1
|
Zarepour A, Khosravi A, Iravani S, Zarrabi A. Biohybrid Micro/Nanorobots: Pioneering the Next Generation of Medical Technology. Adv Healthc Mater 2024:e2402102. [PMID: 39373299 DOI: 10.1002/adhm.202402102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Biohybrid micro/nanorobots hold a great potential for advancing biomedical research. These tiny structures, designed to mimic biological organisms, offer a promising method for targeted drug delivery, tissue engineering, biosensing/imaging, and cancer therapy, among other applications. The integration of biology and robotics opens new possibilities for minimally invasive surgeries and personalized healthcare solutions. The key challenges in the development of biohybrid micro/nanorobots include ensuring biocompatibility, addressing manufacturing scalability, enhancing navigation and localization capabilities, maintaining stability in dynamic biological environments, navigating regulatory hurdles, and successfully translating these innovative technologies into clinical applications. Herein, the recent advancements, challenges, and future perspectives related to the biomedical applications of biohybrid micro/nanorobots are described. Indeed, this review sheds light on the cutting-edge developments in this field, providing researchers with an updated overview of the current potential of biohybrid micro/nanorobots in the realm of biomedical applications, and offering insights into their practical applications. Furthermore, it delves into recent advancements in the field of biohybrid micro/nanorobotics, providing a comprehensive analysis of the current state-of-the-art technologies and their future applications in the biomedical field.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkiye, 34959
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkiye, 34396
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan
| |
Collapse
|
2
|
Jiang Q, He J, Zhang H, Chi H, Shi Y, Xu X. Recent advances in the development of tumor microenvironment-activatable nanomotors for deep tumor penetration. Mater Today Bio 2024; 27:101119. [PMID: 38966042 PMCID: PMC11222818 DOI: 10.1016/j.mtbio.2024.101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 06/08/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer represents a significant threat to human health, with the use of traditional chemotherapy drugs being limited by their harsh side effects. Tumor-targeted nanocarriers have emerged as a promising solution to this problem, as they can deliver drugs directly to the tumor site, improving drug effectiveness and reducing adverse effects. However, the efficacy of most nanomedicines is hindered by poor penetration into solid tumors. Nanomotors, capable of converting various forms of energy into mechanical energy for self-propelled movement, offer a potential solution for enhancing drug delivery to deep tumor regions. External force-driven nanomotors, such as those powered by magnetic fields or ultrasound, provide precise control but often necessitate bulky and costly external equipment. Bio-driven nanomotors, propelled by sperm, macrophages, or bacteria, utilize biological molecules for self-propulsion and are well-suited to the physiological environment. However, they are constrained by limited lifespan, inadequate speed, and potential immune responses. To address these issues, nanomotors have been engineered to propel themselves forward by catalyzing intrinsic "fuel" in the tumor microenvironment. This mechanism facilitates their penetration through biological barriers, allowing them to reach deep tumor regions for targeted drug delivery. In this regard, this article provides a review of tumor microenvironment-activatable nanomotors (fueled by hydrogen peroxide, urea, arginine), and discusses their prospects and challenges in clinical translation, aiming to offer new insights for safe, efficient, and precise treatment in cancer therapy.
Collapse
Affiliation(s)
- Qianyang Jiang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jiahuan He
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Hairui Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Haorui Chi
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Yi Shi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Xiaoling Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| |
Collapse
|
3
|
Ijaz M, Khurshid M, Gu J, Hasan I, Roy S, Ullah Z, Liang S, Cheng J, Zhang Y, Mi C, Guo B. Breaking barriers in cancer treatment: nanobiohybrids empowered by modified bacteria and vesicles. NANOSCALE 2024; 16:8759-8777. [PMID: 38619821 DOI: 10.1039/d3nr06666e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Cancer, the leading global cause of mortality, poses a formidable challenge for treatment. The effectiveness of cancer therapies, ranging from chemotherapy to immunotherapy, relies on the precise delivery of therapeutic agents to tumor tissues. Nanobiohybrids, resulting from the fusion of bacteria with nanomaterials, constitute a promising delivery system. Nanobiohybrids offer several advantages, including the ability to target tumors, genetic engineering capabilities, programmed product creation, and the potential for multimodal treatment. Recent advances in targeted tumor treatments have leveraged bacteria-based nanobiohybrids. Here, we outline the progress in cancer treatment using nanobiohybrids. Our focus is particularly on various therapeutic approaches within the context of nanobiohybrid systems, where bacteria are integrated with nanomaterials to combat cancer. It has been demonstrated that bacteria-based nanobiohybrids present a robust and effective method for tumor theranostics.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Jingsi Gu
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ikram Hasan
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Simin Liang
- Department of Medical Ultrasonic, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jing Cheng
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Chao Mi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- Shenzhen Light Life Technology Co., Ltd, Shenzhen, 518107, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
4
|
Sebtosheikh M, Naji A. Active osmoticlike pressure on permeable inclusions. Phys Rev E 2024; 109:034607. [PMID: 38632760 DOI: 10.1103/physreve.109.034607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/14/2024] [Indexed: 04/19/2024]
Abstract
We use a standard minimal active Brownian model to investigate the osmotic-like effective pressure generated by active fluids on fixed hollow inclusions. These inclusions are enclosed by a permeable (albeit nonflexible) membrane, and the interior and exterior regions of the inclusions have different particle motility strengths. We consider both rectangular and disklike inclusions and analyze the effects of various system parameters, such as excluded volume interaction between active particles, hardness of membrane, and active particle density, on the effective pressure produced on the enclosing membrane. We focus on the range of intermediate to high motility strengths and analyze the effective pressure in the steady state. Our findings for the active pressure produced in the interior and exterior regions of the inclusion indicate that the pressure is higher in the region with lower motility due to the relatively stronger accumulation of active particles.
Collapse
Affiliation(s)
- Mahmoud Sebtosheikh
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
| | - Ali Naji
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
- Department of Physics, College of Science, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|
5
|
Wang T, Chang TMS. Superparamagnetic Artificial Cells PLGA-Fe 3O 4 Micro/Nanocapsules for Cancer Targeted Delivery. Cancers (Basel) 2023; 15:5807. [PMID: 38136352 PMCID: PMC10741498 DOI: 10.3390/cancers15245807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Artificial cells have been extensively used in many fields, such as nanomedicine, biotherapy, blood substitutes, drug delivery, enzyme/gene therapy, cancer therapy, and the COVID-19 vaccine. The unique properties of superparamagnetic Fe3O4 nanoparticles have contributed to increased interest in using superparamagnetic artificial cells (PLGA-Fe3O4 micro/nanocapsules) for targeted therapy. In this review, the preparation methods of Fe3O4 NPs and superparamagnetic artificial cell PLGA-drug-Fe3O4 micro/nanocapsules are discussed. This review also focuses on the recent progress of superparamagnetic PLGA-drug-Fe3O4 micro/nanocapsules as targeted therapeutics. We shall concentrate on the use of superparamagnetic artificial cells in the form of PLGA-drug-Fe3O4 nanocapsules for magnetic hyperthermia/photothermal therapy and cancer therapies, including lung breast cancer and glioblastoma.
Collapse
Affiliation(s)
| | - Thomas Ming Swi Chang
- Artificial Cells and Organs Research Centre, Departments of Medicine and Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
6
|
Arslanova A, Matthé I, Deschaume O, Bartic C, Monnens W, Reichel EK, Reddy N, Fransaer J, Clasen C. Sideways propelled bimetallic rods at the water/oil interface. SOFT MATTER 2023; 19:6896-6902. [PMID: 37606644 DOI: 10.1039/d3sm00466j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The motion of self-propelling microswimmers is significantly affected by confinement, which can enhance or reduce their mobility and also steer the direction of their propulsion. While their interactions with solid boundaries have already received considerable attention, many aspects of the influence of liquid-liquid interfaces (LLI) on active particle propulsion still remain unexplored. In this work, we studied the adsorption and motion of bimetallic Janus sideways propelled rods dispersed at the interface between an aqueous solution of hydrogen peroxide and oil. The wetting properties of the bimetallic rods result in a wide distribution of their velocities at the LLI. While a fraction of rods remain immotile, we note a significant enhancement of motility for the rest of the particles with velocities of up to 8 times higher in comparison to those observed near a solid wall. Liquid-liquid interfaces, therefore, can provide a new way to regulate the propulsion of bimetallic particles.
Collapse
Affiliation(s)
- Alina Arslanova
- Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium.
| | - Ine Matthé
- Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium.
| | | | - Carmen Bartic
- Department of Physics, KU Leuven, 3001 Leuven, Belgium
| | - Wouter Monnens
- Department of Materials Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Erwin Konrad Reichel
- Institute for Microelectronics and Microsensors, Johannes Kepler University, Altenberger Strasse 69, 4040 Linz, Austria
| | - Naveen Reddy
- Faculty of Engineering Technology, University of Hasselt, Martelarenlaan 42, 3500 Hasselt, Belgium
- IMO-IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Jan Fransaer
- Department of Materials Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Christian Clasen
- Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium.
| |
Collapse
|
7
|
Jiang H, He X, Yang M, Hu C. Visible Light-Driven Micromotors in Fuel-Free Environment with Promoted Ion Tolerance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1827. [PMID: 37368257 DOI: 10.3390/nano13121827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Light-driven electrophoretic micromotors have gained significant attention recently for applications in drug delivery, targeted therapy, biosensing, and environmental remediation. Micromotors that possess good biocompatibility and the ability to adapt to complex external environments are particularly attractive. In this study, we have fabricated visible light-driven micromotors that could swim in an environment with relatively high salinity. To achieve this, we first tuned the energy bandgap of rutile TiO2 that was hydrothermally synthesized, enabling it to generate photogenerated electron-hole pairs under visible light rather than solely under UV. Next, platinum nanoparticles and polyaniline were decorated onto the surface of TiO2 microspheres to facilitate the micromotors swimming in ion-rich environments. Our micromotors exhibited electrophoretic swimming in NaCl solutions with concentrations as high as 0.1 M, achieving a velocity of 0.47 μm/s without the need for additional chemical fuels. The micromotors' propulsion was generated solely by splitting water under visible light illumination, therefore offering several advantages over traditional micromotors, such as biocompatibility and the ability to operate in environments with high ionic strength. These results demonstrated high biocompatibility of photophoretic micromotors and high potential for practical applications in various fields.
Collapse
Affiliation(s)
- Huaide Jiang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoli He
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming Yang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
8
|
Yong J, Mellick AS, Whitelock J, Wang J, Liang K. A Biomolecular Toolbox for Precision Nanomotors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205746. [PMID: 36055646 DOI: 10.1002/adma.202205746] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The application of nanomotors for cancer diagnosis and therapy is a new and exciting area of research, which when combined with precision nanomedicine, promises to solve many of the issues encountered by previous development of passive nanoparticles. The goal of this article is to introduce nanomotor and nanomedicine researchers to the deep pool of knowledge available regarding cancer cell biology and biochemistry, as well as provide a greater appreciation of the complexity of cell membrane compositions, extracellular surfaces, and their functional consequences. A short description of the nanomotor state-of-art for cancer therapy and diagnosis is first provided, as well as recommendations for future directions of the field. Then, a biomolecular targeting toolbox has been collated for researchers looking to apply their nanomaterial of choice to a biological setting, as well as providing a glimpse into currently available clinical therapies and technologies. This toolbox contains an overview of different classes of targeting molecules available for high affinity and specific targeting and cell surface targets to aid researchers in the selection of a clinical disease model and targeting methodology. It is hoped that this review will provide biological context, inspiration, and direction to future nanomotor and nanomedicine research.
Collapse
Affiliation(s)
- Joel Yong
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, 2052, Australia
| | - Albert S Mellick
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, 2052, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, 2170, Australia
| | - John Whitelock
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, 2052, Australia
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, 2052, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, 2052, Australia
| |
Collapse
|
9
|
Shivalkar S, Chowdhary P, Afshan T, Chaudhary S, Roy A, Samanta SK, Sahoo AK. Nanoengineering of biohybrid micro/nanobots for programmed biomedical applications. Colloids Surf B Biointerfaces 2023; 222:113054. [PMID: 36446238 DOI: 10.1016/j.colsurfb.2022.113054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Biohybrid micro/nanobots have emerged as an innovative resource to be employed in the biomedical field due to their biocompatible and biodegradable properties. These are tiny nanomaterial-based integrated structures engineered in a way that they can move autonomously and perform the programmed tasks efficiently even at hard-to-reach organ/tissues/cellular sites. The biohybrid micro/nanobots can either be cell/bacterial/enzyme-based or may mimic the properties of an active molecule. It holds the potential to change the landscape in various areas of biomedical including early diagnosis of disease, therapeutics, imaging, or precision surgery. The propulsion mechanism of the biohybrid micro/nanobots can be both fuel-based and fuel-free, but the most effective and easiest way to propel these micro/nanobots is via enzymes. Micro/nanobots possess the feature to adsorb/functionalize chemicals or drugs at their surfaces thus offering the scope of delivering drugs at the targeted locations. They also have shown immense potential in intracellular sensing of biomolecules and molecular events. Moreover, with recent progress in the material development and processing is required for enhanced activity and robustness the fabrication is done via various advanced techniques to avoid self-degradation and cause cellular toxicity during autonomous movement in biological medium. In this review, various approaches of design, architecture, and performance of such micro/nanobots have been illustrated along with their potential applications in controlled cargo release, therapeutics, intracellular sensing, and bioimaging. Furthermore, it is also foregrounding their advancement offering an insight into their future scopes, opportunities, and challenges involved in advanced biomedical applications.
Collapse
Affiliation(s)
- Saurabh Shivalkar
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India.
| | - Pallabi Chowdhary
- Department of Biotechnology, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Tayyaba Afshan
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India
| | - Shrutika Chaudhary
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Anwesha Roy
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India.
| |
Collapse
|
10
|
Du M, Wang T, Feng R, Zeng P, Chen Z. Establishment of ultrasound-responsive SonoBacteriaBot for targeted drug delivery and controlled release. Front Bioeng Biotechnol 2023; 11:1144963. [PMID: 36911192 PMCID: PMC9998949 DOI: 10.3389/fbioe.2023.1144963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
Bacteria-driven biohybrid microbots have shown great potential in cancer treatment. However, how precisely controlling drug release at the tumor site is still an issue. To overcome the limitation of this system, we proposed the ultrasound-responsive SonoBacteriaBot (DOX-PFP-PLGA@EcM). Doxorubicin (DOX) and perfluoro-n-pentane (PFP) were encapsulated in polylactic acid-glycolic acid (PLGA) to form ultrasound-responsive DOX-PFP-PLGA nanodroplets. Then, DOX-PFP-PLGA@EcM is created by DOX-PFP-PLGA amide-bonded to the surface of E. coli MG1655 (EcM). The DOX-PFP-PLGA@EcM was proved to have the characteristics of high tumor-targeting efficiency, controlled drug release capability, and ultrasound imaging. Based on the acoustic phase change function of nanodroplets, DOX-PFP-PLGA@EcM enhance the signal of US imaging after ultrasound irradiation. Meanwhile, the DOX loaded into DOX-PFP-PLGA@EcM can be released. After being intravenously injected, DOX-PFP-PLGA@EcM can efficiently accumulate in tumors without causing harm to critical organs. In conclusion, the SonoBacteriaBot has significant benefits in real-time monitoring and controlled drug release, which has significant potential applications for therapeutic drug delivery in clinical settings.
Collapse
Affiliation(s)
- Meng Du
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Ting Wang
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Renjie Feng
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China.,The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Penghui Zeng
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhiyi Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China.,The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| |
Collapse
|
11
|
Zhang X, Zhang Y, Wang N, Shen Y, Chen Q, Han L, Hu B. Photothermal Nanoheaters-Modified Spores for Safe and Controllable Antitumor Therapy. Int J Nanomedicine 2022; 17:6399-6412. [PMID: 36545219 PMCID: PMC9762999 DOI: 10.2147/ijn.s385269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction To present a safer tumor therapy based on bacteria and identify in detail how the activation and infection behavior of spores can be controlled remotely by near-infrared light (NIR-irradiation) based on nanoheaters' modification. Methods Spores bring a better tolerance to surface modification. Transitive gold-nanorods-allied-nanoclusters-modified spores (Spore@NRs/NCs) were constructed by covalent glutaraldehyde crosslink. The photothermal properties of nanoheaters before and after attachment to spores were studied by recording temperature-irradiation time curves. The controlled viability and infection behavior of Spore@NRs/NCs were investigated by NIR-irradiation. Results In this work, a controllable sterilizing effect to activated vegetative bacteria was obtained obviously. When met with a suitable growth-environment, Spore@NRs/NCs could germinate, activate into vegetative bacteria and continue to reproduce. Without NIR-irradiation, nanoheaters could not affect the activity of both spores and vegetative bacterial cells. However, with NIR-irradiation after incubating in growth medium, nanoheaters on spores could control the spores' germination and affect the growth curve as well as the viability of the vegetative bacterial cells. For Spore@NRs/NCs (Spore:NCs:NRs=1:1:4, 67.5 μg mL-1), a ~98% killing rate of vegetative bacterial cells was obtained with NIR-irradiation (2.8 W cm-2, 20 min) after 2 h-incubation. In addition, these nanoheaters modified on spores could be taken not only to the vegetative bacteria cells, but also to the first-generation bacteria cells with their excellent photothermal and bactericidal performance, as well as synergetic anticancer effect. NIR-irradiation after 2 h-incubation could also trigger Spore@NRs/NCs (1:1:4, 6 μL) to synergistically reduce the viability of HCT116 cells to 15.63±2.90%. Conclusion By using NIR-irradiation, the "transitive" nanoheaters can remotely control the activity of both bacteria (germinated from spore) and cancer cells. This discovery provides basis and a feasible plan for controllable safer treatment of bacteria therapy, especially anaerobes with spores in hypoxic areas of the malignant solid tumors.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, 110122, People’s Republic of China
| | - Yang Zhang
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, People’s Republic of China
| | - Ning Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, 110122, People’s Republic of China
| | - Yetong Shen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, 110122, People’s Republic of China
| | - Qing Chen
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, People’s Republic of China
| | - Lu Han
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, 110122, People’s Republic of China
| | - Bo Hu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, 110122, People’s Republic of China,Correspondence: Bo Hu, Email ;
| |
Collapse
|
12
|
Wang J, Dong Y, Ma P, Wang Y, Zhang F, Cai B, Chen P, Liu BF. Intelligent Micro-/Nanorobots for Cancer Theragnostic. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201051. [PMID: 35385160 DOI: 10.1002/adma.202201051] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most intractable diseases owing to its high mortality rate and lack of effective diagnostic and treatment tools. Advancements in micro-/nanorobot (MNR)-assisted sensing, imaging, and therapeutics offer unprecedented opportunities to develop MNR-based cancer theragnostic platforms. Unlike ordinary nanoparticles, which exhibit Brownian motion in biofluids, MNRs overcome viscous resistance in an ultralow Reynolds number (Re << 1) environment by effective self-propulsion. This unique locomotion property has motivated the advanced design and functionalization of MNRs as a basis for next-generation cancer-therapy platforms, which offer the potential for precise distribution and improved permeation of therapeutic agents. Enhanced barrier penetration, imaging-guided operation, and biosensing are additionally studied to enable the promising cancer-related applications of MNRs. Herein, the recent advances in MNR-based cancer therapy are comprehensively addresses, including actuation engines, diagnostics, medical imaging, and targeted drug delivery; promising research opportunities that can have a profound impact on cancer therapy over the next decade is highlighted.
Collapse
Affiliation(s)
- Jie Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yue Dong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peng Ma
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yu Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Fangyu Zhang
- Department of Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bocheng Cai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
13
|
Contemporary Tools for the Cure against Pernicious Microorganisms: Micro-/Nanorobots. PROSTHESIS 2022. [DOI: 10.3390/prosthesis4030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
One of the most pressing concerns to global public health is the emergence of drug-resistant pathogenic microorganisms due to increased unconscious antibiotic usage. With the rising antibiotic resistance, existing antimicrobial agents lose their effectiveness over time. This indicates that newer and more effective antimicrobial agents and methods should be investigated. Many studies have shown that micro-/nanorobots exhibit promise in the treatment of microbial infections with their great properties, such as the intrinsic antimicrobial activities owing to their oxidative stress induction and metal ion release capabilities, and effective and autonomous delivery of antibiotics to the target area. In addition, they have multiple simultaneous mechanisms of action against microbes, which makes them remarkable in antimicrobial activity. This review focuses on the antimicrobial micro-/nanorobots and their strategies to impede biofilm formation, following a brief introduction of the latest advancements in micro-/nanorobots, and their implementations against various bacteria, and other microorganisms.
Collapse
|
14
|
Chen Y, Du M, Yuan Z, Chen Z, Yan F. Spatiotemporal control of engineered bacteria to express interferon-γ by focused ultrasound for tumor immunotherapy. Nat Commun 2022; 13:4468. [PMID: 35918309 PMCID: PMC9345953 DOI: 10.1038/s41467-022-31932-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
Bacteria-based tumor therapy has recently attracted wide attentions due to its unique capability in targeting tumors and preferentially colonizing the core area of the tumor. Various therapeutic genes are also harbored into these engineering bacteria to enhance their anti-tumor efficacy. However, it is difficult to spatiotemporally control the expression of these inserted genes in the tumor site. Here, we engineer an ultrasound-responsive bacterium (URB) which can induce the expression of exogenous genes in an ultrasound-controllable manner. Owing to the advantage of ultrasound in tissue penetration, an acoustic remote control of bacterial gene expression can be realized by designing a temperature-actuated genetic switch. Cytokine interferon-γ (IFN-γ), an important immune regulatory molecule that plays a significant role in tumor immunotherapy, is used to test the system. Our results show that brief hyperthermia induced by focused ultrasound promotes the expression of IFN-γ gene, improving anti-tumor efficacy of URB in vitro and in vivo. Our study provides an alternative strategy for bacteria-mediated tumor immunotherapy.
Collapse
Affiliation(s)
- Yuhao Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Meng Du
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhen Yuan
- Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhiyi Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
15
|
Heckel S, Bilsing C, Wittmann M, Gemming T, Büttner L, Czarske J, Simmchen J. Beyond Janus Geometry: Characterization of Flow Fields around Nonspherical Photocatalytic Microswimmers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105009. [PMID: 35839469 PMCID: PMC9403636 DOI: 10.1002/advs.202105009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/04/2022] [Indexed: 05/25/2023]
Abstract
Catalytic microswimmers that move by a phoretic mechanism in response to a self-induced chemical gradient are often obtained by the design of spherical janus microparticles, which suffer from multi-step fabrication and low yields. Approaches that circumvent laborious multi-step fabrication include the exploitation of the possibility of nonuniform catalytic activity along the surface of irregular particle shapes, local excitation or intrinsic asymmetry. Unfortunately, the effects on the generation of motion remain poorly understood. In this work, single crystalline BiVO4 microswimmers are presented that rely on a strict inherent asymmetry of charge-carrier distribution under illumination. The origin of the asymmetrical flow pattern is elucidated because of the high spatial resolution of measured flow fields around pinned BiVO4 colloids. As a result the flow from oxidative to reductive particle sides is confirmed. Distribution of oxidation and reduction reactions suggests a dominant self-electrophoretic motion mechanism with a source quadrupole as the origin of the induced flows. It is shown that the symmetry of the flow fields is broken by self-shadowing of the particles and synthetic surface defects that impact the photocatalytic activity of the microswimmers. The results demonstrate the complexity of symmetry breaking in nonspherical microswimmers and emphasize the role of self-shadowing for photocatalytic microswimmers. The findings are leading the way toward understanding of propulsion mechanisms of phoretic colloids of various shapes.
Collapse
Affiliation(s)
- Sandra Heckel
- TU DresdenChair of Physical ChemistryZellescher Weg 1901069DresdenGermany
| | - Clemens Bilsing
- TU DresdenLaboratory for Measurement and Sensor System TechniqueHelmholtzstraße 1801069DresdenGermany
| | - Martin Wittmann
- TU DresdenChair of Physical ChemistryZellescher Weg 1901069DresdenGermany
| | - Thomas Gemming
- Leibniz Institute for Solid State and Materials Research DresdenHelmholtzstraße 2001069DresdenGermany
| | - Lars Büttner
- TU DresdenLaboratory for Measurement and Sensor System TechniqueHelmholtzstraße 1801069DresdenGermany
- Competence Center Biomedical Computational Laser Systms (BIOLAS)Helmholtzstraße 1801069DresdenGermany
| | - Jürgen Czarske
- TU DresdenLaboratory for Measurement and Sensor System TechniqueHelmholtzstraße 1801069DresdenGermany
- Competence Center Biomedical Computational Laser Systms (BIOLAS)Helmholtzstraße 1801069DresdenGermany
| | - Juliane Simmchen
- TU DresdenChair of Physical ChemistryZellescher Weg 1901069DresdenGermany
| |
Collapse
|
16
|
From radial to unidirectional water pumping in zeta-potential modulated Nafion nanostructures. Nat Commun 2022; 13:2812. [PMID: 35589767 PMCID: PMC9120507 DOI: 10.1038/s41467-022-30554-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 04/25/2022] [Indexed: 11/08/2022] Open
Abstract
Chemically propelled micropumps are promising wireless systems to autonomously drive fluid flows for many applications. However, many of these systems are activated by nocuous chemical fuels, cannot operate at high salt concentrations, or have difficulty for controlling flow directionality. In this work we report on a self-driven polymer micropump fueled by salt which can trigger both radial and unidirectional fluid flows. The micropump is based on the cation-exchanger Nafion, which produces chemical gradients and local electric fields capable to trigger interfacial electroosmotic flows. Unidirectional pumping is predicted by simulations and achieved experimentally by nanostructuring Nafion into microarrays with a fine tune modulation of surrounding surface zeta potentials. Nafion micropumps work in a wide range of salt concentrations, are reusable, and can be fueled by different salt cations. We demonstrate that they work with the common water-contaminant cadmium, using the own capture of this ion as fuel to drive fluid pumping. Thus, this system has potential for efficient and fast water purification strategies for environmental remediation. Unidirectional Nafion pumps also hold promise for effective analyte delivery or preconcentration for (bio)sensing assays. Chemically propelled micropumps are wireless fluid flow driving systems with many potential applications. Here, the authors report a self-driven reusable Nafion micropump fueled by different salt cations in a wide range of concentrations that triggers both radial and unidirectional flows, showing efficient water remediation capabilities.
Collapse
|
17
|
Meisami AH, Abbasi M, Mosleh-Shirazi S, Azari A, Amani AM, Vaez A, Golchin A. Self-propelled micro/nanobots: A new insight into precisely targeting cancerous cells through intelligent and deep cancer penetration. Eur J Pharmacol 2022; 926:175011. [PMID: 35568064 DOI: 10.1016/j.ejphar.2022.175011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/13/2022]
Abstract
Cancer overlooks are globally one of the most dangerous and life-threatening tribulations. While significant advances have been made in the targeted delivery of anti-cancer medications over the last few years, several challenges, such as low efficacy and strong toxic effects, remain to be addressed. Micro/nanomotors have been thoroughly studied for both effective cancer detection and treatment, as demonstrated by significant advancements in the architecture of smart and functional micro/nanomotor biomedical systems. Able to self-propelled within fluid media, micro/nanomotors have attractive vehicles to maximize the efficacy of tumor delivery. Here, we present the current developments in the delivery, detection, and imaging-guided treatment of micro/nanomotors in the clinical field, including cancer-related specific targeted drug delivery, and then discuss the barriers and difficulties encountered by micro/nanomotors throughout the medical process. Furthermore, this paper addresses the potential growth of micro/nanomotors for medical applications, and sets out the current drawbacks and future research directions for more advancement.
Collapse
Affiliation(s)
- Amir Hossein Meisami
- Department of Emergency Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Mosleh-Shirazi
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Arezo Azari
- Department of Applied Cell Sciences and Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Golchin
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
18
|
Chattopadhyay P, Magdanz V, Hernández-Meliá M, Borchert KBL, Schwarz D, Simmchen J. Size‐Dependent Inhibition of Sperm Motility by Copper Particles as a Path toward Male Contraception. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
| | - Veronika Magdanz
- Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute for Science and Technology 08028 Barcelona Spain
| | - María Hernández-Meliá
- Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute for Science and Technology 08028 Barcelona Spain
| | - Konstantin B. L. Borchert
- Nanostructured Materials Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Str. 6 01069 Dresden Germany
| | - Dana Schwarz
- Nanostructured Materials Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Str. 6 01069 Dresden Germany
| | | |
Collapse
|
19
|
Dias JMS, Estima D, Punte H, Klingner A, Marques L, Magdanz V, Khalil ISM. Modeling and Characterization of the Passive Bending Stiffness of Nanoparticle‐Coated Sperm Cells using Magnetic Excitation. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202100438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- João M. S. Dias
- Department of Biomechanical Engineering University of Twente Enschede 7522 NB The Netherlands
- Institute of Systems and Robotics University of Coimbra Coimbra 3030‐194 Portugal
| | - Daniel Estima
- Department of Biomechanical Engineering University of Twente Enschede 7522 NB The Netherlands
| | - Harmen Punte
- Department of Biomechanical Engineering University of Twente Enschede 7522 NB The Netherlands
| | - Anke Klingner
- Department of Physics The German University in Cairo Cairo 11835 Egypt
| | - Lino Marques
- Institute of Systems and Robotics University of Coimbra Coimbra 3030‐194 Portugal
| | - Veronika Magdanz
- Institute of Bioengineering of Catalonia Smart Nanobiodevices group Barcelona 08028 Spain
| | - Islam S. M. Khalil
- Department of Biomechanical Engineering University of Twente Enschede 7522 NB The Netherlands
| |
Collapse
|
20
|
Choi H, Yi J, Cho SH, Hahn SK. Multifunctional micro/nanomotors as an emerging platform for smart healthcare applications. Biomaterials 2021; 279:121201. [PMID: 34715638 DOI: 10.1016/j.biomaterials.2021.121201] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 01/06/2023]
Abstract
Self-propelling micro- and nano-motors (MNMs) are emerging as a multifunctional platform for smart healthcare applications such as biosensing, bioimaging, and targeted drug delivery with high tissue penetration, stirring effect, and rapid drug transport. MNMs can be propelled and/or guided by chemical substances or external stimuli including ultrasound, magnetic field, and light. In addition, enzymatically powered MNMs and biohybrid micromotors have been developed using the biological components in the body. In this review, we describe emerging MNMs focusing on their smart propulsion systems, and diagnostic and therapeutic applications. Finally, we highlight several MNMs for in vivo applications and discuss the future perspectives of MNMs on their current limitations and possibilities toward further clinical applications.
Collapse
Affiliation(s)
- Hyunsik Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Jeeyoon Yi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Seong Hwi Cho
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
21
|
Cheng X, Gao J, Ding Y, Lu Y, Wei Q, Cui D, Fan J, Li X, Zhu E, Lu Y, Wu Q, Li L, Huang W. Multi-Functional Liposome: A Powerful Theranostic Nano-Platform Enhancing Photodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100876. [PMID: 34085415 PMCID: PMC8373168 DOI: 10.1002/advs.202100876] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/11/2021] [Indexed: 05/05/2023]
Abstract
Although photodynamic therapy (PDT) has promising advantages in almost non-invasion, low drug resistance, and low dark toxicity, it still suffers from limitations in the lipophilic nature of most photosensitizers (PSs), short half-life of PS in plasma, poor tissue penetration, and low tumor specificity. To overcome these limitations and enhance PDT, liposomes, as excellent multi-functional nano-carriers for drug delivery, have been extensively studied in multi-functional theranostics, including liposomal PS, targeted drug delivery, controllable drug release, image-guided therapy, and combined therapy. This review provides researchers with a useful reference in liposome-based drug delivery.
Collapse
Affiliation(s)
- Xiamin Cheng
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Jing Gao
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yang Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yao Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Qiancheng Wei
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Dezhi Cui
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Jiali Fan
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Xiaoman Li
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Ershu Zhu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yongna Lu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| |
Collapse
|
22
|
Sharan P, Nsamela A, Lesher-Pérez SC, Simmchen J. Microfluidics for Microswimmers: Engineering Novel Swimmers and Constructing Swimming Lanes on the Microscale, a Tutorial Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007403. [PMID: 33949106 DOI: 10.1002/smll.202007403] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Indexed: 05/16/2023]
Abstract
This paper provides an updated review of recent advances in microfluidics applied to artificial and biohybrid microswimmers. Sharing the common regime of low Reynolds number, the two fields have been brought together to take advantage of the fluid characteristics at the microscale, benefitting microswimmer research multifold. First, microfluidics offer simple and relatively low-cost devices for high-fidelity production of microswimmers made of organic and inorganic materials in a variety of shapes and sizes. Microscale confinement and the corresponding fluid properties have demonstrated differential microswimmer behaviors in microchannels or in the presence of various types of physical or chemical stimuli. Custom environments to study these behaviors have been designed in large part with the help of microfluidics. Evaluating microswimmers in increasingly complex lab environments such as microfluidic systems can ensure more effective implementation for in-field applications. The benefits of microfluidics for the fabrication and evaluation of microswimmers are balanced by the potential use of microswimmers for sample manipulation and processing in microfluidic systems, a large obstacle in diagnostic and other testing platforms. In this review various ways in which these two complementary technology fields will enhance microswimmer development and implementation in various fields are introduced.
Collapse
Affiliation(s)
- Priyanka Sharan
- Chair of Physical Chemistry, TU Dresden, 01062, Dresden, Germany
| | | | | | - Juliane Simmchen
- Chair of Physical Chemistry, TU Dresden, 01062, Dresden, Germany
| |
Collapse
|
23
|
Abstract
Abstract
In the past few decades, robotics research has witnessed an increasingly high interest in miniaturized, intelligent, and integrated robots. The imperative component of a robot is the actuator that determines its performance. Although traditional rigid drives such as motors and gas engines have shown great prevalence in most macroscale circumstances, the reduction of these drives to the millimeter or even lower scale results in a significant increase in manufacturing difficulty accompanied by a remarkable performance decline. Biohybrid robots driven by living cells can be a potential solution to overcome these drawbacks by benefiting from the intrinsic microscale self-assembly of living tissues and high energy efficiency, which, among other unprecedented properties, also feature flexibility, self-repair, and even multiple degrees of freedom. This paper systematically reviews the development of biohybrid robots. First, the development of biological flexible drivers is introduced while emphasizing on their advantages over traditional drivers. Second, up-to-date works regarding biohybrid robots are reviewed in detail from three aspects: biological driving sources, actuator materials, and structures with associated control methodologies. Finally, the potential future applications and major challenges of biohybrid robots are explored.
Graphic abstract
Collapse
|
24
|
Oravczová V, Garaiová Z, Hianik T. Nanoparticles and Nanomotors Modified by Nucleic Acids Aptamers for Targeted Drug Delivery. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Magdanz V, Vivaldi J, Mohanty S, Klingner A, Vendittelli M, Simmchen J, Misra S, Khalil ISM. Impact of Segmented Magnetization on the Flagellar Propulsion of Sperm-Templated Microrobots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004037. [PMID: 33898186 PMCID: PMC8061355 DOI: 10.1002/advs.202004037] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/17/2020] [Indexed: 05/22/2023]
Abstract
Technical design features for improving the way a passive elastic filament produces propulsive thrust can be understood by analyzing the deformation of sperm-templated microrobots with segmented magnetization. Magnetic nanoparticles are electrostatically self-assembled on bovine sperm cells with nonuniform surface charge, producing different categories of sperm-templated microrobots. Depending on the amount and location of the nanoparticles on each cellular segment, magnetoelastic and viscous forces determine the wave pattern of each category during flagellar motion. Passively propagating waves are induced along the length of these microrobots using external rotating magnetic fields and the resultant wave patterns are measured. The response of the microrobots to the external field reveals distinct flow fields, propulsive thrust, and frequency responses during flagellar propulsion. This work allows predictions for optimizing the design and propulsion of flexible magnetic microrobots with segmented magnetization.
Collapse
Affiliation(s)
- Veronika Magdanz
- Applied ZoologyTechnical University of DresdenDresden01069Germany
- Smart Nano‐Bio‐Devices GroupInstitute for Bioengineering of CataloniaBarcelona08028Spain
| | - Jacopo Vivaldi
- Department of Computer Control and Management EngineeringSapienza University of RomeRome00185Italy
| | - Sumit Mohanty
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteEnschede7522 NBThe Netherlands
| | - Anke Klingner
- Department of PhysicsThe German University in CairoNew Cairo13411Egypt
| | - Marilena Vendittelli
- Department of Computer Control and Management EngineeringSapienza University of RomeRome00185Italy
| | - Juliane Simmchen
- Physical ChemistryTechnical University of DresdenDresden01069Germany
| | - Sarthak Misra
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteEnschede7522 NBThe Netherlands
- Surgical Robotics LaboratoryDepartment of Biomedical EngineeringUniversity of Groningen and University Medical Center GroningenGroningen9713 GZThe Netherlands
| | - Islam S. M. Khalil
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteEnschede7522 NBThe Netherlands
| |
Collapse
|
26
|
Arslanova A, Dugyala VR, Reichel EK, Reddy N, Fransaer J, Clasen C. 'Sweeping rods': cargo transport by self-propelled bimetallic microrods moving perpendicular to their long axis. SOFT MATTER 2021; 17:2369-2373. [PMID: 33606868 DOI: 10.1039/d1sm00042j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A possible application of self-propelling particles is the transport of microscopic cargo. Maximizing the collection and transport efficiency of particulate matter requires the area swept by the moving particle to be as large as possible. One such particle geometry are rods propelled perpendicular to their long axis, that act as "sweepers" for collecting particles. Here we report on the required Janus coating to achieve such motion, and on the dynamics of the collection and transport of microscopic cargo by sideways propelled Janus rods.
Collapse
Affiliation(s)
- Alina Arslanova
- Department of Chemical Engineering, KU Leuven, Leuven 3001, Belgium.
| | - Venkateshwar Rao Dugyala
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Erwin Konrad Reichel
- Institute for Microelectronics and Microsensors, Johannes Kepler University, Altenberger Strasse 69, Linz 4040, Austria
| | - Naveen Reddy
- Faculty of Engineering Technology, University of Hasselt, Martelarenlaan 42, Hasselt 3500, Belgium and IMO-IMOMEC, Wetenschapspark 1, Diepenbeek 3590, Belgium
| | - Jan Fransaer
- Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium
| | - Christian Clasen
- Department of Chemical Engineering, KU Leuven, Leuven 3001, Belgium.
| |
Collapse
|
27
|
Fränzl M, Muiños-Landin S, Holubec V, Cichos F. Fully Steerable Symmetric Thermoplasmonic Microswimmers. ACS NANO 2021; 15:3434-3440. [PMID: 33556235 DOI: 10.1021/acsnano.0c10598] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A cornerstone of the directed motion of microscopic self-propelling particles is an asymmetric particle structure defining a polarity axis along which these tiny machines move. This structural asymmetry ties the orientational Brownian motion to the microswimmers directional motion, limiting their persistence and making the long time motion effectively diffusive. Here, we demonstrate a completely symmetric thermoplasmonic microswimmer, which is propelled by laser-induced self-thermophoresis. The propulsion direction is imprinted externally to the particle by the heating laser position. The orientational Brownian motion, thus, becomes irrelevant for the propulsion, allowing enhanced control over the particles dynamics with almost arbitrary steering capability. We characterize the particle motion in experiments and simulations and also theoretically. The analysis reveals additional noise appearing in these systems, which is conjectured to be relevant for biological systems. Our experimental results show that even very small particles can be precisely controlled, enabling more advanced applications of these micromachines.
Collapse
Affiliation(s)
- Martin Fränzl
- Peter Debye Institute for Soft Matter Physics, Molecular Nanophotonics Group, Universität Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| | - Santiago Muiños-Landin
- Peter Debye Institute for Soft Matter Physics, Molecular Nanophotonics Group, Universität Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
- Smart Systems and Smart Manufacturing, Artificial Intelligence and Data Analytics Laboratory, Polígono Industrial de Cataboi, AIMEN Technology Centre, 36418 Pontevedra, Spain
| | - Viktor Holubec
- Theory of Condensed Matter, Institute for Theoretical Physics, Universität Leipzig, Brüderstr. 16, 04103 Leipzig, Germany
- Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague, Czech Republic
| | - Frank Cichos
- Peter Debye Institute for Soft Matter Physics, Molecular Nanophotonics Group, Universität Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| |
Collapse
|
28
|
Gao C, Wang Y, Ye Z, Lin Z, Ma X, He Q. Biomedical Micro-/Nanomotors: From Overcoming Biological Barriers to In Vivo Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000512. [PMID: 32578282 DOI: 10.1002/adma.202000512] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/20/2020] [Indexed: 05/20/2023]
Abstract
Self-propelled micro- and nanomotors (MNMs) have shown great potential for applications in the biomedical field, such as active targeted delivery, detoxification, minimally invasive diagnostics, and nanosurgery, owing to their tiny size, autonomous motion, and navigation capacities. To enter the clinic, biomedical MNMs request the biodegradability of their manufacturing materials, the biocompatibility of chemical fuels or externally physical fields, the capability of overcoming various biological barriers (e.g., biofouling, blood flow, blood-brain barrier, cell membrane), and the in vivo visual positioning for autonomous navigation. Herein, the recent advances of synthetic MNMs in overcoming biological barriers and in vivo motion-tracking imaging techniques are highlighted. The challenges and future research priorities are also addressed. With continued attention and innovation, it is believed that, in the future, biomedical MNMs will pave the way to improve the targeted drug delivery efficiency.
Collapse
Affiliation(s)
- Changyong Gao
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150080, China
| | - Yong Wang
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen, 518055, China
| | - Zihan Ye
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen, 518055, China
| | - Zhihua Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150080, China
| | - Xing Ma
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen, 518055, China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150080, China
| |
Collapse
|
29
|
Wang W, Zhou C. A Journey of Nanomotors for Targeted Cancer Therapy: Principles, Challenges, and a Critical Review of the State-of-the-Art. Adv Healthc Mater 2021; 10:e2001236. [PMID: 33111501 DOI: 10.1002/adhm.202001236] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/04/2020] [Indexed: 12/11/2022]
Abstract
A nanomotor is a miniaturized device that converts energy stored in the environment into mechanical motion. The last two decades have witnessed a surge of research interests in the biomedical applications of nanomotors, but little clinical translation. To accelerate this process, targeted cancer therapy is used as an example to describe a "survive, locate, operate, and terminate" (SLOT) mission of a nanomotor, where it must 1) survive in the unfriendly in vivo environment, 2) locate its target as well as be located by human operators, 3) carry out specific operations, and 4) terminate after the mission is completed. Along this journey, the challenges presented to a nanomotor, including to power, navigate, steer, target, release, control, image, and communicate are discussed, and how state-of-the-art nanomotors meet or fall short of these requirements is critically reviewed. These discussions are then condensed into a table for easy reference. In particular, it is argued that chemically powered nanomotors are intrinsically ill-positioned for targeted cancer therapy, while nanomotors powered by magnetic fields or ultrasound show more promises. Following this argument, a tentative nanomotor design is then presented in the end to conform to the SLOT guideline, and to inspire practical, functional nanorobots that are yet to come.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Chao Zhou
- School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| |
Collapse
|
30
|
Li T, Wan M, Mao C. Research Progress of Micro/Nanomotors for Cancer Treatment. Chempluschem 2020; 85:2586-2598. [PMID: 33174354 DOI: 10.1002/cplu.202000532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/14/2020] [Indexed: 01/01/2023]
Abstract
Nanomaterials have been widely used in cancer treatment and have achieved remarkable results. However, the specificity of the tumor microenvironment and a series of biological barriers (such as blood flow, cell membrane, dense tissue, etc.) have caused many obstacles faced by nanomaterials after entering the human body, which makes traditional drug delivery vehicles have insurmountable difficulties, such as low delivery efficiency, poor permeability, etc. The micro/nanomotors with autonomous movement capabilities provide the possibility to solve the above problems. Therefore, this review summarizes the current researches of micro/nanomotors strategies to overcome the different biological barriers of nanomaterials in cancer treatment. The advantages and disadvantages of three typical micro/nanomotors (biological, physical and chemical micro/nanomotors) in cancer treatment are summarized separately, and the future design of micro/nanomotors more suitable for tumor environment was discussed.
Collapse
Affiliation(s)
- Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
31
|
Schmidt CK, Medina-Sánchez M, Edmondson RJ, Schmidt OG. Engineering microrobots for targeted cancer therapies from a medical perspective. Nat Commun 2020; 11:5618. [PMID: 33154372 PMCID: PMC7645678 DOI: 10.1038/s41467-020-19322-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Systemic chemotherapy remains the backbone of many cancer treatments. Due to its untargeted nature and the severe side effects it can cause, numerous nanomedicine approaches have been developed to overcome these issues. However, targeted delivery of therapeutics remains challenging. Engineering microrobots is increasingly receiving attention in this regard. Their functionalities, particularly their motility, allow microrobots to penetrate tissues and reach cancers more efficiently. Here, we highlight how different microrobots, ranging from tailor-made motile bacteria and tiny bubble-propelled microengines to hybrid spermbots, can be engineered to integrate sophisticated features optimised for precision-targeting of a wide range of cancers. Towards this, we highlight the importance of integrating clinicians, the public and cancer patients early on in the development of these novel technologies.
Collapse
Affiliation(s)
- Christine K Schmidt
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester, M20 4GJ, UK.
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany.
| | - Richard J Edmondson
- Gynaecological Oncology, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- St. Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research Floor, Oxford Road, Manchester, M13 9WL, UK
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany.
| |
Collapse
|
32
|
Agrahari V, Agrahari V, Chou ML, Chew CH, Noll J, Burnouf T. Intelligent micro-/nanorobots as drug and cell carrier devices for biomedical therapeutic advancement: Promising development opportunities and translational challenges. Biomaterials 2020; 260:120163. [DOI: 10.1016/j.biomaterials.2020.120163] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/01/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023]
|
33
|
Heckel S, Grauer J, Semmler M, Gemming T, Löwen H, Liebchen B, Simmchen J. Active Assembly of Spheroidal Photocatalytic BiVO 4 Microswimmers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12473-12480. [PMID: 32825804 DOI: 10.1021/acs.langmuir.0c01568] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We create single-component photocatalytic bismuth vanadate (BiVO4) microswimmers with a spheroidal shape that move individually upon irradiation without any asymmetrization step. These particles form active assemblies which we investigate combining an experimental approach with numerical simulations and analytical calculations. We systematically explore the speed and assembly of the swimmers into clusters of up to four particles and find excellent agreement between experiment and theory, which helps us to understand motion patterns and speed trends. Moreover, different batches of particles can be functionalized separately, making them ideal candidates to fulfill a multitude of tasks, such as sensing or environmental remediation. To exemplify this, we coat our swimmers with silica (SiO2) and selectively couple some of their modules to fluorophores in a way which does not inhibit self-propulsion. The present work establishes spheroidal BiVO4 microswimmers as a versatile platform to design multifunctional microswimmers.
Collapse
Affiliation(s)
- Sandra Heckel
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Jens Grauer
- Theoretical Physics II: Soft Matter, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Maria Semmler
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Thomas Gemming
- Institute of Complex Materials, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Hartmut Löwen
- Theoretical Physics II: Soft Matter, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Benno Liebchen
- Institute of Condensed Matter Physics, TU Darmstadt, 64289 Darmstadt, Germany
| | - Juliane Simmchen
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| |
Collapse
|
34
|
Naeem S, Mujtaba J, Naeem F, Xu K, Huang G, Solovev AA, Zhang J, Mei Y. Catalytic/magnetic assemblies of rolled-up tubular nanomembrane-based micromotors. RSC Adv 2020; 10:36526-36530. [PMID: 35517949 PMCID: PMC9057022 DOI: 10.1039/d0ra07347d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 01/23/2023] Open
Abstract
Nano/-micromotors self-assembling into static and dynamic clusters are of considerable promise to study smart, interactive, responsive, and adaptive nano/-micromaterials that can mimic spatio-temporal patterns, swarming, and collective behaviors widely observed in nature. Previously, the dynamic self-assembly of bubble-propelled catalytic micromotors initiated by capillary forces has been reported. This manuscript shows novel self-assembly modes of magnetic/catalytic Ti/FeNi/Pt tubular micromotors. When chemical fuel (hydrogen peroxide) is added it is decomposed on contact with Pt catalyst into oxygen and water. Here, the non-bubbling motion and autonomous assembly of catalytic/magnetic nanomembranes, i.e. without nucleation/generation of oxygen bubbles, are shown. Moreover, magnetic Ti/FeNi/Pt micromotors are spun using an external magnetic field and they form dynamic clusters balanced by attractive magnetic and repulsive hydrodynamic interactions. Micromotors form dynamic clusters, undergo precession and rapidly propagate through the solution.
Collapse
Affiliation(s)
- Sumayyah Naeem
- State Key Laboratory for Modification of Chemical Fibers, Polymer Material Science and Engineering, Donghua University Shanghai 201620 China
- Department of Materials Science, Fudan University Shanghai 200433 China
| | - Jawayria Mujtaba
- Department of Materials Science, Fudan University Shanghai 200433 China
| | - Farah Naeem
- State Key Laboratory for Modification of Chemical Fibers, Polymer Material Science and Engineering, Donghua University Shanghai 201620 China
- Department of Materials Science, Fudan University Shanghai 200433 China
| | - Kailiang Xu
- Department of Electronic Engineering, Fudan University Shanghai 200433 China
| | - Gaoshan Huang
- Department of Materials Science, Fudan University Shanghai 200433 China
| | | | - Jing Zhang
- College of Science, Donghua University Shanghai 201620 China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University Shanghai 200433 China
| |
Collapse
|
35
|
Sebtosheikh M, Naji A. Effective interactions mediated between two permeable disks in an active fluid. Sci Rep 2020; 10:15570. [PMID: 32968107 PMCID: PMC7511345 DOI: 10.1038/s41598-020-71209-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/12/2020] [Indexed: 01/30/2023] Open
Abstract
We study steady-state properties of a bath of active Brownian particles (ABPs) in two dimensions in the presence of two fixed, permeable (hollow) disklike inclusions, whose interior and exterior regions can exhibit mismatching motility (self-propulsion) strengths for the ABPs. We show that such a discontinuous motility field strongly affects spatial distribution of ABPs and thus also the effective interaction mediated between the inclusions through the active bath. Such net interactions arise from soft interfacial repulsions between ABPs that sterically interact with and/or pass through permeable membranes assumed to enclose the inclusions. Both regimes of repulsion and attractive (albeit with different mechanisms) are reported and summarized in overall phase diagrams.
Collapse
Affiliation(s)
- Mahmoud Sebtosheikh
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| | - Ali Naji
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| |
Collapse
|
36
|
Tezel G, Timur SS, Kuralay F, Gürsoy RN, Ulubayram K, Öner L, Eroğlu H. Current status of micro/nanomotors in drug delivery. J Drug Target 2020; 29:29-45. [PMID: 32672079 DOI: 10.1080/1061186x.2020.1797052] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthetic micro/nanomotors (MNMs) are novel, self-propelled nano or microscale devices that are widely used in drug transport, cell stimulation and isolation, bio-imaging, diagnostic and monitoring, sensing, photocatalysis and environmental remediation. Various preparation methods and propulsion mechanisms make MNMs "tailormade" nanosystems for the intended purpose or use. As the one of the newest members of nano carriers, MNMs open a new perspective especially for rapid drug transport and gene delivery. Although there exists limited number of in-vivo studies for drug delivery purposes, existence of in-vitro supportive data strongly encourages researchers to move on in this field and benefit from the manoeuvre capability of these novel systems. In this article, we reviewed the preparation and propulsion mechanisms of nanomotors in various fields with special attention to drug delivery systems.
Collapse
Affiliation(s)
- Gizem Tezel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selin Seda Timur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Filiz Kuralay
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - R Neslihan Gürsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Kezban Ulubayram
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Levent Öner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Hakan Eroğlu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
37
|
Cao Z, Liu J. Bacteria and bacterial derivatives as drug carriers for cancer therapy. J Control Release 2020; 326:396-407. [PMID: 32681947 DOI: 10.1016/j.jconrel.2020.07.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 01/21/2023]
Abstract
The application of bacteria and bacteria-derived membrane vesicles (MVs) has promising potential to make a great impact on the development of controllable targeted drug delivery for combatting cancer. Comparing to most other traditional drug delivery systems, bacteria and their MVs have unique capabilities as drug carriers for cancer treatment. They can overcome physical barriers to target and accumulate in tumor tissues and initiate antitumor immune responses. Furtherly, they are able to be modified both genetically and chemically, to produce and transport anticancer agents into tumor tissues with improved safety and efficacy of cancer treatment but decreased cytotoxic effects to normal cells. In this review, we present some examples of tumor-targeting bacteria and bacteria-derived MVs for the delivery of anticancer drugs, including chemo-therapeutic, radio-therapeutic, photothermal-therapeutic, and immuno-therapeutic agents. We also discuss the advantages as well as the limitations of these tumor-targeting bacteria and their MVs used as platforms for controlled delivery of anticancer therapeutic agents, and further highlight their great potential on clinical translation.
Collapse
Affiliation(s)
- Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
38
|
Hermanová S, Pumera M. Biocatalytic Micro- and Nanomotors. Chemistry 2020; 26:11085-11092. [PMID: 32633441 DOI: 10.1002/chem.202001244] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/24/2020] [Indexed: 11/08/2022]
Abstract
Enzyme-powered micro- and nanomotors are tiny devices inspired by nature that utilize enzyme-triggered chemical conversion to release energy stored in the chemical bonds of a substrate (fuel) to actuate it into active motion. Compared with conventional chemical micro-/nanomotors, these devices are particularly attractive because they self-propel by utilizing biocompatible fuels, such as glucose, urea, glycerides, and peptides. They have been designed with functional material constituents to efficiently perform tasks related to active targeting, drug delivery and release, biosensing, water remediation, and environmental monitoring. Because only a small number of enzymes have been exploited as bioengines to date, a new generation of multifunctional, enzyme-powered nanorobots will emerge in the near future to selectively search for and utilize water contaminants or disease-related metabolites as fuels. This Minireview highlights recent progress in enzyme-powered micro- and nanomachines.
Collapse
Affiliation(s)
- Soňa Hermanová
- Department of Polymers, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic.,Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic.,Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.,Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, 616 00, Czech Republic.,Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|
39
|
Nguyen HV, Faivre V. Targeted drug delivery therapies inspired by natural taxes. J Control Release 2020; 322:439-456. [PMID: 32259545 DOI: 10.1016/j.jconrel.2020.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
A taxis is the movement responding to a stimulus of an organism. This behavior helps organisms to migrate, to find food or to avoid dangers. By mimicking and using natural taxes, many bio-inspired and bio-hybrid drug delivery systems have been synthesized. Under the guidance of physical and chemical stimuli, drug-loaded carriers are led to a target, for example tumors, then locally release the drug, inducing a therapeutic effect without influencing other parts of the body. On the other hand, for moving targets, for example metastasis cancer cells or bacteria, taking advantage of their taxes behavior is a solution to capture and to eliminate them. For instance, several traps and ecological niches have been fabricated to attract cancer cells by releasing chemokines. Cancer cells are then eliminated by drug loaded inside the trap, by radiotherapy focusing on the trap location or by simply removing the trap. Further research is needed to deeply understand the taxis behavior of organisms, which is essential to ameliorate the performance of taxes-inspired drug delivery application.
Collapse
Affiliation(s)
- Hung V Nguyen
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 5 rue JB Clément, 92296 Châtenay-Malabry, France
| | - Vincent Faivre
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 5 rue JB Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
40
|
Ridzewski C, Li M, Dong B, Magdanz V. Gelatin Microcartridges for Onboard Activation and Antioxidant Protection of Sperm. ACS APPLIED BIO MATERIALS 2020; 3:1616-1627. [DOI: 10.1021/acsabm.9b01188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Clara Ridzewski
- Chair of Applied Zoology, TU Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Mingtong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Bin Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Veronika Magdanz
- Chair of Applied Zoology, TU Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| |
Collapse
|
41
|
Sun L, Yu Y, Chen Z, Bian F, Ye F, Sun L, Zhao Y. Biohybrid robotics with living cell actuation. Chem Soc Rev 2020; 49:4043-4069. [DOI: 10.1039/d0cs00120a] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review comprehensively discusses recent advances in the basic components, controlling methods and especially in the applications of biohybrid robots.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and Immunology
- The Affiliated Drum Tower Hospital of Nanjing University Medical School
- 210008 Nanjing
- China
- Department of Rheumatology and Immunology
| | - Yunru Yu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- 210096 Nanjing
- China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- 210096 Nanjing
- China
| | - Feika Bian
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- 210096 Nanjing
- China
| | - Fangfu Ye
- Wenzhou Institute
- University of Chinese Academy of Sciences
- Wenzhou
- China
- Beijing National Laboratory for Condensed Matter Physics
| | - Lingyun Sun
- Department of Rheumatology and Immunology
- The Affiliated Drum Tower Hospital of Nanjing University Medical School
- 210008 Nanjing
- China
- Department of Rheumatology and Immunology
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology
- The Affiliated Drum Tower Hospital of Nanjing University Medical School
- 210008 Nanjing
- China
- Department of Rheumatology and Immunology
| |
Collapse
|
42
|
Yuan K, Jiang Z, Jurado-Sánchez B, Escarpa A. Nano/Micromotors for Diagnosis and Therapy of Cancer and Infectious Diseases. Chemistry 2019; 26:2309-2326. [PMID: 31682040 DOI: 10.1002/chem.201903475] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Indexed: 12/23/2022]
Abstract
Micromotors are man-made nano/microscale devices capable of transforming energy into mechanical motion. The accessibility and force offered by micromotors hold great promise to solve complex biomedical challenges. This Review highlights current progress and prospects in the use of nano and micromotors for diagnosis and treatment of infectious diseases and cancer. Motion-based sensing and fluorescence switching detection strategies along with therapeutic approaches based on direct cell capture; killing by direct contact or specific drug delivery to the affected site, will be comprehensively covered. Future challenges to translate the potential of nano/micromotors into practical applications will be described in the conclusions.
Collapse
Affiliation(s)
- Kaisong Yuan
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, 28805, Madrid, Spain.,Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Zhengjin Jiang
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, 28805, Madrid, Spain.,Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, 28805, Madrid, Spain.,Chemical Research Institute "Andres M. Del Rio", University of Alcala, 28805, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, 28805, Madrid, Spain.,Chemical Research Institute "Andres M. Del Rio", University of Alcala, 28805, Madrid, Spain
| |
Collapse
|