1
|
Baldon S, Paut J, Anselmi E, Dagousset G, Tuccio B, Pelosi G, Cuadros S, Magnier E, Dell'Amico L. Radical photochemical difluorosulfoximination of alkenes and propellanes. Chem Sci 2025; 16:6957-6964. [PMID: 40123685 PMCID: PMC11927575 DOI: 10.1039/d5sc01068c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Herein, we report a metal-free divergent visible-light driven method for the synthesis of fluorinated sulfoximines. Both olefins and propellanes efficiently undergo difluorosulfoximination with yields up to 77% (65 examples). The process is general and robust and tolerates diverse functional groups, including esters, ethers, ketones, silyl groups, silyl ethers or boronic esters. The functionalization of diverse bioactive ingredients (8 examples) and various product manipulations demonstrate the synthetic usefulness of the developed synthetic platform. Finally, we rationalized the divergent reaction mechanism by performing Stern-Volmer quenching and EPR experiments that revealed the key activity of a difluoroalkyl sulfoximine radical.
Collapse
Affiliation(s)
- Simone Baldon
- Department of Chemical Sciences, University of Padova Via Francesco Marzolo 1 35131 Padova Italy
| | - Julien Paut
- Department of Chemical Sciences, University of Padova Via Francesco Marzolo 1 35131 Padova Italy
- Institut Lavoisier de Versailles, Université Paris-Saclay 45 avenue des Etats-Unis 78035 Versailles France
| | - Elsa Anselmi
- Institut Lavoisier de Versailles, Université Paris-Saclay 45 avenue des Etats-Unis 78035 Versailles France
- Université de Tours, Faculté des Sciences et Techniques 37200 Tours France
| | - Guillaume Dagousset
- Institut Lavoisier de Versailles, Université Paris-Saclay 45 avenue des Etats-Unis 78035 Versailles France
| | | | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma Parco Area delle Scienze 17 43124 Parma Italy
| | - Sara Cuadros
- Department of Chemical Sciences, University of Padova Via Francesco Marzolo 1 35131 Padova Italy
| | - Emmanuel Magnier
- Institut Lavoisier de Versailles, Université Paris-Saclay 45 avenue des Etats-Unis 78035 Versailles France
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova Via Francesco Marzolo 1 35131 Padova Italy
| |
Collapse
|
2
|
Zhang Y, Liu Y, Zhang Y, Zhu Y, Zhou N, Zhao X, Lu K. Photochemical Difluoromethylation of Quinoxalin-2(1 H)-ones with Difluoroacetic Anhydride and Pyridine N-Oxide. J Org Chem 2023. [PMID: 38154054 DOI: 10.1021/acs.joc.3c02357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
A novel photochemical difluoromethylation of quinoxalin-2(1H)-ones under catalyst-free conditions was achieved with difluoroacetic anhydride and pyridine N-oxide. The green and mild reaction conditions as well as readily attainable difluoroacetic anhydride provide a useful protocol to prepare C3-difluoromethylated quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
- Ying Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China
| | - Yu Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China
| | - Yi Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China
| | - Yaqing Zhu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China
| | - Ningning Zhou
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China
| | - Xia Zhao
- College of Chemistry, TianJin Key Laboratory of Structure and Performance for Functional Molecules, TianJin Normal University, TianJin 300387, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China
| |
Collapse
|
3
|
Zhang S, Zhao L. Anaerobic photoinduced Cu(0/I)-mediated Glaser coupling in a radical pathway. Nat Commun 2023; 14:6741. [PMID: 37875487 PMCID: PMC10598264 DOI: 10.1038/s41467-023-42602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
The reaction mechanism of the historic copper-catalyzed Glaser coupling has been debated to be based on redox cycles of Cu ions in specific oxidation states or on a radical mechanism based on Cu(0)/Cu(I). Here, the authors demonstrate two coexisting Glaser coupling pathways which can be differentiated by anaerobic/irradiation or aerobic reaction conditions. Without O2, copper(I) acetylides undergo a photo-excited pathway to generate highly reactive alkynyl radicals, which combine together to form a homo-coupling product or individually react with diverse X-H (X = C, N, O, S and P) substrates via hydrogen atom transfer. With O2, copper(I) acetylides are oxidized to become a Cu-acetylide/Cu-O merged Cu(I/II) intermediate for further oxidative coupling. This work not only complements the radical mechanism for Glaser coupling, but also provides a mild way to access highly energetic alkynyl radicals for efficient organic transformations.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Fossé P, Pfund E, Lequeux T. Photocatalyzed Hydroaminodifluoroalkylation of Alkenes. Chemistry 2023; 29:e202301793. [PMID: 37466455 DOI: 10.1002/chem.202301793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
The synthesis of undescribed β-aminodifluoroethylsulfinates and their uses in the hydroaminodifluoroalkylation of alkenes is reported. This reaction is performed in the presence of a photocatalyst (4CzIPN, Ru complexes) and enables the direct incorporation of a β-difluoroamine moiety into vinylic aryls, unactivated alkenes, and electron-rich, or -deficient alkenes. The mechanism was studied, and the formation of a gem-difluoromethyl radical was observed after the selective oxidation of the sulfinate function.
Collapse
Affiliation(s)
- Pierre Fossé
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique, LCMT UMR 6507 ENSICAEN, UNICAEN, CNRS, 6 Bd. du Maréchal Juin, 14050, Caen, France
| | - Emmanuel Pfund
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique, LCMT UMR 6507 ENSICAEN, UNICAEN, CNRS, 6 Bd. du Maréchal Juin, 14050, Caen, France
| | - Thierry Lequeux
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique, LCMT UMR 6507 ENSICAEN, UNICAEN, CNRS, 6 Bd. du Maréchal Juin, 14050, Caen, France
| |
Collapse
|
5
|
Kawamura S, Sodeoka M. Understanding and Controlling Fluorinated Diacyl Peroxides and Fluoroalkyl Radicals in Alkene Fluoroalkylations. CHEM REC 2023; 23:e202300202. [PMID: 37522613 DOI: 10.1002/tcr.202300202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Indexed: 08/01/2023]
Abstract
The demand for practical methods for the synthesis of novel fluoroalkyl molecules is increasing owing to their diverse applications. Our group has achieved efficient difunctionalizing fluoroalkylations of alkenes using fluorinated carboxylic anhydrides as user-friendly fluoroalkyl sources. Fluorinated diacyl peroxide, prepared in situ from carboxylic anhydrides, enables the development of novel reactions when used as a radical fluoroalkylating reagent. In this account, we aim to provide an in-depth understanding of the structure, bonding, and reactivity of fluorinated diacyl peroxides and radicals as well as their control in fluoroalkylation reactions. In the first part of this account, the physical properties and reactivity of diacyl peroxides and fluoroalkyl radicals are described. In the subsequent part, we categorize the reactions into copper-catalyzed and metal-free methods utilizing the oxidizing properties of fluorinated diacyl peroxides. We also outline examples and mechanisms.
Collapse
Affiliation(s)
- Shintaro Kawamura
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mikiko Sodeoka
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
6
|
Gong H, Wang J, Peng Y, Chen H, Deng H, Hao J, Wan W. Photocatalyzed difluoroalkylation of pyridine N-oxides. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2112057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Haiying Gong
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Juan Wang
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Yi Peng
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Hua Chen
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Hongmei Deng
- Laboratory of Microstructures, Shanghai University, Shanghai, China
| | - Jian Hao
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Wen Wan
- Department of Chemistry, Shanghai University, Shanghai, China
| |
Collapse
|
7
|
Wang L, Zhang Y, Zhu T, Wu J. Difluoromethylarylation of Alkynes from [Bis(difluoroacetoxy)iodo]benzene: Access to CF 2H-Containing Dibenzazepines. J Org Chem 2022; 87:7551-7556. [PMID: 35549257 DOI: 10.1021/acs.joc.2c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photoinduced radical difluoromethylarylation via tandem addition-cyclization of alkynes with easily available [bis(difluoroacetoxy)iodo]benzene is accomplished, providing a straightforward and practical route for the construction of difluoromethylated dibenzazepines. Various sensitive functional groups can be compatible under photoinduced conditions. Mechanism investigation reveals that this transformation is initiated by the addition of alkyne with difluoromethyl radical, generated in situ from [bis(difluoroacetoxy)iodo]benzene.
Collapse
Affiliation(s)
- Luoyu Wang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Yan Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Tonghao Zhu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
8
|
Yerien DE, Barata-Vallejo S, Mansilla D, Postigo A. Rose Bengal-photocatalyzed perfluorohexylation reactions of organic substrates in water. Applications to late-stage syntheses. Photochem Photobiol Sci 2022; 21:803-812. [PMID: 35083730 DOI: 10.1007/s43630-021-00154-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
The Rose Bengal-photocatalyzed perfluorohexylation of olefins, alkynes, and electron-rich aromatic compounds in water was achieved employing perfluorohexyl iodide as fluoroalkyl source and TMEDA as sacrificial donor under green LED irradiation. Alkenes and alkynes rendered products derived from the atom transfer radical addition (ATRA) pathway, and in the case of alkynes, exclusively as E-stereoisomers. These are the first examples of photocatalyzed ATRA reactions carried out excursively in water alone. The reactions of aromatic compounds under the current protocol in water present the advantage of employing a perfluoroalkyl iodide (C6F13-I) as source of perfluorohexyl radicals. Examples of photocatalytic late-stage incorporations of fluoroalkyl moieties into two commercial drugs of widespread use are reported.
Collapse
Affiliation(s)
- Damian E Yerien
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, CP 1113, Buenos Aires, Argentina
| | - Sebastián Barata-Vallejo
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, CP 1113, Buenos Aires, Argentina. .,ISOF, Consiglio Nazionale Delle Ricerche, Via P. Gobetti 101, 40129, Bologna, Italy.
| | - Daniela Mansilla
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, CP 1113, Buenos Aires, Argentina
| | - Al Postigo
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, CP 1113, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Zheng K, Liu Y, Zheng C, Yan F, Xiao H, feng Y, Fan S. Palladium‐Catalyzed Monofluoroalkylation of Aryl Iodides and Aryl Bromides with Nucleophilic Ethyl 2‐Fluoro‐2‐(trimethylsilyl)acetate. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | - Hua Xiao
- Hefei University of Technology CHINA
| | | | - Shilu Fan
- Hefei University of Technology CHINA
| |
Collapse
|
10
|
Feng J, Jia X, Zhang S, Lu K, Cahard D. State of knowledge in photoredox-catalysed direct difluoromethylation. Org Chem Front 2022. [DOI: 10.1039/d2qo00551d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The combination of visible light photoredox catalysis with direct difluoromethylation has allowed the synthesis of a large choice of CF2H-containing value-added molecules under very mild reaction conditions.
Collapse
Affiliation(s)
- Jiaxu Feng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
- Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Xiaodong Jia
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Shuyue Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
- Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Dominique Cahard
- CNRS, UMR 6014 COBRA, Normandie Université, 76821 Mont Saint Aignan, France
| |
Collapse
|
11
|
Olifir OS, Chernykh AV, Dobrydnev AV, Grygorenko OO, Moroz YS, Voitenko ZV, Radchenko DS. Multigram Synthesis of Advanced 6,6-Difluorospiro[3.3]heptane-derived Building Blocks. European J Org Chem 2021; 2021:6541-6550. [PMID: 35095338 PMCID: PMC8791643 DOI: 10.1002/ejoc.202000432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 01/21/2024]
Abstract
A convenient methodology for constructing 6,6-difluorospiro[3.3]heptane scaffold - a conformationally restricted isostere of gem-difluorocycloalkanes - is developed. Alarge array of novel 2-mono- and 2,2-bifunctionalized difluorospiro[3.3]heptane building blocks was obtained through the convergent synthesis strategy using a common synthetic precursor - 1,1-bis(bromomethyl)-3,3-difluorocyclobutane. The target compounds and intermediates were prepared by short reaction sequences (6-10 steps) on multigram scale (up to 0.47 kg).
Collapse
Affiliation(s)
- Oleksandr S Olifir
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Anton V Chernykh
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyiv 02094, Ukraine
| | - Alexey V Dobrydnev
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Yuriy S Moroz
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
- Chemspace, Ilukstes iela 38-5, Riga, LV-1082, Latvia
| | - Zoia V Voitenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Dmytro S Radchenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyiv 02094, Ukraine
| |
Collapse
|
12
|
Wang Q, Gong H, Zhang Y, Peng Y, Chen H, Li M, Deng H, Hao J, Wan W. Visible-light mediated stereospecific C(sp 2)-H difluoroalkylation of ( Z)-aldoximes. Org Biomol Chem 2021; 19:7867-7874. [PMID: 34492676 DOI: 10.1039/d1ob01401c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light mediated stereospecific C(sp2)-H difluoroalkylation of (Z)-aldoximes to (E)-difluoroalkylated ketoximes has been described. In this reaction, (hetero)-aromatic and aliphatic difluoroalkylated ketoximes could be obtained with the retention of the configuration of the starting aldoximes. A preliminary mechanism study showed that a difluoromethyl radical via an SET pathway was involved.
Collapse
Affiliation(s)
- Qian Wang
- Department of Chemistry, Shanghai University, Shanghai, China.
| | - Haiying Gong
- Department of Chemistry, Shanghai University, Shanghai, China.
| | - Yifang Zhang
- Department of Chemistry, Shanghai University, Shanghai, China.
| | - Yi Peng
- Department of Chemistry, Shanghai University, Shanghai, China.
| | - Hua Chen
- Department of Chemistry, Shanghai University, Shanghai, China.
| | - Mingjie Li
- Department of Chemistry, Shanghai University, Shanghai, China.
| | - Hongmei Deng
- Laboratory of Microstructures, Shanghai University, China
| | - Jian Hao
- Department of Chemistry, Shanghai University, Shanghai, China.
| | - Wen Wan
- Department of Chemistry, Shanghai University, Shanghai, China.
| |
Collapse
|
13
|
García-Domínguez P. Synthesis of L–Au(I)–CF 2H Complexes and Their Application as Transmetalation Shuttles to the Difluoromethylation of Aryl Iodides. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Zhang X, Nottingham KG, Patel C, Alegre-Requena JV, Levy JN, Paton RS, McNally A. Phosphorus-mediated sp 2-sp 3 couplings for C-H fluoroalkylation of azines. Nature 2021; 594:217-222. [PMID: 33910228 DOI: 10.1038/s41586-021-03567-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022]
Abstract
Fluoroalkyl groups profoundly affect the physical properties of pharmaceuticals and influence almost all metrics associated with their pharmacokinetic and pharmacodynamic profile1-4. Drug candidates increasingly contain trifluoromethyl (CF3) and difluoromethyl (CF2H) groups, and the same trend in agrochemical development shows that the effect of fluoroalkylation translates across human, insect and plant life5,6. New fluoroalkylation reactions have undoubtedly stimulated this shift; however, methods that directly convert C-H bonds into C-CF2X groups (where X is F or H) in complex drug-like molecules are rare7-13. Pyridines are the most common aromatic heterocycles in pharmaceuticals14, but only one approach-via fluoroalkyl radicals-is viable for achieving pyridyl C-H fluoroalkylation in the elaborate structures encountered during drug development15-17. Here we develop a set of bench-stable fluoroalkylphosphines that directly convert the C-H bonds in pyridine building blocks, drug-like fragments and pharmaceuticals into fluoroalkyl derivatives. No preinstalled functional groups or directing groups are required. The reaction tolerates a variety of sterically and electronically distinct pyridines, and is exclusively selective for the 4-position in most cases. The reaction proceeds through initial formation of phosphonium salts followed by sp2-sp3 coupling of phosphorus ligands-an underdeveloped manifold for forming C-C bonds.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Kyle G Nottingham
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Chirag Patel
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | - Jeffrey N Levy
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Andrew McNally
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
15
|
Zhao Y, Zhang Y, Liu Y, Zhu T, Wu J. Photoredox-catalyzed direct C(sp 2)–H difluoromethylation of enamides or heterocycles with [bis(difluoroacetoxy)iodo]benzene. Org Chem Front 2021. [DOI: 10.1039/d1qo00995h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoredox-catalyzed direct C(sp2)–H difluoromethylation of enamides and heterocycles is accomplished by using easily accessible [bis(difluoroacetoxy)iodo]benzene as the CF2H source.
Collapse
Affiliation(s)
- Yun Zhao
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Yan Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Yating Liu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Tonghao Zhu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
16
|
Chen XP, Han J, Hu YJ, Li YF, Wang XC, Ran JX, Wang ZH, Wu FH. Study on the mild, rapid and selective difluorocarbene-mediated triclassification of iododifluoroacetophenone with secondary amines and tree model for product classification. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Highlights on Recent Developments of Heterogeneous and Homogeneous Photocatalysis. Molecules 2020; 26:molecules26010023. [PMID: 33374553 PMCID: PMC7793108 DOI: 10.3390/molecules26010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 11/24/2022] Open
|
18
|
New visible light organo(metal)-photocatalyzed fluoroalkylsulfanylation (RFS-) and fluoroalkylselenolation (RFSe-) reactions of organic substrates. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Laishram RD, Chen J, Fan B. Progress in Visible Light‐Induced Difluroalkylation of Olefins. CHEM REC 2020; 21:69-86. [DOI: 10.1002/tcr.202000094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Ronibala Devi Laishram
- Key Laboratory of Chemistry in Ethnic Medicinal Resource Yunnan Minzu University Kunming 650504 Yunnan China
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resource Yunnan Minzu University Kunming 650504 Yunnan China
| | - Baomin Fan
- School of Chemistry and Environment Yunnan Minzu University Kunming 650504 Yunnan China
- Key Laboratory of Chemistry in Ethnic Medicinal Resource Yunnan Minzu University Kunming 650504 Yunnan China
| |
Collapse
|
20
|
Koike T. Frontiers in Radical Fluoromethylation by Visible‐Light Organic Photocatalysis. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000058] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Takashi Koike
- Laboratory for Chemistry and Life Science Institute of Innovative ResearchTokyo Institute of Technology R1-27, 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
21
|
Cui L, Ono T, Hossain MJ, Hisaeda Y. Electrochemically driven, cobalt–carbon bond-mediated direct intramolecular cyclic and acyclic perfluoroalkylation of (hetero)arenes using X(CF2)4X. RSC Adv 2020; 10:24862-24866. [PMID: 35517485 PMCID: PMC9055166 DOI: 10.1039/d0ra05295g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/18/2020] [Indexed: 11/21/2022] Open
Abstract
A proof-of-concept for synthetically challenging cyclic and acyclic perfluoroalkylation of (hetero)arenes driven by the valence change of a cobalt catalyst with X(CF2)4X is demonstrated.
Collapse
Affiliation(s)
- Luxia Cui
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University 744 Motooka
- Japan
| | - Toshikazu Ono
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University 744 Motooka
- Japan
- Center for Molecular Systems (CMS)
| | - Md. Jakir Hossain
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University 744 Motooka
- Japan
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University 744 Motooka
- Japan
- Center for Molecular Systems (CMS)
| |
Collapse
|