1
|
Lu W, Zha B, Lyu J, LingHu C, Chen J, Deng S, Zhang X, Li L, Wang G. Whole-genome sequencing and genomic analysis of four Akkermansia strains newly isolated from human feces. Front Microbiol 2024; 15:1500886. [PMID: 39736996 PMCID: PMC11683593 DOI: 10.3389/fmicb.2024.1500886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Background Numerous studies have demonstrated that Akkermansia is closely associated with human health. These bacteria colonize the mucus layer of the gastrointestinal tract and utilize mucin as their sole source of carbon and nitrogen. Akkermansia spp. exhibit potential as probiotics under specific conditions. However, the gene accumulation curve derived from pan-genome analysis suggests that the genome of Akkermansia strains remains open. Consequently, current genome mining efforts are insufficient to fully capture the intraspecific and interspecific characteristics of Akkermansia, necessitating continuous exploration of the genomic and phenotypic diversity of new isolates. Methods Based on this finding, we sequenced, assembled, and functionally annotated the whole genomes of four new human isolates from our laboratory: AKK-HX001, AKK-HX002, AKK-HX003, and AKK-HX004. Results Phylogenetic analysis revealed that all four isolates belonged to the AmII phylogroup, whereas the type strain DSM 22959 is classified within the AmI phylogroup. Moreover, 2,184 shared homologous genes were identified among the four isolates. Functional annotation using the COG, KEGG, and CAZy databases indicated that the functional genes of the four isolates were primarily associated with metabolism. Two antibiotic resistance genes were identified in AKK-HX001 and AKK-HX002, while three resistance genes were detected in AKK-HX003 and AKK-HX004. Additionally, each of the four isolates possessed two virulence genes and three pathogenicity genes, none of which were associated with pathogenicity. The prediction of mobile genetic elements indicated unequal distributions of GIs among the isolates, and a complete CRISPR system was identified in all isolates except AKK-HX003. Two annotated regions of secondary metabolite biosynthesis genes, both belonging to Terpene, were detected using the antiSMASH online tool. Conclusion These findings indicate that the four Akkermansia isolates, which belong to a phylogroup distinct from the model strain DSM 22959, exhibit lower genetic risk and may serve as potential probiotic resources for future research.
Collapse
Affiliation(s)
- Wenjing Lu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Biqing Zha
- Jiujiang Center for Disease Control and Prevention, Jiujiang, China
| | - Jie Lyu
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition and Health, Guangzhou, China
| | - Chenxi LingHu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jing Chen
- Chengdu East New District Public Health Center, Chengdu, China
| | - Sisi Deng
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Xiangling Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Liang Li
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition and Health, Guangzhou, China
| | - Guoqing Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Gao Y, Chen H, Yang W, Wang S, Gong D, Zhang X, Huang Y, Kumar V, Huang Q, Kandegama WMWW, Hao G. New avenues of combating antibiotic resistance by targeting cryptic pockets. Pharmacol Res 2024; 210:107495. [PMID: 39491636 DOI: 10.1016/j.phrs.2024.107495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/02/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Antibiotic resistance is a global health concern that is rapidly spreading among human and animal pathogens. Developing novel antibiotics is one of the most significant approaches to surmount antibiotic resistance. Given the difficult in identifying novel targets, cryptic binding sites provide new pockets for compounds design to combat antibiotic resistance. However, there exists a lack of comprehensive analysis and discussion on the successful utilization of cryptic pockets in overcoming antibiotic resistance. Here, we systematically analyze the crucial role of cryptic pockets in neutralizing antibiotic resistance. First, antibiotic resistance development and associated resistance mechanisms are summarized. Then, the advantages and mechanisms of cryptic pockets for overcoming antibiotic resistance were discussed. Specific cryptic pockets in resistant proteins and successful case studies of designed inhibitors are exemplified. This review provides insight into the discovery of cryptic pockets for drug design as an approach to overcome antibiotic resistance.
Collapse
Affiliation(s)
- Yangyang Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Huimin Chen
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China
| | - Weicheng Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Shuang Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Daohong Gong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Xiao Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Yuanqin Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Vinit Kumar
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Qiuqian Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - W M W W Kandegama
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; Department of Horticulture and Landscape Gardening, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila, 60170 Sri Lanka
| | - Gefei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
3
|
Singhal M, Seaton CC, Surtees A, Katsikogianni MG. Formulation, Characterisation, and Biocompatibility Assessment of Rifampicin-Loaded Poly(d,l-lactide-co-glycolide) Composites for Local Treatment of Orthopaedic and Wound Infections. Pharmaceutics 2024; 16:1467. [PMID: 39598590 PMCID: PMC11597898 DOI: 10.3390/pharmaceutics16111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: The escalating challenge of antimicrobial resistance (AMR) necessitates the development of targeted antibiotic delivery platforms, minimising systemic administration. Polymer-based drug delivery emerges as a promising solution, ensuring sustained release and prolonged efficacy of bioactive compounds, ensuring long-term efficacy. Methods: This study focuses on encapsulating rifampicin (RIF), a key antibiotic for orthopaedic and wound-related infections, within Poly(d,l-lactide-co-glycolide) (PLGA), a biodegradable polymer, through solvent casting, to formulate a PLGA-RIF composite membrane. Comprehensive characterisation, employing Fourier-transformed infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermal analysis and X-ray Diffraction (XRD), confirmed the integrity of both the starting and produced materials. UV-Vis spectroscopy revealed a controlled drug release profile over 21 days in various media, with the chosen media influencing the drug release, notably the tryptic soya broth (TSB) caused the highest release. The quantitative assessment of the antimicrobial efficacy of the developed PLGA-RIF composite was conducted by measuring the size of the inhibition zones against both Gram-negative and Gram-positive bacteria. Results: The results confirmed the composite's potential as a robust antibacterial biomaterial, demonstrating a rapid and effective antibacterial response. Cytocompatibility tests incorporated human fibroblast and osteoblast-like cell lines and demonstrated that the RIF:PLGA (1:8) formulation maintained eukaryotic cell viability, indicating the composite's potential for targeted medical applications in combating bacterial infections with minimal systemic impact. Conclusions: This study presents the significance of investigating drug release within appropriate and relevant physiological media. A key novelty of this work therefore lies in the exploration of drug release dynamics across different media, allowing for a comprehensive understanding of how varying physiological conditions may influence drug release and its effect on biological responses.
Collapse
Affiliation(s)
- Mitali Singhal
- School of Pharmacy and Medical Science, Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK;
| | - Colin C. Seaton
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK;
| | - Alexander Surtees
- School of Archaeological and Forensic Sciences, University of Bradford, Bradford BD7 1DP, UK;
| | | |
Collapse
|
4
|
Banerji A, Brinkman NE, Davis B, Franklin A, Jahne M, Keely SP. Food Webs and Feedbacks: The Untold Ecological Relevance of Antimicrobial Resistance as Seen in Harmful Algal Blooms. Microorganisms 2024; 12:2121. [PMID: 39597512 PMCID: PMC11596618 DOI: 10.3390/microorganisms12112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial resistance (AMR) has long been framed as an epidemiological and public health concern. Its impacts on the environment are unclear. Yet, the basis for AMR is altered cell physiology. Just as this affects how microbes interact with antimicrobials, it can also affect how they interact with their own species, other species, and their non-living environment. Moreover, if the microbes are globally notorious for causing landscape-level environmental issues, then these effects could alter biodiversity and ecosystem function on a grand scale. To investigate these possibilities, we compiled peer-reviewed literature from the past 20 years regarding AMR in toxic freshwater cyanobacterial harmful algal blooms (HABs). We examined it for evidence of AMR affecting HAB frequency, severity, or persistence. Although no study within our scope was explicitly designed to address the question, multiple studies reported AMR-associated changes in HAB-forming cyanobacteria (and co-occurring microbes) that pertained directly to HAB timing, toxicity, and phase, as well as to the dynamics of HAB-afflicted aquatic food webs. These findings highlight the potential for AMR to have far-reaching environmental impacts (including the loss of biodiversity and ecosystem function) and bring into focus the importance of confronting complex interrelated issues such as AMR and HABs in concert, with interdisciplinary tools and perspectives.
Collapse
Affiliation(s)
- Aabir Banerji
- US Environmental Protection Agency, Office of Research and Development, Duluth, MN 55804, USA
| | - Nichole E. Brinkman
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Benjamin Davis
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Alison Franklin
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Michael Jahne
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Scott P. Keely
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| |
Collapse
|
5
|
Dai P, Li Y, Ma Z, Jiao J, Xia Q, Zhang W. Design, Synthesis, Antifungal Evaluation, and Three-Dimensional Quantitative Structure-Activity Relationship of Novel 5-Sulfonyl-1,3,4-thiadiazole Flavonoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21419-21428. [PMID: 39288935 DOI: 10.1021/acs.jafc.4c03505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Plant pathogenic fungi frequently disrupt the normal physiological and biochemical functions of plants, leading to diseases, compromising plant health, and ultimately reducing crop yield. This study aimed to address this challenge by identifying antifungal agents with innovative structures and novel mechanisms of action. We designed and synthesized a series of flavonoid derivatives substituted with 5-sulfonyl-1,3,4-thiadiazole and evaluated their antifungal activity against five phytopathogenic fungi. Most flavonoid derivatives demonstrated excellent antifungal activity against Botrytis cinerea (B. cinerea), Alternaria solani (A. solani), Rhizoctorzia solani (R. solani), Fusarium graminearum (F. graminearum), and Colletotrichum orbiculare (C. orbiculare). Specifically, the EC50 values of 38 target compounds against R. solani were below 4 μg/mL, among which the compounds C13 (EC50 = 0.49 μg/mL), C15 (EC50 = 0.37 μg/mL), and C19 (EC50 = 0.37 μg/mL) had the most prominent antifungal activity, superior to that of the control drug carbendazim (EC50 = 0.52 μg/mL). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images of the cellular ultrastructures of R. solani mycelia and cells after treatment with the compound C19 revealed sprawling growth of hyphae, a distorted outline of their cell walls, and reduced mitochondrial numbers. Studying the 3D-QSAR between the molecular structure and antifungal activity of 5-sulfonyl-1,3,4-thiadiazole-substituted flavonoid derivatives could significantly improve conventional drug molecular design pathways and facilitate the development of novel antifungal leads.
Collapse
Affiliation(s)
- Peng Dai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zihua Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Jiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing Xia
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Liu S, Song D, Liu B, Dong K, Jiang Y, Man C, Yang X, Zhao F. Transcriptomic Analyses to Unravel Cronobacter sakazakii Resistance Pathways. Foods 2024; 13:2786. [PMID: 39272551 PMCID: PMC11394748 DOI: 10.3390/foods13172786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The proliferation of antibiotic usage has precipitated the emergence of drug-resistant variants of bacteria, thereby augmenting their capacity to withstand pharmaceutical interventions. Among these variants, Cronobacter sakazakii (C. sakazakii), prevalent in powdered infant formula (PIF), poses a grave threat to the well-being of infants. Presently, global contamination by C. sakazakii is being observed. Consequently, research endeavors have been initiated to explore the strain's drug resistance capabilities, alterations in virulence levels, and resistance mechanisms. The primary objective of this study is to investigate the resistance mechanisms and virulence levels of C. sakazakii induced by five distinct antibiotics, while concurrently conducting transcriptomic analyses. Compared to the susceptible strains prior to induction, the drug-resistant strains exhibited differential gene expression, resulting in modifications in the activity of relevant enzymes and biofilm secretion. Transcriptomic studies have shown that the expression of glutathione S-transferase and other genes were significantly upregulated after induction, leading to a notable enhancement in biofilm formation ability, alongside the existence of antibiotic resistance mechanisms associated with efflux pumps, cationic antimicrobial peptides, and biofilm formation pathways. These alterations significantly influence the strain's resistance profile.
Collapse
Affiliation(s)
- Shiyu Liu
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Danliangmin Song
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Biqi Liu
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Kai Dong
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Yujun Jiang
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Chaoxin Man
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Xinyan Yang
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
- Key Laboratory of Dairy Science, Ministry of Education, Harbin 150030, China
| | - Feng Zhao
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
- Key Laboratory of Dairy Science, Ministry of Education, Harbin 150030, China
| |
Collapse
|
7
|
Aggarwal R, Mahajan P, Pandiya S, Bajaj A, Verma SK, Yadav P, Kharat AS, Khan AU, Dua M, Johri AK. Antibiotic resistance: a global crisis, problems and solutions. Crit Rev Microbiol 2024; 50:896-921. [PMID: 38381581 DOI: 10.1080/1040841x.2024.2313024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Accepted: 01/28/2024] [Indexed: 02/23/2024]
Abstract
Healthy state is priority in today's world which can be achieved using effective medicines. But due to overuse and misuse of antibiotics, a menace of resistance has increased in pathogenic microbes. World Health Organization (WHO) has announced ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) as the top priority pathogens as these have developed resistance against certain antibiotics. To combat such a global issue, it is utmost important to identify novel therapeutic strategies/agents as an alternate to such antibiotics. To name certain antibiotic adjuvants including: inhibitors of beta-lactamase, efflux pumps and permeabilizers for outer membrane can potentially solve the antibiotic resistance problems. In this regard, inhibitors of lytic domain of lytic transglycosylases provide a novel way to not only act as an alternate to antibiotics but also capable of restoring the efficiency of previously resistant antibiotics. Further, use of bacteriophages is another promising strategy to deal with antibiotic resistant pathogens. Taking in consideration the alternatives of antibiotics, a green synthesis nanoparticle-based therapy exemplifies a good option to combat microbial resistance. As horizontal gene transfer (HGT) in bacteria facilitates the evolution of new resistance strains, therefore identifying the mechanism of resistance and development of inhibitors against it can be a novel approach to combat such problems. In our perspective, host-directed therapy (HDT) represents another promising strategy in combating antimicrobial resistance (AMR). This approach involves targeting specific factors within host cells that pathogens rely on for their survival, either through replication or persistence. As many new drugs are under clinical trials it is advisable that more clinical data and antimicrobial stewardship programs should be conducted to fully assess the clinical efficacy and safety of new therapeutic agents.
Collapse
Affiliation(s)
- Rupesh Aggarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pooja Mahajan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sameeksha Pandiya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Aayushi Bajaj
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shailendra Kumar Verma
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Puja Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | - Arun S Kharat
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Asad Ullah Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
8
|
Sher EK, Džidić-Krivić A, Sesar A, Farhat EK, Čeliković A, Beća-Zećo M, Pinjic E, Sher F. Current state and novel outlook on prevention and treatment of rising antibiotic resistance in urinary tract infections. Pharmacol Ther 2024; 261:108688. [PMID: 38972453 DOI: 10.1016/j.pharmthera.2024.108688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/16/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Antibiotic-resistant bacteria are currently an important public health concern posing a serious threat due to their resistance to the current arsenal of antibiotics. Uropathogens Escherichia coli (UPEC), Proteus mirabilis, Klebsiella pneumoniae and Enterococcus faecalis, antibiotic-resistant gram-negative bacteria, cause serious cases of prolonged UTIs, increasing healthcare costs and potentially even leading to the death of an affected patient. This review discusses current knowledge about the increasing resistance to currently recommended antibiotics for UTI therapy, as well as novel therapeutic options. Traditional antibiotics are still a part of the therapy guidelines for UTIs, although they are often not effective and have serious side effects. Hence, novel drugs are being developed, such as combinations of β-lactam antibiotics with cephalosporins and carbapenems. Siderophoric cephalosporins, such as cefiderocol, have shown potential in the treatment of individuals with significant gram-negative bacterial infections, as well as aminoglycosides, fluoroquinolones and tetracyclines that are also undergoing clinical trials. The use of cranberry and probiotics is another potential curative and preventive method that has shown antimicrobial and anti-inflammatory effects. However, further studies are needed to assess the efficacy and safety of probiotics containing cranberry extract for UTI prevention and treatment. An emerging novel approach for UTI treatment is the use of immuno-prophylactic vaccines, as well as different nanotechnology solutions such as nanoparticles (NP). NP have the potential to be used as delivery systems for drugs to specific targets. Furthermore, nanotechnology could enable the development of nano antibiotics with improved features by the application of different NPs in their structure, such as gold and copper NPs. However, further high-quality research is required for the synthesis and testing of these novel molecules, such as safety evaluation and pharmacovigilance.
Collapse
Affiliation(s)
- Emina K Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Amina Džidić-Krivić
- Department of Neurology, Cantonal Hospital Zenica, Zenica 72000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Ana Sesar
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Health Studies, Victoria International University, Mostar 88000, Bosnia and Herzegovina
| | - Esma K Farhat
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Croatia
| | - Amila Čeliković
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Medicine, University of Zenica, Zenica 71000, Bosnia and Herzegovina
| | - Merima Beća-Zećo
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Health Studies, Victoria International University, Mostar 88000, Bosnia and Herzegovina
| | - Emma Pinjic
- Department of Radiology, Beth Israel Deaconess Medical Center (BIDMC), Boston, MA, United States
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
9
|
Grigorenko VG, Krivitskaya AV, Khrenova MG, Rubtsova MY, Presnova GV, Andreeva IP, Serova OV, Egorov AM. Saturation Mutagenesis and Molecular Modeling: The Impact of Methionine 182 Substitutions on the Stability of β-Lactamase TEM-1. Int J Mol Sci 2024; 25:7691. [PMID: 39062934 PMCID: PMC11276661 DOI: 10.3390/ijms25147691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Serine β-lactamase TEM-1 is the first β-lactamase discovered and is still common in Gram-negative pathogens resistant to β-lactam antibiotics. It hydrolyzes penicillins and cephalosporins of early generations. Some of the emerging TEM-1 variants with one or several amino acid substitutions have even broader substrate specificity and resistance to known covalent inhibitors. Key amino acid substitutions affect catalytic properties of the enzyme, and secondary mutations accompany them. The occurrence of the secondary mutation M182T, called a "global suppressor", has almost doubled over the last decade. Therefore, we performed saturating mutagenesis at position 182 of TEM-1 to determine the influence of this single amino acid substitution on the catalytic properties, thermal stability, and ability for thermoreactivation. Steady-state parameters for penicillin, cephalothin, and ceftazidime are similar for all TEM-1 M182X variants, whereas melting temperature and ability to reactivate after incubation at a higher temperature vary significantly. The effects are multidirectional and depend on the particular amino acid at position 182. The M182E variant of β-lactamase TEM-1 demonstrates the highest residual enzymatic activity, which is 1.5 times higher than for the wild-type enzyme. The 3D structure of the side chain of residue 182 is of particular importance as observed from the comparison of the M182I and M182L variants of TEM-1. Both of these amino acid residues have hydrophobic side chains of similar size, but their residual activity differs by three-fold. Molecular dynamic simulations add a mechanistic explanation for this phenomenon. The important structural element is the V159-R65-E177 triad that exists due to both electrostatic and hydrophobic interactions. Amino acid substitutions that disturb this triad lead to a decrease in the ability of the β-lactamase to be reactivated.
Collapse
Affiliation(s)
- Vitaly G. Grigorenko
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.G.G.); (M.Y.R.); (G.V.P.); (I.P.A.); (A.M.E.)
| | - Alexandra V. Krivitskaya
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Maria G. Khrenova
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.G.G.); (M.Y.R.); (G.V.P.); (I.P.A.); (A.M.E.)
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Maya Yu. Rubtsova
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.G.G.); (M.Y.R.); (G.V.P.); (I.P.A.); (A.M.E.)
| | - Galina V. Presnova
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.G.G.); (M.Y.R.); (G.V.P.); (I.P.A.); (A.M.E.)
| | - Irina P. Andreeva
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.G.G.); (M.Y.R.); (G.V.P.); (I.P.A.); (A.M.E.)
| | - Oxana V. Serova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Alexey M. Egorov
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.G.G.); (M.Y.R.); (G.V.P.); (I.P.A.); (A.M.E.)
| |
Collapse
|
10
|
Yuan Z, Teh BM, Liu X, Liu Z, Huang J, Hu Y, Guo C, Shen Y. Fabrication and Evaluation of Hyaluronidase-Responsive Scaffolds by Electrospinning with Antibacterial Properties for Tympanic Membrane Repair. ACS Biomater Sci Eng 2024; 10:4400-4410. [PMID: 38917429 DOI: 10.1021/acsbiomaterials.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Tympanic membrane perforation (TMP) is prevalent in clinical settings. Patients with TMPs often suffer from infections caused by Staphylococcus aureus and Pseudomonas aeruginosa, leading to middle ear and external ear canal infections, which hinder eardrum healing. The objective of this study is to fabricate an enzyme-responsive antibacterial electrospun scaffold using poly(lactic-co-glycolic acid) and hyaluronic acid for the treatment of infected TMPs. The properties of the scaffold were characterized, including morphology, wettability, mechanical properties, degradation properties, antimicrobial properties, and biocompatibility. The results indicated that the fabricated scaffold had a core-shell structure and exhibited excellent mechanical properties, hydrophobicity, degradability, and cytocompatibility. Furthermore, in vitro bacterial tests and ex vivo investigations on eardrum infections suggested that this scaffold possesses hyaluronidase-responsive antibacterial properties. It may rapidly release antibiotics when exposed to the enzyme released by S. aureus and P. aeruginosa. These findings suggest that the scaffold has great potential for repairing TMPs with infections.
Collapse
Affiliation(s)
- Zhechen Yuan
- Department of Otolaryngology Head and Neck Surgery, Ningbo No.2 Hospital, Ningbo 315010, China
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Bing Mei Teh
- Department of Otolaryngology Head and Neck Surgery, Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton 3800, Victoria, Australia
| | - Xiaoling Liu
- Department of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China
| | - Ziqian Liu
- Department of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China
| | - Juntao Huang
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, China
| | - Yi Hu
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, China
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou 310030, China
| | - Yi Shen
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, China
| |
Collapse
|
11
|
Gonzales M, Jacquet P, Gaucher F, Chabrière É, Plener L, Daudé D. AHL-Based Quorum Sensing Regulates the Biosynthesis of a Variety of Bioactive Molecules in Bacteria. JOURNAL OF NATURAL PRODUCTS 2024; 87:1268-1284. [PMID: 38390739 DOI: 10.1021/acs.jnatprod.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
- Gene&GreenTK, Marseille 13005, France
| | | | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
| | | | | |
Collapse
|
12
|
Basharat Z, Sattar S, Bahauddin AA, Al Mouslem AK, Alotaibi G. Screening Marine Microbial Metabolites as Promising Inhibitors of Borrelia garinii: A Structural Docking Approach towards Developing Novel Lyme Disease Treatment. BIOMED RESEARCH INTERNATIONAL 2024; 2024:9997082. [PMID: 38456098 PMCID: PMC10919988 DOI: 10.1155/2024/9997082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
Lyme disease caused by the Borrelia species is a growing health concern in many parts of the world. Current treatments for the disease may have side effects, and there is also a need for new therapies that can selectively target the bacteria. Pathogens responsible for Lyme disease include B. burgdorferi, B. afzelii, and B. garinii. In this study, we employed structural docking-based screening to identify potential lead-like inhibitors against the bacterium. We first identified the core essential genome fraction of the bacterium, using 37 strains. Later, we screened a library of lead-like marine microbial metabolites (n = 4730) against the arginine deiminase (ADI) protein of Borrelia garinii. This protein plays a crucial role in the survival of the bacteria, and inhibiting it can kill the bacterium. The prioritized lead compounds demonstrating favorable binding energies and interactions with the active site of ADI were then evaluated for their drug-like and pharmacokinetic parameters to assess their suitability for development as drugs. Results from molecular dynamics simulation (100 ns) and other scoring parameters suggest that the compound CMNPD18759 (common name: aureobasidin; IUPAC name: 2-[(4R,6R)-4,6-dihydroxydecanoyl]oxypropan-2-yl (3S,5R)-3,5-dihydroxydecanoate) holds promise as a potential drug candidate for the treatment of Lyme disease, caused by B. garinii. However, further experimental studies are needed to validate the efficacy and safety of this compound in vivo.
Collapse
Affiliation(s)
| | - Sadia Sattar
- Molecular Virology Labs, Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad 45550, Pakistan
| | | | - Abdulaziz K. Al Mouslem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Ghallab Alotaibi
- Department of Pharmacology, College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
13
|
Dong CL, Wu T, Dong Y, Qu QW, Chen XY, Li YH. Exogenous methionine contributes to reversing the resistance of Streptococcus suis to macrolides. Microbiol Spectr 2024; 12:e0280323. [PMID: 38230928 PMCID: PMC10923279 DOI: 10.1128/spectrum.02803-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
Streptococcus suis (S. suis) has been increasingly recognized as a porcine zoonotic pathogen that threatens the health of both pigs and humans. Multidrug-resistant Streptococcus suis is becoming increasingly prevalent, and novel strategies to treat bacterial infections caused by these organisms are desperately needed. In the present study, an untargeted metabolomics analysis showed that the significant decrease in methionine content and the methionine biosynthetic pathway were significantly affected by the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis in drug-resistant S. suis. The addition of L-methionine restored the bactericidal activity of macrolides, doxycycline, and ciprofloxacin on S. suis in vivo and in vitro. Further studies showed that the exogenous addition of methionine affects methionine metabolism by reducing S-adenosylmethionine synthetase activity and the contents of S-adenosylmethionine, S-adenosyl homocysteine, and S-ribose homocysteine. Methionine can decrease the total methylation level and methylesterase activity in multidrug resistant S. suis. The drug transport proteins and efflux pump genes were significantly downregulated in S. suis by exogenous L-methionine. Moreover, the exogenous addition of methionine can reduce the survival of S. suis by affecting oxidative stress and metal starvation in bacteria. Thus, L-methionine may influence the development of resistance in S. suis through methyl metabolism and metal starvation. This study provides a new perspective on the mitigation of drug resistance in S. suis.IMPORTANCEBacterial antibiotic resistance has become a severe threat to human and animal health. Increasing the efficacy of existing antibiotics is a promising strategy against antibiotic resistance. Here, we report that L-methionine enhances the efficacy of macrolides, doxycycline, and ciprofloxacin antibiotics in killing Streptococcus suis, including multidrug-resistant pathogens. We investigated the mechanism of action of exogenous methionine supplementation in restoring macrolides in Streptococcus suis and the role of the methionine cycle pathway on methylation levels, efflux pump genes, oxidative stress, and metal starvation in Streptococcus suis. It provides a theoretical basis for the rational use of macrolides in clinical practice and also identifies a possible target for restoring drug resistance in Streptococcus suis.
Collapse
Affiliation(s)
- Chun-Liu Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, China
| | - Tong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yue Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qian-Wei Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xue-Ying Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, China
| | - Yan-Hua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, China
| |
Collapse
|
14
|
Ledesma V, Vanbaelen T, Gestels Z, Panis N, Abdellati S, de Block T, De Baetselier I, Van den Bossche D, Manoharan-Basil SS, Kenyon C. Measuring individual colony MICs is a more sensitive method to detect the effect of antimicrobials on antimicrobial susceptibility than the proportion of colonies resistant. FEMS Microbiol Lett 2024; 371:fnae104. [PMID: 39657094 DOI: 10.1093/femsle/fnae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
The ResistAZM randomized controlled trial found that the receipt of ceftriaxone/azithromycin, compared to ceftriaxone was not associated with an increase in the proportion of oral commensal Neisseria spp. and streptococci with azithromycin resistance 14 days after treatment. We repeated the analyses by measuring the minimum inhibitory concentrations (MICs) of azithromycin and ceftriaxone for individual colonies of commensal Neisseria spp. and streptococci at day 0 and day 14 in both arms. The receipt of ceftriaxone/azithromycin but not ceftriaxone was associated with an increase in azithromycin MIC for both Neisseria spp. (P < 0.0001) and streptococci (P = 0.0076). Likewise, ceftriaxone/azithromycin but not ceftriaxone monotherapy was associated with an increase in ceftriaxone MICs in Neisseria spp. (P = 0.0035). Whereas the proportion method failed to detect an association between the receipt of azithromycin and increased macrolide resistance, the MIC distribution method detected this effect. The MIC distribution method is thus a more sensitive method to assess the effect of antimicrobials on antimicrobial susceptibility. BACKGROUND The ResistAZM randomized controlled trial found that the receipt of ceftriaxone/azithromycin, compared to ceftriaxone was not associated with an increase in the proportion of oral commensal Neisseria spp. and streptococci with azithromycin resistance 14 days after treatment. METHODS We repeated the analyses by measuring the minimum inhibitory concentrations (MICs) of azithromycin and ceftriaxone for individual colonies of commensal Neisseria spp. and streptococci at day 0 and day 14 in both arms. RESULTS The receipt of ceftriaxone/azithromycin but not ceftriaxone was associated with an increase in azithromycin MIC for both Neisseria spp. (P < 0.0001) and streptococci (P = 0.0076). Likewise, ceftriaxone/azithromycin but not ceftriaxone monotherapy was associated with an increase in ceftriaxone MICs in Neisseria spp. (P = 0.0035). CONCLUSIONS Whereas the proportion method failed to detect an association between the receipt of azithromycin and increased macrolide resistance, the MIC distribution method detected this effect. The MIC distribution method is thus a more sensitive method to assess the effect of antimicrobials on antimicrobial susceptibility.
Collapse
Affiliation(s)
- Vergel Ledesma
- Department of Clinical Sciences, STI Unit, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Thibaut Vanbaelen
- Department of Clinical Sciences, STI Unit, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Zina Gestels
- Department of Clinical Sciences, STI Unit, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Nele Panis
- Department of Clinical Sciences, STI Unit, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Said Abdellati
- Department of Clinical Sciences, Clinical Reference Laboratory, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Tessa de Block
- Department of Clinical Sciences, Clinical Reference Laboratory, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Irith De Baetselier
- Department of Clinical Sciences, Clinical Reference Laboratory, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Dorien Van den Bossche
- Department of Clinical Sciences, Clinical Reference Laboratory, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | | | - Chris Kenyon
- Department of Clinical Sciences, STI Unit, Institute of Tropical Medicine, Antwerp 2000, Belgium
- Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
15
|
Wang Q, Sun X, Fan W, Chen X, Han W, Zhao S, Jia W. Insights into the response of anammox process to oxytetracycline: Impacts of static magnetic field. CHEMOSPHERE 2023; 340:139821. [PMID: 37586490 DOI: 10.1016/j.chemosphere.2023.139821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/14/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
The long-term effects of oxytetracycline (OTC) with a high concentration on the anaerobic ammonium oxidation (Anammox) process were evaluated, and the role of static magnetic field (SMF) was further explored. The stress of OTC at 50 mg/L had little effect on the nitrogen removal of anammox process at the first 16 days. With the continuous addition of OTC and the increase of nitrogen loading, the OTC inhibited the nitrogen removal and anammox activity severely. During the 32 days of recovery period without OTC addition, the nitrogen removal was further deteriorated, indicating the inhibition of OTC on anammox activity was irreversible and persistent. The application of SMF alleviated the inhibition of OTC on anammox to some extent, and the specific anammox activity was enhanced by 47.1% compared to the system without SMF during the OTC stress stage. Antibiotic efflux was the major resistance mechanism in the anammox process, and tetA, tetG and rpsJ were the main functional antibiotic resistance genes. The addition of OTC weakened the metabolic interactions between the anammox bacteria and the symbiotic bacteria involved in the metabolism of cofactors and secondary metabolites, leading to the poor anammox activity. The adaptability of microbes to the OTC stress was improved by the application of SMF, which can enhance the metabolic pathways related to bacterial growth and resistance to environmental stress.
Collapse
Affiliation(s)
- Qian Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Xiaoyi Sun
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Wenli Fan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Xi Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Wenxuan Han
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Shuang Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| | - Wenlin Jia
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| |
Collapse
|
16
|
Kumar S, Sandeep K, Kumar R, Kumar A. Antimicrobial effect of pimozide by targeting ROS-mediated killing in Staphylococcus aureus. Biotechnol Appl Biochem 2023; 70:1679-1689. [PMID: 37000616 DOI: 10.1002/bab.2465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/26/2023] [Indexed: 04/01/2023]
Abstract
In spite of the higher nosocomial and community-acquired infections caused by Staphylococcus aureus, emerging drug resistance is a leading cause of increased mortality and morbidity associated with the overuse of antimicrobials. It is an emergent need to find out new molecules to combat such infections. In the present study, we analyzed the antibacterial effect of pimozide (PMZ) against gram-positive and gram-negative bacterial strains, including methicillin-sensitive (MSSA) and methicillin-resistant (MRSA) S. aureus. The growth of MSSA and MRSA was completely inhibited at concentrations of 12.5 and 100 μg/mL, respectively, which is referred to as 1× minimum inhibitory concentration (MIC). The cell viability was completely eliminated within 90 min of PMZ treatment (2× MIC) through reactive oxygen species (ROS)-mediated killing without affecting cell membrane permeability. It suppressed α-hemolysin production and biofilm formation of different S. aureus strains by almost 50% at 1× MIC concentration, and was found to detach matured biofilm. PMZ treatment effectively eliminates S. aureus infection in Caenorhabditis elegans and improves its survival by 90% and is found safe to use with no hemolytic effect on human and chicken blood tissues. Taken together, it is concluded that PMZ may turn out to be an effective antibacterial for treating bacterial infections including MSSA and MRSA.
Collapse
Affiliation(s)
- Siddhartha Kumar
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Kumar Sandeep
- Dr. B.R. Ambedkar Institute - Rotary Cancer Hospital, AIIMS, New Delhi, India
| | - Rakesh Kumar
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Antresh Kumar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, India
| |
Collapse
|
17
|
Tariq A, Salman M, Mustafa G, Tawab A, Naheed S, Naz H, Shahid M, Ali H. Agonistic antibacterial potential of Loigolactobacillus coryniformis BCH-4 metabolites against selected human pathogenic bacteria: An in vitro and in silico approach. PLoS One 2023; 18:e0289723. [PMID: 37561679 PMCID: PMC10414564 DOI: 10.1371/journal.pone.0289723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Lactic acid bacteria are known to produce numerous antibacterial metabolites that are active against various pathogenic microbes. In this study, bioactive metabolites from the cell free supernatant of Loigolactobacillus coryniformis BCH-4 were obtained by liquid-liquid extraction, using ethyl acetate, followed by fractionation, using silica gel column chromatography. The collected F23 fraction effectively inhibited the growth of pathogenic bacteria (Escherichia coli, Bacillus cereus, and Staphylococcus aureus) by observing the minimum inhibitory concentration (MIC) and minimum bactericidal concentrations (MBC). The evaluated values of MIC were 15.6 ± 0.34, 3.9 ± 0.59, and 31.2 ± 0.67 μg/mL and MBC were 15.6 ± 0.98, 7.8 ± 0.45, and 62.5 ± 0.23 μg/mL respectively, against the above-mentioned pathogenic bacteria. The concentration of F23 fraction was varying from 1000 to 1.9 μg/mL. Furthermore, the fraction also exhibited sustainable biofilm inhibition. Using the Electrospray Ionization Mass Spectrometry (ESI-MS/MS), the metabolites present in the bioactive fraction (F23), were identified as phthalic acid, myristic acid, mangiferin, 16-hydroxylpalmatic acid, apigenin, and oleandomycin. By using in silico approach, docking analysis showed good interaction of identified metabolites and receptor proteins of pathogenic bacteria. The present study suggested Loigolactobacillus coryniformis BCH-4, as a promising source of natural bioactive metabolites which may receive great benefit as potential sources of drugs in the pharmacological sector.
Collapse
Affiliation(s)
- Anam Tariq
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Mahwish Salman
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Abdul Tawab
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Shazia Naheed
- Department of Applied Chemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Hafsa Naz
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Misbah Shahid
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Hazrat Ali
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C,PIEAS), Faisalabad, Pakistan
| |
Collapse
|
18
|
Venkateswaran P, Vasudevan S, David H, Shaktivel A, Shanmugam K, Neelakantan P, Solomon AP. Revisiting ESKAPE Pathogens: virulence, resistance, and combating strategies focusing on quorum sensing. Front Cell Infect Microbiol 2023; 13:1159798. [PMID: 37457962 PMCID: PMC10339816 DOI: 10.3389/fcimb.2023.1159798] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
The human-bacterial association is long-known and well-established in terms of both augmentations of human health and attenuation. However, the growing incidents of nosocomial infections caused by the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) call for a much deeper understanding of these organisms. Adopting a holistic approach that includes the science of infection and the recent advancements in preventing and treating infections is imperative in designing novel intervention strategies against ESKAPE pathogens. In this regard, this review captures the ingenious strategies commissioned by these master players, which are teamed up against the defenses of the human team, that are equally, if not more, versatile and potent through an analogy. We have taken a basketball match as our analogy, dividing the human and bacterial species into two teams playing with the ball of health. Through this analogy, we make the concept of infectious biology more accessible.
Collapse
Affiliation(s)
- Parvathy Venkateswaran
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adityan Shaktivel
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthik Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
19
|
Alekseeva MG, Rudakova NN, Ratkin AV, Mavletova DA, Danilenko VN. Resistome in Streptomyces rimosus - A Reservoir of Aminoglycoside Antibiotics Resistance Genes. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:723-730. [PMID: 37748869 DOI: 10.1134/s0006297923060019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 09/27/2023]
Abstract
Investigation of aminoglycoside acetyltransferases in actinobacteria of the genus Streptomyces is an integral part of the study of soil bacteria as the main reservoir and possible source of drug resistance genes. Previously, we have identified and biochemically characterized three aminoglycoside phosphotransferases, which cause resistance to kanamycin, neomycin, paromomycin, streptomycin, and hygromycin B in the strain Streptomyces rimosus ATCC 10970 (producing oxytetracycline), which is resistant to most natural aminoglycoside antibiotics. In the presented work, it was shown that the resistance of this strain to other AGs is associated with the presence of the enzyme aminoglycoside acetyltransferase, belonging to the AAC(2') subfamily. Induction of the expression of the gene, designated by us as aac(2')-If, in Escherichia coli cells determines resistance to a wide range of natural aminoglycoside antibiotics (neomycin, gentamicin, tobramycin, sisomycin, and paromomycin) and increases minimum inhibitory concentrations of these antibiotics.
Collapse
Affiliation(s)
- Maria G Alekseeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Natalya N Rudakova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anatoly V Ratkin
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Dilara A Mavletova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Valeriy N Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
20
|
Baláž A, Kajsik M, Budiš J, Szemes T, Turňa J. PHERI-Phage Host ExploRation Pipeline. Microorganisms 2023; 11:1398. [PMID: 37374901 DOI: 10.3390/microorganisms11061398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Antibiotic resistance is becoming a common problem in medicine, food, and industry, with multidrug-resistant bacterial strains occurring in all regions. One of the possible future solutions is the use of bacteriophages. Phages are the most abundant form of life in the biosphere, so we can highly likely purify a specific phage against each target bacterium. The identification and consistent characterization of individual phages was a common form of phage work and included determining bacteriophages' host-specificity. With the advent of new modern sequencing methods, there was a problem with the detailed characterization of phages in the environment identified by metagenome analysis. The solution to this problem may be to use a bioinformatic approach in the form of prediction software capable of determining a bacterial host based on the phage whole-genome sequence. The result of our research is the machine learning algorithm-based tool called PHERI. PHERI predicts the suitable bacterial host genus for the purification of individual viruses from different samples. In addition, it can identify and highlight protein sequences that are important for host selection.
Collapse
Affiliation(s)
- Andrej Baláž
- Geneton Ltd., Ilkovicova 8, 841 04 Bratislava, Slovakia
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F1, 842 48 Bratislava, Slovakia
| | - Michal Kajsik
- Science Park, Comenius University, Ilkovicova 8, 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 841 04 Bratislava, Slovakia
- Medirex Group Academy n.o., Novozamocka 1, 949 05 Nitra, Slovakia
| | - Jaroslav Budiš
- Geneton Ltd., Ilkovicova 8, 841 04 Bratislava, Slovakia
- Science Park, Comenius University, Ilkovicova 8, 841 04 Bratislava, Slovakia
- Slovak Centre of Scientific and Technical Information (SCSTI), Lamacska Cesta 8/A, 811 04 Bratislava, Slovakia
| | - Tomáš Szemes
- Geneton Ltd., Ilkovicova 8, 841 04 Bratislava, Slovakia
- Science Park, Comenius University, Ilkovicova 8, 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 841 04 Bratislava, Slovakia
| | - Ján Turňa
- Science Park, Comenius University, Ilkovicova 8, 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 841 04 Bratislava, Slovakia
| |
Collapse
|
21
|
Breijyeh Z, Karaman R. Design and Synthesis of Novel Antimicrobial Agents. Antibiotics (Basel) 2023; 12:628. [PMID: 36978495 PMCID: PMC10045396 DOI: 10.3390/antibiotics12030628] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The necessity for the discovery of innovative antimicrobials to treat life-threatening diseases has increased as multidrug-resistant bacteria has spread. Due to antibiotics' availability over the counter in many nations, antibiotic resistance is linked to overuse, abuse, and misuse of these drugs. The World Health Organization (WHO) recognized 12 families of bacteria that present the greatest harm to human health, where options of antibiotic therapy are extremely limited. Therefore, this paper reviews possible new ways for the development of novel classes of antibiotics for which there is no pre-existing resistance in human bacterial pathogens. By utilizing research and technology such as nanotechnology and computational methods (such as in silico and Fragment-based drug design (FBDD)), there has been an improvement in antimicrobial actions and selectivity with target sites. Moreover, there are antibiotic alternatives, such as antimicrobial peptides, essential oils, anti-Quorum sensing agents, darobactins, vitamin B6, bacteriophages, odilorhabdins, 18β-glycyrrhetinic acid, and cannabinoids. Additionally, drug repurposing (such as with ticagrelor, mitomycin C, auranofin, pentamidine, and zidovudine) and synthesis of novel antibacterial agents (including lactones, piperidinol, sugar-based bactericides, isoxazole, carbazole, pyrimidine, and pyrazole derivatives) represent novel approaches to treating infectious diseases. Nonetheless, prodrugs (e.g., siderophores) have recently shown to be an excellent platform to design a new generation of antimicrobial agents with better efficacy against multidrug-resistant bacteria. Ultimately, to combat resistant bacteria and to stop the spread of resistant illnesses, regulations and public education regarding the use of antibiotics in hospitals and the agricultural sector should be combined with research and technological advancements.
Collapse
Affiliation(s)
- Zeinab Breijyeh
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
22
|
clbP Gene, a Potential New Member of the β-Lactamase Family. Int J Mol Sci 2022; 23:ijms232415642. [PMID: 36555283 PMCID: PMC9778894 DOI: 10.3390/ijms232415642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The colibactin island (pks) of Escherichia coli formed by 19 genes (55-Kb), encodes non-ribosomal peptide (NRP) and polyketide (PK) synthases, which allow the synthesis of colibactin, a suspected hybrid PK-NRP compound that causes damage to DNA in eukaryotic cells. The clbP, an unusual essential gene, is found in the operon structure with the clbS gene in the pks-encoded machinery. Interestingly, the clbP gene has been annotated as a β-lactamase but no previous study has reported its β-lactamase characteristics. In this study, we (i) investigated the β-lactamase properties of the clbP gene in silico by analysing its phylogenetic relationship with bacterial β-lactamase and peptidase enzymes, (ii) compared its three-dimensional (3D) protein structure with those of bacterial β-lactamase proteins using the Phyr2 database and PyMOL software, and (iii) evaluated in vitro its putative enzymatic activities, including β-lactamase, nuclease, and ribonuclease using protein expression and purification from an E. coli BL21 strain. In this study, we reveal a structural configuration of toxin/antitoxin systems in this island. Thus, similar to the toxin/antitoxin systems, the role of the clbP gene within the pks-island gene group appears as an antitoxin, insofar as it is responsible for the activation of the toxin, which is colibactin. In silico, our analyses revealed that ClbP belonged to the superfamily of β-lactamase, class C. Furthermore, in vitro we were unable to demonstrate its β-lactamase activity, likely due to the fact that the clbP gene requires co-expression with other genes, such as the genes present in the pks-island (19 genes). More research is needed to better understand its actions, particularly with regards to antibiotics, and to discover whether it has any additional functions due to the importance of this gene and its toxicity.
Collapse
|
23
|
Alekseeva MG, Zakharevich NV, Ratkin AV, Danilenko VN. Human Intestinal Microbiome—A Reservoir of Aminoglycoside-N-Acetyltransferases—Drug Resistance Genes. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422090022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Fang Z, Zheng X, Li L, Qi J, Wu W, Lu Y. Ionic Liquids: Emerging Antimicrobial Agents. Pharm Res 2022; 39:2391-2404. [PMID: 35879499 DOI: 10.1007/s11095-022-03336-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022]
Abstract
Antimicrobial resistance has become a serious threat to global health. New antimicrobials are thus urgently needed. Ionic liquids (ILs), salts consisting of organic cations and anions with melting points less than 100°C, have been recently found to be promising in antimicrobial field as they may disrupt the bacterial wall and membrane and consequently lead to cell leakage and death. Different types of antimicrobial ILs are introduced in the review, including cationic, polymeric, and anionic ILs. Being the main type of the antimicrobial ILs, the review focuses on the structure and the antimicrobial mechanisms of cationic ILs. The quantitative structure-activity relationship (QSAR) models of the cationic ILs are also included. Increase in alkyl chain length and lipophilicity is beneficial to increase the antimicrobial effects of cationic ILs. Polymeric ILs are homopolymers of monomer ILs or copolymers of ILs and other monomers. They have great potential in the field of antibiotics as they provide stronger antimicrobial effects than the sum of the monomer ILs. Anionic ILs are composed of existing anionic antibiotics and organic cations, being capable to enhance the solubility and bioavailability of the original form. Nonetheless, the medical application of antimicrobial ILs is limited by the toxicity. The structural optimization aided by QSAR model and combination with existing antibiotics may provide a solution to this problem and expand the application range of ILs in antimicrobial field.
Collapse
Affiliation(s)
- Zhezheng Fang
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xianzi Zheng
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Lu Li
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
25
|
Simple transformation of the filamentous thermophilic cyanobacterium Leptolyngbya sp. KC45. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Proteomic Comparison of Ivermectin Sensitive and Resistant Staphylococcus aureus Clinical Isolates Reveals Key Efflux Pumps as Possible Resistance Determinants. Antibiotics (Basel) 2022; 11:antibiotics11060759. [PMID: 35740165 PMCID: PMC9219645 DOI: 10.3390/antibiotics11060759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023] Open
Abstract
Ivermectin (IVM) is a versatile drug used against many microorganisms. Staphylococcus aureus is one of the most devastating microorganisms. IVM sensitive and resistant S. aureus strains were recently reported. However, the underlying molecular mechanisms of resistance are unknown. Clinical isolates of S. aureus were used for determination of the sensitivities against IVM by growth curve analysis and time-kill kinetics. Then, proteomic, and biochemical approaches were applied to investigate the possible mechanisms of resistance. Proteomic results showed a total of 1849 proteins in the dataset for both strains, 425 unique proteins in strain O9 (IVM sensitive), and 354 unique proteins in strain O20 (IVM resistant). Eight proteins with transport functions were differentially expressed in the IVM resistant strain. Among them, three efflux pumps (mepA, emrB, and swrC) were confirmed by qPCR. The IVM resistant S. aureus may overexpress these proteins as a key resistance determinant. Further experiments are required to confirm the exact mechanistic relationship. Nevertheless, the possibility of blocking these transporters to reverse or delay the onset of resistance and reduce selection pressure is potentially appealing.
Collapse
|
27
|
Akbar N, Kawish M, Khan NA, Shah MR, Alharbi AM, Alfahemi H, Siddiqui R. Hesperidin-, Curcumin-, and Amphotericin B- Based Nano-Formulations as Potential Antibacterials. Antibiotics (Basel) 2022; 11:696. [PMID: 35625340 PMCID: PMC9137731 DOI: 10.3390/antibiotics11050696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
To combat the public health threat posed by multiple-drug-resistant (MDR) pathogens, new drugs with novel chemistry and modes of action are needed. In this study, several drugs including Hesperidin (HES), curcumin (CUR), and Amphotericin B (AmpB) drug-nanoparticle formulations were tested for antibacterial strength against MDR Gram-positive bacteria, including Bacillus cereus, Streptococcus pyogenes, Methicillin-resistant Staphylococcus aureus (MRSA), and Streptococcus pneumoniae, and Gram-negative bacteria, including Escherichia coli K1, Pseudomonas aeruginosa, Salmonella enterica, and Serratia marcescens. Nanoparticles were synthesized and subjected to Atomic force microscopy, Fourier transform-infrared spectroscopy, and Zetasizer for their detailed characterization. Antibacterial assays were performed to determine their bactericidal efficacy. Lactate dehydrogenase (LDH) assays were carried out to measure drugs' and drug-nanoparticles' cytotoxic effects on human cells. Spherical NPs ranging from 153 to 300 nm were successfully synthesized. Results from antibacterial assays revealed that drugs and drug-nanoparticle formulations exerted bactericidal activity against MDR bacteria. Hesperidin alone failed to exhibit antibacterial effects but, upon conjugation with cinnamic-acid-based magnetic nanoparticle, exerted significant bactericidal activity against both the Gram-positive and Gram-negative isolates. AmpB-LBA-MNPs produced consistent, potent antibacterial efficacy (100% kill) against all Gram-positive bacteria. AmpB-LBA-MNPs showed strong antibacterial activity against Gram-negative bacteria. Intriguingly, all the drugs and their conjugated counterpart except AmpB showed minimal cytotoxicity against human cells. In summary, these innovative nanoparticle formulations have the potential to be utilized as therapeutic agents against infections caused by MDR bacteria and represent a significant advancement in our effort to counter MDR bacterial infections.
Collapse
Affiliation(s)
- Noor Akbar
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates; (N.A.); (R.S.)
| | - Muhammad Kawish
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan; (M.K.); (M.R.S.)
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Muhammad Raza Shah
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan; (M.K.); (M.R.S.)
| | - Ahmad M. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 26521, Saudi Arabia;
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, Al-Baha 65799, Saudi Arabia;
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates; (N.A.); (R.S.)
| |
Collapse
|
28
|
Martin JF, Alvarez-Alvarez R, Liras P. Penicillin-Binding Proteins, β-Lactamases, and β-Lactamase Inhibitors in β-Lactam-Producing Actinobacteria: Self-Resistance Mechanisms. Int J Mol Sci 2022; 23:5662. [PMID: 35628478 PMCID: PMC9146315 DOI: 10.3390/ijms23105662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
The human society faces a serious problem due to the widespread resistance to antibiotics in clinical practice. Most antibiotic biosynthesis gene clusters in actinobacteria contain genes for intrinsic self-resistance to the produced antibiotics, and it has been proposed that the antibiotic resistance genes in pathogenic bacteria originated in antibiotic-producing microorganisms. The model actinobacteria Streptomyces clavuligerus produces the β-lactam antibiotic cephamycin C, a class A β-lactamase, and the β lactamases inhibitor clavulanic acid, all of which are encoded in a gene supercluster; in addition, it synthesizes the β-lactamase inhibitory protein BLIP. The secreted clavulanic acid has a synergistic effect with the cephamycin produced by the same strain in the fight against competing microorganisms in its natural habitat. High levels of resistance to cephamycin/cephalosporin in actinobacteria are due to the presence (in their β-lactam clusters) of genes encoding PBPs which bind penicillins but not cephalosporins. We have revised the previously reported cephamycin C and clavulanic acid gene clusters and, in addition, we have searched for novel β-lactam gene clusters in protein databases. Notably, in S. clavuligerus and Nocardia lactamdurans, the β-lactamases are retained in the cell wall and do not affect the intracellular formation of isopenicillin N/penicillin N. The activity of the β-lactamase in S. clavuligerus may be modulated by the β-lactamase inhibitory protein BLIP at the cell-wall level. Analysis of the β-lactam cluster in actinobacteria suggests that these clusters have been moved by horizontal gene transfer between different actinobacteria and have culminated in S. clavuligerus with the organization of an elaborated set of genes designed for fine tuning of antibiotic resistance and cell wall remodeling for the survival of this Streptomyces species. This article is focused specifically on the enigmatic connection between β-lactam biosynthesis and β-lactam resistance mechanisms in the producer actinobacteria.
Collapse
Affiliation(s)
| | | | - Paloma Liras
- Departamento de Biología Molecular, Universidad de León, 24071 León, Spain; (J.F.M.); (R.A.-A.)
| |
Collapse
|
29
|
Erlandson A, Gade P, Menikpurage IP, Kim CY, Mera PE. The UvrA-like protein Ecm16 requires ATPase activity to render resistance against echinomycin. Mol Microbiol 2022; 117:1434-1446. [PMID: 35534931 PMCID: PMC9328131 DOI: 10.1111/mmi.14918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 12/02/2022]
Abstract
Bacteria use various strategies to become antibiotic resistant. The molecular details of these strategies are not fully understood. We can increase our understanding by investigating the same strategies found in antibiotic‐producing bacteria. In this work, we characterize the self‐resistance protein Ecm16 encoded by echinomycin‐producing bacteria. Ecm16 is a structural homolog of the nucleotide excision repair protein UvrA. Expression of ecm16 in the heterologous system Escherichia coli was sufficient to render resistance against echinomycin. Ecm16 binds DNA (double‐stranded and single‐stranded) using a nucleotide‐independent binding mode. Ecm16’s binding affinity for DNA increased by 1.7‐fold when the DNA is intercalated with echinomycin. Ecm16 can render resistance against echinomycin toxicity independently of the nucleotide excision repair system. Similar to UvrA, Ecm16 has ATPase activity, and this activity is essential for Ecm16’s ability to render echinomycin resistance. Notably, UvrA and Ecm16 were unable to complement each other's function. Together, our findings identify new mechanistic details of how a refurbished DNA repair protein Ecm16 can specifically render resistance to the DNA intercalator echinomycin.
Collapse
Affiliation(s)
- Amanda Erlandson
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Molecular Biology Program, New Mexico State University, Las Cruces, NM, USA
| | - Priyanka Gade
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, USA
| | - Inoka P Menikpurage
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chu-Young Kim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, USA.,Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, USA
| | - Paola E Mera
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
30
|
Abstract
In response to viral predation, bacteria have evolved a wide range of defense mechanisms, which rely mostly on proteins acting at the cellular level. Here, we show that aminoglycosides, a well-known class of antibiotics produced by Streptomyces, are potent inhibitors of phage infection in widely divergent bacterial hosts. We demonstrate that aminoglycosides block an early step of the viral life cycle, prior to genome replication. Phage inhibition was also achieved using supernatants from natural aminoglycoside producers, indicating a broad physiological significance of the antiviral properties of aminoglycosides. Strikingly, we show that acetylation of the aminoglycoside antibiotic apramycin abolishes its antibacterial effect but retains its antiviral properties. Altogether, our study expands the knowledge of aminoglycoside functions, suggesting that aminoglycosides not only are used by their producers as toxic molecules against their bacterial competitors but also could provide protection against the threat of phage predation at the community level. IMPORTANCE Predation by phages is a major driver of bacterial evolution. As a result, elucidating antiphage strategies is crucial from both fundamental and therapeutic standpoints. While protein-mediated defense mechanisms, like restriction-modification systems or CRISPR/Cas, have been extensively studied, much less is known about the potential antiphage activity of small molecules. Focusing on the model bacteria Escherichia coli and Streptomyces venezuelae, our findings revealed significant antiphage properties of aminoglycosides, a major class of translation-targeting antibiotics produced by Streptomyces. Further, we demonstrate that supernatants from natural aminoglycoside producers protect bacteria from phage propagation, highlighting the physiological relevance of this inhibition. Suppression of phage infection by aminoglycosides did not result from the indirect inhibition of bacterial translation, suggesting a direct interaction between aminoglycosides and phage components. This work highlights the molecular versatility of aminoglycosides, which have evolved to efficiently block protein synthesis in bacterial competitors and provide protection against phages.
Collapse
|
31
|
Akermi S, Smaoui S, Elhadef K, Fourati M, Louhichi N, Chaari M, Chakchouk Mtibaa A, Baanannou A, Masmoudi S, Mellouli L. Cupressus sempervirens Essential Oil: Exploring the Antibacterial Multitarget Mechanisms, Chemcomputational Toxicity Prediction, and Safety Assessment in Zebrafish Embryos. Molecules 2022; 27:2630. [PMID: 35565980 PMCID: PMC9103706 DOI: 10.3390/molecules27092630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022] Open
Abstract
Nowadays, increasing interest has recently been given to the exploration of new food preservatives to avoid foodborne outbreaks or food spoilage. Likewise, new compounds that substitute the commonly used synthetic food preservatives are required to restrain the rising problem of microbial resistance. Accordingly, the present study was conducted to examine the chemical composition and the mechanism(s) of action of the Cupressus sempervirens essential oil (CSEO) against Salmonella enterica Typhimuriumand Staphyloccocus aureus. The gas chromatography analysis revealed α-pinene (38.47%) and δ-3-carene (25.14%) are the major components of the CSEO. By using computational methods, such as quantitative structure-activity relationship (QSAR), we revealed that many CSEO components had no toxic effects. Moreover, findings indicated that α-pinene, δ-3-carene and borneol, a minor compound of CSEO, could inhibit the AcrB-TolC and MepR efflux pump activity of S. enterica Typhimurium and S. aureus, respectively. In addition, our molecular docking predictions indicated the high affinity of these three compounds with active sites of bacterial DNA and RNA polymerases, pointing to plausible impairments of the pathogenic bacteria cell replication processes. As well, the safety profile was developed through the zebrafish model. The in vivo toxicological evaluation of (CSEO) exhibited a concentration-dependent manner, with a lethal concentration (LC50) equal to 6.6 µg/mL.
Collapse
Affiliation(s)
- Sarra Akermi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Khaoula Elhadef
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Mariam Fourati
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Nacim Louhichi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.L.); (A.B.); (S.M.)
| | - Moufida Chaari
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Ahlem Chakchouk Mtibaa
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| | - Aissette Baanannou
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.L.); (A.B.); (S.M.)
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.L.); (A.B.); (S.M.)
| | - Lotfi Mellouli
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (S.A.); (K.E.); (M.F.); (M.C.); (A.C.M.); (L.M.)
| |
Collapse
|
32
|
The Odilorhabdin Antibiotic Biosynthetic Cluster and Acetyltransferase Self-Resistance Locus Are Niche and Species Specific. mBio 2022; 13:e0282621. [PMID: 35012352 PMCID: PMC8749412 DOI: 10.1128/mbio.02826-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Antibiotic resistance is an increasing threat to human health. A direct link has been established between antimicrobial self-resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Natural odilorhabdins (ODLs) constitute a new family of 10-mer linear cationic peptide antibiotics inhibiting bacterial translation by binding to the 30S subunit of the ribosome. These bioactive secondary metabolites are produced by entomopathogenic bacterial symbiont Xenorhabdus (Morganellaceae), vectored by the soil-dwelling nematodes. ODL-producing Xenorhabdus nematophila symbionts have mechanisms of self-protection. In this study, we cloned the 44.5-kb odl biosynthetic gene cluster (odl-BGC) of the symbiont by recombineering and showed that the N-acetyltransferase-encoding gene, oatA, is responsible for ODL resistance. In vitro acetylation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses showed that OatA targeted the side chain amino group of ODL rare amino acids, leading to a loss of translation inhibition and antibacterial properties. Functional, genomic, and phylogenetic analyses of oatA revealed an exclusive cis-link to the odilorhabdin BGC, found only in X. nematophila and a specific phylogenetic clade of Photorhabdus. This work highlights the coevolution of antibiotic production and self-resistance as ancient features of this unique tripartite complex of host-vector-symbiont interactions without odl-BGC dissemination by lateral gene transfer. IMPORTANCE Odilorhabdins (ODLs) constitute a novel antibiotic family with promising properties for treating problematic multidrug-resistant Gram-negative bacterial infections. ODLs are 10-mer linear cationic peptides inhibiting bacterial translation by binding to the small subunit of the ribosome. These natural peptides are produced by Xenorhabdus nematophila, a bacterial symbiont of entomopathogenic nematodes well known to produce large amounts of specialized secondary metabolites. Like other antimicrobial producers, ODL-producing Xenorhabdus nematophila has mechanisms of self-protection. In this study, we cloned the ODL-biosynthetic gene cluster of the symbiont by recombineering and showed that the N-acetyltransferase-encoding gene, oatA, is responsible for ODL resistance. In vitro acetylation and LC-MS/MS analyses showed that OatA targeted the side chain amino group of ODL rare amino acids, leading to a loss of translation inhibition and antibacterial properties. Functional, genomic, and phylogenetic analyses of oatA revealed the coevolution of antibiotic production and self-resistance as ancient feature of this particular niche in soil invertebrates without resistance dissemination.
Collapse
|
33
|
Amato B, Compagna R, De Vivo S, Rocca A, Carbone F, Gentile M, Cirocchi R, Squizzato F, Spertino A, Battocchio P. Groin Surgical Site Infection in Vascular Surgery: Systemic Review on Peri-Operative Antibiotic Prophylaxis. Antibiotics (Basel) 2022; 11:antibiotics11020134. [PMID: 35203737 PMCID: PMC8868080 DOI: 10.3390/antibiotics11020134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives: Surgical site infections (SSIs) in lower extremity vascular surgeries, post-groin incision, are not only common complications and significant contributors to patient mortality and morbidity, but also major financial burdens on healthcare systems and patients. In spite of recent advances in pre- and post-operative care, SSI rates in the vascular surgery field remain significant. However, compliant antibiotic therapy can successfully reduce the SSI incidence pre- and post-surgery. Methods: In October 2021, we conducted a systematic literature review using OVID, PubMed, and EMBASE databases, centered on studies published between January 1980 and December 2020. The review adhered to the Preferred Reporting Items for Systematic Reviews and Meta Analyses checklist. Inclusion/exclusion criteria have been carefully selected and reported in the text. For analyses, we calculated 95% confidence intervals (CI) and weighted odds ratios to amalgamate control and study groups in publications. We applied The Cochrane Collaboration tool to assess bias risk in selected studies. Results: In total, 592 articles were identified. After the removal of duplicates and excluded studies, 36 full-texts were included for review. Conclusions: The review confirmed that antibiotic therapy, administered according to all peri-operative protocols described, is useful in reducing groin SSI rate in vascular surgery.
Collapse
Affiliation(s)
- Bruno Amato
- Department of Public Health, University Federico II of Naples, 80131 Naples, Italy;
- Correspondence: ; Tel.: +39-3403604022
| | - Rita Compagna
- Division of Vascular Surgery, Ospedale Pellegrini, 80100 Naples, Italy; (R.C.); (S.D.V.)
| | - Salvatore De Vivo
- Division of Vascular Surgery, Ospedale Pellegrini, 80100 Naples, Italy; (R.C.); (S.D.V.)
| | - Aldo Rocca
- Deparment of Medicine and Health Sciences “V. Tiberio”, University of Campobasso, 86100 Campobasso, Italy;
| | - Francesca Carbone
- Department of Public Health, University Federico II of Naples, 80131 Naples, Italy;
| | - Maurizio Gentile
- Department of Clinical Medicine and Surgery, University Federico II of Naples, 80131 Naples, Italy;
| | - Roberto Cirocchi
- Department of General and Oncologic Surgery, University of Perugia, 05100 Terni, Italy;
| | - Francesco Squizzato
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, 35100 Padova, Italy; (F.S.); (A.S.); (P.B.)
| | - Andrea Spertino
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, 35100 Padova, Italy; (F.S.); (A.S.); (P.B.)
| | - Piero Battocchio
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, 35100 Padova, Italy; (F.S.); (A.S.); (P.B.)
| |
Collapse
|
34
|
Kim G, Xu YJ, Farha AK, Sui ZQ, Corke H. Bactericidal and antibiofilm properties of Rumex japonicus Houtt. on multidrug-resistant Staphylococcus aureus isolated from milk. J Dairy Sci 2021; 105:2011-2024. [PMID: 34955261 DOI: 10.3168/jds.2021-21221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 01/15/2023]
Abstract
Multidrug-resistant (MDR) Staphylococcus aureus and its biofilm formation have been challenging to control in milk and dairy industries. Biofilms formed by Staph. aureus may result in the failure of antibacterial agents and disinfectants to penetrate the biofilm in an attempt to control contamination. Novel natural antibacterial agents are required to combat MDR bacteria and biofilms. In this study, we evaluated the bactericidal, antibiofilm, and antimotility effects of Rumex japonicus Houtt. (RJH) extract on MDR Staph. aureus isolated from milk. The RJH extract exhibited good antibacterial activity against MDR strains with minimum inhibitory concentrations (MIC) ranging from 0.78 to 6.25 mg/mL and minimum bactericidal concentrations ranging from 3.125 to 12.5 mg/mL. The extract showed strong inhibition of biofilm formation (81.9%) at sub-MIC value and eradication of biofilm at higher concentrations. The motility of Staph. aureus was effectively blocked by the extract. Major compounds emodin, chrysophanol, and physcion were identified in RJH extract using HPLC-linear trap quadrupole (LTQ)/Orbitrap-mass spectrometry. The extract was nontoxic to human epithelial cell lines such as Caco-2 and HT-29 cell lines at concentrations ranging from 0.1 to 0.5 mg/mL, and from 0.1 to 0.75 mg/mL, respectively. These findings suggest that RJH extract could be an alternative to synthetic preservatives in milk and dairy products.
Collapse
Affiliation(s)
- G Kim
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Y J Xu
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - A K Farha
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Z Q Sui
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - H Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
35
|
Saha M, Sarkar A. Review on Multiple Facets of Drug Resistance: A Rising Challenge in the 21st Century. J Xenobiot 2021; 11:197-214. [PMID: 34940513 PMCID: PMC8708150 DOI: 10.3390/jox11040013] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022] Open
Abstract
With the advancements of science, antibiotics have emerged as an amazing gift to the human and animal healthcare sectors for the treatment of bacterial infections and other diseases. However, the evolution of new bacterial strains, along with excessive use and reckless consumption of antibiotics have led to the unfolding of antibiotic resistances to an excessive level. Multidrug resistance is a potential threat worldwide, and is escalating at an extremely high rate. Information related to drug resistance, and its regulation and control are still very little. To interpret the onset of antibiotic resistances, investigation on molecular analysis of resistance genes, their distribution and mechanisms are urgently required. Fine-tuned research and resistance profile regarding ESKAPE pathogen is also necessary along with other multidrug resistant bacteria. In the present scenario, the interaction of bacterial infections with SARS-CoV-2 is also crucial. Tracking and in-silico analysis of various resistance mechanisms or gene/s are crucial for overcoming the problem, and thus, the maintenance of relevant databases and wise use of antibiotics should be promoted. Creating awareness of this critical situation among individuals at every level is important to strengthen the fight against this fast-growing calamity. The review aimed to provide detailed information on antibiotic resistance, its regulatory molecular mechanisms responsible for the resistance, and other relevant information. In this article, we tried to focus on the correlation between antimicrobial resistance and the COVID-19 pandemic. This study will help in developing new interventions, potential approaches, and strategies to handle the complexity of antibiotic resistance and prevent the incidences of life-threatening infections.
Collapse
Affiliation(s)
- Mousumi Saha
- Department of Microbiology, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Agniswar Sarkar
- Virus Unit [NICED-ICMR], GB4-1st Floor, ID and BG Hospital, 57, S. C. Banerjee Road, Beliaghata, Kolkata 700010, India;
| |
Collapse
|
36
|
Sun H, Liu X, Pei J, Hao D, Li X, Chen D, Shen Y, Xu Z. Identification, characterisation and inhibition of
Geotrichum pseudocandidum
spoilage microbe in
Gastrodia elata
tuber. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Haiyan Sun
- Key Laboratory of Life Resources of Shaanxi Province Shaanxi Key Laboratory of Resource Biology College of Biological Science and Engineering Shaanxi University of Technology Hanzhong China
| | - Xiao Liu
- Key Laboratory of Life Resources of Shaanxi Province Shaanxi Key Laboratory of Resource Biology College of Biological Science and Engineering Shaanxi University of Technology Hanzhong China
| | - Jinjin Pei
- Key Laboratory of Life Resources of Shaanxi Province Shaanxi Key Laboratory of Resource Biology College of Biological Science and Engineering Shaanxi University of Technology Hanzhong China
| | - Danqing Hao
- Key Laboratory of Life Resources of Shaanxi Province Shaanxi Key Laboratory of Resource Biology College of Biological Science and Engineering Shaanxi University of Technology Hanzhong China
| | - Xinsheng Li
- Key Laboratory of Life Resources of Shaanxi Province Shaanxi Key Laboratory of Resource Biology College of Biological Science and Engineering Shaanxi University of Technology Hanzhong China
| | - Dejing Chen
- Key Laboratory of Life Resources of Shaanxi Province Shaanxi Key Laboratory of Resource Biology College of Biological Science and Engineering Shaanxi University of Technology Hanzhong China
| | - Yixiao Shen
- College of Food Science Shenyang Agricultural University Shenyang China
- School of Nutrition and Food Sciences Louisiana State University Baton Rouge LA USA
| | - Zhimin Xu
- School of Nutrition and Food Sciences Louisiana State University Baton Rouge LA USA
| |
Collapse
|
37
|
Aleem M, Azeem AR, Rahmatullah S, Vohra S, Nasir S, Andleeb S. Prevalence of Bacteria and Antimicrobial Resistance Genes in Hospital Water and Surfaces. Cureus 2021; 13:e18738. [PMID: 34790487 PMCID: PMC8587521 DOI: 10.7759/cureus.18738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose Antimicrobial resistance (AMR) has become a worldwide environmental and public health problem, causing more than 250,000 deaths per year. Unregulated usage, unsafe hospital practices, and misuse in veterinary contribute to the development of multidrug resistance in various bacteria. Hospital water was hypothesized to be a hotspot for AMR transmission because of (1) increased exposure to antibiotic load, (2) poor drainage and sanitation system, (3) interaction between environmental and clinical microbes. The purpose of the research was to assess the biodiversity and AMR in hospital tap waters. Methodology In this study, the microflora of the hospital tap water and hospital surfaces was observed by obtaining water samples from the intensive care unit (ICU), surgical wards, and washrooms. These were processed through membrane filtration and spread on seven different media (Aeromonas Medium, Azide Dextrose Agar, MacConkey Agar, Mannitol Salt Agar, Pseudomonas Cetrimide Agar, Salmonella Shigella Agar, and Thiosulfate Citrate Bile Salts Sucrose Agar). Surface samples were collected from the faucet, basin, and drain and directly spread on the media plates. Isolates were identified using standard bacteriological and biochemical tests. Kirby-Bauer disk diffusion method was performed using 21 antibiotic disks from 10 different antibiotic classes. They included ampicillin (AMP), amoxicillin (AML), piperacillin-tazobactam (TZP), cefipime (FEP), cefoxitin (FOX), ceftazidime (CAZ), ceftriaxone (CRO), imipenem (IMP), meropenem (MEM), ciprofloxacin (CIP), moxifloxacin (MXF), levofloxacin (LEV), amikacin (AK), gentamicin (CN), tigecycline (TGC), aztreonam (ATM), erythromycin (E), clindamycin (DA), rifampicin (RD), colistin (CT), and chloramphenicol (C). The results were interpreted according to EUCAST guidelines for the antibiogram of the isolates; 38 isolates were selected out of 162 based on different parameters for genotyping and detection of six beta-lactamase genes (blaSHV, blaTEM, blaCTX-M, blaOXA, blaKPC, blaNDM). Results Among these 162 isolates, 82 were obtained from water sources and 80 were collected from surfaces (faucet, basin, drain). The isolates included a variety of bacteria including Aeromonas spp. (20%), Klebsiella spp. (13%), Staphylococcus aureus (13%), Pseudomonas spp.(10%), Escherichia coli (9%), Vibrio spp. (8%), Enterococcus spp. (6%), Shigella spp. (6%), Salmonella spp. (4%), Acinetobacter spp. (3%), Staphylococcus epidermitis (3%), Streptococci spp. (2%), Proteus spp. (1%), Citrobacter spp. (1%), and Serratia spp. (1%). A diverse range of microbes were identified including clinically relevant bacteria, which shows that the urban water cycle is already contaminated with multidrug-resistant microflora of the hospital settings. Macrolide and lincosamide showed the highest resistance followed by penicillin, monobactam, and cephalosporins. blaSHV and blaTEM were prevalent in samples. blaNDM was also found which manifests as a real threat since it causes resistance against carbapenems and colistin, antibiotics reserved as a last resort against infections. Conclusions This study presented the ground reality of antibiotic resistance in Pakistan and how its subsequent spread poses a great threat to the strides made in the field of medicine and public health. Strict regulations regarding antibiotic usage, hospital effluent, and urban water sanitation must be imposed to curb the devastating effects of this increasing phenomenon.
Collapse
Affiliation(s)
- Maira Aleem
- Biotechnology, Combined Military Hospital (CMH) - Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | - Abdul R Azeem
- General Medicine, Combined Military Hospital (CMH), Lahore, PAK
| | - Sidra Rahmatullah
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, PAK
| | - Sufyan Vohra
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, PAK
| | - Shumyila Nasir
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, PAK
| | - Saadia Andleeb
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, PAK
| |
Collapse
|
38
|
Nikinmaa S, Podonyi A, Raivio P, Meurman J, Sorsa T, Rantala J, Kankuri E, Tauriainen T, Pätilä T. Daily Administered Dual-Light Photodynamic Therapy Provides a Sustained Antibacterial Effect on Staphylococcus aureus. Antibiotics (Basel) 2021; 10:antibiotics10101240. [PMID: 34680821 PMCID: PMC8533018 DOI: 10.3390/antibiotics10101240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 01/12/2023] Open
Abstract
New means to reduce excessive antibiotic use are urgently needed. This study tested dual-light aPDT against Staphylococcus aureus biofilm with different relative ratios of light energy with indocyanine green. We applied single-light aPDT (810 nm aPDT, 405 aBL) or dual-light aPDT (simultaneous 810 nm aPDT and 405 nm aBL), in both cases, together with the ICG photosensitizer with constant energy of 100 or 200 J/cm2. Single-dose light exposures were given after one-day, three-day, or six-day biofilm incubations. A repeated daily dose of identical light energy was applied during biofilm incubations for the three- and six-day biofilms. Using 100 J/cm2 light energy against the one-day biofilm, the dual-light aPDT consisting of more than half of aBL was the most effective. On a three-day maturated biofilm, single-dose exposure to aPDT or dual-light aPDT was more effective than aBL alone. With total light energy of 200 J/cm2, all dual-light treatments were effective. Dual-light aPDT improves the bactericidal effect on Staphylococcus aureus biofilm compared to aPDT or aBL and provides a sustained effect. An increase in the relative ratio of aBL strengthens the antibacterial effect, mainly when the treatment is repeatedly applied. Thus, the light components' energy ratio is essential with dual-light.
Collapse
Affiliation(s)
- Sakari Nikinmaa
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland;
- Koite Health Oy, 02150 Espoo, Finland;
| | - Anna Podonyi
- Department of Cardiac Surgery, University Hospital Southampton, Southampton SO16 6YD, Hampshire, UK;
| | - Peter Raivio
- Heart and Lung Center, Meilahti Hospital, 00290 Helsinki, Finland; (P.R.); (T.T.)
| | - Jukka Meurman
- Department of Oral and Maxillofacial Diseases, University of Helsinki, 00290 Helsinki, Finland; (J.M.); (T.S.)
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki, 00290 Helsinki, Finland; (J.M.); (T.S.)
| | | | - Esko Kankuri
- Department of Pharmacology, University of Helsinki, 00290 Helsinki, Finland;
| | - Tuomas Tauriainen
- Heart and Lung Center, Meilahti Hospital, 00290 Helsinki, Finland; (P.R.); (T.T.)
- Department of Congenital Heart Surgery and Organ Transplantation, New Children’s Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Tommi Pätilä
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland;
- Koite Health Oy, 02150 Espoo, Finland;
- Department of Congenital Heart Surgery and Organ Transplantation, New Children’s Hospital, University of Helsinki, 00290 Helsinki, Finland
- Correspondence: ; Tel.: +358-50-427-2291; Fax: +358-94-717-4479
| |
Collapse
|
39
|
Al-shaibani MM, Radin Mohamed RMS, Sidik NM, Enshasy HAE, Al-Gheethi A, Noman E, Al-Mekhlafi NA, Zin NM. Biodiversity of Secondary Metabolites Compounds Isolated from Phylum Actinobacteria and Its Therapeutic Applications. Molecules 2021; 26:molecules26154504. [PMID: 34361657 PMCID: PMC8347454 DOI: 10.3390/molecules26154504] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/08/2022] Open
Abstract
The current review aims to summarise the biodiversity and biosynthesis of novel secondary metabolites compounds, of the phylum Actinobacteria and the diverse range of secondary metabolites produced that vary depending on its ecological environments they inhabit. Actinobacteria creates a wide range of bioactive substances that can be of great value to public health and the pharmaceutical industry. The literature analysis process for this review was conducted using the VOSviewer software tool to visualise the bibliometric networks of the most relevant databases from the Scopus database in the period between 2010 and 22 March 2021. Screening and exploring the available literature relating to the extreme environments and ecosystems that Actinobacteria inhabit aims to identify new strains of this major microorganism class, producing unique novel bioactive compounds. The knowledge gained from these studies is intended to encourage scientists in the natural product discovery field to identify and characterise novel strains containing various bioactive gene clusters with potential clinical applications. It is evident that Actinobacteria adapted to survive in extreme environments represent an important source of a wide range of bioactive compounds. Actinobacteria have a large number of secondary metabolite biosynthetic gene clusters. They can synthesise thousands of subordinate metabolites with different biological actions such as anti-bacterial, anti-parasitic, anti-fungal, anti-virus, anti-cancer and growth-promoting compounds. These are highly significant economically due to their potential applications in the food, nutrition and health industries and thus support our communities' well-being.
Collapse
Affiliation(s)
- Muhanna Mohammed Al-shaibani
- Micro-Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Johor, Malaysia;
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Radin Maya Saphira Radin Mohamed
- Micro-Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Johor, Malaysia;
- Correspondence: (R.M.S.R.M.); (N.M.S.); (A.A.-G.)
| | - Nik Marzuki Sidik
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli 17600, Kelantan, Malaysia
- Correspondence: (R.M.S.R.M.); (N.M.S.); (A.A.-G.)
| | - Hesham Ali El Enshasy
- Institute of Bioproducts Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia;
- City of Scientific Research and Technology Applications (SRTA), 21934 New Burg Al Arab, Alexandria, Egypt
| | - Adel Al-Gheethi
- Micro-Pollutant Research Centre (MPRC), Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Johor, Malaysia;
- Correspondence: (R.M.S.R.M.); (N.M.S.); (A.A.-G.)
| | - Efaq Noman
- Applied Microbiology Department, Faculty of Applied Sciences, Taiz University, Taiz 6803, Yemen;
| | - Nabil Ali Al-Mekhlafi
- Atta-ur-Rahman Institute for Natural Product Discovery, UiTM, Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor, Malaysia;
- Biochemical Technology Program, Department of Chemistry Faculty of Applied Science, Thamar University, Thamar P.O. Box 87246, Yemen
| | - Noraziah Mohamad Zin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
40
|
Diene SM, Pinault L, Baron SA, Azza S, Armstrong N, Hadjadj L, Chabrière E, Rolain JM, Pontarotti P, Raoult D. A metallo-β-lactamase enzyme for internal detoxification of the antibiotic thienamycin. Sci Rep 2021; 11:10062. [PMID: 33980996 PMCID: PMC8115136 DOI: 10.1038/s41598-021-89600-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/14/2021] [Indexed: 11/23/2022] Open
Abstract
Thienamycin, the first representative of carbapenem antibiotics was discovered in the mid-1970s from soil microorganism, Streptomyces cattleya, during the race to discover inhibitors of bacterial peptidoglycan synthesis. Chemically modified into imipenem (N-formimidoyl thienamycin), now one of the most clinically important antibiotics, thienamycin is encoded by a thienamycin gene cluster composed of 22 genes (thnA to thnV) from S. cattleya NRRL 8057 genome. Interestingly, the role of all thn-genes has been experimentally demonstrated in the thienamycin biosynthesis, except thnS, despite its annotation as putative β-lactamase. Here, we expressed thnS gene and investigated its activities against various substrates. Our analyses revealed that ThnS belonged to the superfamily of metallo-β-lactamase fold proteins. Compared to known β-lactamases such as OXA-48 and NDM-1, ThnS exhibited a lower affinity and less efficiency toward penicillin G and cefotaxime, while imipenem is more actively hydrolysed. Moreover, like most MBL fold enzymes, additional enzymatic activities of ThnS were detected such as hydrolysis of ascorbic acid, single strand DNA, and ribosomal RNA. ThnS appears as a MBL enzyme with multiple activities including a specialised β-lactamase activity toward imipenem. Thus, like toxin/antitoxin systems, the role of thnS gene within the thienamycin gene cluster appears as an antidote against the produced thienamycin.
Collapse
Affiliation(s)
- Seydina M Diene
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Lucile Pinault
- Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Sophie Alexandra Baron
- Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Saïd Azza
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Nicholas Armstrong
- Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Linda Hadjadj
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Eric Chabrière
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Jean-Marc Rolain
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Pierre Pontarotti
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,CNRS, Marseille, France
| | - Didier Raoult
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France. .,IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
41
|
Spirescu VA, Chircov C, Grumezescu AM, Vasile BȘ, Andronescu E. Inorganic Nanoparticles and Composite Films for Antimicrobial Therapies. Int J Mol Sci 2021; 22:4595. [PMID: 33925617 PMCID: PMC8123905 DOI: 10.3390/ijms22094595] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
The development of drug-resistant microorganisms has become a critical issue for modern medicine and drug discovery and development with severe socio-economic and ecological implications. Since standard and conventional treatment options are generally inefficient, leading to infection persistence and spreading, novel strategies are fundamentally necessary in order to avoid serious global health problems. In this regard, both metal and metal oxide nanoparticles (NPs) demonstrated increased effectiveness as nanobiocides due to intrinsic antimicrobial properties and as nanocarriers for antimicrobial drugs. Among them, gold, silver, copper, zinc oxide, titanium oxide, magnesium oxide, and iron oxide NPs are the most preferred, owing to their proven antimicrobial mechanisms and bio/cytocompatibility. Furthermore, inorganic NPs can be incorporated or attached to organic/inorganic films, thus broadening their application within implant or catheter coatings and wound dressings. In this context, this paper aims to provide an up-to-date overview of the most recent studies investigating inorganic NPs and their integration into composite films designed for antimicrobial therapies.
Collapse
Affiliation(s)
- Vera Alexandra Spirescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
| |
Collapse
|
42
|
Zhao Y, Liu J, Jiang T, Hou R, Xu G, Xu H, Liu F. Resistance-Nodulation-Division Efflux Pump, LexABC, Contributes to Self-Resistance of the Phenazine Di- N-Oxide Natural Product Myxin in Lysobacter antibioticus. Front Microbiol 2021; 12:618513. [PMID: 33679640 PMCID: PMC7927275 DOI: 10.3389/fmicb.2021.618513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Antibiotic-producing microorganisms have developed several self-resistance mechanisms to protect them from autotoxicity. Transporters belonging to the resistance- nodulation-division (RND) superfamily commonly confer multidrug resistance in Gram-negative bacteria. Phenazines are heterocyclic, nitrogen-containing and redox-active compounds that exhibit diverse activities. We previously identified six phenazines from Lysobacter antibioticus OH13, a soil bacterium emerging as a potential biocontrol agent. Among these phenazines, myxin, a di-N-oxide phenazine, exhibited potent activity against a variety of microorganisms. In this study, we identified a novel RND efflux pump gene cluster, designated lexABC, which is located far away in the genome from the myxin biosynthesis gene cluster. We found a putative LysR-type transcriptional regulator encoding gene lexR, which was adjacent to lexABC. Deletion of lexABC or lexR gene resulted in significant increasing susceptibility of strains to myxin and loss of myxin production. The results demonstrated that LexABC pump conferred resistance against myxin. The myxin produced at lower concentrations in these mutants was derivatized by deoxidation and O-methylation. Furthermore, we found that the abolishment of myxin with deletion of LaPhzB, which is an essential gene in myxin biosynthesis, resulted in significant downregulation of the lexABC. However, exogenous supplementation with myxin to LaPhzB mutant could efficiently induce the expression of lexABC genes. Moreover, lexR mutation also led to decreased expression of lexABC, which indicates that LexR potentially positively modulated the expression of lexABC. Our findings reveal a resistance mechanism against myxin of L. antibioticus, which coordinates regulatory pathways to protect itself from autotoxicity.
Collapse
Affiliation(s)
- Yangyang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Jiayu Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, China
| | - Tianping Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Rongxian Hou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, China
| | - Gaoge Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Huiyong Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
43
|
Imchen M, Kumavath R. Shotgun metagenomics reveals a heterogeneous prokaryotic community and a wide array of antibiotic resistance genes in mangrove sediment. FEMS Microbiol Ecol 2021; 96:5897355. [PMID: 32845305 DOI: 10.1093/femsec/fiaa173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Saline tolerant mangrove forests partake in vital biogeochemical cycles. However, they are endangered due to deforestation as a result of urbanization. In this study, we have carried out a metagenomic snapshot of the mangrove ecosystem from five countries to assess its taxonomic, functional and antibiotic resistome structure. Chao1 alpha diversity varied significantly (P < 0.001) between the countries (Brazil, Saudi Arabia, China, India and Malaysia). All datasets were composed of 33 phyla dominated by eight major phyla covering >90% relative abundance. Comparative analysis of mangrove with terrestrial and marine ecosystems revealed the strongest heterogeneity in the mangrove microbial community. We also observed that the mangrove community shared similarities to both the terrestrial and marine microbiome, forming a link between the two contrasting ecosystems. The antibiotic resistant genes (ARG) resistome was comprised of nineteen level 3 classifications dominated by multidrug resistance efflux pumps (46.7 ± 4.3%) and BlaR1 family regulatory sensor-transducer disambiguation (25.2 ± 4.8%). ARG relative abundance was significantly higher in Asian countries and in human intervention datasets at a global scale. Our study shows that the mangrove microbial community and its antibiotic resistance are affected by geography as well as human intervention and are unique to the mangrove ecosystem. Understanding changes in the mangrove microbiome and its ARG is significant for sustainable development and public health.
Collapse
Affiliation(s)
- Madangchanok Imchen
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O) Kasaragod, Kerala-671320, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O) Kasaragod, Kerala-671320, India
| |
Collapse
|
44
|
Bombaywala S, Dafale NA, Jha V, Bajaj A, Purohit HJ. Study of indiscriminate distribution of restrained antimicrobial resistome of different environmental niches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10780-10790. [PMID: 33099734 DOI: 10.1007/s11356-020-11318-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Prophylactic usage and high persistent nature of several antibiotics have put selective pressure on the native microbial population that led to the emergence, propagation, and persistence of antibiotic resistance in nature. The surveillance of antibiotic resistome pattern and identification of points of intervention throughout the different environmental habitats will help to break the flow of antibiotic resistance from environmental bacteria to human pathogens. The present study compares the occurrence, diversity, and abundance of ARGs in industrial sludge, wetland sludge, and sediment sample contaminated with pharmaceutical discharge. Metagenomes were mined for the presence of ARGs against the ResFinder 3.2 database using BLASTn program. Pharmaceutical sample (2.52%) showed high degree of ARG abundance and richness as compared with ETP sludge (2.28%) and wetland sludge samples (1.29%). The modern resistome pattern represented by critically important resistance genes against tetracycline (tetA, tetC, tetW, tetT, and tetS/M) and quinolone (qnrS, qnrVC, and qnrD) was identified in pharmaceutical sediment sample. However, effluent treatment plant (ETP) sludge sample showed abundance of multidrug efflux pumps indicating the presence of primitive resistome profile. In conclusion, the indiscriminate distribution pattern of antibiotic resistance genes in three selected environmental sites suggests enrichment and distribution of environmental niche-driven resistance. The study also suggests effluent discharge site from pharmaceutical industries and ETPs as pivotal points of intervention for the mitigation of antibiotic resistance.
Collapse
Affiliation(s)
- Sakina Bombaywala
- Environmental Biotechnology and Genomics Division, CSIR - National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nishant A Dafale
- Environmental Biotechnology and Genomics Division, CSIR - National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Varsha Jha
- Environmental Biotechnology and Genomics Division, CSIR - National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhay Bajaj
- Environmental Biotechnology and Genomics Division, CSIR - National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR - National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| |
Collapse
|
45
|
Masood A, Jacob M, Gu X, Abdel Jabar M, Benabdelkamel H, Nizami I, Li L, Dasouki M, Abdel Rahman AM. Distinctive metabolic profiles between Cystic Fibrosis mutational subclasses and lung function. Metabolomics 2021; 17:4. [PMID: 33394183 DOI: 10.1007/s11306-020-01760-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/09/2020] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a lethal multisystemic disease of a monogenic origin with numerous mutations. Functional defects in the cystic fibrosis transmembrane conductance receptor (CFTR) protein based on these mutations are categorised into distinct classes having different clinical presentations and disease severity. OBJECTIVES The present study aimed to create a comprehensive metabolomic profile of altered metabolites in patients with CF, among different classes and in relation to lung function. METHODS A chemical isotope labeling liquid chromatography-mass spectrometry metabolomics was used to study the serum metabolic profiles of young and adult CF (n = 39) patients and healthy controls (n = 30). Comparisons were made at three levels, CF vs. controls, among mutational classes of CF, between CF class III and IV, and correlated the lung function findings. RESULTS A distinctive metabolic profile was observed in the three analyses. 78, 20, and 13 significantly differentially dysregulated metabolites were identified in the patients with CF, among the different classes and between class III and IV, respectively. The significantly identified metabolites included amino acids, di-, and tri-peptides, glutathione, glutamine, glutamate, and arginine metabolism. The top significant metabolites include 1-Aminopropan-2-ol, ophthalmate, serotonin, cystathionine, and gamma-glutamylglutamic acid. Lung function represented by an above-average FEV1% level was associated with decreased glutamic acid and increased guanosine levels. CONCLUSION Metabolomic profiling identified alterations in different amino acids and dipeptides, involved in regulating glutathione metabolism. Two metabolites, 3,4-dihydroxymandelate-3-O-sulfate and 5-Aminopentanoic acid, were identified in common between the three anlayses and may represent as highly sensitive biomarkers for CF.
Collapse
Affiliation(s)
- Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, PO. Box 2925 (98), Riyadh, 11461, Saudi Arabia
| | - Minnie Jacob
- Metabolomics Section, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, PO. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Xinyun Gu
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Mai Abdel Jabar
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, PO. Box 2925 (98), Riyadh, 11461, Saudi Arabia
| | - Imran Nizami
- Lung Transplant Section, Organ Transplant Center, King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 11211, Saudi Arabia
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Majed Dasouki
- Metabolomics Section, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, PO. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Anas M Abdel Rahman
- Metabolomics Section, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, PO. Box 3354, Riyadh, 11211, Saudi Arabia.
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh, Saudi Arabia.
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada.
| |
Collapse
|
46
|
Aslan Kayiran M, Karadag AS, Al-Khuzaei S, Chen W, Parish LC. Antibiotic Resistance in Acne: Mechanisms, Complications and Management. Am J Clin Dermatol 2020; 21:813-819. [PMID: 32889707 DOI: 10.1007/s40257-020-00556-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antibiotic resistance in acne was first observed in the 1970s, and since the 1980s has become a major concern in dermatologic daily practice. The mechanisms for this type of resistance include biofilm formation that promotes virulence and the transmission of resistant bacterial strains. Genetic mutations with modification of ribosomal RNA, alteration in efflux pumps, and enzymatic inactivation are able to create resistance to tetracyclines and macrolides. The state of art in acne treatment is no longer to use antimicrobials as monotherapy. There should be a time limit for its use plus the employment of non-antibiotic maintenance. Earlier initiation of oral isotretinoin therapy should be considered in patients with insufficient response to antimicrobials, severe acne, or a history of repeated antimicrobial use. A better understanding of acne pathogenesis, the subtypes of Propionibacterium (also known as Cutibacterium) acnes, homeostasis of the skin microbiota, and the mechanisms of antibiotic resistance would be useful in the selection of narrow-spectrum or species-specific antimicrobials, as well as the non-antimicrobial, anti-inflammatory treatment of acne. A number of novel treatments awaiting clinical proof may include the use of bacteriophages, natural or synthetic antimicrobial peptides, probiotics, and biofilm-targeting agents, as well as the reassessment of phototherapy.
Collapse
Affiliation(s)
- Melek Aslan Kayiran
- Department of Dermatology and Venereology, Istanbul Medeniyet University, School of Medicine, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Ayse Serap Karadag
- Department of Dermatology and Venereology, Istanbul Medeniyet University, School of Medicine, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Safaa Al-Khuzaei
- Department of Dermatology, Hamad Medical Corporation, Rumailah Hospital, Doha, Qatar
| | - WenChieh Chen
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany.
- Department of Dermatology, Pingtung Hospital, Ministry of Health and Welfare, Pingtung, Taiwan.
| | - Lawrence Charles Parish
- Dermatology and Cutaneous Biology, Jefferson Center for International Dermatology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
47
|
Chernova OA, Chernov VM, Mouzykantov AA, Baranova NB, Edelstein IA, Aminov RI. Antimicrobial drug resistance mechanisms among Mollicutes. Int J Antimicrob Agents 2020; 57:106253. [PMID: 33264670 DOI: 10.1016/j.ijantimicag.2020.106253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 07/08/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022]
Abstract
Representatives of the Mollicutes class are the smallest, wall-less bacteria capable of independent reproduction. They are widespread in nature, most are commensals, and some are pathogens of humans, animals and plants. They are also the main contaminants of cell cultures and vaccine preparations. Despite limited biosynthetic capabilities, they are highly adaptable and capable of surviving under various stress and extreme conditions, including antimicrobial selective pressure. This review describes current understanding of antibiotic resistance (ABR) mechanisms in Mollicutes. Protective mechanisms in these bacteria include point mutations, which may include non-target genes, and unique gene exchange mechanisms, contributing to transfer of ABR genes. Better understanding of the mechanisms of emergence and dissemination of ABR in Mollicutes is crucial to control these hypermutable bacteria and prevent the occurrence of highly ABR strains.
Collapse
Affiliation(s)
- Olga A Chernova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Vladislav M Chernov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Alexey A Mouzykantov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Natalya B Baranova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Inna A Edelstein
- Smolensk State Medical University, Ministry of Health of Russian Federation, Smolensk, Russian Federation
| | - Rustam I Aminov
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| |
Collapse
|
48
|
Possible drugs for the treatment of bacterial infections in the future: anti-virulence drugs. J Antibiot (Tokyo) 2020; 74:24-41. [PMID: 32647212 DOI: 10.1038/s41429-020-0344-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022]
Abstract
Antibiotic resistance is a global threat that should be urgently resolved. Finding a new antibiotic is one way, whereas the repression of the dissemination of virulent pathogenic bacteria is another. From this point of view, this paper summarizes first the mechanisms of conjugation and transformation, two important processes of horizontal gene transfer, and then discusses the approaches for disarming virulent pathogenic bacteria, that is, virulence factor inhibitors. In contrast to antibiotics, anti-virulence drugs do not impose a high selective pressure on a bacterial population, and repress the dissemination of antibiotic resistance and virulence genes. Disarmed virulence factors make virulent pathogens avirulent bacteria or pathobionts, so that we human will be able to coexist with these disarmed bacteria peacefully.
Collapse
|
49
|
Shewanella harboring antimicrobial and copper resistance genes in sea urchins (Paracentrotus lividus) from the Crozon peninsula (Brittany, France). INFECTION GENETICS AND EVOLUTION 2020; 85:104437. [PMID: 32574704 DOI: 10.1016/j.meegid.2020.104437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
Shewanella is a genus of aquatic non-fermenting Gram-negative bacteria with increasing numbers of reports of infections in humans and appearance of antimicrobial resistant strains. Cases of infection show a relatively strong association with seafood consumption or exposure to seawater. This study aimed to analyze Shewanella spp. isolated from the sea urchin Paracentrotus lividus collected from the Crozon peninsula (France) with the intention of obtaining insights into the role of this genus as a reservoir of antimicrobial and heavy metal resistance genes. Five among seven Shewanella isolates were resistant to antimicrobials, mainly to broad spectrum beta-lactams. Four isolates displayed multiple resistance to at least three of these antimicrobial classes: broad spectrum beta-lactams, aminoglycosides, macrolide, quinolones and/or tetracycline. Three antimicrobial resistance genes were detected in just one isolate encoding resistance to beta-lactam (blaSHV and blaTEM-1) and macrolide (ermB). In addition, the copper resistance gene cusB, was observed in this isolate which is also a plasmid carrier. Another copper resistance encoding gene, copA, was found among the isolates. These results indicate that the multidrug-resistant (MDR) Shewanella isolates and resistance genes could be potential risks to public health, due to the carrying of these MDR bacteria by sea urchins through human consumption.
Collapse
|
50
|
Constructed Wetland Revealed Efficient Sulfamethoxazole Removal but Enhanced the Spread of Antibiotic Resistance Genes. Molecules 2020; 25:molecules25040834. [PMID: 32074994 PMCID: PMC7071035 DOI: 10.3390/molecules25040834] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Constructed wetlands (CWs) could achieve high removal efficiency of antibiotics, but probably stimulate the spread of antibiotic resistance genes (ARGs). In this study, four CWs were established to treat synthetic wastewater containing sulfamethoxazole (SMX). SMX elimination efficiencies, SMX degradation mechanisms, dynamic fates of ARGs, and bacterial communities were evaluated during the treatment period (360 day). Throughout the whole study, the concentration of SMX in the effluent gradually increased (p < 0.05), but in general, the removal efficiency of SMX remained at a very high level (>98%). In addition, the concentration of SMX in the bottom layer was higher compared with that in the surface layer. The main byproducts of SMX degradation were found to be 4-amino benzene sulfinic acid, 3-amino-5-methylisoxazole, benzenethiol, and 3-hydroxybutan-1-aminium. Temporally speaking, an obvious increase of sul genes was observed, along with the increase of SMX concentration in the bottom and middle layers of CWs. Spatially speaking, the concentration of sul genes increased from the surface layer to the bottom layer.
Collapse
|