1
|
Benrazzouk K, Ouhaddou S, Nazzaro M, Fratianni F, Bekkouche K, De Tommasi N, Markouk M, Larhsini M, Caputo L, De Feo V, Polito F. Chemical Composition and Phytotoxic and Antibiofilm Activity of the Essential Oils of Two Moroccan Retama Species. Chem Biodivers 2024; 21:e202400756. [PMID: 38847466 DOI: 10.1002/cbdv.202400756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024]
Abstract
This study reports chemical composition, phytotoxic and antibiofilm activities of essential oils (EOs) of R. dasycarpa and R. sphaerocarpa from Morocco. EOs were analyzed by GC/MS and their phytotoxicities were evaluated against germination and seedling growth of Lolium multiflorum, Sinapis alba and Raphanus sativus. The antimicrobial and anti-biofilm activities were studied against Gram-negative (Pseudomonas aeruginosa, Escherichia coli and Acinetobacter baumannii) and Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes). Both EOs were abundant in oxygenated monoterpenes (40.01% and 23.57 %, respectively). Carvacrol is the predominant component in R. dasycarpa EO (17.80 %), and it also represents an appreciable amount in R. sphaerocarpa (8.96 %). R. sphaerocarpa showed total inhibition at high doses against all seeds. S. alba seeds were the most sensitive to all EOs. Minimum inhibitory concentration (MIC) values indicated significant inhibition for R. sphaerocarpa, between 24 and 30 μg/mL, with a remarkable antibacterial potential and biofilm formation inhibition. R. sphaerocarpa EO showed significant biofilm inhibition with variable efficacy depending on the strain and concentration, except for S. aureus. R. dasycarpa exhibited activity against all bacterial strains and effect on metabolism with activity also on mature biofilms. Results suggest that Retama EOs could have potential applications in the fields of food and health.
Collapse
Affiliation(s)
- K Benrazzouk
- Laboratory of Agri-Food, Biotechnology, and Valorization of Plant Resources, Phytochemistry and Pharmacology of Medicinal Plants Unit, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - S Ouhaddou
- Laboratory of Agri-Food, Biotechnology, and Valorization of Plant Resources, Phytochemistry and Pharmacology of Medicinal Plants Unit, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - M Nazzaro
- Institute of Food Science, ISA-CNR, via Roma, 64, 83100, Avellino, Italy
| | - F Fratianni
- Institute of Food Science, ISA-CNR, via Roma, 64, 83100, Avellino, Italy
| | - K Bekkouche
- Laboratory of Agri-Food, Biotechnology, and Valorization of Plant Resources, Phytochemistry and Pharmacology of Medicinal Plants Unit, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - N De Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - M Markouk
- Laboratory of Agri-Food, Biotechnology, and Valorization of Plant Resources, Phytochemistry and Pharmacology of Medicinal Plants Unit, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - M Larhsini
- Laboratory of Agri-Food, Biotechnology, and Valorization of Plant Resources, Phytochemistry and Pharmacology of Medicinal Plants Unit, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - L Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - V De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - F Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| |
Collapse
|
2
|
Rivera-Pérez A, Garrido Frenich A. Comparison of data processing strategies using commercial vs. open-source software in GC-Orbitrap-HRMS untargeted metabolomics analysis for food authentication: thyme geographical differentiation and marker identification as a case study. Anal Bioanal Chem 2024; 416:4039-4055. [PMID: 38805060 PMCID: PMC11249438 DOI: 10.1007/s00216-024-05347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Untargeted analysis of gas chromatography-high-resolution mass spectrometry (GC-HRMS) data is a key and time-consuming challenge for identifying metabolite markers in food authentication applications. Few studies have been performed to evaluate the capability of untargeted data processing tools for feature extraction, metabolite annotation, and marker selection from untargeted GC-HRMS data since most of them are focused on liquid chromatography (LC) analysis. In this framework, this study provides a comprehensive evaluation of data analysis tools for GC-Orbitrap-HRMS plant metabolomics data, including the open-source MS-DIAL software and commercial Compound Discoverer™ software (designed for Orbitrap data processing), applied for the geographical discrimination and search for thyme markers (Spanish vs. Polish differentiation) as the case study. Both approaches showed that the feature detection process is highly affected by unknown metabolites (Levels 4-5 of identification confidence), background signals, and duplicate features that must be carefully assessed before further multivariate data analysis for reliable putative identification of markers. As a result, Compound Discoverer™ and MS-DIAL putatively annotated 52 and 115 compounds at Level 2, respectively. Further multivariate data analysis allowed the identification of differential compounds, showing that the putative identification of markers, especially in challenging untargeted analysis, heavily depends on the data processing parameters, including available databases used during compound annotation. Overall, this method comparison pointed out both approaches as good options for untargeted analysis of GC-Orbitrap-HRMS data, and it is presented as a useful guide for users to implement these data processing approaches in food authenticity applications depending on their availability.
Collapse
Affiliation(s)
- Araceli Rivera-Pérez
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (ceiA3), University of Almeria, 04120, Almeria, Spain.
| | - Antonia Garrido Frenich
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (ceiA3), University of Almeria, 04120, Almeria, Spain
| |
Collapse
|
3
|
Lou S, Ni X, Xiao W, Li Y, Gao Z. Physical stability, microstructure and antimicrobial properties of konjac glucomannan coatings enriched with Litsea cubeba essential oil nanoemulsion and its effect on citruses preservation. Int J Biol Macromol 2024; 256:128306. [PMID: 37995787 DOI: 10.1016/j.ijbiomac.2023.128306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
This study purposed to develop konjac glucomannan (KGM) based antimicrobial coatings containing Litsea cubeba essential oil nanoemulsion (LNE) for citruses preservation. Physical stability, rheological, structural and antimicrobial properties of the coating solutions were investigated, along with the release characteristics of Litsea cubeba essential oil (LCO). Results showed that the coating solutions displayed shear thinning behavior. The oil droplets were distributed homogeneously in KGM phase with good stability. The coating structure became loose with increasing LNE content due to LNE interfering with molecular interactions and entanglement of KGM. The coating solutions showed stronger antibacterial activity against Escherichia coli than against Staphylococcus aureus and were effective in inhibiting the growth of Penicillium italicum on citrus surfaces. KGM-LNE 10 negatively affected citruses due to phytotoxicity caused by high levels of LCO. LCO was released slowly and continuously from the coatings, and its release was faster in deionized water than in an ethanol-water solution. KGM-LNE 2.5 coated citruses had the least weight loss, the greatest hardness, and kept the minimum changes in total soluble solids, total acid and vitamin C content, implying that KGM-LNE 2.5 best maintained the quality of citruses. The findings suggest that KGM-based coatings containing LNE have high potential for citruses preservation.
Collapse
Affiliation(s)
- Shangrong Lou
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Xuewen Ni
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China.
| | - Weilu Xiao
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Yanlei Li
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Zhiming Gao
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| |
Collapse
|
4
|
Polito F, Kouki H, Khedhri S, Hamrouni L, Mabrouk Y, Amri I, Nazzaro F, Fratianni F, De Feo V. Chemical Composition and Phytotoxic and Antibiofilm Activity of the Essential Oils of Eucalyptus bicostata, E. gigantea, E. intertexta, E. obliqua, E. pauciflora and E. tereticornis. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223017. [PMID: 36432746 PMCID: PMC9699501 DOI: 10.3390/plants11223017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 05/27/2023]
Abstract
Eucalyptus species are characterized by their richness in essential oils (EOs) with a great diversity of biological activities. This study reports the chemical composition and the phytotoxic and antibiofilm activities of the EOs of six Eucalyptus species growing in Tunisia: E. bicostata, E. gigantea, E. intertexta, E. obliqua, E. pauciflora and E. tereticornis. Four EOs were rich above all in oxygenated monoterpenes (25.3-91.4%), with eucalyptol as the main constituent. However, in the EOs of E. pauciflora and E. tereticornis, sesquiterpene hydrocarbons (28.8-54.0%) were the main class of constituents; piperitone was the main constituent of both EOs. The phytotoxicity of the EOs was tested against germination and radicle elongation of the weeds Sinapis arvensis and Lolium multiflorum and the crop Raphanus sativus, resulting in the different inhibition of seed germination and radicle elongation depending on both chemical composition and the seed tested, with remarkable phytotoxicity towards S. arvensis and R. sativus. Furthermore, almost all EOs showed antibacterial potential, resulting in significant inhibition of bacterial biofilm formation and the metabolism of Gram-positive (Staphylococcus aureus subsp. aureus and Listeria monocytogenes) and Gram-negative (Acinetobacter baumannii, Pseudomonas aeruginosa and Escherichia coli) bacterial strains, in addition to acting on mature biofilms. The EOs were inhibitory against all bacterial strains tested and usually reluctant to undergo the action of conventional antibiotics. Therefore, these EOs may be considered for applications both as herbicides and in food and health fields.
Collapse
Affiliation(s)
- Flavio Polito
- Department of Pharmacy, University of Salerno, Via San Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Habiba Kouki
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| | - Sana Khedhri
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Lamia Hamrouni
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Yassine Mabrouk
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| | - Ismail Amri
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Filomena Nazzaro
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy
| | | | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via San Giovanni Paolo II 132, 84084 Fisciano, Italy
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy
| |
Collapse
|
5
|
Phytochemical Profile and Herbicidal (Phytotoxic), Antioxidants Potential of Essential Oils from Calycolpus goetheanus (Myrtaceae) Specimens, and in Silico Study. Molecules 2022; 27:molecules27154678. [PMID: 35897853 PMCID: PMC9331371 DOI: 10.3390/molecules27154678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
The essential oil (EO) of Calycolpus goetheanus (Myrtaceae) specimens (A, B, and C) were obtained through hydrodistillation. The analysis of the chemical composition of the EOs was by gas chromatography coupled with mass spectrometry CG-MS, and gas chromatography coupled with a flame ionization detector CG-FID. The phytotoxic activity of those EOs was evaluated against two weed species from common pasture areas in the Amazon region: Mimosa pudica L. and Senna obtusifolia (L.) The antioxidant capacity of the EOs was determined by (DPPH•) and (ABTS•+). Using molecular docking, we evaluated the interaction mode of the major EO compounds with the molecular binding protein 4-hydroxyphenylpyruvate dioxygenase (HPPD). The EO of specimen A was characterized by β-eudesmol (22.83%), (E)-caryophyllene (14.61%), and γ-eudesmol (13.87%), while compounds 1,8-cineole (8.64%), (E)-caryophyllene (5.86%), δ-cadinene (5.78%), and palustrol (4.97%) characterize the chemical profile of specimen B’s EOs, and specimen C had α-cadinol (9.03%), δ-cadinene (8.01%), and (E)-caryophyllene (6.74%) as the majority. The phytotoxic potential of the EOs was observed in the receptor species M. pudica with percentages of inhibition of 30%, and 33.33% for specimens B and C, respectively. The EOs’ antioxidant in DPPH• was 0.79 ± 0.08 and 0.83 ± 0.02 mM for specimens A and B, respectively. In the TEAC, was 0.07 ± 0.02 mM for specimen A and 0.12 ± 0.06 mM for specimen B. In the results of the in silico study, we observed that the van der Waals and hydrophobic interactions of the alkyl and pi-alkyl types were the main interactions responsible for the formation of the receptor–ligand complex.
Collapse
|
6
|
De Vita S, Finamore C, Chini MG, Saviano G, De Felice V, De Marino S, Lauro G, Casapullo A, Fantasma F, Trombetta F, Bifulco G, Iorizzi M. Phytochemical Analysis of the Methanolic Extract and Essential Oil from Leaves of Industrial Hemp Futura 75 Cultivar: Isolation of a New Cannabinoid Derivative and Biological Profile Using Computational Approaches. PLANTS 2022; 11:plants11131671. [PMID: 35807623 PMCID: PMC9269227 DOI: 10.3390/plants11131671] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022]
Abstract
Cannabis sativa L. is a plant belonging to the Cannabaceae family, cultivated for its psychoactive cannabinoid (Δ9-THC) concentration or for its fiber and nutrient content in industrial use. Industrial hemp shows a low Δ9-THC level and is a valuable source of phytochemicals, mainly represented by cannabinoids, flavones, terpenes, and alkaloids, with health-promoting effects. In the present study, we investigated the phytochemical composition of leaves of the industrial hemp cultivar Futura 75, a monoecious cultivar commercially used for food preparations or cosmetic purposes. Leaves are generally discarded, and represent waste products. We analyzed the methanol extract of Futura 75 leaves by HPLC and NMR spectroscopy and the essential oil by GC-MS. In addition, in order to compare the chemical constituents, we prepared the water infusion. One new cannabinoid derivative (1) and seven known components, namely, cannabidiol (2), cannabidiolic acid (3), β-cannabispirol (4), β-cannabispirol (5), canniprene (6), cannabiripsol (7), and cannflavin B (8) were identified. The content of CBD was highest in all preparations. In addition, we present the outcomes of a computational study focused on elucidating the role of 2α-hydroxy-Δ3,7-cannabitriol (1), CBD (2), and CBDA (3) in inflammation and thrombogenesis.
Collapse
Affiliation(s)
- Simona De Vita
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (S.D.V.); (G.L.); (A.C.)
| | - Claudia Finamore
- Department of Pharmacy, University of Naples, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.F.); (S.D.M.)
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
| | - Gabriella Saviano
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
| | - Vincenzo De Felice
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
| | - Simona De Marino
- Department of Pharmacy, University of Naples, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.F.); (S.D.M.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (S.D.V.); (G.L.); (A.C.)
| | - Agostino Casapullo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (S.D.V.); (G.L.); (A.C.)
| | - Francesca Fantasma
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
| | - Federico Trombetta
- Societa Cooperativa Agricola MarcheSana, Localita San Biagio 40, 61032 Fano, Italy;
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (S.D.V.); (G.L.); (A.C.)
- Correspondence: (G.B.); (M.I.); Tel.: +39-089969741 (G.B.); +39-087-4404100 (M.I.)
| | - Maria Iorizzi
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
- Correspondence: (G.B.); (M.I.); Tel.: +39-089969741 (G.B.); +39-087-4404100 (M.I.)
| |
Collapse
|
7
|
Eucalyptus gunnii and Eucalyptus pulverulenta 'Baby Blue' Essential Oils as Potential Natural Herbicides. Molecules 2021; 26:molecules26216749. [PMID: 34771155 PMCID: PMC8587786 DOI: 10.3390/molecules26216749] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/02/2022] Open
Abstract
The phytotoxicity and eco-compatibility of essential oils (EOs) from Eucalyptus gunnii (EG) and E. pulverulenta ‘Baby Blue’ (EP), cultivated in Italy for their cut foliage, were investigated. Leaf micromorphology, EOs phytochemical characterization, and phytotoxicity were analysed. EP revealed a significantly higher oil gland density and a higher EO yield with respect to EG. In both EOs, 1,8-cineole was the major compound (~75%), followed by α-pinene in EG (13.1%) and eugenol in EP (7.5%). EO phytotoxicity was tested on both weeds (Lolium multiflorum, Portulaca oleracea) and crops (Raphanus sativus, Lactuca sativa, Lepidium sativum, Solanum lycopersicum, Pisum sativum, Cucumis sativus). EG EO inhibited germination of P. oleracea, R. sativus, and S. lycopersicum seeds (ranging from 61.5 to 94.6% for the higher dose used), while affecting only radical elongation in S. lycopersicum (ranging from 66.7 to 82.6%). EP EO inhibited germination of P. oleracea and R. sativus (ranging from 41.3 to 74.7%) and affected radical elongation of L. sativum and L. multiflorum (ranging from 57.4 to 76.0%). None of the EOs affected the germination and radical growing of L. sativa, P. sativum, and C. sativus. Moreover, EP EO was more active than EG EO in inhibiting α-amylase, a key enzyme for seed growth regulation. Brine shrimp lethality assay showed that both EOs are safe for aquatic organisms, suggesting their high eco-compatibility. The data collected provide useful information for future applications of these EOs in agriculture as safe and selective bioherbicides.
Collapse
|
8
|
Chemical Profile, In Vitro Biological Activity and Comparison of Essential Oils from Fresh and Dried Flowers of Lavandula angustifolia L. Molecules 2021; 26:molecules26175317. [PMID: 34500747 PMCID: PMC8434377 DOI: 10.3390/molecules26175317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
The chemical composition of essential oils (EOs) from dried and fresh flowers of Lavandula angustifolia L. (lavender), named LA 2019 and LA 2020, respectively, grown in central Italy was analyzed and compared by GC and GC-MS. For both samples, 61 compounds were identified, corresponding to 97.9% and 98.1% of the total essential oils. Explorative data analysis, performed to compare the statistical composition of the samples, resulted in a high level of global similarity (around 93%). The compositions of both samples were characterized by 10 major compounds, with a predominance of Linalool (35.3-36.0%), Borneol (15.6-19.4%) and 1,8-Cineole (11.0-9.0%). The in vitro antibacterial activity assay by disk diffusion tests against Bacillus subtilis PY79 and Escherichia coli DH5α showed inhibition of growth in both indicator strains. In addition, plate counts revealed a bactericidal effect on E. coli, which was particularly noticeable when using oil from the fresh lavender flowers at the highest concentrations. An in vitro antifungal assay showed that the EOs inhibited the growth of Sclerotium rolfsii, a phytopathogenic fungus that causes post-harvest diseases in many fruits and vegetables. The antioxidant activity was also assessed using the ABTS free radical scavenging assay, which showed a different antioxidant activity in both EOs. In addition, the potential application of EOs as a green method to control biodeterioration phenomena on an artistic wood painting (XIX century) was evaluated.
Collapse
|
9
|
Microencapsulated Caraway Essential Oil Affects Initial Growth of Maize Cultivars. Molecules 2021; 26:molecules26165059. [PMID: 34443651 PMCID: PMC8402095 DOI: 10.3390/molecules26165059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/31/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
Caraway (Carum carvi L.) essential oil is a candidate for botanical herbicides. A hypothesis was formulated that the sand-applied maltodextrin-coated caraway oil (MCEO) does not affect the growth of maize (Zea mays L.). In the pot experiment, pre-emergence application of five doses of MCEO was tested on four maize cultivars up to the three-leaf growth stage. The morphological analyses were supported by the measurements of relative chlorophyll content (SPAD), two parameters of chlorophyll a fluorescence, e.g., Fv/Fm and Fv/F0, and fluorescence emission spectra. The analyzed MCEO contained 6.5% caraway EO with carvone and limonene as the main compounds, constituting 95% of the oil. The MCEO caused 7-day delays in maize emergence from the dose of 0.9 g per pot (equal to 96 g m-2). Maize development at the three-leaf growth stage, i.e., length of roots, length of leaves, and biomass of shoots and leaves, was significantly impaired already at the lowest dose of MCEO: 0.4 g per pot, equal to 44 g m-2. A significant drop of both chlorophyll a fluorescence parameters was noted, on average, from the dose of 0.7 g per pot, equal to 69 g m-2. Among the tested cultivars, cv. Rywal and Pomerania were less susceptible to the MCEO compared to the cv. Kurant and Podole. In summary, maize is susceptible to the pre-emergence, sand-applied MCEO from the dose of 44 g m-2.
Collapse
|
10
|
Parikh L, Agindotan BO, Burrows ME. Antifungal Activity of Plant-Derived Essential Oils on Pathogens of Pulse Crops. PLANT DISEASE 2021; 105:1692-1701. [PMID: 32940579 DOI: 10.1094/pdis-06-20-1401-re] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Pulse crops such as chickpeas, lentils, and dry peas are grown widely for human and animal consumption. Major yield- and quality-limiting constraints include diseases caused by fungi and oomycetes. The environmental and health concerns of synthetic fungicides used for disease management, emergence of fungicide-resistant pathogens, and demand for organic pulse crop products necessitate the search for effective alternatives. Safe and environmentally friendly plant-derived essential oils (EOs) have been reported effective against some pathogenic fungi. Growth on EO-amended growth medium and an inverted Petri plate assay were used to determine the effects of 38 oils and their volatiles on mycelial growth and spore germination of important pathogenic fungi and oomycetes: Aphanomyces euteiches, Botrytis cinerea, Colletotrichum lentis, Didymella pisi, D. rabiei, D. lentis, Fusarium avenaceum, Stemphylium beticola, Sclerotinia sclerotiorum, and Pythium sylvaticum. Palmarosa, oregano, clove, cinnamon, lemongrass, citronella, and thyme oils incorporated in media inhibited mycelial growth of all the pathogens by 100% at 1:1,000 to 1:4,000 dilution. In addition, thyme oil (1:500 dilution) showed complete inhibition of conidial germination (0% germination) of F. avenaceum and D. pisi. All seven EO volatiles inhibited mycelial growth of all pathogens by 50 to 100% except for B. cinerea and S. sclerotiorum. EO effects on mycelial growth were fungistatic, fungicidal, or both and varied by EO. EOs show potential for management of major crop diseases in organic and conventional production systems.
Collapse
Affiliation(s)
- Lipi Parikh
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT 59717
| | - Bright O Agindotan
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Center for Plant Health Science and Technology, Beltsville, MD 21043
| | - Mary E Burrows
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT 59717
| |
Collapse
|
11
|
Caputo L, Cornara L, Raimondo FM, De Feo V, Vanin S, Denaro M, Trombetta D, Smeriglio A. Mentha pulegium L.: A Plant Underestimated for Its Toxicity to Be Recovered from the Perspective of the Circular Economy. Molecules 2021; 26:molecules26082154. [PMID: 33918091 PMCID: PMC8069592 DOI: 10.3390/molecules26082154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to investigate the micromorphology of Mentha pulegium leaves and flowers harvested in three different Sicilian (Italy) areas with peculiar pedo-climatic conditions, and to characterize the phytochemical profile, the phytotoxic activity, and the eco-compatibility of their essential oils (EOs) for potential use as safe bioherbicides. Light microscopy (LM) and scanning electron microscopy (SEM) highlighted that M. pulegium indumentum consists of non-glandular and glandular trichomes of different types. Peltate trichomes of plants from the different sites showed few significant differences in dimension and abundance, but they were characterized by a surprisingly high number of secretory cells both in leaves and flowers. Phytochemical analyses showed that oxygenated monoterpenes were the most abundant class in all the EOs investigated (92.2-97.7%), but two different chemotypes, pulegone/isomenthone and piperitone/isomenthone, were found. The complex of morphological and phytochemical data indicates that soil salinity strongly affects the expression of the toxic metabolite pulegone, rather than the EO yield. Phytotoxicity tests showed a moderate activity of EOs against the selected species as confirmed by α-amylase assay. Moreover, the low toxicity on brine shrimp provided a rationale for the possible use of investigated EOs as eco-friendly herbicides.
Collapse
Affiliation(s)
- Lucia Caputo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy; (L.C.); (V.D.F.)
| | - Laura Cornara
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa, 26, 16132 Genova, Italy; (L.C.); (S.V.)
| | - Francesco Maria Raimondo
- PLANTA/Autonomous Center for Research, Documentation and Training, Via Serraglio Vecchio, 28, 90123 Palermo, Italy;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy; (L.C.); (V.D.F.)
| | - Stefano Vanin
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa, 26, 16132 Genova, Italy; (L.C.); (S.V.)
| | - Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (M.D.); (A.S.)
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (M.D.); (A.S.)
- Correspondence: ; Tel.: +39-090-676-6458
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (M.D.); (A.S.)
| |
Collapse
|
12
|
Zheljazkov VD, Sikora V, Semerdjieva IB, Kačániová M, Astatkie T, Dincheva I. Grinding and Fractionation during Distillation Alter Hemp Essential Oil Profile and Its Antimicrobial Activity. Molecules 2020; 25:E3943. [PMID: 32872359 PMCID: PMC7504750 DOI: 10.3390/molecules25173943] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/05/2022] Open
Abstract
The hypothesis of this study was that we can modify the essential oil (EO) profile of hemp (Cannabis sativa L.) and obtain fractions with differential composition and antimicrobial activity. Therefore, the objective was to evaluate the effects of grinding of hemp biomass before EO extraction and fractionation during distillation on EO profile and antimicrobial activity. The study generated a several EO fractions with a diversity of chemical profile and antimicrobial activity. The highest concentrations of β-pinene and myrcene in the EO can be obtained in the 5-10 min distillation time (DT) of ground material or in the 80-120 min DT of nonground material. High δ-3-carene and limonene EO can be obtained from 0-5 min DT fraction of nonground material. High eucalyptol EO can be sampled either in the 0-5 min DT of the ground material or in the 80-120 min of nonground material. Overall, the highest concentrations of β-caryophyllene, α-(E)-bergamotene, (Z)-β-farnesene, α-humulene, caryophyllenyl alcohol, germacrene D-4-ol, spathulenol, caryophyllene oxide, humulene epoxide 2, β-bisabolol, α-bisabolol, sesquiterpenes, and cannabidiol (CBD) can be obtained when EO is sampled in the 80-120 min DT and the material is nonground. Monoterpenes in the hemp EO can be increased twofold to 85% by grinding the material prior to distillation and collecting the EO in the first 10 min. However, grinding resulted in a slight but significant decrease in the CBD concentration of the EO. CBD-rich oil can be produced by collecting at 120-180 min DT. Different EO fractions had differential antimicrobial activity. The highest antimicrobial activity of EO fraction was found against Staphylococcus aureus subsp. aureus. THC-free EO can be obtained if the EO distillation is limited to 120 min. The results can be utilized by the hemp processing industry and by companies developing new hemp EO-infused products, including perfumery, cosmetics, dietary supplements, food, and pharmaceutical industries.
Collapse
Affiliation(s)
- Valtcho D. Zheljazkov
- Crop and Soil Science Department, 3050 SW Campus Way, Oregon State University, Corvallis, OR 97331, USA
| | - Vladimir Sikora
- Institute for Field and Vegetable Crops, Alternative Crops and Organic Production Department, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| | - Ivanka B. Semerdjieva
- Department of Botany and Agrometeorology, Faculty of Agronomy, Agricultural University, 4000 Plovdiv, Bulgaria;
| | - Miroslava Kačániová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Tr. A. Hlinku 2, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovak Republic;
- Department of Bioenergetics and Food Analysis, Institution of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1, 35-601 Rzeszow, Poland
| | - Tess Astatkie
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - Ivayla Dincheva
- Plant Genetic Research Group, Agrobioinstitute, Agricultural Academy, 8 “Dragan Tsankov” Blvd, 1164 Sofia, Bulgaria;
| |
Collapse
|
13
|
Water Extract from Inflorescences of Industrial Hemp Futura 75 Variety as a Source of Anti-Inflammatory, Anti-Proliferative and Antimycotic Agents: Results from In Silico, In Vitro and Ex Vivo Studies. Antioxidants (Basel) 2020; 9:antiox9050437. [PMID: 32429587 PMCID: PMC7278775 DOI: 10.3390/antiox9050437] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
Industrial hemp (Cannabis sativa) is traditionally cultivated as a valuable source of fibers and nutrients. Multiple studies also demonstrated antimicrobial, anti-proliferative, phytotoxic and insecticide effects of the essential oil from hemp female inflorescences. On the other side, only a few studies explored the potential pharmacological application of polar extracts from inflorescences. In the present study, we investigated the water extract from inflorescences of industrial hemp Futura 75 variety, from phytochemical and pharmacological point of view. The water extract was assayed for phenolic compound content, radical scavenger/reducing, chelating and anti-tyrosinase effects. Through an ex vivo model of toxicity induced by lipopolysaccharide (LPS) on isolated rat colon and liver, we explored the extract effects on serotonin, dopamine and kynurenine pathways and the production of prostaglandin (PG)E2. Anti-proliferative effects were also evaluated against human colon cancer HCT116 cell line. Additionally, antimycotic effects were investigated against Trichophyton rubrum, Trichophyton interdigitale, Microsporum gypseum. Finally, in silico studies, including bioinformatics, network pharmacology and docking approaches were conducted in order to predict the putative targets underlying the observed pharmacological and microbiological effects. Futura 75 water extract was able to blunt LPS-induced reduction of serotonin and increase of dopamine and kynurenine turnover, in rat colon. Additionally, the reduction of PGE2 levels was observed in both colon and liver specimens, as well. The extract inhibited the HCT116 cell viability, the growth of T. rubrum and T. interdigitale and the activity of tyrosinase, in vitro, whereas in silico studies highlighting the inhibitions of cyclooxygenase-1 (induced by carvacrol), carbonic anhydrase IX (induced by chlorogenic acid and gallic acid) and lanosterol 14-α-demethylase (induced by rutin) further support the observed pharmacological and antimycotic effects. The present findings suggest female inflorescences from industrial hemp as high quality by-products, thus representing promising sources of nutraceuticals and cosmeceuticals against inflammatory and infectious diseases.
Collapse
|
14
|
Caputo L, Cornara L, Bazzicalupo M, De Francesco C, De Feo V, Trombetta D, Smeriglio A. Chemical Composition and Biological Activities of Essential Oils from Peels of Three Citrus Species. Molecules 2020; 25:E1890. [PMID: 32325864 PMCID: PMC7221518 DOI: 10.3390/molecules25081890] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/10/2020] [Accepted: 04/16/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Fruit peels are generally underutilized byproducts of the food industry, although they are valuable sources of bioactive compounds. The aim of this study is to evaluate a new application for three Citrus peel EOs as bio-herbicides. METHODS After a micro-morphological evaluation of Citrus peels by SEM analysis, the phytochemical composition of the EOs of Citrus × bergamia Risso & Poit., Citrus × myrtifolia Raf., and Citrus limon (L.) Osbeck was characterized by GC/FID and GC/MS analyses. The in vitro phytotoxicity against germination and initial radical elongation of several crop and weed species was evaluated. Furthermore, the eco-compatibility of these EOs has been assessed by the brine shrimp (Artemia salina) lethality assay. RESULTS SEM analysis highlighted the morphometric differences of the schizolysigenous pockets among the peels of the three Citrus species. Oxygenated monoterpenes are the main constituents in C. × bergamia (51.09%), whereas monoterpene hydrocarbons represent the most abundant compounds in C. × myrtifolia (82.15%) and C. limon (80.33%) EOs. They showed marked and selective phytotoxic activity in vitro, often at very low concentration (0.1 μg/mL) against all plant species investigated, without showing any toxicity on Artemia salina, opening the perspective of their use as safe bio-herbicides.
Collapse
Affiliation(s)
- Lucia Caputo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy;
| | - Laura Cornara
- Department for the Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy; (L.C.); (M.B.)
| | - Miriam Bazzicalupo
- Department for the Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy; (L.C.); (M.B.)
| | - Clara De Francesco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (C.D.F.); (D.T.); (A.S.)
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy;
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (C.D.F.); (D.T.); (A.S.)
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (C.D.F.); (D.T.); (A.S.)
| |
Collapse
|
15
|
Chemical Composition of Essential Oil from Flower Heads of Arnica Chamissonis Less. under a Nitrogen Impact. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24244454. [PMID: 31817349 PMCID: PMC6943594 DOI: 10.3390/molecules24244454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 11/16/2022]
Abstract
Chamisso arnica (Arnica chamissonis Less.) is a valuable plant species used in the pharmaceutical industry due to the content of many pharmacologically active substances and the similarity of its chemical composition to that of Arnica montana—a medicinal plant commonly used in pharmacy and cosmetics. The similarity of the two plant species implies that chamisso arnica can be a pharmaceutical substitute for the mountain arnica, i.e., an endangered and endemic plant species in Europe. Chamisso arnica extracts exhibit anti-inflammatory and antiradical activity and possesses high antioxidant properties that might be helpful in preventing or delaying the progress of free radical dependent diseases. The attributes of A. chamissonis are mainly related to the content and chemical composition of essential oil. Therefore, the objective of this study was to characterize the chemical composition of essential oil derived from A. chamissonis flower heads under a nitrogen impact. The experiment was performed on experimental fields in mid-eastern Poland on two soil types (sandy and loamy soils). The nitrogen fertilizer was applied as ammonium sulfate (control, 30, 60, 90, and 120 kg N ha−1). Collection of flower heads was carried out in the full flowering phase, which was characterized by the highest content of essential oil. The chemical composition of essential oil was examined using GC-MS. Among the 75 ingredients of the volatile oil of chamisso arnica flower heads, alpha-pinene, cumene, p-cymene, germacrene D, spathulenol, decanal, caryophyllene oxide, beta-pinene, and benzene acetaldehyde were present at relatively high levels. Both the nitrogen application and the soil type had an effect on the oil concentration and the yield of the main constituents (alpha-pinene and germacrene D) with pharmacological value. Different levels of nitrogen application could be considered as a relevant way to modify the chemical composition and to increase the essential oil production.
Collapse
|