds.
Collapse
Affiliation(s)
- Mingyang Song
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, PR China
| | - Zheming Ying
- School of The First Clinic, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China.,Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, PR China
| | - Lianqun Jia
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China
| | - Guanlin Yang
- School of The First Clinic, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China.,Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China
| |
Collapse
|
16
|
Osthole Alleviates D-Galactose-Induced Liver Injury In Vivo via the TLR4/MAPK/NF-κB Pathways. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010443. [PMID: 36615637 PMCID: PMC9824625 DOI: 10.3390/molecules28010443] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 01/06/2023]
Abstract
Osthole, a coumarin derivative, is found in several medicinal herbs. However, the protective effects of osthole against D-galactose (D-Gal)-induced liver injury still remain unclear. In this study, osthole treatment effectively reversed D-Gal-induced liver injury, according to the results of liver HE staining, and improved ALT and AST activities. Feeding with D-Gal significantly increased MDA content, and reduced the level or activity of SOD, CAT and GSH-Px, which were all alleviated by osthole intervention. Meanwhile, osthole treatment significantly inhibited the D-Gal-induced secretion of pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6, in both serum and liver tissue. Investigations revealed that osthole ameliorated the D-Gal-induced activation of TLR4, MYD88 and its downstream signaling pathways of MAPK (p38 and JNK) and NF-κB (nucleus p65). Therefore, osthole mediates a protective effect against D-Gal-induced liver injury via the TLR4/MAPK/NF-κB pathways, and this coumarin derivative could be developed as a candidate bioactive component for functional food.
Collapse
|
17
|
Yi S, Jin X, Liu B, Wu P, Xiao W, Chen W. Portulaca oleracea extract reduces gut microbiota imbalance and inhibits colorectal cancer progression via inactivation of the Wnt/β-catenin signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154279. [PMID: 35963192 DOI: 10.1016/j.phymed.2022.154279] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/02/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Portulaca oleracea is a known medicinal plant with antioxidant, anti-inflammatory, and anticancer activities, and it may also function an important role in colorectal cancer (CRC). PURPOSE We probed into study the critical function of Portulaca oleracea extract (POE) in CRC and the related downstream factors. METHODS Azoxymethane (AOM) and dextransodiumsulfate (DSS) were used to induce mouse models of CRC, which were then administered different doses of POE to evaluate the therapeutic effects of POE on CRC. Diversity, abundance, and function of gut microbiota were analyzed. Moreover, the potential molecular targets of POE inhibiting CRC development were determined. Expression of c-Myc and cyclin D1 as well as CRC cell proliferation and apoptosis was detected. RESULTS POE treatment inhibited AOM/DSS-induced CRC development in mice and ameliorated gut microbial imbalance. Bioinformatic analysis revealed marked differences in the gut microbiota between CRC samples and normal samples and that 20 differential microbiota may be involved in CRC development through the Wnt signaling pathway. Additionally, c-Myc and cyclin D1 were identified to be the key downstream target genes of the Wnt/β-catenin signaling pathway. In vitro data revealed that POE played a suppressive role in the proliferation of CRC cells by reducing the expression of c-Myc and cyclin D1 and inactivating the Wnt/β-catenin signaling pathway. CONCLUSION This study underlines that POE reduces gut microbiota imbalance and inhibits CRC development and progression via inactivation of the Wnt/β-catenin signaling pathway and downregulation of c-Myc and cyclin D1 expression, which is expected to be a potential biomarker for CRC.
Collapse
Affiliation(s)
- Shengen Yi
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Xiaoxin Jin
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Bo Liu
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Peidong Wu
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Wang Xiao
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Weidong Chen
- Department of General Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China.
| |
Collapse
|
18
|
Liu T, Xu G, Liang L, Xiao X, Zhao Y, Bai Z. Pharmacological effects of Chinese medicine modulating NLRP3 inflammasomes in fatty liver treatment. Front Pharmacol 2022; 13:967594. [PMID: 36160411 PMCID: PMC9492967 DOI: 10.3389/fphar.2022.967594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammation is a key contributing factor in the pathogenesis of fatty liver diseases (FLD), such as nonalcoholic fatty liver disease (NAFLD) and alcohol-associated liver diseases (ALDs). The NLRP3 inflammasome is widely present in the hepatic parenchymal and non-parenchymal cells, which are assembled and activated by sensing intracellular and extracellular danger signals resulting in the matures of IL-1β/IL-18 and pyroptosis. Moreover, the aberrant activation of the NLRP3 inflammasome is considered the main factor to drives immune outbreaks in relation to hepatic injury, inflammation, steatosis, and fibrosis. Therefore, inhibition of NLRP3 inflammasome may be a promising therapeutic target for FLD. Currently, accumulating evidence has revealed that a number of traditional Chinese medicines (TCM) exert beneficial effects on liver injury via inhibiting the NLRP3 inflammasome activation. Here, we summarized the mechanism of NLRP3 inflammasomes in the progression of FLD, and TCM exerts beneficial effects on FLD via positive modulation of inflammation. We describe that TCM is a promising valuable resource for the prevention and treatment agents against FLD and has the potential to be developed into clinical drugs.
Collapse
Affiliation(s)
- Tingting Liu
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Guizhou, China
| | - Guang Xu
- Military Institute of Chinese Materia, Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Zhaofang Bai, ; Guang Xu, ; Yanling Zhao,
| | - Longxin Liang
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Zhaofang Bai, ; Guang Xu, ; Yanling Zhao,
| | - Zhaofang Bai
- Senior Department of Hepatology, Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Zhaofang Bai, ; Guang Xu, ; Yanling Zhao,
| |
Collapse
|
19
|
Watafua M, Ejiofor JI, Musa A, Ahmad MH. Acacia sieberiana (Fabaceae) attenuates paracetamol and Bile Duct Ligation-Induced hepatotoxicity via modulation of biochemical and oxidative stress biomarkers. Front Pharmacol 2022; 13:959661. [PMID: 36059962 PMCID: PMC9437914 DOI: 10.3389/fphar.2022.959661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The plant Acacia sieberiana (Fabaceae) is traditionally used to manage hepatitis. This research work aims to investigate the hepatoprotective effectiveness of root bark extract of Acacia sieberiana (ASE) against paracetamol (PCM) and bile duct ligation (BDL)-induced hepatotoxicity. The phytochemical and median lethal dose (LD50) investigations were conducted. The rats were pre-treated with the ASE (250, 750, and 1,500 mg/kg) once daily via oral route for 7 consecutive days. On the 8th day, liver injury was initiated by PCM administration (2 g/kg). Similarly, in the BDL-induced liver injury, the animals were administered ASE (125, 250, and 380 mg/kg) intraperitoneally for 7 consecutive days. After 24 h, blood samples and hepatic tissues were obtained for biochemical and histopathological investigations. Results: Phytocomponents determination revealed glycosides, triterpenes, glycosides, saponins, tannins, flavonoids and alkaloids. The oral and intraperitoneal LD50 values of the ASE were >5,000 and 1,300 mg/kg, respectively. The ASE efficiently (p < 0.05) decreased the alanine transaminase (ALT) and aspartate transaminase (AST) levels and elevated the albumin and total protein (TP) levels. The direct bilirubin effectively (p < 0.05) decreased at 750 mg/kg. Besides, the extract efficiently elevated the glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) in relation to the PCM hepatotoxic group. Also, the malondialdehyde (MDA) concentration was reduced by the ASE. Meanwhile, in the BDL-induced liver injury, the ASE remarkably (p < 0.05) declined the AST, ALP, bilirubin,and MDA. Besides, there was effective (p < 0.05) elevation in SOD, GPx and CAT in the ASE-treated groups. The morphology of liver tissue was preserved at 125 and 250 mg/kg ASE groups from BDL-induced necrosis and vascular congestion. Conclusion: The study shows that the ASE has hepatoprotective actions against liver damage by possible modulation of biochemical and oxidative stress biomarkers.
Collapse
Affiliation(s)
- Miriam Watafua
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, NG, Nigeria
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, KD, Nigeria
| | - Jane I. Ejiofor
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, KD, Nigeria
| | - Aminu Musa
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, KD, Nigeria
| | - Mubarak Hussaini Ahmad
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, KD, Nigeria
| |
Collapse
|
20
|
Hussein RM, Youssef AM, Magharbeh MK, Al-Dalaen SM, Al-Jawabri NA, Al-Nawaiseh TN, Al-Jwanieh A, Al-Ani FS. Protective Effect of Portulaca oleracea Extract Against Lipopolysaccharide-Induced Neuroinflammation, Memory Decline, and Oxidative Stress in Mice: Potential Role of miR-146a and miR-let 7. J Med Food 2022; 25:807-817. [PMID: 35235435 DOI: 10.1089/jmf.2021.0097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neuroinflammation is an adaptive immune response to the central nervous system (CNS) injury induced by infection or toxins. MicroRNAs (miRs) showed critical roles in neuroinflammation as either proinflammatory or anti-inflammatory molecules. Interestingly, Portulaca oleracea (purslane) is an edible plant capable of ameliorating several diseases, including headache, burns, and diabetes; however, its effect on the neuroinflammation-associated miRs was not previously investigated. This study aimed to investigate the effect of aqueous purslane extract on the neuroinflammation induced by lipopolysaccharide (LPS) in mice and to identify its effect on animal cognition, oxidative stress, and expressions of miR-146a and miR-let 7. Adult mice were divided into the following groups: Normal group, LPS group, and Purslane+LPS group. Novel target recognition test, brain histopathology, and measurement of oxidative stress and inflammatory markers were performed. The results showed that LPS group exhibited significant decline in the cognitive memory, brain histopathological injury and a decrease in the number of intact neurons compared to the normal group. Furthermore, the LPS group showed a significant increase in malondialdehyde concentration, whereas superoxide dismutase and catalase activities were decreased. The LPS group also showed an increase in the inflammatory markers tumor necrosis factor-α and nuclear factor kappa B and downregulation of miR-146a and miR-let 7 expressions in the brain cells compared to the normal group, P value <.05. Interestingly, all these changes were reversed by administration of the aqueous purslane extract. In conclusion, the aqueous purslane extract protected from LPS-induced neuroinflammation and memory decline in mice through antioxidant and anti-inflammatory effect where upregulation of miR-146a and miR-1et 7 expressions was involved.
Collapse
Affiliation(s)
- Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan.,Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed M Youssef
- Department of Pharmacology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Mousa K Magharbeh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Saed M Al-Dalaen
- Department of Pharmacology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Nariman A Al-Jawabri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Taymaa N Al-Nawaiseh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Abdullah Al-Jwanieh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Fakhir S Al-Ani
- Department of Physiology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| |
Collapse
|
21
|
Guo J, Peng J, Han J, Wang K, Si R, Shan H, Wang X, Zhang J. Extracts of Portulaca oleracea promote wound healing by enhancing angiology regeneration and inhibiting iron accumulation in mice. CHINESE HERBAL MEDICINES 2022; 14:263-272. [PMID: 36117668 PMCID: PMC9476539 DOI: 10.1016/j.chmed.2021.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 11/28/2022] Open
Abstract
Objective To investigate the role of Portulaca oleracea (POL) in promoting revascularization and re-epithelization as well as inhibiting iron aggregation and inflammation of deep tissue pressure injury (DTPI). Methods The hydroalcoholic extract of POL (P) and aqueous phase fraction of POL (PD) were prepared based on maceration and liquid–liquid extraction. The number of new blood vessels and VEGF-A expression level were assessed using H&E stain and Western blot on injured muscle to examine the role of POL different extracts in vascularization. The iron distribution and total elemental iron of injured muscle were detected using laser ablation inductively coupled plasma mass spectrometry (ICP-MS) and Perls’ staining to determine whether POL extracts can inhibit the iron accumulation. Besides, the ability of POL extracts to promote wound healing by combining re-epithelization time, inflammation degree and collagen deposition area were comprehensively evaluated. Results In vitro, we observed a significant increase in HUVEC cell viability, migration rate and the number of the tube after P and PD treatment (P < 0.05). In vivo, administration of P and PD impacted vascularization and iron accumulation on injured tissue, evident from more new blood vessels, higher expression of VEGF-A and decreased muscle iron concentration of treatment groups compared with no-treatment groups (P < 0.05). Besides, shorter re-epithelization time, reduced inflammatory infiltration and distinct collagen deposition were associated with administration of P and PD (P < 0.05). Conclusion POL extract administration groups have high-quality wound healing, which is associated with increased new blood vessels, collagen deposition and re-epithelization, along with decreased iron accumulation and inflammatory infiltration. Our results suggest that that POL extract is beneficial to repair injured muscle after ischemia–reperfusion, highlighting the potential of POL in the DTPI treatment.
Collapse
|
22
|
Zuo Z, Li Y, Zeng C, Xi Y, Tao H, Guo Y. Integrated Analyses Identify Key Molecules and Reveal the Potential Mechanism of miR-182-5p/FOXO1 Axis in Alcoholic Liver Disease. Front Med (Lausanne) 2021; 8:767584. [PMID: 34950682 PMCID: PMC8688759 DOI: 10.3389/fmed.2021.767584] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Alcoholic liver disease (ALD) is one of the most common chronic liver diseases worldwide. However, the potential molecular mechanism in ALD development remains unclear. The objective of this work was to identify key molecules and demonstrate the underlying regulatory mechanisms. Methods: RNA-seq datasets were obtained from Gene Expression Omnibus (GEO), and key molecules in ALD development were identified with bioinformatics analysis. Alcoholic liver disease mouse and cell models were constructed using Lieber-DeCarli diets and alcohol medium, respectively. Quantitative real-time PCR and Western blotting were conducted to confirm the differential expression level. Dual-luciferase reporter assays were performed to explore the targeting regulatory relationship. Overexpression and knockdown experiments were applied to reveal the potential molecular mechanism in ALD development. Results: Between ALD patients and healthy controls, a total of 416 genes and 21 microRNAs (miRNAs) with significantly differential expression were screened. A comprehensive miRNA-mRNA network was established; within this network, the miR-182-5p/FOXO1 axis was considered a significant pathway in ALD lipid metabolism. Mouse and cell experiments validated that miR-182-5p was substantially higher in ALD than in normal livers, whereas the expression of FOXO1 was dramatically decreased by alcohol consumption (P < 0.05). Next, dual-luciferase reporter assays demonstrated that miR-182-5p directly targets the binding site of the FOXO1 3′UTR and inhibits its mRNA and protein expression. In addition, miR-182-5p was found to promote hepatic lipid accumulation via targeting the FOXO1 signaling pathway, and inhibition of the miR-182-5p/FOXO1 axis improved hepatic triglyceride (TG) deposition in ALD by regulating downstream genes involved in lipid metabolism. Conclusion: In summary, key molecules were identified in ALD development and a comprehensive miRNA–mRNA network was established. Meanwhile, our results suggested that miR-182-5p significantly increases lipid accumulation in ALD by targeting FOXO1, thereby providing novel scientific insights and potential therapeutic targets for ALD.
Collapse
Affiliation(s)
- Zhihua Zuo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yiqin Li
- Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Chuyi Zeng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuge Xi
- Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Hualin Tao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yongcan Guo
- Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
23
|
Song M, Ying Z, Ying X, Jia L, Yang G. Three novel alkaloids from Portulaca oleracea L. and their anti-inflammatory bioactivities. Fitoterapia 2021; 156:105087. [PMID: 34798165 DOI: 10.1016/j.fitote.2021.105087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 01/12/2023]
Abstract
Three novel alkaloids, identified as (E)-N-((2R)-3-(2,5-dihydroxy-4-((3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)-2-hydroxypropanoyl)-3-(4-hydroxyphenyl)acrylamide (1), named oleracrylimide A, (E)-N-((2R)-3-(2,5-dihydroxy-4-((3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)-2-hydroxypropanoyl)-3-(4-hydroxy-3-methoxyphenyl)acrylamide (2), named oleracrylimide B, and (E)-N-((2R)-3-(2,5-dihydroxy-4-((3,4,5-trihydroxy-6-(((3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)-2-hydroxypropanoyl)-3-(4-hydroxy-3-methoxyphenyl)acrylamide (3), named oleracrylimide C were isolated from Portulaca oleracea L. and the structures of the three novel compounds were determined by 1D and 2D NMR, circular dichroism, and UHPLC-ESI-QTOF/MS spectroscopic methods. Moreover, the bioactivities of anti-inflammation of the three compounds were investigated via testing RAW 264.7 macrophage cell stimulated by Lipopolysaccharide.
Collapse
Affiliation(s)
- Mingyang Song
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, PR China
| | - Zhengming Ying
- School of The First Clinic, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, PR China.
| | - Lianqun Jia
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China
| | - Guanlin Yang
- School of The First Clinic, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China.
| |
Collapse
|
24
|
Tijani AS, David OO, Farombi EO. Manganese mitigates against hepatorenal oxidative stress, inflammation and caspase-3 activation in rats exposed to hexachlorobenzene. Drug Chem Toxicol 2021; 45:2748-2757. [PMID: 34670467 DOI: 10.1080/01480545.2021.1986061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The present study investigated the individual and collective effect of organochlorinated fungicide hexachlorobenzene (HCB) and manganese (Mn), a metal, on the hepatorenal function in adult rats. Rats were divided into four groups of rats comprising of control, HCB alone (15 mg/kg), Mn alone (10 mg/kg) and co-exposure group that were orally treated for 25 consecutive days. After sacrifice, hepatorenal damage and antioxidant status markers, myeloperoxidase (MPO) activity, levels of nitric oxide, total antioxidant capacity (TAC), total oxidative stress (TOS) and lipid peroxidation (LPO) were analyzed spectrophotometrically. Levels of tumor necrosis factor alpha (TNF-α), interleukin-1 β (IL-1β) and caspase-3 activity were assessed using ELISA. Results revealed that the HCB administration significantly (p < 0.05) increased the biomarkers of hepatorenal toxicity, decreased the antioxidant status and TAC, raised the levels of TOS and LPO as well as increased the levels of TNF-α, IL-1β and caspase-3 activity. Rats co-exposed to HCB and Mn showed decreased biomarkers of hepatorenal damage, increased antioxidant status and TAC with simultaneous reduction in the levels of TOS and LPO significantly (p < 0.05). Furthermore, the increased levels of TNF-α, IL-1β and caspase-3 activity were significantly (p < 0.05) reduced in the liver and kidney of rats' co-expose to HCB and Mn. Histological examination showed that damages induced by HCB were assuaged in rats co-treated with HCB and Mn. In conclusion, the results demonstrated that co-treatment of HCB and Mn in rats' alleviated HCB-induced oxidative stress, inflammation and caspase-3 activation in the liver and kidney of the rats.
Collapse
Affiliation(s)
- Abiola S Tijani
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olori O David
- Department of Biochemistry, Bowen University of Iwo, Iwo, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
25
|
Alfwuaires MA, Algefare AI, Afkar E, Salam SA, El-Moaty HIA, Badr GM. Immunomodulatory assessment of Portulaca oleracea L. extract in a mouse model of colitis. Biomed Pharmacother 2021; 143:112148. [PMID: 34560553 DOI: 10.1016/j.biopha.2021.112148] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Ulcerative colitis (UC) is a gastrointestinal inflammatory disease with a multifactorial pathophysiology. This study aims to investigate the immunomodulatory effect of Portulaca oleracea leaf ethanolic extract (POE) on acetic acid (AA)-induced UC in mice. Experimental animals received oral doses of POE (200 mg/kg for 7 days) after an induction of colitis by intrarectal AA administration. In mice with AA-induced UC treated with POE, the results revealed a significant modulation in body weight and colon length. Moreover, treatment with POE downregulated the interleukin 1, 6, and 17, tumor necrosis factor-alpha, gamma interferon, and nuclear factor-kappa B levels compared with the colitis group. Furthermore, POE markedly inhibited histological damage, decreased myeloperoxidase activity and reduced fecal calprotectin level compared with the colitis group. These data are consistent with the reduction in total bacterial content in the colon. Taken together, treatment with POE may reduce colonic inflammation by alleviating the immune response and inhibiting the severity of colitis. The HPLC analysis of POE resulted in the identification of seven medicinal compounds comprising two phenolic acids (ferulic and caffeic acids) and five flavonoids (kaempferol, quercetin, rutin, narenginin and hesperidin). Subsequent analysis of POE by GC-MS revealed ten phytocomponents; the major percentages were hexadecenoic acid, methyl ester (29.8119%), α-linolenic acid (25.8431%), 16-octadecenoic acid, methyl ester (15.1578%) and α-tocopherol (10.7848%). Delta-lactams and alkanes were the minor components. Such natural plant-derived substances and their probable synergistic action appear to contribute to a promising therapeutic protocol for colitis.
Collapse
Affiliation(s)
- Manal A Alfwuaires
- Department of Biological Sciences, Faculty of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia.
| | - Abdulmohsen I Algefare
- Department of Biological Sciences, Faculty of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia.
| | - Eman Afkar
- Department of Biological Sciences, Faculty of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia; Department of Botany and Microbiology, College of Science, Beni-Suef University, Beni-Suef 62511, Egypt.
| | - Sherine Abdel Salam
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Heba Ibrahim Abd El-Moaty
- Department of Biological Sciences, Faculty of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia; Medicinal and Aromatic Plants Department, Desert Research Center El-Mataria, Cairo 11753, Egypt.
| | - Gehan M Badr
- Department of Biological Sciences, Faculty of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia; Department of Zoology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
| |
Collapse
|
26
|
Moslemi Z, Bahrami M, Hosseini E, Mansourian M, Daneshyar Z, Eftekhari M, Shakerinasab N, Asfaram A, Panahi kokhdan E, Barmoudeh Z, Doustimotlagh AH. Portulaca oleracea methanolic extract attenuate bile duct ligation-induced acute liver injury through hepatoprotective and anti-inflammatory effects. Heliyon 2021; 7:e07604. [PMID: 34355097 PMCID: PMC8322275 DOI: 10.1016/j.heliyon.2021.e07604] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/15/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Cholestasis is a liver disease caused by a malfunction of the hepato-biliary system. Oxidative stress as a systemic complication is the main characteristic of cholestasis. The aim of this study was to evaluate the anti-inflammatory and hepatoprotective effects of Portulaca oleracea (PO) methanolic extract on liver dysfunction and tissue damage induced by bile duct ligation (BDL) in rats. Materials and methods Twenty-eight male Wistar rats were randomly divided into four groups: sham control (SC), BDL alone, SC plus 500 mg/kg methanolic extract of PO orally for 1 week, and BDL plus 500 mg/kg methanolic extract of PO orally for 1 week. After 1 week, the animals were anesthetized, and the liver and blood samples were taken from each animal. Biochemical parameters, oxidative stress biomarkers, histopathological changes, as well as the gene expression of IL-1, TNF-α, TGF-β, and α-SMA have been evaluated. Results The methanolic extract of PO at a dose of 500 mg/kg significantly decreased the plasma levels of aminotransferases, alkaline phosphatase as compared to BDL group (P < 0.05), while it had no significant effect on the levels of oxidative stress markers in the hepatic tissue. The plasma level of malondialdehyde and ferric-reducing antioxidant power were markedly elevated in the BDL group in comparison to SC group (P < 0.05), while treatment with PO significantly reduced these markers (P < 0.05). The administration of PO attenuated hydroxyproline content, bile duct proliferation, and inflammation score in the cholestatic liver in contrast to non-treated BDL rats (P < 0.05). Moreover, the methanolic extract of PO markedly declined the expression of TNF-α and TGF-β pro inflammatory genes in contrast to BDL rats. Conclusions Taken together, our findings showed that PO attenuated liver injury by decreasing liver function tests, inflammation, and hydroxyproline content. As a result, it is suggested that PO can be applied in cholestatic liver damage as a therapeutic or adjuvant agent.
Collapse
Affiliation(s)
- Zahra Moslemi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mina Bahrami
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ebrahim Hosseini
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahboubeh Mansourian
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Zahra Daneshyar
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahdieh Eftekhari
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasrin Shakerinasab
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Zahra Barmoudeh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amir Hossein Doustimotlagh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Corresponding author.
| |
Collapse
|
27
|
Bao X, Shen N, Lou Y, Yu H, Wang Y, Liu L, Tang Z, Chen X. Enhanced anti-PD-1 therapy in hepatocellular carcinoma by tumor vascular disruption and normalization dependent on combretastatin A4 nanoparticles and DC101. Theranostics 2021; 11:5955-5969. [PMID: 33897892 PMCID: PMC8058708 DOI: 10.7150/thno.58164] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/23/2021] [Indexed: 12/23/2022] Open
Abstract
Anti-programmed cell death protein 1 (PD-1) therapy has shown promising efficacy in hepatocellular carcinoma (HCC), but its response rates in advanced HCC are lower than 20%. A critical reason for this is the imbalance between CD8+ T cells and tumor burden. Here, a novel concept of vascular disruption and normalization dependent on a polymeric vascular disrupting agent (VDA) poly (L-glutamic acid)-graft-methoxy poly (ethylene glycol)/combretastatin A4 (CA4-NPs) + a vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) inhibitor DC101 is applied to improve anti-PD-1 therapy, wherein CA4-NPs reduce tumor burden and DC101 simultaneously increases the number of intratumoral CD8+ T cells, successfully regulating the abovementioned imbalance in an H22 tumor model. Methods: Blood vessel density, tumor cell proliferation, and necrosis were evaluated to reveal the effects on reducing tumor burden by CA4-NP treatment. Pericyte coverage of blood vessels, tumor blood vessel perfusion, tumor hypoxia, and intratumoral immune cells were examined to verify their role in vascular normalization and immune cell homing of DC101. Furthermore, the effects of CA4-NPs + DC101 on reducing tumor burden and increasing the number of immune cells were studied. Finally, tumor suppression, intratumoral CD8+ T cell activation, and the synergistic effects of anti-PD-1 combined with CA4-NPs + DC101 were verified. Results: The tumor inhibition rate of anti-PD-1 antibody combined with CA4-NPs + DC101 reached 86.4%, which was significantly higher than that of anti-PD-1 (16.8%) alone. Importantly, the Q value reflecting the synergy between CA4-NPs + DC101 and anti-PD-1 was 1.24, demonstrating a strong synergistic effect. Furthermore, CA4-NPs + DC101 improved anti-PD-1 therapy by increasing the number of intratumoral CD8+ T cells (anti-PD-1, 0.31% vs triple drug combination, 1.18%). Conclusion: These results reveal a novel approach to enhance anti-PD-1 therapy with VDAs + VEGF/VEGFR2 inhibitors in HCC.
Collapse
Affiliation(s)
- Xin Bao
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun 130041, P. R. China
- Department of Thyroid, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Na Shen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yan Lou
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Haiyang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yue Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Linlin Liu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
28
|
Liang HW, Yang TY, Teng CS, Lee YJ, Yu MH, Lee HJ, Hsu LS, Wang CJ. Mulberry leaves extract ameliorates alcohol-induced liver damages through reduction of acetaldehyde toxicity and inhibition of apoptosis caused by oxidative stress signals. Int J Med Sci 2021; 18:53-64. [PMID: 33390773 PMCID: PMC7738976 DOI: 10.7150/ijms.50174] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Mulberry leaves (Morus alba L.), which are traditional Chinese herbs, exert several biological functions, such as antioxidant, anti-inflammation, antidiabetic, and antitumor. Alcohol intake increases inflammation and oxidative stress, and this increase causes liver injury and leads to liver steatosis, cirrhosis, and hepatocellular carcinoma, which are major health problems worldwide. Previous report indicated that mulberry leaf extract (MLE) exited hepatoprotection effects against chronic alcohol-induced liver damages. In this present study, we investigated the effects of MLE on acute alcohol and liver injury induced by its metabolized compound called acetaldehyde (ACE) by using in vivo and in vitro models. Administration of MLE reversed acute alcohol-induced liver damages, increased acetaldehyde (ACE) level, and decreased aldehyde dehydrogenase activity in a dose-dependent manner. Acute alcohol exposure-induced leukocyte infiltration and pro-inflammation factors, including cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6), were blocked by MLE in proportion to MLE concentration. MLE prevented alcohol-induced liver apoptosis via enhanced caveolin-1 expression and attenuated EGFR/STAT3/iNOS pathway using immunohistochemical analysis. ACE induced proteins, such as iNOS, COX-2, TNF-α, and IL-6, and inhibited superoxide dismutase expression, whereas co-treated with MLE reversed these proteins expression. MLE also recovered alcohol-induced apoptosis in cultured Hep G2 cells. Overall, our findings indicated that MLE ameliorated acute alcohol-induced liver damages by reducing ACE toxicity and inhibiting apoptosis caused by oxidative stress signals. Our results implied that MLE might be a potential agent for treating alcohol liver disease.
Collapse
Affiliation(s)
- Hsin-Wen Liang
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Tsung-Yuan Yang
- Department of Internal Medicine, Chung-Shan Medical University Hospital, Taichung 402, Taiwan.,School of Medicine, Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chia-Sheng Teng
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Yi-Ju Lee
- Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung City 402, Taiwan.,Department of Pathology, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| | - Meng-Hsun Yu
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Huei-Jane Lee
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, 402, Taiwan.,Department of Biochemistry, School of Medicine, Medical College, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Li-Sung Hsu
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, 402, Taiwan.,School of Medicine, Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Chau-Jong Wang
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung 402, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| |
Collapse
|
29
|
Antioxidant Capacity-Related Preventive Effects of Shoumei (Slightly Fermented Camellia sinensis) Polyphenols against Hepatic Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9329356. [PMID: 32922655 PMCID: PMC7453255 DOI: 10.1155/2020/9329356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/05/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
Shoumei is a kind of white tea (slightly fermented Camellia sinensis) that is rich in polyphenols. In this study, polyphenols were extracted from Shoumei. High-performance liquid chromatography (HPLC) showed that the polyphenols included mainly gallic acid, catechin, hyperoside, and sulfuretin. In an in vitro experiment, H2O2 was used to induce oxidative damage in human normal hepatic L-02 cells. In an animal experiment, CCl4 was used to induce liver injury. The in vitro results showed that Shoumei polyphenols inhibited oxidative damage in normal hepatic L-02 cells, and the in vivo results showed that the polyphenols effectively reduced liver index values in mice with liver injury. The polyphenols also decreased aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), triglyceride (TG), total cholesterol (TC), blood urea nitrogen (BUN), nitric oxide (NO), malondialdehyde (MDA), interleukin 6 (IL-6), interleukin 12 (IL-12), tumour necrosis factor alpha (TNF-α), and interferon gamma (IFN-γ) levels and increased albumin (ALB), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) levels in the serum of mice with liver injury. Furthermore, pathological observation showed that the Shoumei polyphenols reduced CCl4-induced hepatocyte damage. qRT-PCR and Western blotting showed that the polyphenols upregulated the mRNA and protein expression of neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), manganese- (Mn-) SOD, copper/zinc- (Cu/Zn-) SOD, CAT, and inhibitor of nuclear factor kappa B (NF-κB) alpha (IκB-α) and downregulated the expression of inducible nitric oxide synthase (iNOS) and NF-κB p65. The Shoumei polyphenols had a preventive effect against CCl4-induced mouse liver injury equivalent to that of silymarin. The four polyphenols identified as the key substances responsible for this effect mediated the effect through their antioxidant capacity. These results suggest that Shoumei polyphenols are high-quality natural products with liver-protective effects.
Collapse
|
30
|
Yang M, Sun F, Zhou Y, He M, Yao P, Peng Y, Luo F, Liu F. Preventive effect of lemon seed flavonoids on carbon tetrachloride-induced liver injury in mice. RSC Adv 2020; 10:12800-12809. [PMID: 35492116 PMCID: PMC9051252 DOI: 10.1039/d0ra01415j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to determine the preventive effect of lemon seed flavonoids (LSF) on carbon tetrachloride-induced liver injury in mice. Liver injury was induced by injection with 2 mL kg-1 of carbon tetrachloride after administration of LSF by gavage. Liver index, serological parameters, and expression intensities of related mRNA and protein in the liver tissue were observed. The results indicated that LSF reduced liver weight and liver index, downregulated serum levels of AST, ALT, ALP, TG, TC, BUN, NO, and MDA, and upregulated levels of ALB, SOD, CAT, and GSH-Px in the mice with liver injury. It also downregulated serum cytokines, such as IL-6, IL-12, TNF-α, and IFN-γ in these mice. qPCR and western blot confirmed that LSF upregulated mRNA and protein expression of Mn-SOD, Cu/Zn-SOD, CAT, GSH-Px, and IκB-α, and downregulated expression of NF-κB-p65, iNOS, COX-2, TNF-α, IL-1β, and IL-6 in the liver tissue of mice with liver injury. The preventive effect on carbon tetrachloride-induced liver injury was attributed to (-)-epigallocatechin, caffeic acid, (-)-epicatechin, vitexin, quercetin, and hesperidin, which were active substances that were detected in LSF by HPLC. Moreover, the effect of LSF is similar to that of silymarin, but the synergistic effect of the five active substances working in concert acted to produce a more robust liver-protecting effect.
Collapse
Affiliation(s)
- Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Yue Zhou
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Mei He
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Pu Yao
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Yuan Peng
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Fei Luo
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Fu Liu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| |
Collapse
|
31
|
Isolation and Identification of Lactobacillus plantarum HFY05 from Natural Fermented Yak Yogurt and Its Effect on Alcoholic Liver Injury in Mice. Microorganisms 2019; 7:microorganisms7110530. [PMID: 31694208 PMCID: PMC6920879 DOI: 10.3390/microorganisms7110530] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Yak yogurt is a type of naturally fermented dairy product prepared by herdsmen in the Qinghai-Tibet Plateau, which is rich in microorganisms. In this study, a strain of Lactobacillus plantarum was isolated and identified from yak yogurt in Hongyuan, Sichuan Province and named Lactobacillus plantarum HFY05 (LP-HFY05). LP-HFY05 was compared with a common commercial strain of Lactobacillus delbrueckii subsp. bulgaricus (LDSB). LP-HFY05 showed better anti-artificial gastric acid and bile salt effects than LDSB in in vitro experiments, indicating its potential as a probiotic. In animal experiments, long-term alcohol gavage induced alcoholic liver injury. LP-HFY05 effectively reduced the liver index of mice with liver injury, downregulated the levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, triglyceride, total cholesterol, blood urea nitrogen, nitric oxide, and MDA and upregulated the levels of albumin, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase in the serum of liver-injured mice. LP-HFY05 also reduced the levels of interleukin (IL)-6, IL-12, tumor necrosis factor-alpha, and interferon-gamma in the serum of liver-injured mice. The pathological observations showed that LP-HFY05 reduced the damage to liver cells caused by alcohol. Quantitative polymerase chain reaction and Western blot assays further showed that LP-HFY05 upregulated neuronal nitric oxide synthase, endothelial nitric oxide synthase, manganese-SOD, cuprozinc-SOD, CAT, and inhibitor of κB-α mRNA and protein expression and downregulated the expression of nuclear factor-κB-p65 and inducible nitric oxide synthase in the livers of liver-injured mice. A fecal analysis revealed that LP-HFY05 regulated the microbial content in the intestinal tract of mice with liver injury, increased the content of beneficial bacteria, including Bacteroides, Bifidobacterium, and Lactobacillus and reduced the content of harmful bacteria, including Firmicutes, Actinobacteria, Proteobacteria, and Enterobacteriaceae, thus, regulating intestinal microorganisms to protect against liver injury. The effect of LP-HFY05 on liver-injured mice was better than that of LDSB, and the effect was similar to that of silymarin. LP-HFY05 is a high-quality microbial strain with a liver protective effect on experimental mice with alcoholic liver injury.
Collapse
|
32
|
White Peony (Fermented Camellia sinensis) Polyphenols Help Prevent Alcoholic Liver Injury via Antioxidation. Antioxidants (Basel) 2019; 8:antiox8110524. [PMID: 31683564 PMCID: PMC6912415 DOI: 10.3390/antiox8110524] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
White peony is a type of white tea (Camellia sinensis) rich in polyphenols. In this study, polyphenols were extracted from white peony. In vitro experiments showed that white peony polyphenols (WPPs) possess strong free radical scavenging capabilities toward 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Long-term alcohol gavage was used to induce alcoholic liver injury in mice, and relevant indices of liver injury were examined. WPPs effectively reduced the liver indices of mice with liver injury. The serum levels of aspartate aminotransferase (ATS), alanine aminotransferase (ALT), alkaline phosphatase (ALP), triglycerides (TG), total cholesterol (TC), blood urea nitrogen (BUN), nitric oxide (NO), and malondialdehyde (MDA) were downregulated, while those of albumin (ALB), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were upregulated. WPPs also reduced the serum levels of interluekin-6 (IL-6), interluekin-12 (IL-12), tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ) in mice with liver injury. Pathology results showed that WPPs reduced alcohol-induced liver cell damage. Quantitative polymerase chain reaction (qPCR) and western blot results revealed that WPPs upregulated the mRNA and protein expressions of neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), manganese superoxide dismutase (Mn-SOD), cupro–zinc superoxide dismutase (Cu/Zn-SOD), and CAT and downregulated iNOS expression in the liver of mice with liver injury. WPPs protected against alcoholic liver injury, and this effect was equivalent to that of silymarin. High-performance liquid chromatography revealed that WPPs mainly contained the polyphenols gallic acid, catechinic acid, and hyperoside, which are critical for exerting preventive effects against alcoholic liver injury. Thus, WPPs are high-quality natural products with liver protective effects.
Collapse
|