1
|
Alidoosti F, Giyahchi M, Moien S, Moghimi H. Unlocking the potential of soil microbial communities for bioremediation of emerging organic contaminants: omics-based approaches. Microb Cell Fact 2024; 23:210. [PMID: 39054471 PMCID: PMC11271216 DOI: 10.1186/s12934-024-02485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
The remediation of emerging contaminants presents a pressing environmental challenge, necessitating innovative approaches for effective mitigation. This review article delves into the untapped potential of soil microbial communities in the bioremediation of emerging contaminants. Bioremediation, while a promising method, often proves time-consuming and requires a deep comprehension of microbial intricacies for enhancement. Given the challenges presented by the inability to culture many of these microorganisms, conventional methods are inadequate for achieving this goal. While omics-based methods provide an innovative approach to understanding the fundamental aspects, processes, and connections among microorganisms that are essential for improving bioremediation strategies. By exploring the latest advancements in omics technologies, this review aims to shed light on how these approaches can unlock the hidden capabilities of soil microbial communities, paving the way for more efficient and sustainable remediation solutions.
Collapse
Affiliation(s)
- Fatemeh Alidoosti
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Minoo Giyahchi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Shabnam Moien
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Brzeszcz J, Steliga T, Ryszka P, Kaszycki P, Kapusta P. Bacteria degrading both n-alkanes and aromatic hydrocarbons are prevalent in soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5668-5683. [PMID: 38127231 PMCID: PMC10799122 DOI: 10.1007/s11356-023-31405-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
This study was undertaken to determine the distribution of soil bacteria capable of utilizing both n-alkanes and aromatic hydrocarbons. These microorganisms have not been comprehensively investigated so far. Ten contaminated (4046-43,861 mg of total petroleum hydrocarbons (TPH) kg-1 of dry weight of soil) and five unpolluted (320-2754 mg TPH kg-1 of dry weight of soil) soil samples from temperate, arid, and Alpine soils were subjected to isolation of degraders with extended preferences and shotgun metagenomic sequencing (selected samples). The applied approach allowed to reveal that (a) these bacteria can be isolated from pristine and polluted soils, and (b) the distribution of alkane monooxygenase (alkB) and aromatic ring hydroxylating dioxygenases (ARHDs) encoding genes is not associated with the contamination presence. Some alkB and ARHD genes shared the same taxonomic affiliation; they were most often linked with the Rhodococcus, Pseudomonas, and Mycolicibacterium genera. Moreover, these taxa together with the Paeniglutamicibacter genus constituted the most numerous groups among 132 culturable strains growing in the presence of both n-alkanes and aromatic hydrocarbons. All those results indicate (a) the prevalence of the hydrocarbon degraders with extended preferences and (b) the potential of uncontaminated soil as a source of hydrocarbon degraders applied for bioremediation purposes.
Collapse
Affiliation(s)
- Joanna Brzeszcz
- Department of Microbiology, Oil and Gas Institute - National Research Institute, ul. Lubicz 25A, 31-503, Kraków, Poland.
| | - Teresa Steliga
- Department of Production Technology of Reservoir Fluids, Oil and Gas Institute - National Research Institute, ul. Lubicz 25A, 31-503, Kraków, Poland
| | - Przemysław Ryszka
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University in Kraków, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Paweł Kaszycki
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. Mickiewicza 21, 31-425, Kraków, Poland
| | - Piotr Kapusta
- Department of Microbiology, Oil and Gas Institute - National Research Institute, ul. Lubicz 25A, 31-503, Kraków, Poland
| |
Collapse
|
3
|
Wang B, Teng Y, Li R, Meng K, Xu Y, Liu S, Luo Y. Exploring the PAHs dissipation and indigenous bacteria response in soil amended with two different microbial inoculants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160186. [PMID: 36379346 DOI: 10.1016/j.scitotenv.2022.160186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the bioremediation of PAHs in soil by two different microbial inoculants prepared with Paracoccus aminovorans HPD-2 and the carrier humic acid (HA) or montmorillonite (Mont). After incubation for 42 d, the greatest removal of PAHs, 42.8 % or 41.6 %, was observed in microcosms with 0.2 % HA inoculant or 2 % Mont inoculant. The PAH removal efficiency in these treatments was significantly greater than that in soil amended only with planktonic HPD-2. Bacterial community analysis showed that the survival of Paracoccus aminovorans was enhanced in the treatments with Mont inoculant compared with the treatments with HA inoculant or with HPD-2 alone. Moreover, the diversity of PAH-degrading bacterial genera was greater in the treatments containing Mont inoculant than in the treatments containing HA inoculant. These results indicate that the organic material HA and inorganic material Mont promote PAH removal in different ways. Specifically, HA promotes PAHs bioavailability to accelerate the degradation of PAHs in soil, whereas Mont protects PAH-degrading microorganisms to promote pollutant removal. Overall, the findings suggest that HA and Mont are promising materials for microbial immobilization for the bioremediation of PAH-contaminated soil.
Collapse
Affiliation(s)
- Beibei Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Ran Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ke Meng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
4
|
Bekele GK, Gebrie SA, Abda EM, Sinshaw G, Haregu S, Negie ZW, Tafesse M, Assefa F. Kerosene Biodegradation by Highly Efficient Indigenous Bacteria Isolated From Hydrocarbon-Contaminated Sites. Microbiol Insights 2023; 16:11786361221150759. [PMID: 36895787 PMCID: PMC9989413 DOI: 10.1177/11786361221150759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/26/2022] [Indexed: 03/08/2023] Open
Abstract
Kerosene is widely used in Ethiopia as a household fuel (for lighting and heating), as a solvent in paint and grease, and as a lubricant in glass cutting. It causes environmental pollution and escorts to loss of ecological functioning and health problems. Therefore, this research was designed to isolate, identify, and characterize indigenous kerosene-degrading bacteria that are effective in cleaning ecological units that have been contaminated by kerosene. Soil samples were collected from hydrocarbon-contaminated sites (flower farms, garages, and old-aged asphalt roads) and spread-plated on mineral salt medium (Bushnell Hass Mineral Salts Agar Medium: BHMS), which consists of kerosene as the only carbon source. Seven kerosene-degrading bacterial species were isolated, 2 from flower farms, 3 from garage areas, and 2 from asphalt areas. Three genera from hydrocarbon-contaminated sites were identified, including Pseudomonas, Bacillus, and Acinetobacter using biochemical characterization and the Biolog database. Growth studies in the presence of various concentrations of kerosene (1% and 3% v/v) showed that the bacterial isolates could metabolize kerosene as energy and biomass. Thereby, a gravimetric study was performed on bacterial strains that proliferated well on a BHMS medium with kerosene. Remarkably, bacterial isolates were able to degrade 5% kerosene from 57.2% to 91% in 15 days. Moreover, 2 of the most potent isolates, AUG2 and AUG1, resulted in 85% and 91% kerosene degradation, respectively, when allowed to grow on a medium containing kerosene. In addition, 16S rRNA gene analysis indicated that strain AAUG1 belonged to Bacillus tequilensis, whereas isolate AAUG showed the highest similarity to Bacillus subtilis. Therefore, these indigenous bacterial isolates have the potential to be applied for kerosene removal from hydrocarbon-contaminated sites and the development of remediation approaches.
Collapse
Affiliation(s)
- Gessesse Kebede Bekele
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.,Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Solomon Abera Gebrie
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.,Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Ebrahim M Abda
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.,Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Gebiru Sinshaw
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.,Department of Biotechnology, Debre Berhan University, Addis Ababa, Ethiopia
| | - Simatsidk Haregu
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.,Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Zemene Worku Negie
- Department of Environmental Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Mesfin Tafesse
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.,Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Fasil Assefa
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Aa I, Op A, Ujj I, Mt B. A critical review of oil spills in the Niger Delta aquatic environment: causes, impacts, and bioremediation assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:816. [PMID: 36131120 DOI: 10.1007/s10661-022-10424-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The Niger Delta region in South-South Nigeria, on Africa's West Coast, is densely populated. The region, which contains a substantial stock of crude oil and natural gas, has been nicknamed "the engine room" for Nigeria's economic development and progress. It is responsible for up to 90% of the country's economic growth (or gross domestic product/GDP). The region has multiple ecosystems, such as the aquatic environment, that are critical to the survival of the area's various habitats and living species. However, the same region has witnessed unjustifiable environmental pollution arising from oil activities over the years of exploration and production which has orchestrated negative consequences on the Niger Delta ecosystem. This has led to extended negative consequences on natural resources, which also have detrimental repercussions psychologically, ecologically, socially, economically, and physically which, in turn, impacts the overall health of the affected individuals. This write-up provides an overview of the major drivers of the oil leakage in Nigeria's Niger Delta ecosystem as well as the major impacts on the environment. It will also analyze numerous means of remediation in use and extend such for a more inclusive and productive option. Moreover, this review offers key measures that may help to maintain long-term policies for reducing adverse implications and increasing the living standard for the Niger Delta area's affected communities.
Collapse
Affiliation(s)
- Ikhumetse Aa
- Department of Microbiology, Federal University of Technology, Minna, Nigeria
| | - Abioye Op
- Department of Microbiology, Federal University of Technology, Minna, Nigeria.
| | - Ijah Ujj
- Department of Microbiology, Federal University of Technology, Minna, Nigeria
| | - Bankole Mt
- Department of Chemistry, Federal University of Technology, Minna, Nigeria
| |
Collapse
|
6
|
Bianco F, Race M, Papirio S, Oleszczuk P, Esposito G. Coupling of desorption of phenanthrene from marine sediments and biodegradation of the sediment washing solution in a novel biochar immobilized-cell reactor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119621. [PMID: 35709914 DOI: 10.1016/j.envpol.2022.119621] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/03/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The recurrent dredging of marine sediments needs the use of ex-situ technologies such as sediment washing (SW) to effectively remove polycyclic aromatic hydrocarbons. Notwithstanding, the large volumes of generated spent SW effluents require adequate treatment by employing highly-efficient, inexpensive and environmentally-friendly solutions. This study proposes the phenanthrene (PHE) desorption from sediments using Tween® 80 (TW80) as extracting agent and the treatment of the resulting spent SW solution in a biochar (BC) immobilized-cell bioreactor. The SW process reached the highest PHE removal of about 91% using a surfactant solution containing 10,800 mg L-1 of TW80. The generated amount of spent PHE-polluted SW solution can be controlled by keeping a solid to liquid ratio of 1:4. A PHE degradation of up to 96% was subsequently achieved after 43 days of continuous reactor operation, aerobically treating the TW80 solution in the BC immobilized-cell bioreactor with a hydraulic retention time of 3.5 days. Brevundimonas, Chryseobacterium, Dysgonomonas, Nubsella, and both uncultured Weeksellaceae and Xanthobacteraceae genera were mainly involved in PHE biodegradation. A rough economic study showed a total cost of 342.60 € ton-1 of sediment, including the SW operations, TW80 and BC supply and the biological treatment of the SW solution.
Collapse
Affiliation(s)
- Francesco Bianco
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy.
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20031, Lublin, Poland
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| |
Collapse
|
7
|
Geng P, Ma A, Wei X, Chen X, Yin J, Hu F, Zhuang X, Song M, Zhuang G. Interaction and spatio-taxonomic patterns of the soil microbiome around oil production wells impacted by petroleum hydrocarbons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119531. [PMID: 35623572 DOI: 10.1016/j.envpol.2022.119531] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/26/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Numerous onshore oil production wells currently exist, and the petroleum hydrocarbon contamination of the surrounding soil caused by oil production wells is not well understood. Moreover, the impact of the distribution of the total petroleum hydrocarbons (TPH) in the soil on the microbiota requires further investigation. Accordingly, in this study, the distribution of petroleum hydrocarbons in the soils around oil production wells was investigated, and their alteration of the microbiota was revealed. The results revealed that in the horizontal direction, the heavily TPH-contaminated soils were mainly distributed within a circle with a radius of 200 cm centered on the oil production well; and in the vertical direction, the heavily TPH-contaminated soils were distributed within the 0-50 cm soil layer. A significant positive correlation was found between the microbial abundance and the TPH concentration in the soil with relatively low total carbon contents. Heavy TPH contamination (TPH concentration of >3000 mg/kg) significantly reduced the microbial diversity and altered the microbiota compared with the light TPH contamination (TPH concentration of around 1000 mg/kg). In the heavily TPH-contaminated soils, the relative abundances of the Proteobacteria and Bacteroides increased significantly; the network complexity among the soil microorganisms decreased; and the co-occurrence patterns were altered. In summary, the results of this study have reference value in the remediation of soils around oil production wells and provide guidance for the construction of microbial remediation systems for petroleum contamination.
Collapse
Affiliation(s)
- Pengxue Geng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anzhou Ma
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaoxia Wei
- Drilling and Production Technology Research Institute, PetroChina Qinghai Oil Field, Dunhuang, 736202, China
| | - Xianke Chen
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Jun Yin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Futang Hu
- Drilling and Production Technology Research Institute, PetroChina Qinghai Oil Field, Dunhuang, 736202, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Maoyong Song
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Ali N, Khanafer M, Al-Awadhi H. Indigenous oil-degrading bacteria more efficient in soil bioremediation than microbial consortium and active even in super oil-saturated soils. Front Microbiol 2022; 13:950051. [PMID: 35979488 PMCID: PMC9376284 DOI: 10.3389/fmicb.2022.950051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
A microbial consortium of the hydrocarbonoclastic bacterial species, comprising Actinotalea ferrariae, Arthrobacter ginsengisoli, Dietzia cinnamea, Dietzia papillomatosis, and Pseudomonas songnenensis, isolated from oil-saturated desert soil did not consume more oil in batch cultures than the individual species with the maximum oil consumption. In oil-polluted desert soil microcosms, the rate of oil removal in the soil samples bioaugmented with the microbial consortium was similar to the rate of oil removal in the unbioaugmented ones through a 6-month bioremediation experiment. Although the composition of hydrocarbonoclastic bacterial communities in the unbioaugmented and bioaugmented soil samples was different, the predominant bacterial species during most of the months were the same. Toward the end of the bioremediation experiment, Ar. ginsengisoli prevailed in both soil samples, suggesting its important role in oil removal. Self-cleaning proceeded in desert soil samples artificially polluted with 1, 10, 20, and 30% of crude oil and incubated at 30 °C for 6 months. Oil was removed effectively at rates reaching 73.6 and 69.3% in the soils polluted with 1 and 10% oil concentrations, respectively, and reached 50% in desert soils polluted with 20 and 30% oil concentrations. The bacterial numbers increased in all soil samples from hundreds of thousands per gram of soil samples at time zero to millions and tens of millions per gram of soil samples after 6 months. It was concluded that bioaugmenting oil-polluted soil samples with microbial consortium of hydrocarbonoclastic bacterial species with high oil removal potential did not drastically enhance oil bioremediation and that even in super oil-saturated soils, indigenous oil-degrading bacteria will prevail and effectively contribute to oil removal from the surrounding environment.
Collapse
|
9
|
Enriched bacterial community efficiently degrade polycyclic aromatic hydrocarbons in soil ecosystem: Insights from a mesocosms study. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
A Review on Biotechnological Approaches Applied for Marine Hydrocarbon Spills Remediation. Microorganisms 2022; 10:microorganisms10071289. [PMID: 35889007 PMCID: PMC9324126 DOI: 10.3390/microorganisms10071289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
The increasing demand for petroleum products generates needs for innovative and reliable methods for cleaning up crude oil spills. Annually, several oil spills occur around the world, which brings numerous ecological and environmental disasters on the surface of deep seawaters like oceans. Biological and physico-chemical remediation technologies can be efficient in terms of spill cleanup and microorganisms—mainly bacteria—are the main ones responsible for petroleum hydrocarbons (PHCs) degradation such as crude oil. Currently, biodegradation is considered as one of the most sustainable and efficient techniques for the removal of PHCs. However, environmental factors associated with the functioning and performance of microorganisms involved in hydrocarbon-degradation have remained relatively unclear. This has limited our understanding on how to select and inoculate microorganisms within technologies of cleaning and to optimize physico-chemical remediation and degradation methods. This review article presents the latest discoveries in bioremediation techniques such as biostimulation, bioaugmentation, and biosurfactants as well as immobilization strategies for increasing the efficiency. Besides, environmental affecting factors and microbial strains engaged in bioremediation and biodegradation of PHCs in marines are discussed.
Collapse
|
11
|
Zawierucha I, Malina G, Herman B, Rychter P, Biczak R, Pawlowska B, Bandurska K, Barczynska R. Ecotoxicity and bioremediation potential assessment of soil from oil refinery station area. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:337-346. [PMID: 35669837 PMCID: PMC9163242 DOI: 10.1007/s40201-021-00780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/25/2021] [Indexed: 06/15/2023]
Abstract
PURPOSE The aim of the present study was to evaluate the toxicity and biodegradation potential of oil hydrocarbons contaminated soil samples obtained from different depths at an oil refinery station area. An approach involving chemical, microbiological, respirometry and ecotoxicity assessment of soil polluted by oil hydrocarbons was adopted, in order to determine the biodegradability of pollutants and ecotoxicological effects of natural attenuation strategy. METHODS The ecotoxicity of soil samples was evaluated using an ostracod test kit and a seed germination test. The results of the phytotoxicity assay were expressed as a percentage of seedling emergence and as the relative yield of fresh and dry biomass compared to control plants. The intrinsic biodegradation potential of the contaminated soil was examined using a Micro-Oxymax respirometer. Intrinsic biodegradation rates were estimated from the slopes of linear regressions curves plotted for cumulative O2 uptake. The obtained values were then entered in the mass balance equation for the stoichiometric reaction of hydrocarbon decomposition and converted per kg of soil per day. RESULTS Although the tested contaminants were biodegradable in the respirometric assay, they were slightly to moderately toxic to plants and extremely toxic to ostracods. The noxious effects raised with the increased concentration of contaminants. The monocotyledonous oat was more tolerant to higher concentrations of oil hydrocarbons than the other test plants, indicating its greater suitability for soil reclamation purposes. CONCLUSION By assessing phytotoxicity and effect on ostracod mortality and progress of soil self-decontamination process, proper approach of reclamation of demoted area can be provided.
Collapse
Affiliation(s)
- Iwona Zawierucha
- Jan Dlugosz University in Czestochowa, Faculty of Science & Technology, Armii Krajowej 13/15, 42-200, Czestochowa, Poland
| | - Grzegorz Malina
- AGH University of Science and Technology, Department of Hydrogeology and Engineering Geology, Mickiewicza 30, 30-059 Cracow, Poland
| | - Barbara Herman
- Jan Dlugosz University in Czestochowa, Faculty of Science & Technology, Armii Krajowej 13/15, 42-200, Czestochowa, Poland
| | - Piotr Rychter
- Jan Dlugosz University in Czestochowa, Faculty of Science & Technology, Armii Krajowej 13/15, 42-200, Czestochowa, Poland
| | - Robert Biczak
- Jan Dlugosz University in Czestochowa, Faculty of Science & Technology, Armii Krajowej 13/15, 42-200, Czestochowa, Poland
| | - Barbara Pawlowska
- Jan Dlugosz University in Czestochowa, Faculty of Science & Technology, Armii Krajowej 13/15, 42-200, Czestochowa, Poland
| | - Katarzyna Bandurska
- Jan Dlugosz University in Czestochowa, Faculty of Science & Technology, Armii Krajowej 13/15, 42-200, Czestochowa, Poland
| | - Renata Barczynska
- Jan Dlugosz University in Czestochowa, Faculty of Science & Technology, Armii Krajowej 13/15, 42-200, Czestochowa, Poland
| |
Collapse
|
12
|
Lee YY, Lee SY, Lee SD, Cho KS. Seasonal Dynamics of Bacterial Community Structure in Diesel Oil-Contaminated Soil Cultivated with Tall Fescue ( Festuca arundinacea). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084629. [PMID: 35457496 PMCID: PMC9025128 DOI: 10.3390/ijerph19084629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 11/18/2022]
Abstract
The objective of this study was to explore the seasonal characteristics of rhizoremediation and the bacterial community structure over the course of a year in soil contaminated with diesel oil. The soil was contaminated with diesel oil at a total petroleum hydrocarbon (TPH) concentration of 30,000 mg-TPH·kg-soil−1. Tall fescue seedlings were planted in the contaminated soil and rhizoremediation performance was monitored for 317 days. The TPH concentration gradually declined, reaching 75.6% after day 61. However, the TPH removability decreased by up to 30% after re-contamination in the fall and winter. The bacterial community structure exhibited distinct seasonal dynamics. Genus Pseudomonas significantly increased up to 55.7% in the winter, while the genera Immundisolibacter and Lysobacter, well-known petroleum hydrocarbon (PH)-degrading bacteria, were found to be positively linked to the TPH removal rate. Consequently, knowledge of this seasonal variation in rhizoremediation performance and the bacterial community structure is useful for the improvement of rhizoremediation in PH-contaminated environments.
Collapse
Affiliation(s)
| | | | | | - Kyung-Suk Cho
- Correspondence: ; Tel.: +82-2-3277-2393; Fax: +82-2-3277-3275
| |
Collapse
|
13
|
Field Test of In Situ Groundwater Treatment Applying Oxygen Diffusion and Bioaugmentation Methods in an Area with Sustained Total Petroleum Hydrocarbon (TPH) Contaminant Flow. WATER 2022. [DOI: 10.3390/w14020192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Contamination of groundwater by petroleum hydrocarbons is a widespread environmental problem in many regions. Contamination of unsaturated and saturated zones could also pose a significant risk to human health. The main purpose of the study was to assess the efficiency of biodegradation of total petroleum hydrocarbon (TPH) in situ, in an area with loam and sandy loam soils, and to identify features and characteristics related to groundwater treatment in an area with a persistent flow of pollutants. We used methods of biostimulation (oxygen as stimulatory supplement) and bioaugmentation to improve water quality. Oxygen was added to the groundwater by diffusion through silicone tubing. The efficiency of groundwater treatment was determined by detailed monitoring. Implementation of the applied measure resulted in an average reduction in TPH concentration of 73.1% compared with the initial average concentration (4.33 mg/L), and in the local area, TPH content was reduced by 95.5%. The authors hope that this paper will contribute to a better understanding of the topic of groundwater treatment by in situ biodegradation of TPH. Further studies on this topic are particularly needed to provide more data and details on the efficiency of groundwater treatment under adverse geological conditions.
Collapse
|
14
|
Wojtowicz K, Steliga T, Kapusta P, Brzeszcz J, Skalski T. Evaluation of the Effectiveness of the Biopreparation in Combination with the Polymer γ-PGA for the Biodegradation of Petroleum Contaminants in Soil. MATERIALS (BASEL, SWITZERLAND) 2022; 15:400. [PMID: 35057118 PMCID: PMC8778143 DOI: 10.3390/ma15020400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022]
Abstract
Biodegradation is a method of effectively removing petroleum hydrocarbons from the natural environment. This research focuses on the biodegradation of aliphatic hydrocarbons, monoaromatic hydrocarbons such as benzene, toluene, ethylbenzene, and all three xylene isomers (BTEX) and polycyclic aromatic hydrocarbons (PAHs) as a result of soil inoculation with a biopreparation A1 based on autochthonous microorganisms and a biopreparation A1 with the addition of γ-PGA. The research used biopreparation A1 made of the following strains: Dietzia sp. IN133, Gordonia sp. IN138 Mycolicibacterium frederiksbergense IN53, Rhodococcus erythropolis IN119, Rhodococcus sp. IN136 and Pseudomonas sp. IN132. The experiments were carried out in laboratory conditions (microbiological tests, respirometric tests, and in semi-technical conditions (ex-situ prism method). The biodegradation efficiency was assessed on the basis of respirometric tests, chromatographic analyses and toxicological tests. As a result of inoculation of AB soil with the biopreparation A1 within 6 months, a reduction of total petroleum hydrocarbons (TPH) (66.03%), BTEX (80.08%) and PAHs (38.86%) was achieved and its toxicity was reduced. Inoculation of AB soil with the biopreparation A1 with the addition of γ-PGA reduced the concentration of TPH, BTEX and PAHs by 79.21%, 90.19%, and 51.18%, respectively, and reduced its toxicity. The conducted research has shown that the addition of γ-PGA affects the efficiency of the biodegradation process of petroleum pollutants, increasing the degree of TPH biodegradation by 13.18%, BTEX by 10.11% and PAHs by 12.32% compared to pure biopreparation A1.
Collapse
Affiliation(s)
- Katarzyna Wojtowicz
- Oil and Gas Institute—National Research Institute, Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | - Teresa Steliga
- Oil and Gas Institute—National Research Institute, Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | - Piotr Kapusta
- Oil and Gas Institute—National Research Institute, Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | - Joanna Brzeszcz
- Oil and Gas Institute—National Research Institute, Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | - Tomasz Skalski
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland;
| |
Collapse
|
15
|
Ascomycetes versus Spent Mushroom Substrate in Mycoremediation of Dredged Sediments Contaminated by Total Petroleum Hydrocarbons: The Involvement of the Bacterial Metabolism. WATER 2021. [DOI: 10.3390/w13213040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two mycoremediation approaches for the depletion of the total petroleum hydrocarbons in dredged sediments were compared: co-composting with spent mushroom substrate (SMS) from Pleurotus ostreatus and bioaugmentation with Lambertella sp. MUT 5852, an ascomycetes autochthonous to the sediment, capable of utilizing diesel oil its sole carbon source. After 28 days of incubation, 99% depletion was observed in presence of Lambertella sp. MUT 5852. No total petroleum hydrocarbon depletion was observed in sediment co-composting with the SMS after 60 days of incubation. 16S rDNA metabarcoding of the bacterial community was performed to evaluate the potential synergism between fungi and bacteria in the bioremediation process. The functional metagenomic prediction approach indicated that the biodiversity of the bacterial genera potentially involved in the degradation of TPH was higher in sediment bioaugmented with Lambertella sp. MUT 5852, which resulted in being mandatory for TPH depletion. Mechanisms of co-substrate inhibition of the hydrocarburoclastic bacterial species, due to the bioavailable organic matter of the SMS, are suggested to be involved in the observed kinetics of TPH depletion, failing in the case of SMS and successful in the case of Lambertella sp. MUT 5852.
Collapse
|
16
|
Bodor A, Bounedjoum N, Feigl G, Duzs Á, Laczi K, Szilágyi Á, Rákhely G, Perei K. Exploitation of extracellular organic matter from Micrococcus luteus to enhance ex situ bioremediation of soils polluted with used lubricants. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125996. [PMID: 33992922 DOI: 10.1016/j.jhazmat.2021.125996] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Chronic pollution by used lubricant oils (ULOs) poses a serious challenge to the environment. Under stress conditions, microorganisms, including potential degraders, can enter a viable but non-culturable (VBNC) state, complicating the bioremediation of ULO-polluted areas. Resuscitation-promoting factors (Rpfs) can reverse this transition and/or enhance the biodegradation performance of both native and augmented strains. Here, Rpf-containing extracellular organic matter (EOM) from Micrococcus luteus was used to enhance the ex situ ULO removal in biostimulated and bioaugmented (with Rhodococcus qingshengii KAG C, R. erythropolis PR4) soils. ULO bioconversion, microbial activity, and CFUs were significantly higher in EOM-treated soils compared to corresponding control soils. After 60 days, the initial ULO concentration (52,500 mg kg-1) was reduced by 37% and 45% with EOM-supplemented biostimulation and bioaugmentation, respectively. Based on high-throughput 16S rRNA analysis, the enhancement was attributable both to the reactivation of EOM-responsive hydrocarbonoclastic bacterial genera (e.g., Pseudomonas, Comamonas, Stenotrophomonas, Gordonia) and to the long-term positive effect of EOM on the degradative efficacy of the introduced rhodococci. Ecotoxicological responses revealed that reduced ULO concentration did not correlate with decreased soil toxicity. Our findings provide an insight into the applicability of EOM in bioremediation and its effects on the soil microbial activity and community composition.
Collapse
Affiliation(s)
- Attila Bodor
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Naila Bounedjoum
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Ágnes Duzs
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Krisztián Laczi
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Árpád Szilágyi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.
| | - Katalin Perei
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| |
Collapse
|
17
|
Schreiber L, Fortin N, Tremblay J, Wasserscheid J, Sanschagrin S, Mason J, Wright CA, Spear D, Johannessen SC, Robinson B, King T, Lee K, Greer CW. In situ microcosms deployed at the coast of British Columbia (Canada) to study dilbit weathering and associated microbial communities under marine conditions. FEMS Microbiol Ecol 2021; 97:fiab082. [PMID: 34124756 PMCID: PMC8213973 DOI: 10.1093/femsec/fiab082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/11/2021] [Indexed: 12/30/2022] Open
Abstract
Douglas Channel and the adjacent Hecate Strait (British Columbia, Canada) are part of a proposed route to ship diluted bitumen (dilbit). This study presents how two types of dilbit naturally degrade in this environment by using an in situ microcosm design based on dilbit-coated beads. We show that dilbit-associated n-alkanes were microbially biodegraded with estimated half-lives of 57-69 days. n-Alkanes appeared to be primarily degraded using the aerobic alkB, ladA and CYP153 pathways. The loss of dilbit polycyclic aromatic hydrocarbons (PAHs) was slower than of n-alkanes, with half-lives of 89-439 days. A biodegradation of PAHs could not be conclusively determined, although a significant enrichment of the phnAc gene (a marker for aerobic PAH biodegradation) was observed. PAH degradation appeared to be slower in Hecate Strait than in Douglas Channel. Microcosm-associated microbial communities were shaped by the presence of dilbit, deployment location and incubation time but not by dilbit type. Metagenome-assembled genomes of putative dilbit-degraders were obtained and could be divided into populations of early, late and continuous degraders. The majority of the identified MAGs could be assigned to the orders Flavobacteriales, Methylococcales, Pseudomonadales and Rhodobacterales. A high proportion of the MAGs represent currently unknown lineages or lineages with currently no cultured representative.
Collapse
Affiliation(s)
- Lars Schreiber
- Energy, Mining and Environment Research Center, National Research Council of Canada (NRC), 6100 Royalmount Ave, Montreal, QC H4P 2R2, Canada
| | - Nathalie Fortin
- Energy, Mining and Environment Research Center, National Research Council of Canada (NRC), 6100 Royalmount Ave, Montreal, QC H4P 2R2, Canada
| | - Julien Tremblay
- Energy, Mining and Environment Research Center, National Research Council of Canada (NRC), 6100 Royalmount Ave, Montreal, QC H4P 2R2, Canada
| | - Jessica Wasserscheid
- Energy, Mining and Environment Research Center, National Research Council of Canada (NRC), 6100 Royalmount Ave, Montreal, QC H4P 2R2, Canada
| | - Sylvie Sanschagrin
- Energy, Mining and Environment Research Center, National Research Council of Canada (NRC), 6100 Royalmount Ave, Montreal, QC H4P 2R2, Canada
| | - Jennifer Mason
- Centre for Offshore Oil, Gas and Energy Research (COOGER), Bedford Institute of Oceanography, Fisheries and Oceans Canada (DFO), 1 Challenger Drive, P.O. Box 1006, Dartmouth, NS B2Y 4A2, Canada
| | - Cynthia A Wright
- Institute of Ocean Sciences, Fisheries and Oceans Canada (DFO), 9860 West Saanich Road, P.O. Box 6000, Sidney, BC V8L 4B2, Canada
| | - David Spear
- Institute of Ocean Sciences, Fisheries and Oceans Canada (DFO), 9860 West Saanich Road, P.O. Box 6000, Sidney, BC V8L 4B2, Canada
| | - Sophia C Johannessen
- Institute of Ocean Sciences, Fisheries and Oceans Canada (DFO), 9860 West Saanich Road, P.O. Box 6000, Sidney, BC V8L 4B2, Canada
| | - Brian Robinson
- Centre for Offshore Oil, Gas and Energy Research (COOGER), Bedford Institute of Oceanography, Fisheries and Oceans Canada (DFO), 1 Challenger Drive, P.O. Box 1006, Dartmouth, NS B2Y 4A2, Canada
| | - Thomas King
- Centre for Offshore Oil, Gas and Energy Research (COOGER), Bedford Institute of Oceanography, Fisheries and Oceans Canada (DFO), 1 Challenger Drive, P.O. Box 1006, Dartmouth, NS B2Y 4A2, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada (DFO), 200 Kent St, Ottawa,ON K1A 0E6, Canada
| | - Charles W Greer
- Energy, Mining and Environment Research Center, National Research Council of Canada (NRC), 6100 Royalmount Ave, Montreal, QC H4P 2R2, Canada
- Department of Natural Resource Sciences, McGill University, Macdonald-Stewart Building, McGill, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
18
|
Becarelli S, Chicca I, La China S, Siracusa G, Bardi A, Gullo M, Petroni G, Levin DB, Di Gregorio S. A New Ciboria sp. for Soil Mycoremediation and the Bacterial Contribution to the Depletion of Total Petroleum Hydrocarbons. Front Microbiol 2021; 12:647373. [PMID: 34177829 PMCID: PMC8221241 DOI: 10.3389/fmicb.2021.647373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/26/2021] [Indexed: 11/24/2022] Open
Abstract
A Ciboria sp. strain (Phylum Ascomycota) was isolated from hydrocarbon-polluted soil of an abandoned oil refinery in Italy. The strain was able to utilize diesel oil as a sole carbon source for growth. Laboratory-scale experiments were designed to evaluate the use of this fungal strain for treatment of the polluted soil. The concentration of total petroleum hydrocarbons (TPH) in the soil was 8,538 mg/kg. Mesocosms containing the contaminated soil were inoculated with the fungal strain at 1 or 7%, on a fresh weight base ratio. After 90 days of incubation, the depletion of TPH contamination was of 78% with the 1% inoculant, and 99% with the 7% inoculant. 16S rDNA and ITS metabarcoding of the bacterial and fungal communities was performed in order to evaluate the potential synergism between fungi and bacteria in the bioremediation process. The functional metagenomic prediction indicated Arthrobacter, Dietzia, Brachybacerium, Brevibacterium, Gordonia, Leucobacter, Lysobacter, and Agrobacterium spp. as generalist saprophytes, essential for the onset of hydrocarbonoclastic specialist bacterial species, identified as Streptomyces, Nocardoides, Pseudonocardia, Solirubrobacter, Parvibaculum, Rhodanobacter, Luteiomonas, Planomicrobium, and Bacillus spp., involved in the TPH depletion. The fungal metabolism accelerated the onset of specialist over generalist bacteria. The capacity of the Ciboria sp. to deplete TPH in the soil in treatment was also ascertained.
Collapse
Affiliation(s)
- Simone Becarelli
- Department of Biology, University of Pisa, Pisa, Italy.,BD Biodigressioni, Pisa, Italy
| | - Ilaria Chicca
- Department of Biology, University of Pisa, Pisa, Italy.,Department of Biosystem Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Salvatore La China
- Department of Life Sciences, University of Modena and Reggio-Emilia, Reggio Emilia, Italy
| | | | - Alessandra Bardi
- Department of Civil and Environmental Engineering, University of Florence, Florence, Italy
| | - Maria Gullo
- Department of Life Sciences, University of Modena and Reggio-Emilia, Reggio Emilia, Italy
| | | | - David Bernard Levin
- BD Biodigressioni, Pisa, Italy.,Department of Biosystem Engineering, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|
19
|
Pandya DK, Kumar MA. Chemo-metric engineering designs for deciphering the biodegradation of polycyclic aromatic hydrocarbons. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125154. [PMID: 33858107 DOI: 10.1016/j.jhazmat.2021.125154] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are non-polar organic compounds that are omnipresent in the environment and released due to anthropogenic activities through emissions and discharges. PAHs, being xenobiotic and exerts health impacts, thus they attract serious concern by the environmentalists. The stringent regulations and the need of sustainable development urges the hunt for a technically feasible and cost-effective wastewater treatment. Although the conventional physico-chemical treatment are widely preferred, they cause secondary pollution problems and demand subsequent treatment options. This comprehensive review intends to address the (a) different PAHs and their associated toxicity, (b) the remedial strategies, particularly biodegradation. The biological wastewater treatment techniques that involve microbial systems are highly influenced by the different physio-chemical and environmental parameters. Therefore, suitable optimization techniques are prerequisite for effective functioning of the biological treatment that sustains judiciously and interpreted in a lesser time. Here we have aimed to discuss (a) different chemo-metric tools involved in the design of experiments (DoE), (b) design equations and models, (c) tools for evaluating the model's adequacy and (d) plots for graphically interpreting the chemo-metric designs. However, to best of our knowledge, this is a first review to discuss the PAHs biodegradation that are tailored by chemo-metric designs. The associated challenges, available opportunities and techno-economic aspects of PAHs degradation using chemo-metric engineering designs are explained. Additionally, the review highlights how well these DoE tools can be suited for the sustainable socio-industrial sectors. Concomitantly, the futuristic scope and prospects to undertake new areas of research exploration were emphasized to unravel the least explored chemo-metric designs.
Collapse
Affiliation(s)
- Darshita Ketan Pandya
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
| | - Madhava Anil Kumar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
20
|
Bakina LG, Chugunova MV, Polyak YM, Mayachkina NV, Gerasimov AO. Bioaugmentation: possible scenarios due to application of bacterial preparations for remediation of oil-contaminated soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2347-2356. [PMID: 33113031 DOI: 10.1007/s10653-020-00755-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Although bioaugmentation is known as effective and environmentally friendly method increasing removal of hydrocarbons from oil-contaminated soil, it sometimes fails in soil restoration and disturbs the ecological state of soil. We studied possible scenarios of the introduction of oil-degrading bacteria into oil-contaminated podzolic soil assessing the environmental safety of different bacterial preparations in a long-term field experiment. Integral indicators characterizing the state of biocenosis included biological activity of soil and aboveground biomass of grasses. It has been established that bacterial preparations can have both positive and negative effects on the ecological state of soil and oil biodegradation. Of the five bacterial preparations studied, one had a pronounced positive effect on soil biological activity and oil mineralization processes. Two preparations did not accelerate oil biodegradation and were characterized by a weaker positive effect or even a lack of influence. Two more bacterial preparations had a significant negative impact on soil biological properties. These preparations slowed oil mineralization in soil. Both positive and negative effects of bacterial preparations were observed only during the first two years after their application. All preparations were not effective during the latter stages of long-term remediation processes. The results indicate that successful application of bioaugmentation for the restoration of oil-contaminated soil requires testing of environmental safety of bacterial preparations in a long-term field experiments prior to any treatment processes.
Collapse
Affiliation(s)
- Lyudmila G Bakina
- Institution of Russian Academy of Sciences, Saint-Petersburg Scientific Research Centre for Ecological Safety RAS, Korpusnaya Str. 18, Saint-Petersburg, Russia, 197110
| | - Marina V Chugunova
- Institution of Russian Academy of Sciences, Saint-Petersburg Scientific Research Centre for Ecological Safety RAS, Korpusnaya Str. 18, Saint-Petersburg, Russia, 197110
| | - Yulia M Polyak
- Institution of Russian Academy of Sciences, Saint-Petersburg Scientific Research Centre for Ecological Safety RAS, Korpusnaya Str. 18, Saint-Petersburg, Russia, 197110.
| | - Natalya V Mayachkina
- Institution of Russian Academy of Sciences, Saint-Petersburg Scientific Research Centre for Ecological Safety RAS, Korpusnaya Str. 18, Saint-Petersburg, Russia, 197110
| | - Alexander O Gerasimov
- Institution of Russian Academy of Sciences, Saint-Petersburg Scientific Research Centre for Ecological Safety RAS, Korpusnaya Str. 18, Saint-Petersburg, Russia, 197110
| |
Collapse
|
21
|
Mafiana MO, Kang XH, Leng Y, He LF, Li SW. Petroleum contamination significantly changes soil microbial communities in three oilfield locations in Delta State, Nigeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31447-31461. [PMID: 33604834 DOI: 10.1007/s11356-021-12955-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/10/2021] [Indexed: 05/25/2023]
Abstract
Soil microbial community structure is altered by petroleum contamination in response to compound toxicity and degradation. Understanding the relation between petroleum contamination and soil microbial community structure is crucial to determine the amenability of contaminated soils to bacterial- and fungal-aided remediation. To understand how petroleum contamination and soil physicochemical properties jointly shaped the microbial structure of soils from different oilfields, high-throughput sequencing of 16S and ITS amplicons were used to evaluate the shifts of microbial communities in the petroleum-contaminated soils in Ughelli East (UE), Utorogu (UT), and Ughelli West (UW) oilfields located in Delta State, Nigeria. The results showed 1515 bacteria and 919 fungal average OTU number, and community richness and diversity, trending as AL > UT > UW > UE and AL > UW > UT > UE for bacteria, and AL > UW > UT > UE and UW > UT > AL > UE for fungi, respectively. The bacterial taxa KCM-B-112, unclassified Saccharibacteria, unclassified Rhizobiales, Desulfurellaceae, and Acidobacteriaceae and fungal Trichocomaceae, unclassified Ascomycota, unclassified Sporidiobolales, and unclassified Fungi were found to be the dominant families in petroleum-contaminated soils. Redundancy analysis (RDA) and Spearman's correlation analysis revealed that total carbon (TC), electric conductivity (EC), pH, and moisture content (MO) were the major drivers of bacterial and fungal communities, respectively. Gas chromatography-mass spectrophotometer (GC-MS) analysis exhibited that the differences in C7-C10, C11-C16, and C12-C29 compounds in the crude oil composition and soil MO content jointly constituted the microbial community variance among the contaminated soils. This study revealed the bacterial and fungal communities responsible for the biodegradation of petroleum contamination from these oilfields, which could serve as biomarkers to monitor oil spill site restoration within these areas. Further studies on these contaminated sites could offer useful insights into other contributing factors such as heavy metals.
Collapse
Affiliation(s)
- Macdonald Ogorm Mafiana
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 730070, Lanzhou, People's Republic of China.
| | - Xiao-Hu Kang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 730070, Lanzhou, People's Republic of China
| | - Yan Leng
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 730070, Lanzhou, People's Republic of China
| | - Li-Fang He
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 730070, Lanzhou, People's Republic of China
| | - Shi-Weng Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 730070, Lanzhou, People's Republic of China.
| |
Collapse
|
22
|
Laothamteep N, Kawano H, Vejarano F, Suzuki-Minakuchi C, Shintani M, Nojiri H, Pinyakong O. Effects of environmental factors and coexisting substrates on PAH degradation and transcriptomic responses of the defined bacterial consortium OPK. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116769. [PMID: 33676341 DOI: 10.1016/j.envpol.2021.116769] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 05/12/2023]
Abstract
The present study showed that syntrophic associations in a defined bacterial consortium, named OPK, containing Mycolicibacterium strains PO1 and PO2, Novosphingobium pentaromativorans PY1 and Bacillus subtilis FW1, led to effective pyrene degradation over a wide range of pH values, temperatures and salinities, as well as in the presence of a second polycyclic aromatic hydrocarbon (PAH). Anthracene, phenanthrene or fluorene facilitated complete pyrene degradation within 9 days, while fluoranthene delayed pyrene degradation. Interestingly, fluoranthene degradation was enhanced in the presence of pyrene. Transcriptome analysis confirmed that Mycolicibacterium strains were the key PAH-degraders during the cometabolism of pyrene and fluoranthene. Notably, the transcription of genes encoding pyrene-degrading enzymes were shown to be important for enhanced fluoranthene degradation. NidAB was the major initial oxygenase involved in the degradation of pyrene and fluoranthene mixture. Other functional genes encoding ribosomal proteins, an iron transporter, ABC transporters and stress response proteins were induced in strains PO1 and PO2. Furthermore, an intermediate pyrene-degrading Novosphingobium strain contributed to protocatechuate degradation. The results demonstrated that synergistic interactions among the bacterial members (PO1, PO2 and PY1) of the consortium OPK promoted the simultaneous degradation of two high molecular weight (HMW) PAHs.
Collapse
Affiliation(s)
- Natthariga Laothamteep
- Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand; Microbial Technology for Marine Pollution Treatment Research Unit, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand; Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hibiki Kawano
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Felipe Vejarano
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Chiho Suzuki-Minakuchi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masaki Shintani
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka, 432-8561, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Onruthai Pinyakong
- Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand; Microbial Technology for Marine Pollution Treatment Research Unit, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand; Research Program on Remediation Technologies for Petroleum Contamination, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand; Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
23
|
Sayed K, Baloo L, Sharma NK. Bioremediation of Total Petroleum Hydrocarbons (TPH) by Bioaugmentation and Biostimulation in Water with Floating Oil Spill Containment Booms as Bioreactor Basin. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052226. [PMID: 33668225 PMCID: PMC7956214 DOI: 10.3390/ijerph18052226] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 11/30/2022]
Abstract
A crude oil spill is a common issue during offshore oil drilling, transport and transfer to onshore. Second, the production of petroleum refinery effluent is known to cause pollution due to its toxic effluent discharge. Sea habitats and onshore soil biota are affected by total petroleum hydrocarbons (TPH) as a pollutant in their natural environment. Crude oil pollution in seawater, estuaries and beaches requires an efficient process of cleaning. To remove crude oil pollutants from seawater, various physicochemical and biological treatment methods have been applied worldwide. A biological treatment method using bacteria, fungi and algae has recently gained a lot of attention due to its efficiency and lower cost. This review introduces various studies related to the bioremediation of crude oil, TPH and related petroleum products by bioaugmentation and biostimulation or both together. Bioremediation studies mentioned in this paper can be used for treatment such as emulsified residual spilled oil in seawater with floating oil spill containment booms as an enclosed basin such as a bioreactor, for petroleum hydrocarbons as a pollutant that will help environmental researchers solve these problems and completely clean-up oil spills in seawater.
Collapse
Affiliation(s)
- Khalid Sayed
- Civil and Environmental Engineering Department, Universiti Teknologi Petronas, Seri Iskandar, Perak 32610, Malaysia;
- Correspondence: ; Tel.: +60-0102547454
| | - Lavania Baloo
- Civil and Environmental Engineering Department, Universiti Teknologi Petronas, Seri Iskandar, Perak 32610, Malaysia;
| | - Naresh Kumar Sharma
- Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, Tamil Nadu 626128, India;
| |
Collapse
|
24
|
Colored Microbial Coatings in Show Caves from the Galapagos Islands (Ecuador): First Microbiological Approach. COATINGS 2020. [DOI: 10.3390/coatings10111134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Galapagos Islands (Ecuador) have a unique ecosystem on Earth due to their outstanding biodiversity and geological features. This also extends to their subterranean heritage, such as volcanic caves, with plenty of secondary mineral deposits, including coralloid-type speleothems and moonmilk deposits. In this study, the bacterial communities associated with speleothems from two lava tubes of Santa Cruz Island were investigated. Field emission scanning electron microscopy (FESEM) was carried out for the morphological characterization and detection of microbial features associated with moonmilk and coralloid speleothems from Bellavista and Royal Palm Caves. Microbial cells, especially filamentous bacteria in close association with extracellular polymeric substances (EPS), were abundant in both types of speleothems. Furthermore, reticulated filaments and Actinobacteria-like cells were observed by FESEM. The analysis of 16S rDNA revealed the presence of different bacterial phylotypes, many of them associated with the carbon, nitrogen, iron and sulfur cycles, and some others with pollutants. This study gives insights into subsurface microbial diversity of the Galapagos Islands and further shows the interest of the conservation of these subterranean geoheritage sites used as show caves.
Collapse
|
25
|
Li Q, You P, Hu Q, Leng B, Wang J, Chen J, Wan S, Wang B, Yuan C, Zhou R, Ouyang K. Effects of co-contamination of heavy metals and total petroleum hydrocarbons on soil bacterial community and function network reconstitution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111083. [PMID: 32791359 DOI: 10.1016/j.ecoenv.2020.111083] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 06/07/2020] [Accepted: 07/25/2020] [Indexed: 05/25/2023]
Abstract
Due to the accumulation of heavy metals in soil ecosystems, the response of soil microorganisms to the disturbance of heavy metals were widely studied. However, little was known about the interactions among microorganisms in heavy metals and total petroleum hydrocarbons (TPH) co-contaminated soils. In the present study, the microbiota shifts of 2 different contamination types of heavy metal-TPH polluted soils were investigated. NGS sequencing approach was adopted to illustrate the microbial community structure and to predict community function. Networks were established to reveal the interactions between microbes and environmental pollutants. Results showed that the alpha diversity and OTUs number of soil microbiota were reduced under heavy metals and TPH pollutants. TPH was the major pollutant in HT1 group, in which Proteobacteria phylum increased significantly, including Arenimonas genus, Sphingomonadaceae family and Burkholderiaceae family. Moreover, the function structures based on the KEGG database of HT1 group was enriched in the benzene matter metabolism and bacterial motoricity in microbiota. In contrast, severe Cr-Pb-TPH co-pollutants in HT2 increased the abundance of Firmicutes. In details, the relative abundance of Streptococcus genus and Bacilli class raised sharply. The DNA replication functions in microbiota were enriched under severely contaminated soil as a result of high concentrations of heavy metals and TPH pollutants' damage to bacteria. Furthermore, according to the correlation analysis between microbes and the pollutants, Streptococcus, Neisseria, Aeromonas, Porphyromonas and Acinetobacter were suggested as the bioremediation bacteria for Cr and Pb polluted soils, while Syntrophaceae spp. and Immundisolibacter were suggested as the bioremediation bacteria for TPH polluted soil. The study took a survey on the microbiota shifts of the heavy metals and TPH polluted soils, and the microbe's biomarkers provided new insights for the candidate strains of biodegradation, while further researches are required to verify the biodegradation mechanism of these biomarkers.
Collapse
Affiliation(s)
- Qian Li
- Hunan Research Institute for Nonferrous Metals, Changsha, China.
| | - Ping You
- Hunan Research Institute for Nonferrous Metals, Changsha, China
| | - Qi Hu
- NEOMICS Institute, Shenzhen, China
| | | | | | - Jiali Chen
- Hunan Research Institute for Nonferrous Metals, Changsha, China
| | - Si Wan
- Hunan Research Institute for Nonferrous Metals, Changsha, China; Kunming University of Science and Technology, Kunming, China
| | - Bing Wang
- Hunan Research Institute for Nonferrous Metals, Changsha, China; Kunming University of Science and Technology, Kunming, China
| | - Cuiyu Yuan
- Hunan Research Institute for Nonferrous Metals, Changsha, China
| | - Rui Zhou
- Hunan Research Institute for Nonferrous Metals, Changsha, China
| | - Kun Ouyang
- Hunan Research Institute for Nonferrous Metals, Changsha, China.
| |
Collapse
|
26
|
Biodegradation of Conventional and Emerging Pollutants. Molecules 2020; 25:molecules25051186. [PMID: 32155694 PMCID: PMC7179394 DOI: 10.3390/molecules25051186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 11/17/2022] Open
|