1
|
Al-Ansari M, Al-Dahmash ND, Angulo-Bejarano PI, Ha HA, Nguyen-Thi TH. Phytochemical, bactericidal, antioxidant and anti-inflammatory properties of various extracts from Pongamia pinnata and functional groups characterization by FTIR and HPLC analyses. ENVIRONMENTAL RESEARCH 2024; 245:118044. [PMID: 38157963 DOI: 10.1016/j.envres.2023.118044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The present research looked into possible biomedical applications of Pongamia pinnata leaf extract. The first screening of the phytochemical profile showed that the acetone extract had more phytochemicals than the other solvent extracts. These included more saponins, proteins, phenolic compounds, tannins, glycosides, flavonoids, steroids, and sugar. The P. pinnata acetone extract exhibited highest antibacterial activity against C. diphtheriae. The bactericidal activity was found in the following order: C. diphtheria (14 mm) > P. aeruginosa (10 mm) > S. flexneri (9 mm) > S. marcescens (7 mm) > S. typhi (7 mm) > S. epidermidis (7 mm) > S. boydii (6 mm) > S. aureus (3 mm) at 10 mg mL-1 concentration. MIC value of 240 mg mL-1 and MBC is 300 mg mL-1 of concentration with 7 colonies against C. diphtheriae was noticed in acetone extract. Acetone extract of P. pinnata was showed highest percentage of inhibition (87.5 %) at 625 mg mL-1 concentrations by DPPH method. Furthermore, the anti-inflammatory activity showed the fine albumin denaturation as 76% as well as anti-lipoxygenase was found as 61% at 900 mg mL-1 concentrations correspondingly. FT-IR analysis was used to determine the functional groups of compounds with bioactive properties. The qualitative examination of selected plants through HPLC yielded significant peak values determined by intervals through the peak value. In an acetone extract of P. pinnata, 9 functional groups were identified. These findings concluded that the acetone extract has high pharmaceutical value, but more in-vivo research is needed to assess its potential.
Collapse
Affiliation(s)
- Mysoon Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nora Dahmash Al-Dahmash
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Paola Isabel Angulo-Bejarano
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro, 76130, Mexico
| | - Hai-Anh Ha
- Faculty of Pharmacy, Duy Tan University, Da Nang, 550000, Vietnam
| | | |
Collapse
|
2
|
Aurori M, Niculae M, Hanganu D, Pall E, Cenariu M, Vodnar DC, Fiţ N, Andrei S. The Antioxidant, Antibacterial and Cell-Protective Properties of Bioactive Compounds Extracted from Rowanberry ( Sorbus aucuparia L.) Fruits In Vitro. PLANTS (BASEL, SWITZERLAND) 2024; 13:538. [PMID: 38498559 PMCID: PMC10892614 DOI: 10.3390/plants13040538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Considering that Sorbus aucuparia fruits have been underutilized despite their tremendous potential, this study aimed to correlate the in vitro antioxidant, antibacterial and cell-protective abilities of fruit extracts derived from Sorbus aucuparia Romanian cultivars with their phytochemical composition. Therefore, following the preparation of ethanolic and carotenoid extracts, phytochemical screening was performed using UV-Vis and HPLC-DAD-ESI-MS methods. The antioxidant activity was analyzed using DPPH and FRAP tests. As the results revealed high contents of bioactive compounds (polyphenols 1.11 mg GAE/g DM, flavonoids 430.06 µg QE/g DM and carotenoids 95.68 µg/g DM) and an important antiradical action (DPPH 24.51 mg/mL and FRAP 0.016 µM TE/mL), we chose to further examine the fruits' biological properties. The antibacterial capacity was assessed employing agar well diffusion and broth microdilution techniques, with fruits displaying an intense activity against MSSA, MRSA and Enterococcus faecalis, but also E. coli and Pseudomonas aeruginosa. The cell-protective activity was analyzed on gentamicin-stressed renal cells, through MTT and Annexin V-FITC assays. Importantly, a significant increase in viability was registered on stressed cells following extract administration in low doses; nevertheless, viability was noticed to decline when exposed to elevated concentrations, potentially due to the cumulative actions of the extract and gentamicin. These findings offer novel light on the antibacterial activity of Sorbus aucuparia Romanian cultivars, as well as their cell-protective ability in renal cell injury.
Collapse
Affiliation(s)
- Mara Aurori
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Mihaela Niculae
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.N.); (E.P.); (M.C.)
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Haţieganu”, 400372 Cluj-Napoca, Romania;
| | - Emoke Pall
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.N.); (E.P.); (M.C.)
| | - Mihai Cenariu
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.N.); (E.P.); (M.C.)
| | - Dan Cristian Vodnar
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Nicodim Fiţ
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Sanda Andrei
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
3
|
Benedec D, Oniga I, Hanganu D, Tiperciuc B, Nistor A, Vlase AM, Vlase L, Pușcaș C, Duma M, Login CC, Niculae M, Silaghi-Dumitrescu R. Stachys Species: Comparative Evaluation of Phenolic Profile and Antimicrobial and Antioxidant Potential. Antibiotics (Basel) 2023; 12:1644. [PMID: 37998846 PMCID: PMC10669438 DOI: 10.3390/antibiotics12111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
This study aimed to investigate the polyphenolic composition and antioxidant and antimicrobial potential of six Romanian Stachys species: S. officinalis, S. germanica, S. byzantina, S. sylvatica, S. palustris, and S. recta. The LC-MS/MS method was used to analyze the polyphenolic profile, while the phenolic contents were spectrophotometrically determined. The antioxidant activity was evaluated using the following methods: DPPH, FRAP, nitrite-induced autooxidation of hemoglobin, inhibition of cytochrome c-catalyzed lipid peroxidation, and electron paramagnetic resonance spectroscopy. The in vitro antimicrobial properties were assessed using agar-well diffusion, broth microdilution, and antibiofilm assays. Fifteen polyphenols were identified using LC-MS and chlorogenic acid was the major component in all the samples (1131.8-6761.4 μg/g). S. germanica, S. palustris, and S. byzantina extracts each displayed an intense antiradical action in relation to high contents of TPC (6.40 mg GAE/mL), flavonoids (3.90 mg RE/mL), and caffeic acid derivatives (0.89 mg CAE/mL). In vitro antimicrobial and antibiofilm properties were exhibited towards Candida albicans, Gram-positive and Gram-negative strains, with the most intense efficacy recorded for S. germanica and S. byzantina when tested against S. aureus. These results highlighted Stachys extracts as rich sources of bioactive compounds with promising antioxidant and antimicrobial efficacies and important perspectives for developing phytopharmaceuticals.
Collapse
Affiliation(s)
- Daniela Benedec
- Department of Pharmacognosy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 I. Creanga Street, 400010 Cluj-Napoca, Romania; (D.B.); (I.O.); (A.N.)
| | - Ilioara Oniga
- Department of Pharmacognosy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 I. Creanga Street, 400010 Cluj-Napoca, Romania; (D.B.); (I.O.); (A.N.)
| | - Daniela Hanganu
- Department of Pharmacognosy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 I. Creanga Street, 400010 Cluj-Napoca, Romania; (D.B.); (I.O.); (A.N.)
| | - Brîndușa Tiperciuc
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 V. Babeş Street, 400012 Cluj-Napoca, Romania;
| | - Adriana Nistor
- Department of Pharmacognosy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 I. Creanga Street, 400010 Cluj-Napoca, Romania; (D.B.); (I.O.); (A.N.)
| | - Ana-Maria Vlase
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 I. Creanga Street, 400010 Cluj-Napoca, Romania;
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 V. Babeş Street, 400012 Cluj-Napoca, Romania;
| | - Cristina Pușcaș
- Department of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 A. Janos Street, 400028 Cluj-Napoca, Romania; (C.P.); (R.S.-D.)
| | - Mihaela Duma
- State Animal Health and Safety Veterinary Laboratory, 1 Piata Marasti Street, 400609 Cluj-Napoca, Romania
| | - Cristian Cezar Login
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 1 Clinicilor Street, 400006 Cluj-Napoca, Romania;
| | - Mihaela Niculae
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Radu Silaghi-Dumitrescu
- Department of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 A. Janos Street, 400028 Cluj-Napoca, Romania; (C.P.); (R.S.-D.)
| |
Collapse
|
4
|
Lim JS, Lee SH, Yun H, Lee DY, Cho N, Yoo G, Choi JU, Lee KY, Bach TT, Park SJ, Cho YC. Inhibitory Effects of Ehretia tinifolia Extract on the Excessive Oxidative and Inflammatory Responses in Lipopolysaccharide-Stimulated Mouse Kupffer Cells. Antioxidants (Basel) 2023; 12:1792. [PMID: 37891872 PMCID: PMC10604099 DOI: 10.3390/antiox12101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Ehretia tinifolia (E. tinifolia) L., an evergreen tree with substantial biological activity, including antioxidant and anti-inflammatory effects, has been used in many herbal and traditional medicines. To elucidate its antioxidant and anti-inflammatory activity and the underlying mechanisms, we applied a methanol extract of E. tinifolia (ETME) to lipopolysaccharide (LPS)-stimulated mouse immortalized Kupffer cells. ETME suppressed the LPS-induced increase in nitric oxide, a mediator for oxidative stress and inflammation, and restored LPS-mediated depletion of total glutathione level by stabilizing antioxidative nuclear factor erythroid 2-related factor 2 (Nrf2) and the subsequent increase in heme oxygenase-1 levels. Furthermore, ETME inhibited the LPS-induced production of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. The inhibitory effects of ETME on pro-inflammatory responses were regulated by ETME-mediated dephosphorylation of mitogen-activated protein kinases (MAPKs: p38, p44/p42, and stress-associated protein kinase/c-Jun N-terminal kinase) and inhibition of nuclear localization of nuclear factor kappa B (NF-κB). These results suggest that ETME is a possible candidate for protecting Kupffer cells from LPS-mediated oxidative stress and excessive inflammatory responses by activating antioxidant Nrf2/HO-1 and inhibiting pro-inflammatory NF-κB and MAPKs, respectively.
Collapse
Affiliation(s)
- Jae Sung Lim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Sung Ho Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Hyosuk Yun
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Da Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Namki Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Guijae Yoo
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun 55365, Republic of Korea;
| | - Jeong Uk Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Kwang Youl Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122000, Vietnam;
| | - Su-Jin Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si 56212, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| |
Collapse
|
5
|
Yang R, Dong Y, Gao F, Li J, Stevanovic ZD, Li H, Shi L. Comprehensive Analysis of Secondary Metabolites of Four Medicinal Thyme Species Used in Folk Medicine and Their Antioxidant Activities In Vitro. Molecules 2023; 28:molecules28062582. [PMID: 36985554 PMCID: PMC10052123 DOI: 10.3390/molecules28062582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Thyme is a colloquial term for number of aromatic species belonging to the genus Thymus L., known for their expressed biological activities and therefore used worldwide for seasoning and in folk medicine. In the present paper, the content of the total polyphenols (TP), total flavonoids (TF), and antioxidant capacity were assessed in the extracts of four traditionally used thyme species. Moreover, a comprehensive metabolomic study of thyme bioactive compounds was performed, and the obtained data were processed using multivariate statistical tests. The results clearly demonstrated the positive correlation between the content of the TP, TF, and antioxidant activity, and TF was more significant than TP. The findings revealed that four selected thyme species contained 528 secondary metabolites, including 289 flavonoids and 146 phenolic acids. Thymus marschallianus had a higher concentration of active ingredients, which improve its antioxidant capacity. Differentially accumulated metabolites were formed by complex pathways such as flavonoid, flavone, flavonol, isoflavonoid, and anthocyanin biosynthesis. Correlation analysis showed that 59 metabolites (including 28 flavonoids, 18 phenolic acids, and 7 terpenoid compounds) were significantly correlated with obtained values of the antioxidant capacity. The results suggested that selected thyme species exhibit a great diversity in antioxidant-related components, whereas flavonoids may be responsible for the high antioxidant capacity of all studied thyme species. The present study greatly expands our understanding of the complex phytochemical profiles and related applications of selected medicinal plants.
Collapse
Affiliation(s)
- Rui Yang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (R.Y.); (Y.D.); (F.G.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanmei Dong
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (R.Y.); (Y.D.); (F.G.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Gao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (R.Y.); (Y.D.); (F.G.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (R.Y.); (Y.D.); (F.G.); (J.L.)
| | - Zora Dajic Stevanovic
- Department of Agrobotany, University of Belgrade Faculty of Agriculture, Nemanjina 6, 11080 Zemun, Serbia;
| | - Hui Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (R.Y.); (Y.D.); (F.G.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
- Correspondence: (H.L.); (L.S.)
| | - Lei Shi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (R.Y.); (Y.D.); (F.G.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
- Correspondence: (H.L.); (L.S.)
| |
Collapse
|
6
|
Phytochemical Profile, Antioxidant, Antimicrobial and Cytoprotective Effects of Cornelian Cherry (Cornus mas L.) Fruit Extracts. Pharmaceuticals (Basel) 2023; 16:ph16030420. [PMID: 36986519 PMCID: PMC10058959 DOI: 10.3390/ph16030420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Cornus mas L. is characterized by an increased quantity of bioactive compounds, namely polyphenols, monoterpenes, organic acids, vitamin C and lipophilic compounds such as carotenoids, being anciently used in the treatment of various diseases. This paper’s objectives were to characterize the phytochemical profile of Cornus mas L. fruits and to evaluate the in vitro antioxidant, antimicrobial and cytoprotective effects on renal cells exposed to gentamicin. As such, two ethanolic extracts were obtained. The resulting extracts were used to assess the total polyphenols, flavonoids and carotenoids through spectral and chromatographic methods. The antioxidant capacity was assessed using DPPH and FRAP assays. Due to the high content of phenolic compounds analyzed in fruits and the results obtained regarding antioxidant capacity, we decided to further use the ethanolic extract to investigate the in vitro antimicrobial and cytoprotective effects on renal cells stressed with gentamicin. The antimicrobial activity was assessed using agar well diffusion and broth microdilution methods, with great results regarding Pseudomonas aeruginosa. The cytotoxic activity was assessed using MTT and Annexin-V assays. According to the findings, extract-treated cells had a higher cell viability. However, at high concentrations, viability was shown to decline, most likely due to the extract and gentamicin’s additive effects.
Collapse
|
7
|
Simea Ș, Ielciu I, Hanganu D, Niculae M, Pall E, Burtescu RF, Olah NK, Cenariu M, Oniga I, Benedec D, Duda M. Evaluation of the Cytotoxic, Antioxidative and Antimicrobial Effects of Dracocephalum moldavica L. Cultivars. Molecules 2023; 28:molecules28041604. [PMID: 36838592 PMCID: PMC9965778 DOI: 10.3390/molecules28041604] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
The aim of the present study was to correlate the antioxidant, antimicrobial, and cytotoxic activities of hydroalcoholic extracts obtained from the aerial parts of three Dracocephalum moldavica L. cultivars with their polyphenolic compositions. The polyphenols were identified and quantified using spectrophotometrical methods and LC-MS analysis. Their antioxidant capacities were assessed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods. Their in vitro antimicrobial efficacies were assessed using the agar well diffusion and broth microdilution methods. Their cytotoxicity was investigated on normal diploid foreskin fibroblasts (BJ) and on colorectal adenocarcinoma (DLD-1) cell lines. The results pointed out significant amounts of polyphenolic compounds in the compositions of the tested cultivars, with rosmarinic acid as the main compound (amounts ranging between 5.337 ± 0.0411 and 6.320 ± 0.0535 mg/mL). All three cultivars displayed significant antioxidant (IC50 ranging between 35.542 ± 0.043 and 40.901 ± 0.161 µg/mL for the DPPH assay, and for the FRAP assay 293.194 ± 0.213 and 330.165 ± 0.754 µmol Trolox equivalent/mg dry vegetal material) and antimicrobial potential (especially towards the Gram-positive bacteria), as well as a selective toxicity towards the tumoral line. A significant positive correlation was found between antioxidant activity and the total phenolic acids (r2 = 0.987) and polyphenols (r2 = 0.951). These findings bring further arguments for strongly considering D. moldavica cultivars as promising vegetal products, which warrants further investigation.
Collapse
Affiliation(s)
- Ștefania Simea
- Department of Crop Science, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Irina Ielciu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400010 Cluj-Napoca, Romania
- Correspondence: (I.I.); (D.H.)
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania
- Correspondence: (I.I.); (D.H.)
| | - Mihaela Niculae
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400374 Cluj-Napoca, Romania
| | - Emoke Pall
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400374 Cluj-Napoca, Romania
| | | | - Neli-Kinga Olah
- SC PlantExtrakt SRL, 407059 Rădaia, Cluj-Napoca, Romania
- Department of Therapeutical Chemistry, Pharmaceutical Industry and Biotechnologies, Faculty of Pharmacy, “Vasile Goldiș” Western University from Arad, 310048 Arad, Romania
| | - Mihai Cenariu
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400374 Cluj-Napoca, Romania
| | - Ilioara Oniga
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania
| | - Daniela Benedec
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania
| | - Marcel Duda
- Department of Crop Science, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Babotă M, Frumuzachi O, Nicolescu A, Dias MI, Pinela J, Barros L, Añibarro-Ortega M, Stojković D, Carević T, Mocan A, López V, Crișan G. Thymus Species from Romanian Spontaneous Flora as Promising Source of Phenolic Secondary Metabolites with Health-Related Benefits. Antioxidants (Basel) 2023; 12:antiox12020390. [PMID: 36829949 PMCID: PMC9952121 DOI: 10.3390/antiox12020390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Wild thyme aerial parts (Serpylli herba) are recognized as a valuable herbal product with antioxidant, anti-inflammatory, and antibacterial effects. Although pharmacopoeial regulations allow its collection exclusively from Thymus serpyllum, substitution with other species is frequent in current practice. This study analyzed the phenolic composition, antioxidant, and enzyme-inhibitory and antimicrobial activity of the hydroethanolic extracts obtained from five Romanian wild thyme species (Thymus alpestris, T. glabrescens, T. panonicus, T. pulcherimus and T. pulegioides). The analysis of individual phenolic constituents was performed through LC-ESI-DAD/MS2, while for the in vitro evaluation of antioxidant potential, TEAC, FRAP, DPPH, TBARS and OxHLIA assays were employed. The anti-enzymatic potential was tested in vitro against tyrosinase, α-glucosidase and acetylcholinesterase. High rosmarinic acid contents were quantified in all species (20.06 ± 0.32-80.49 ± 0.001 mg/g dry extract); phenolic acids derivatives (including salvianolic acids) were confirmed as the principal metabolites of T. alpestris and T. glabrescens, while eriodictyol-O-di-hexoside was found exclusively in T. alpestris. All species showed strong antioxidant potential and moderate anti-enzymatic effect against α-glucosidase and acetylcholinesterase, showing no anti-tyrosinase activity. This is the first detailed report on the chemical and biological profile of T. alpestris collected from Romanian spontaneous flora.
Collapse
Affiliation(s)
- Mihai Babotă
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Oleg Frumuzachi
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Alexandru Nicolescu
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mikel Añibarro-Ortega
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Tamara Carević
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-742-017-816
| | - Víctor López
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, 50830 Zaragoza, Spain
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, 50830 Zaragoza, Spain
| | - Gianina Crișan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Noumi E, Ahmad I, Bouali N, Patel H, Ghannay S, ALrashidi AA, Abdulhakeem MA, Patel M, Ceylan O, Badraoui R, Mousa Elayyan AE, Adnan M, Kadri A, Snoussi M. Thymus musilii Velen. Methanolic Extract: In Vitro and In Silico Screening of Its Antimicrobial, Antioxidant, Anti-Quorum Sensing, Antibiofilm, and Anticancer Activities. Life (Basel) 2022; 13:62. [PMID: 36676011 PMCID: PMC9862435 DOI: 10.3390/life13010062] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Thymus musilii Velen. is a rare plant species cultivated in the Ha'il region (Saudi Arabia) under greenhouse conditions. In this work, we described, for the first time, the phytochemical composition, antimicrobial, antioxidant, anti-quorum sensing, and anticancer activities of T. musilii methanolic extract using both experimental and computational approaches. The obtained results showed the identification of eight small-like peptides and eighteen phyto-compounds by using high-resolution liquid chromatography-mass spectrometry (HR-LCMS) dominated mainly by compounds belonging to isoprenoid, fatty acyl, flavonoid, and alkaloid classes. The tested extracts exhibited high antifungal and antibacterial activity with the mean diameter of growth inhibition zones ranging from 12.33 ± 0.57 mm (Pseudomonas aeruginosa ATCC 27853) to 29.33 ± 1.15 mm (Candida albicans ATCC 10231). Low minimal inhibitory concentrations were recorded for the tested micro-organisms ranging from 0.781 mg/mL to 12.5 mg/mL. While higher doses were necessary to completely kill all tested bacterial and fungal strains. Thyme extract was able to scavenge DPPH•, ABTS•+, β-carotene, and FRAP free radicals, and the IC50 values were 0.077 ± 0.0015 mg/mL, 0.040 ± 0.011 mg/mL, 0.287 ± 0.012 mg/mL, and 0.106 ± 0.007 mg/mL, respectively. The highest percentage of swarming and swimming inhibition was recorded at 100 µg/mL with 39.73 ± 1.5% and 25.18 ± 1%, respectively. The highest percentage of biofilm inhibition was recorded at 10 mg/mL for S. typhimurium ATCC 14028 (53.96 ± 4.21%) and L. monocytogenes ATCC 7644 (49.54 ± 4.5 mg/mL). The in silico docking study revealed that the observed antimicrobial, antioxidant, and anticancer activities of the constituent compounds of T. musilii are thermodynamically feasible, notably, such as those of the tripeptides (Asn-Met-His, His-Cys-Asn, and Phe-His-Gln), isoprenoids (10-Hydroxyloganin), and diterpene glycosides (4-Ketoretinoic acid glucuronide).
Collapse
Affiliation(s)
- Emira Noumi
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, India
| | - Nouha Bouali
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, P.O. Box 6688, Buraidah 51452, Saudi Arabia
| | - Ayshah Aysh ALrashidi
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
| | - Mohammad A Abdulhakeem
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
| | - Mitesh Patel
- Centre of Research for Development, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
| | - Ozgur Ceylan
- Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla 48147, Turkey
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
- Department of Histo Embryology and Cytogenetics, Medicine Faculty of Sfax, University of Sfax, Road of Majida Boulia, Sfax 3029, Tunisia
| | - Afnan Elayyan Mousa Elayyan
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
| | - Adel Kadri
- Faculty of Science and Arts in Baljurashi, Albaha University, P.O. Box 1988, Albaha 65527, Saudi Arabia
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| |
Collapse
|
10
|
Antiproliferative and Antimicrobial Effects of Rosmarinus officinalis L. Loaded Liposomes. Molecules 2022; 27:molecules27133988. [PMID: 35807229 PMCID: PMC9268459 DOI: 10.3390/molecules27133988] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Rosmarinus officinalis L. is a species that is widely known for its culinary and medicinal uses. The purpose of the present study consisted of the evaluation of the antiproliferative and antimicrobial effects of R. officinalis-loaded liposomes (L-R). Characterization of the liposomes was performed by establishing specific parameters. The load of the obtained liposomes was analyzed using an LC-MS method, and antiproliferative assays evaluated the cell viability on a liver adenocarcinoma cell line and on a human hepatic stellate cell line. Antimicrobial assays were performed by agar–well diffusion and by broth microdilution assays. The obtained liposomes showed high encapsulation efficiency, suitable particle size, and good stability. High amounts of caffeic (81.07 ± 0.76), chlorogenic (14.10 ± 0.12), carnosic (20.03 ± 0.16), rosmarinic (39.81 ± 0.35), and ellagic (880.02 ± 0.14) acids were found in their composition, together with other polyphenols. Viability and apoptosis assays showed an intense effect on the cancerous cell line and a totally different pattern on the normal cells, indicating a selective toxicity towards the cancerous ones and an anti-proliferative mechanism. Antimicrobial potential was noticed against all tested bacteria, with a better efficacy towards Gram-positive species. These results further confirm the biological activities of R. officinalis leaf extract, and proposes and characterizes novel delivery systems for their encapsulation, enhancing the biological activities of polyphenols, and overcoming their limitations.
Collapse
|
11
|
Buza V, Niculae M, Hanganu D, Pall E, Burtescu RF, Olah NK, Matei-Lațiu MC, Vlasiuc I, Iozon I, Szakacs AR, Ielciu I, Ștefănuț LC. Biological Activities and Chemical Profile of Gentiana asclepiadea and Inula helenium Ethanolic Extracts. Molecules 2022; 27:molecules27113560. [PMID: 35684497 PMCID: PMC9182457 DOI: 10.3390/molecules27113560] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the antioxidant, antimicrobial, and cytotoxic potential of ethanolic extracts obtained from Gentiana asclepiadea L. and Inula helenium L. roots, in relation to their chemical composition. The total polyphenols, flavonoids, and phenolic acids were determined by spectrophotometric methods, while LC-MS analysis was used to evaluate the individual constituents. The antioxidant properties were tested using the FRAP and DPPH methods. The standard well diffusion and broth microdilution assays were carried out to establish in vitro antimicrobial efficacy and minimum inhibitory and bactericidal concentrations. The cytotoxicity was tested on rat intestinal epithelial cells using the MTT assay. The results pointed out important constituents such as secoiridoid glycoside (amarogentin), phenolic acids (caffeic acid, chlorogenic acid, trans-p-coumaric acid, salicylic acid), and flavonoids (apigenin, chrysin, luteolin, luteolin-7-O-glucoside, quercetin, rutoside, and naringenin) and promising antioxidant properties. The in vitro antimicrobial effect was noticed towards several pathogens (Bacillus cereus > Staphylococcus aureus > Enterococcus faecalis > Salmonella typhimurium and Salmonella enteritidis > Escherichia coli), with a pronounced bactericidal activity. Rat intestinal epithelial cell viability was not affected by the selected concentrations of these two extracts. These data support the ethnomedicinal recommendations of these species and highlight them as valuable sources of bioactive compounds.
Collapse
Affiliation(s)
- Victoria Buza
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.-C.M.-L.); (I.I.); (L.C.Ș.)
- Correspondence: (V.B.); (M.N.)
| | - Mihaela Niculae
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
- Correspondence: (V.B.); (M.N.)
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania;
| | - Emoke Pall
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | | | - Neli-Kinga Olah
- SC PlantExtrakt SRL, 407059 Rădaia, Romania; (R.F.B.); (N.-K.O.)
- Faculty of Pharmacy, Vasile Goldiș Western University of Arad, 310045 Arad, Romania
| | - Maria-Cătălina Matei-Lațiu
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.-C.M.-L.); (I.I.); (L.C.Ș.)
| | - Ion Vlasiuc
- Department of Anatomy, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400374 Cluj-Napoca, Romania;
| | - Ilinca Iozon
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.-C.M.-L.); (I.I.); (L.C.Ș.)
| | - Andrei Radu Szakacs
- Department of Animal Nutrition, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400374 Cluj-Napoca, Romania;
| | - Irina Ielciu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania;
| | - Laura Cristina Ștefănuț
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.-C.M.-L.); (I.I.); (L.C.Ș.)
| |
Collapse
|
12
|
Bouymajane A, Rhazi Filali F, Oulad El Majdoub Y, Ouadik M, Abdelilah R, Cavò E, Miceli N, Taviano MF, Mondello L, Cacciola F. Phenolic compounds, antioxidant and antibacterial activities of extracts from aerial parts of Thymus zygis subsp. gracilis, Mentha suaveolens and Sideritis incana from Morocco. Chem Biodivers 2022; 19:e202101018. [PMID: 35104048 DOI: 10.1002/cbdv.202101018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/31/2022] [Indexed: 11/11/2022]
Abstract
Thymus zygis subsp. gracilis , Mentha suaveolens and Sideritis incana (Lamiaceae family) are well recognized for their medicinal, pharmaceutical and aromatic properties. The present study aimed to investigate for the first time the polyphenolic composition, the antioxidant and antibacterial properties of the extracts obtained from the aerial parts of these species collected from the Ifrane region of Morocco. The polyphenolic compounds were determined using high-performance liquid chromatography coupled to photodiode array and electrospray ionization mass spectrometry (HPLC-PDA-ESI/MS). The antioxidant activity was investigated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, reducing power and ferrous ion chelating assays. The antibacterial activity was evaluated against three Gram-negative bacteria ( Escherichia coli, Pseudomonas aeruginosa and Salmonella typhimurium ) and three Gram-positive bacteria ( Staphylococcus aureus, Enterococcus faecalis and Listeria monocytogenes ). A total of thirty-three, sixteen and thirteen polyphenolic compounds were positively identified and characterized in T. zygis subsp. gracilis , M. suaveolens and S. incana extracts, respectively. Among the extracts, M. suaveolens exhibited the highest antioxidant activity, followed by S. incana and T. zygis subsp. gracilis in both DPPH and reducing power assays; all extracts showed the lowest activity in the chelating assay. In addition, all extracts demonstrated a bactericidal effect against Gram-positive bacteria and bacteriostatic effect against Gram-negative bacteria. Therefore, the aerial parts of Moroccan T. zygis subsp. gracilis , M. suaveolens and S. incana might be considered as a valuable source of natural antioxidant and antibacterial agents with potential application in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Aziz Bouymajane
- Moulay Ismail University: Universite Moulay Ismail, Faculty of Sciences, -, Zitoune Meknes, MOROCCO
| | - Fouzia Rhazi Filali
- Moulay Ismail University: Universite Moulay Ismail, Faculty of Sciences, -, Zitoune Meknes, MOROCCO
| | - Yassine Oulad El Majdoub
- University of Messina: Universita degli Studi di Messina, CHIBIOFARAM, Viale Annunziata, Messina, ITALY
| | - Mohamed Ouadik
- Moulay Ismail University: Universite Moulay Ismail, Faculty of Sciences, -, Zitoune Meknes, MOROCCO
| | - Rahou Abdelilah
- Moulay Ismail University: Universite Moulay Ismail, Faculty of Sciences, -, Zitoune Meknes, MOROCCO
| | - Emilia Cavò
- University of Messina: Universita degli Studi di Messina, CHIBIOFARAM, Viale Annunziata, 98168, Messina, ITALY
| | - Natalizia Miceli
- University of Messina: Universita degli Studi di Messina, CHIBIOFARAM, Viale Annunziata, 98168, Messina, ITALY
| | - Maria Fernanda Taviano
- University of Messina: Universita degli Studi di Messina, CHIBIOFARAM, Viale Annunziata, 98168, Messina, ITALY
| | - Luigi Mondello
- University of Messina: Universita degli Studi di Messina, CHIBIOFARAM, Viale Annunziata, 98168, Messina, ITALY
| | - Francesco Cacciola
- University of Messina: Universita degli Studi di Messina, BIOMORF, Via Consolare Valeria, 98125, Messina, ITALY
| |
Collapse
|
13
|
Ielciu I, Filip GA, Oniga I, Olah NK, Bâldea I, Olteanu D, Burtescu RF, Turcuș V, Sevastre-Berghian AC, Benedec D, Hanganu D. Oxidative Stress and DNA Lesion Reduction of a Polyphenolic Enriched Extract of Thymus marschallianus Willd. in Endothelial Vascular Cells Exposed to Hyperglycemia. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122810. [PMID: 34961280 PMCID: PMC8708594 DOI: 10.3390/plants10122810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 05/04/2023]
Abstract
The present study aimed to compare two polyphenolic-enriched extracts obtained from the Thymus marschallianus Willd. (Lamiaceae) species, harvested from culture (TMCE in doses of 0.66 μg GAE/mL and 0.066 μg GAE/mL) and from spontaneous flora (TMSE in doses of 0.94 μg GAE/mL and 0.094 μg GAE/mL) by assessing their biological effects on human umbilical vein endothelial cells (HUVECs) exposed to normoglycemic (137 mmol/L glucose) and hyperglycemic conditions (200 mmol/L glucose). Extracts were obtained by solid phase extraction (SPE) and analyzed by chromatographical (HPLC-DAD) and spectrophotometrical methods. Their effects on hyperglycemia were evaluated by the quantification of oxidative stress and NF-ĸB, pNF-ĸB, HIF-1α, and γ-H2AX expressions. The HPLC-DAD analysis highlighted significant amounts of rosmarinic acid (ranging between 0.18 and 1.81 mg/g dry extract), luteolin (ranging between 2.04 and 17.71 mg/g dry extract), kaempferol (ranging between 1.85 and 7.39 mg/g dry extract), and apigenin (ranging between 4.97 and 65.67 mg/g dry extract). Exposure to hyperglycemia induced oxidative stress and the activation of NF-ĸ increased the expression of HIF-1α and produced DNA lesions. The polyphenolic-enriched extracts proved a significant reduction of oxidative stress and γ-H2AX formation and improved the expression of HIF-1α, suggesting their protective role on endothelial cells in hyperglycemia. The tested extracts reduced the total NF-ĸB expression and diminished its activation in hyperglycemic conditions. The obtained results bring evidence for the use of the polyphenolic-enriched extracts of T. marschallianus as adjuvants in hyperglycemia.
Collapse
Affiliation(s)
- Irina Ielciu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania;
| | - Gabriela Adriana Filip
- Department of Physiology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.C.S.-B.)
- Correspondence: (G.A.F.); (I.O.)
| | - Ilioara Oniga
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania; (D.B.); (D.H.)
- Correspondence: (G.A.F.); (I.O.)
| | - Neli-Kinga Olah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Vasile Goldiş” Western University of Arad, 310414 Arad, Romania;
- PlantExtrakt Ltd., Rădaia, 407059 Cluj-Napoca, Romania;
| | - Ioana Bâldea
- Department of Physiology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.C.S.-B.)
| | - Diana Olteanu
- Department of Physiology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.C.S.-B.)
| | | | - Violeta Turcuș
- Department of Botany, Faculty of Medicine, “Vasile Goldiş” Western University of Arad, 310414 Arad, Romania;
| | - Alexandra C. Sevastre-Berghian
- Department of Physiology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.C.S.-B.)
| | - Daniela Benedec
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania; (D.B.); (D.H.)
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania; (D.B.); (D.H.)
| |
Collapse
|
14
|
Chemical and Biological Profile and Allergenicity of Thymus baicalensis Plant of Mongolian Origin. Antioxidants (Basel) 2021; 10:antiox10121905. [PMID: 34943008 PMCID: PMC8750244 DOI: 10.3390/antiox10121905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 11/21/2022] Open
Abstract
Thymus baicalensis is a medicinal plant recognized as a traditional Mongolian therapeutic and health-promoting food supplement. The aim of the study was to check the suitability of the tested plant for supporting the treatment of certain diseases. The following study is the first one to showcase the versatile scope of characteristics of T. baicalensis, including its volatile oil composition, polyphenolic composition, lipid composition, phenolic and flavonoid contents, antioxidant activity, antimicrobial properties and ingestive allergenicity. Myrcene, at 26.15%, was shown to be the most abundant component of the volatile oil. Compounds known as inherent components of the Thymus genus: thymol and carvacrol made up only about 0.24% of the extracted oil. As much as 10.11 g kg−1 of polyphenol compounds were identified as derivatives of luteolin-7-O-glucuronide. The lipid extract was found to be rich in palmitic acid (31.05%), while unsaturated fatty acids were not reported. Spectrophotometric determination of the phenols and flavonoids indicated 7.541 mg of gallic acid g−1 and 4.345 mg of quercitin g−1, respectively. The free radical scavenging activity was determined by the 2,2-difenylo-1-pikrylohydrazyl method at IC50 = 206.97 µg mL−1. The extracts also had a strong inhibitory effect on M. flavus and P. fluorescenes bacteria, as well as S. cerevisiae yeasts. The Bet v 1 and profilin allergens in T. baicalensis were reported at 175.17 ng g−1 and 1.66 ng g−1, respectively.
Collapse
|
15
|
Extraction Processes Affect the Composition and Bioavailability of Flavones from Lamiaceae Plants: A Comprehensive Review. Processes (Basel) 2021. [DOI: 10.3390/pr9091675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lamiaceae plants are a widespread family of herbaceous plants with around 245 plant genera and nearly 22,576 species distributed in the world. Some of the most representative and widely studied Lamiaceae plants belong to the Ocimum, Origanum, Salvia, and Thymus genera. These plants are a rich source of bioactive molecules such as terpenes, flavonoids, and phenolic acids. In this sense, there is a subgroup of flavonoids classified as flavones. Flavones have antioxidant, anti-inflammatory, anti-cancer, and anti-diabetic potential; thus, efficient extraction techniques from their original plant matrixes have been developed. Currently, conventional extraction methods involving organic solvents are no longer recommended due to their environmental consequences, and new environmentally friendly techniques have been developed. Moreover, once extracted, the bioactivity of flavones is highly linked to their bioavailability, which is often neglected. This review aims to comprehensively gather recent information (2011–2021) regarding extraction techniques and their important relationship with the bioavailability of flavones from Lamiaceae plants including Salvia, Ocimum, Thymus, and Origanum.
Collapse
|
16
|
Antimicrobial Potential and Phytochemical Profile of Wild and Cultivated Populations of Thyme ( Thymus sp.) Growing in Western Romania. PLANTS 2021; 10:plants10091833. [PMID: 34579365 PMCID: PMC8465029 DOI: 10.3390/plants10091833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to analyze the chemical composition and antimicrobial activity of some thymus populations collected from five different locations in Western Romania. The chemical compositions of the essential oils (EOs) were studied through GC–MS, and the biological activities were evaluated using the microdilution method. The EO yield ranged between 0.44% and 0.81%. Overall, 60 chemical compounds were identified belonging to three chemotypes: thymol (three populations), geraniol (one population) and carvacrol (one population). Thymus vulgaris L. is distinguished by a high content of thymol, while species of spontaneous flora (Th. odoratissimus and Th. pulegioides) contain, in addition to thymol, appreciable amounts of carvacrol and geraniol. The antimicrobial activity of each the five oils was tested on Staphylococcus aureus (ATCC 25923), Streptococcus pyogenes (ATCC 19615), Esherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Shigella flexneri (ATCC 12022), Salmonella typhimurium (ATCC 14028), Haemophilus influenzae type B (ATCC 10211), Candida albicans (ATCC 10231) and Candida parapsilopsis (ATCC 22019). The EOs showed biological activity on Gram-positive/Gram-negative/fungal pathogens, the most sensitive strains proving to be S. pyogenes, S. flexneri, S. typhimurium and C. parapsilopsis with an MIC starting at 2 µL EO/100 µL. The species sensitive to the action of Thymus sp. from culture or spontaneous flora are generally the same, but it should be noted that T. odoratissimus has a positive inhibition rate higher than other investigated EOs, regardless of the administered oil concentration. To date, there is no research work presenting the chemical and antimicrobial profiling of T. odoratissimus and the correlations between the antimicrobial potential and chemical composition of wild and cultivated populations of thyme (Thymus sp.) growing in Western Romania.
Collapse
|
17
|
Phytochemical Fingerprinting and In Vitro Antimicrobial and Antioxidant Activity of the Aerial Parts of Thymus marschallianus Willd. and Thymus seravschanicus Klokov Growing Widely in Southern Kazakhstan. Molecules 2021; 26:molecules26113193. [PMID: 34073499 PMCID: PMC8198081 DOI: 10.3390/molecules26113193] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
The chemical composition of the hydroethanolic extracts (60% v/v) from the aerial parts of Thymus marschallianus Willd (TM) and Thymus seravschanicus Klokov (TS) from Southern Kazakhstan flora was analyzed together with their hexane fractions. Determination of antibacterial, antifungal and antioxidant activities of both extracts was also performed. RP-HPLC/PDA and HPLC/ESI-QTOF-MS showed that there were some differences between the composition of both extracts. The most characteristic components of TM were rosmarinic acid, protocatechuic acid, luteolin 7-O-glucoside, and apigenin 7-O-glucuronide, while protocatechuic acid, luteolin 7-O-glucoside, luteolin 7-O-glucuronide, and eriodictyol predominated in TS. The content of polyplenols was higher in TS than in TM. The GC-MS analysis of the volatile fraction of both examined extracts revealed the presence of thymol and carvacrol. Additionally, sesquiterpenoids, fatty acids, and their ethyl esters were found in TM, and fatty acid methyl esters in TS. The antioxidant activity of both extracts was similar. The antibacterial activity of TS extract was somewhat higher than TM, while antifungal activity was the same. TS extract was the most active against Helicobacter pylori ATCC 43504 with MIC (minimal inhibitory concentration) = 0.625 mg/mL, exerting a bactericidal effect. The obtained data provide novel information about the phytochemistry of both thyme species and suggest new potential application of TS as a source of bioactive compounds, especially with anti-H. pylori activity.
Collapse
|
18
|
Haile T, Cardoso SM, de Oliveira Raphaelli C, Pereira OR, Pereira EDS, Vizzotto M, Nora L, Asfaw AA, Periasamy G, Karim A. Chemical Composition, Antioxidant Potential, and Blood Glucose Lowering Effect of Aqueous Extract and Essential Oil of Thymus Serrulatus Hochst. Ex Benth. Front Pharmacol 2021; 12:621536. [PMID: 33995021 PMCID: PMC8116798 DOI: 10.3389/fphar.2021.621536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/01/2021] [Indexed: 11/21/2022] Open
Abstract
Thymus serrulatus, an endemic plant of Ethiopia, is traditionally used to cure various diseases and as a food ingredient. In the Ethiopian folk medicine, the decoction is orally taken as a remedy to treat diabetes and high blood pressure. The purpose of the present study was to evaluate the antioxidant and antihyperglycemic effects of the aqueous extract and of the essential oil of Thymus serrulatus. The chemical composition of the aqueous extract was determined by LC-MS and the essential oil was characterized by GC-MS analysis. Radical scavenging assays, namely scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH•), hydroxyl (•OH), and nitric oxide (•NO), were used as a first approach to screen the potential antioxidant abilities of the samples. Alpha-amylase and α-glucosidase inhibitory studies were also employed to evaluate the in vitro antihyperglycemic potential of the plant. The in vivo blood glucose lowering effect of the extracts was assessed using hypoglycemic activity and the oral glucose tolerance test in normal and in streptozotocin induced diabetic mice. When compared to the aqueous extract, the essential oil showed superior radical scavenging activity, particularly for •NO, as well as greater inhibitory potency against α-amylase and α-glucosidase (IC50 = 0.01 mg/ml and 0.11 mg/ml, respectively). Both tested samples showed a statistically significant antihyperglycemic effect. The aqueous extract at 600 mg/kg exerted maximum antihyperglycemic activity (44.14%), followed by the essential oil (30.82%). Body weight and glucose tolerance parameters were also improved by the samples both in normal and diabetic mice. The findings of this study support the hypothesis that aqueous extract and essential oil of T. serrulatus are promising therapeutic agents.
Collapse
Affiliation(s)
- Tesfay Haile
- Department of Pharmacognosy, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Chirle de Oliveira Raphaelli
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Olívia R. Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Elisa dos Santos Pereira
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | - Leonardo Nora
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Adissu Alemayehu Asfaw
- Department of Pharmaceutical Analysis and Quality Control, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Gomathi Periasamy
- Department of Pharmacognosy, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Aman Karim
- Department of Pharmacognosy, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
19
|
Ielciu I, Sevastre B, Olah NK, Turdean A, Chișe E, Marica R, Oniga I, Uifălean A, Sevastre-Berghian AC, Niculae M, Benedec D, Hanganu D. Evaluation of Hepatoprotective Activity and Oxidative Stress Reduction of Rosmarinus officinalis L. Shoots Tincture in Rats with Experimentally Induced Hepatotoxicity. Molecules 2021; 26:1737. [PMID: 33804618 PMCID: PMC8003693 DOI: 10.3390/molecules26061737] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Rosmarinus officinalis L. is a widely known species for its medicinal uses, that is also used as raw material for the food and cosmetic industry. The aim of the present study was to offer a novel perspective on the medicinal product originating from this species and to test its hepatoprotective activity. The tested sample consisted in a tincture obtained from the fresh young shoots. Compounds that are evaluated for this activity are polyphenols and terpenoids, that are identified and quantified by HPLC-UV-MS and GC-MS. Antioxidant activity was assessed in vitro, using the DPPH, FRAP and SO assays. Hepatoprotective activity was tested in rats with experimentally-induced hepatotoxicity. In the chemical composition of the tincture, phenolic diterpenes (carnosic acid, carnosol, rosmanol, rosmadial) and rosmarinic acid were found to be the majority compounds, alongside with 1,8-cineole, camphene, linalool, borneol and terpineol among monoterpenes. In vitro, the tested tincture proved significant antioxidant capacity. Results of the in vivo experiment showed that hepatoprotective activity is based on an antioxidant mechanism. In this way, the present study offers a novel perspective on the medicinal uses of the species, proving significant amounts of polyphenols and terpenes in the composition of the fresh young shoots tincture, that has proved hepatoprotective activity through an antioxidant mechanism.
Collapse
Affiliation(s)
- Irina Ielciu
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania;
| | - Bogdan Sevastre
- Department of Clinic and Paraclinic Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Neli-Kinga Olah
- PlantExtrakt, 407059 Cluj-Napoca, Romania; (N.-K.O.); (A.T.)
- Department of Pharmaceutical Industry, Faculty of Pharmacy, Vasile Goldiş Western University of Arad, 310414 Arad, Romania
| | - Andreea Turdean
- PlantExtrakt, 407059 Cluj-Napoca, Romania; (N.-K.O.); (A.T.)
| | - Elisabeta Chișe
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Vasile Goldiş Western University of Arad, 310414 Arad, Romania;
| | - Raluca Marica
- Department of Clinic and Paraclinic Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Ilioara Oniga
- Department of Pharmacognosy, Iuliu Haţieganu University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania; (I.O.); (D.H.)
| | - Alina Uifălean
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Alexandra C. Sevastre-Berghian
- Department of Physiology, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Mihaela Niculae
- Department of Clinical Sciences, Division and Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania;
| | - Daniela Benedec
- Department of Pharmacognosy, Iuliu Haţieganu University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania; (I.O.); (D.H.)
| | - Daniela Hanganu
- Department of Pharmacognosy, Iuliu Haţieganu University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania; (I.O.); (D.H.)
| |
Collapse
|
20
|
Bian J, Wang K, Wang Q, Wang P, Wang T, Shi W, Ruan Q. Dracocephalum heterophyllum (DH) Exhibits Potent Anti-Proliferative Effects on Autoreactive CD4 + T Cells and Ameliorates the Development of Experimental Autoimmune Uveitis. Front Immunol 2020; 11:575669. [PMID: 33117376 PMCID: PMC7578250 DOI: 10.3389/fimmu.2020.575669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/23/2020] [Indexed: 02/04/2023] Open
Abstract
Experimental autoimmune uveitis (EAU) is a CD4+ T cell–mediated organ-specific autoimmune disease and has been considered as a model of human autoimmune uveitis. Dracocephalum heterophyllum (DH) is a Chinese herbal medicine used in treating hepatitis. DH suppressed the production of inflammatory cytokines through the recruitment of myeloid-derived suppressor cells (MDSCs) to the liver. However, it remains elusive whether DH can directly regulate CD4+ T cell biology and hence ameliorates the development of CD4+ T cell–mediated autoimmune disease. In the current study, we found that DH extract significantly suppressed the production of pro-inflammatory cytokines by CD4+ T cells. Further study showed that DH didn’t affect the activation, differentiation, and apoptosis of CD4+ T cells. Instead, it significantly suppressed the proliferation of conventional CD4+ T cells both in vitro and in vivo. Mechanistic study showed that DH-treated CD4+ T cells were partially arrested at the G2/M phase of the cell cycle because of the enhanced inhibitory phosphorylation of Cdc2 (Tyr15). In addition, we demonstrated that treatment with DH significantly ameliorated EAU in mice through suppressing the proliferation of autoreactive antigen specific CD4+ T cells. Taken together, the current study indicates that DH-mediated suppression of CD4+ T cell proliferation may provide a promising therapeutic strategy for treating CD4+ T cell–mediated diseases.
Collapse
Affiliation(s)
- Jiang Bian
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Ke Wang
- Department of Ophthalmology, Qingdao University Medical College, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Qilan Wang
- Northwest Plateau Institutes of Biology, Chinese Academy of Sciences, Xining, China
| | - Pu Wang
- Center for Antibody Drug, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ting Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingguo Ruan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Center for Antibody Drug, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
21
|
Sevastre-Berghian AC, Ielciu I, Mitre AO, Filip GA, Oniga I, Vlase L, Benedec D, Gheldiu AM, Toma VA, Mihart B, Mihuţ A, Bâldea I, Olteanu D, Chis IC, Clichici SV, Hanganu D. Targeting Oxidative Stress Reduction and Inhibition of HDAC1, MECP2, and NF-kB Pathways in Rats With Experimentally Induced Hyperglycemia by Administration of Thymus marshallianus Willd. Extracts. Front Pharmacol 2020; 11:581470. [PMID: 33071792 PMCID: PMC7538623 DOI: 10.3389/fphar.2020.581470] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
The effects of two lyophilized extracts obtained from the aerial parts of Thymus marschallianus Willd. and harvested from wild flora (TMW) and obtained from culture (TMC) were evaluated in Wistar rats with experimentally induced hyperglycemia. The hyperglycemia was induced by streptozotocin (STZ) administration and the obtained results were evaluated in comparison for TMW and TMC. The polyphenolic composition of extracts was evaluated by spectrophotometrical and LC-MS methods. In vitro antioxidant capacity assays (DPPH, FRAP, EPR) were performed in order to preliminary establish the ability of tested samples to protect against free radical induced damage. Afterwards, the effects of these extracts were assessed in vivo on rats with experimental-induced hyperglycemia. Oxidative stress biomarkers (e.g. malondialdehyde-MDA), phosphorylated transcription factor subunit of nuclear kappaB (NF-kB) p65, methyl CpG binding protein (MECP) 2 and histone deacetylase 1 (HDAC1) expressions in hippocampus and frontal lobe were assessed. Open Field Test (OFT) and Elevated Plus Maze (EPM) were conducted on tested animals. Malondialdehyde (MDA) levels and HDAC1and MeCP2 expressions increased significantly in hippocampus (p<0.05) and frontal lobe (p<0.001) of diabetes group compared to the control group in parallel with decreasing of GSH/GSSG ratio. TMW and TMC administration reduced blood glucose levels and diminished lipid peroxidation, HDAC1 expression and enhanced antioxidant capacity in frontal lobe. TMW improved central locomotion of rats, increased phospho-NFkB p65 and diminished MECP2 expressions in hippocampus. Both tested samples exerted a beneficial effect by increasing the antioxidant defense. Our findings indicate that the administration of these extracts might represent a good option in the treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Alexandra C. Sevastre-Berghian
- Department of Physiology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Irina Ielciu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei Otto Mitre
- Department of Physiology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriela A. Filip
- Department of Physiology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ilioara Oniga
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniela Benedec
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ana-Maria Gheldiu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Vlad A. Toma
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
- Department of Biochemistry and Experimental Biology, Institute of Biological Research, Cluj-Napoca, Romania
- Department of Molecular and Biomolecular Physics, NIRD for Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Bianca Mihart
- Department of Physiology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andra Mihuţ
- Department of Physiology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Bâldea
- Department of Physiology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Olteanu
- Department of Physiology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Irina C. Chis
- Department of Physiology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simona V. Clichici
- Department of Physiology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|